一道直线与圆的综合问题

合集下载

2020-2021中考数学圆的综合(大题培优 易错 难题)及答案

2020-2021中考数学圆的综合(大题培优 易错 难题)及答案

2020-2021中考数学圆的综合(大题培优易错难题)及答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.3.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正=上半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=于点M,BC边交x轴于点N(如图).时停止旋转,旋转过程中,AB边交直线y x(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明(3)设MBN你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,∴OA 旋转了45°.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=. (2)∵MN ∥AC ,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM .∴BM=BN .又∵BA=BC ,∴AM=CN .又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .∴∠AOM=∠CON=12(∠AOC-∠MON )=12(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.4.如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB ,P 是半径OB 上一动点,Q 是AB 上的一动点,连接PQ.发现:∠POQ =________时,PQ 有最大值,最大值为________;思考:(1)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ 的长;(2)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积;探究:如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.【答案】发现: 90°,102; 思考:(1)10 3π=;(2)25π−1002+100;(3)点O 到折痕PQ 的距离为30.【解析】 分析:发现:先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2,解得OP=102−10,最后用面积的和差即可得出结论.探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出OO′的长,则OM=12OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是AB 上的一动点,∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ=90°,PQ=22OA OB +=102;思考:(1)如图,连接OQ ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =2,在Rt △B'OP 中,OP 22−10)2=(10-OP )2解得OP=102−10, S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,O′B=226425-=,在Rt △OBO′K ,OO′=2210(25)=230-,∴OM=12OO′=12×230=30, 即O 到折痕PQ 的距离为30.点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90° ∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE∴OC OE CF CE=即106=8 CF∴40CF3=点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.6.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有BG=ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴AD=BC BD∴,=AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12BD ,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴BG=ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.7.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC ==AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得; (2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.8.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+231n na ⎫⎪⎪⎝⎭ ,解得a n =24331n n + .9.如图1,延长⊙O 的直径AB 至点C ,使得BC=12AB ,点P 是⊙O 上半部分的一个动点(点P 不与A 、B 重合),连结OP ,CP .(1)∠C 的最大度数为 ;(2)当⊙O 的半径为3时,△OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO 交⊙O 于点D ,连结DB ,当CP=DB 时,求证:CP 是⊙O 的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC 与⊙O 相切时,∠OCP 的度数最大,根据切线的性质即可求得; (2)由△OPC 的边OC 是定值,得到当OC 边上的高为最大值时,△OPC 的面积最大,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB ,根据等腰三角形的性质得到∠A=∠C ,得到CO=OB+OB=AB ,推出△APB ≌△CPO ,根据全等三角形的性质得到∠CPO=∠APB ,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC 与⊙O 相切时,∠OCP 最大.如图1,所示:∵sin ∠OCP=OP OC =24=12,∴∠OCP=30° ∴∠OCP 的最大度数为30°,故答案为:30°;(2)有最大值,理由: ∵△OPC 的边OC 是定值,∴当OC 边上的高为最大值时,△OPC 的面积最大,而点P 在⊙O 上半圆上运动,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大, 也就是高为半径长,∴最大值S △OPC =12OC•OP=12×6×3=9; (3)连结AP ,BP ,如图2, 在△OAP 与△OBD 中,OA OD AOP BOD OP OB =⎧⎪∠=∠⎨⎪=⎩,∴△OAP ≌△OBD ,∴AP=DB ,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.10.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是32﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴QP=2AP=QB+BP=PC+PB,∴2AP=PC+PB.(2)如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,∵AB⊥AC,∴∠BAC=90°,由旋转可得QB=OC,AQ=OA,∠QAB=∠OAC,∴∠QAB+∠BAO=∠BAO+∠OAC=90°,∴在Rt△OAQ中,2,AO=3 ,∴在△OQB中,BQ≥OQ﹣2﹣3 ,即OC最小值是2﹣3;(3)如图③中,作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC ==43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2,∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.11.如图1,四边形ABCD 为⊙O 内接四边形,连接AC 、CO 、BO ,点C 为弧BD 的中点. (1)求证:∠DAC=∠ACO+∠ABO ;(2)如图2,点E 在OC 上,连接EB ,延长CO 交AB 于点F ,若∠DAB=∠OBA+∠EBA .求证:EF=EB ;(3)在(2)的条件下,如图3,若OE+EB=AB ,CE=2,AB=13,求AD 的长.【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.【解析】试题分析:(1)如图1中,连接OA ,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO ,由点C 是BD 中点,推出CD CB = ,推出∠BAC=∠DAC ,即可推出∠DAC=∠ACO+∠ABO ; (2)想办法证明∠EFB=∠EBF 即可;(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .首先证明△EFB 是等边三角形,再证明△ACK ≌△ACT ,Rt △DKC ≌Rt △BTC ,延长即可解决问题;试题解析:(1)如图1中,连接OA ,∵OA=OC ,∴∠1=∠ACO ,∵OA=OB ,∴∠2=∠ABO ,∴∠CAB=∠1+∠2=∠ACO+∠ABO ,∵点C 是BD 中点,∴CD CB =,∴∠BAC=∠DAC ,∴∠DAC=∠ACO+∠ABO .(2)如图2中,∵∠BAD=∠BAC+∠DAC=2∠CAB ,∠COB=2∠BAC ,∴∠BAD=∠BOC ,∵∠DAB=∠OBA+∠EBA ,∴∠BOC=∠OBA+∠EBA ,∴∠EFB=∠EBF ,∴EF=EB .(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,∵∠EFB=∠EBF ,∴∠G=∠HOF ,∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,∵OH ⊥AB ,∴AB=2HB ,∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,∴cos ∠GBA=12HB GB = ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,∵∠FOH=30°,∴OF=2FH=2a ,∵AB=13,∴EF=EB=FB=FH+BH=a+132,∴OE=EF﹣OF=FB﹣OF=132﹣a,OB=OC=OE+EC=132﹣a+2=172﹣a,∵NE=12EF=12a+134,∴ON=OE=EN=(132﹣a)﹣(12a+134)=134﹣32a,∵BO2﹣ON2=EB2﹣EN2,∴(172﹣a)2﹣(134﹣32a)2=(a+132)2﹣(12a+134)2,解得a=32或﹣10(舍弃),∴OE=5,EB=8,OB=7,∵∠K=∠ATC=90°,∠KAC=∠TAC,AC=AC,∴△ACK≌△ACT,∴CK=CT,AK=AT,∵CD CB,∴DC=BC,∴Rt△DKC≌Rt△BTC,∴DK=BT,∵FT=12FC=5,∴DK=TB=FB﹣FT=3,∴AK=AT=AB﹣TB=10,∴AD=AK﹣DK=10﹣3=7.12.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.13.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB 绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A =(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C=OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.14..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 35r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r ,由勾股定理得:(3r )2+9=36,解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==-②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2,即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.15.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ; (2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)22;(2)224r ≤≤;(3)25252t --<<--或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解;(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB 2244+2; (2)如图,当d(⊙O,AB)=0时,过点O作OE⊥AB,则OE=22,OB=OA=4,∵⊙O与线段AB的“非常距离”为0,∴224r≤≤;(3)当⊙T在△ABC左侧时,如图,当⊙T与BC相切时,d=0,2236+35,过点C作CE⊥y轴,过点T作TF⊥BC,则△TFH∽△BEC,∴TF THBE BC=,即2635,∴5∵HO∥CE,∴△BHO∽△BEC,∴HO=2,此时5,0);当d=2时,如图,同理可得,此时T (252--);∵0<d <2,∴25252t --<<--;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8;综上,25252t -<<或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.。

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。

45,1B。

不存在C。

不存在D。

-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。

a+b=1B。

a-b=1C。

a+b=√2D。

a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。

2x+y-1=0B。

2x+y-5=0C。

x+2y-5=0D。

x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。

4x+2y=5B。

4x-2y=5C。

x+2y=5D。

x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。

平行B。

垂直C。

斜交D。

与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。

4B。

13√10C。

26√5D。

207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。

-1/3B。

-3C。

1D。

38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。

2/3B。

-3/2C。

-2D。

-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。

3x+y-6=0B。

x-3y+2=0C。

x+3y-2=0D。

3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1+2√2D。

1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

直线和圆的综合

直线和圆的综合
直线的性质
直线在平面内无限延伸,没有端点; 两点确定一条直线;两条直线相交于 一点或平行。
圆的方程与性质
圆的方程
标准方程(x - a)² + (y - b)² = r²,一般方程x² + y² + Dx + Ey +F=0
圆的性质
圆是平面上到定点的距离等于定长的所有点的集合;圆心确 定圆的位置,半径确定圆的大小;圆的任意一条直径所在的 直线都是圆的对称轴。
直线和圆的综合
目录
• 直线与圆的基本性质 • 直线与圆的交点问题 • 直线与圆的切线问题 • 直线与圆的综合应用 • 典型例题解析
01
直线与圆的基本性质
直线的方程与性质
直线的方程
一般式Ax + By + C = 0,斜截式y = kx + b,点斜式y - y1 = k(x - x1), 两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)
已知圆外一点求切线方程
若已知圆外一点$Q(x_1, y_1)$,则过点$Q$的两条切线方程分别为$(x_1 - a)(x - a) + (y_1 - b)(y - b) = r^2$和$(y_1 - b)(x - a) - (x_1 - a)(y - b) = 0$。
切线长与半径的关系
切线长公式
若直线$l$与圆$C$相切于点$P$,且直线$l$上一点$A$到圆心$O$的距离为$d$,则切线长$AP = sqrt{d^2 - r^2}$。
直线与圆的位置关系
相离
直线与圆没有公共点, 即圆心到直线的距离大
于半径。
相切
直线与圆有且仅有一个 公共点,即圆心到直线

与直线和圆有关的轨迹问题

与直线和圆有关的轨迹问题
例1.如图,圆O1和圆O2的半径都等于1,O1O2 4,过动点 P分 别 作 圆O1、 圆O2的 切 线PM、PN ( M、N为 切 点), 使得PM 2PN.试建立平面直角坐标系,求动点 P的 轨 迹 方 程.
(定义法)
例2.已知点A(1,0), B(1,0),C是圆x2 y2 1上的 动点, 连接BC并延长至D点,使 | CD || BC |,求直 线AC与 直 线OD的 交 点P的 轨 迹 方 程.
直线与圆方程的综合问题
例6.已知圆C : x2 y2 2x 4 y 3 0. (1)若圆C的切线在x轴和y轴上截距的绝对值相等, 求此切线方程; (2)从圆C外一点P( x1, y1 )向圆引一条切线,切点为 M , O为坐标原点,且有 | PM || PO |, 求使 | PM | 最小 时的P点坐标.
(转移法)
练 习:已 知 线 段AB的 端 点B的 坐 标 为(1,2),端 点A 在圆x2 y2 4上运动,求线段AB中点M的轨迹 方 程.
例3.过 点A(0,1)作 直 线 交圆M : ( x 2)2 y2 1于 点 B、C,在 线 段BC上 取 点P,使 | BP |:| PC || AB |:| AC |,求 点P的轨迹方程.
(a 2)(b 2) 2 (2)求线段AB中点的轨迹方程.
总结:
1.求轨迹方程的方法,主要有定义法、转移法、参数法、几 何法、交轨法.
2.(1)求两条直线、直线与曲线的交点的轨迹,首先选用 的是交轨法。
(2)K参数法是选取直线的斜率作为参数。 (3)由于圆的几何性质特别明显,几何法是众多方法中最 简单的.
(参数法)
例4.直 线 l1
:
y

2(x t

人教中考数学与圆的综合有关的压轴题含答案解析

人教中考数学与圆的综合有关的压轴题含答案解析

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F . (1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212【解析】试题分析:(1)连接OB ,利用已知条件和切线的性质证明; (2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠. ∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD . (2)由(1)可得sin ∠C = ∠DBA=25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO . ∴BD CDBO EO= ∴252EO =.∵OE ∥BD ,CO =OD , ∴CF =FB . ∴122OF BD ==. ∴212EF OE OF =-=2.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=33,CD=2,求⊙O 的半径.【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为32. 【解析】分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,==∴=, 由勾股定理求得6BE =在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =32, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为32.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.3.如图,O 是△ABC 的内心,BO 的延长线和△ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形. (1)求证:△BOC ≌△CDA . (2)若AB =2,求阴影部分的面积.【答案】(1)证明见解析;(2433π-. 【解析】分析: (1)根据内心性质得∠1=∠2,∠3=∠4,则AD=CD ,于是可判断四边形OADC 为菱形,则BD 垂直平分AC ,∠4=∠5=∠6,易得OA=OC ,∠2=∠3,所以OB=OC ,可判断点O 为△ABC 的外心,则可判断△ABC 为等边三角形,所以∠AOB=∠BOC=∠AOC=120°,BC=AC ,再根据平行四边形的性质得∠ADC=∠AOC=120°,AD=OC ,CD=OA=OB ,则根据“SAS”证明△BOC ≌△CDA ;(2)作OH ⊥AB 于H ,如图,根据等腰三角形的性质和三角形内角和定理得到∠BOH=30°,根据垂径定理得到BH=AH=12AB=1,再利用含30度的直角三角形三边的关系得到OH=33BH=33,OB=2OH=233,然后根据三角形面积公式和扇形面积公式,利用S 阴影部分=S 扇形AOB-S △AOB 进行计算即可. 详解:(1)证明:∵O 是△ABC 的内心,∴∠2=∠3,∠5=∠6, ∵∠1=∠2,∴∠1=∠3, 由AD ∥CO ,AD =CO ,∴∠4=∠6, ∴△BOC ≌△CDA (AAS )(2)由(1)得,BC =AC ,∠3=∠4=∠6, ∴∠ABC =∠ACB ∴AB =AC∴△ABC 是等边三角形 ∴O 是△ABC 的内心也是外心 ∴OA =OB =OC设E 为BD 与AC 的交点,BE 垂直平分AC . 在Rt △OCE 中,CE=12AC=12AB=1,∠OCE=30°, ∴23∵∠AOC=120°, ∴=AOBAOB S S S -阴影扇=2120231323602π-⨯ =433π- 点睛: 本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了等边三角形的判定与性质和扇形面积的计算.4.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.5.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.6.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

直线与圆的综合(学生版)

直线与圆的综合(学生版)

直线与圆的综合一、直线与圆的位置关系应用1. 求圆的切线的方法(1)自一点引圆的切线的条数①若点在圆外,则过此点可以作圆的两条切线;②若点在圆上,则过此点只能作圆的一条切线,且此点是切点;③若此点在圆内,则过此点不能作圆的切线.(2)圆的切线方程的求法①求过圆上一点的圆的切线方程:先求切点与圆心的连线的斜率,则由垂直关系知切线的斜率,由点斜式方程可得切线方程.若,则切线方程为;若不存在,则切线方程为.②求过圆外一点的圆的切线方程几何法:设切线方程,即.由圆心到直线的距离等于半径,可得,切线方程即可求出.代数法:设切线方程,即,代入圆的方程,得到一个关于的一元二次方程,由求得,切线方程即可求出.注意:过圆外一点的切线必有两条,无论用几何法还是代数法,当求得值是一个时,另一条切线的斜率一定不存在,可用数形结合法求出.经典例题1.过点与圆所引的切线方程为.2.过点的直线与圆相切,则直线在轴上的截距为().A. B. C. D.3.若过点总可以作两条直线与圆相切,则实数的取值范围是.巩固练习1.过点且与圆相切的直线方程为.A. B.C.D.2.已知圆的半径为,圆心在轴的正半轴上,直线与圆相切,则圆的方程为().2.求圆的切线长求切线长过圆外一点作圆:的切线,其切线长的求法为:先利用两点间距离公式求点到圆心的距离为,再利用勾股定理求出切线长.经典例题A.B.C.D.1.由直线上的点向圆引切线,则切线长的最小值为().(1)(2) 2.已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.求圆的方程.若点在直线上运动,过点作圆的两条切线、,切点分别为、点,求四边形面积的最小值.巩固练习A. B.C.D.1.点是直线上的动点,由点向圆作切线,则切线长可能为().A.B. C.D.2.由直线上的一点向圆引切线,则切线长的最小值为().(1)(2)3.已知圆经过点,且圆心为.求圆的标准方程.过点作圆的切线,求该切线的方程及切线长.3. 直线与圆相交的弦长问题设直线的方程,圆的方程为,求弦长有以下几种方法:(1)几何法如图,结合弦心距、弦长的一半及半径构成的直角三角形利用勾股定理来计算.注意:计算圆的弦长时通常情况下采用几何法.(2)代数法①将方程组消元后,由一元二次方程中根与系数的关系可得关于或的关系式,则通常把叫做弦长公式.②直线的方程与圆的方程联立求出交点坐标,由两点间的距离公式求得.经典例题A. B.C.D.1.已知圆的方程为,过该圆内一点的最长弦和最短弦分别为和,则四边形的面积是( ).2.若直线将圆的圆周分成长度之比为的两段弧,则实数的所有可能取值是 .A.B. C.D.3.圆:被直线:截得的弦长的最小值为().4.直线经过点被圆截得的弦长为,求此弦所在直线方程.A. B.C.D.5.若圆与轴、轴均有公共点,则实数的取值范围是().A. B. C. D.6.若圆上至少有三个不同的点到直线的距离为,则直线 的斜率的取值范围是().A. B.C.D.7.已知直线与曲线有两个不同的交点,则实数的取值范围是().巩固练习A. B.C.D.1.已知圆关于轴对称,经过点且被轴分成两段弧长之比为.则圆的方程为().A.或B.或C.或D.2.直线被圆截得的弦长为,则直线的倾斜角为( )3.若过点的直线被圆截得的弦长最短,则直线的方程是 ,此时的弦长为.A.B.或C.或D.或4.过点的直线与圆相交于,两点,且,则直线的方程为().A.B.C.D.5.若圆上至少有三个不同点的直线的距离为,则的取值范围是().A.B.或 C.或D.6.已知直线的方程为,若直线与曲线相交,则直线斜率的取值范围为().4.知识总结(一)圆的切线方程的求法①求过圆上一点的圆的切线方程:先求切点与圆心的连线的斜率,则由垂直关系知切线的斜率,由点斜式方程可得切线方程.若,则切线方程为;若不存在,则切线方程为.②求过圆外一点的圆的切线方程几何法:设切线方程,即.由圆心到直线的距离等于半径,可得,切线方程即可求出.代数法:设切线方程,即,代入圆的方程,得到一个关于的一元二次方程,由求得,切线方程即可求出.(二)求圆的切线长过圆外一点作圆:的切线,其切线长的求法为:先利用两点间距离公式求点到圆心的距离为,再利用勾股定理求出切线长.(三)直线与圆相交的弦长问题设直线的方程,圆的方程为,求弦长有以下几种方法:几何法如图,结合弦心距、弦长的一半及半径构成的直角三角形利用勾股定理来计算.二、圆与圆的位置关系问题1. 圆与圆的位置关系圆与圆的位置关系有三种:(1)两圆相交,有两个公共点;(2)两圆相切,包括外切与内切,只有一个公共点;(3)两圆相离,包括外离与内含,没有公共点.圆与圆位置关系的判断方法一般采用几何法来判断,利用两圆的圆心距进行判断设,则有:圆心距与半径的关系圆与圆的位置关系公切线条数与外离与外切与相交与内切与内含经典例题1.若圆:与圆:相交,则的取值范围为.A.条B.条C.条D.条2.两圆与的公切线有().巩固练习A.外离 B.外切 C.内含D.内切1.已知圆的方程为,圆的方程为,那么这两个圆的位置关系不可能是().A.B. C. D.2.圆与圆的公切线的条数是().2. 两圆的公共弦(1)两圆相交时,公共弦所在的直线方程设圆①圆②①-②得:③方程③表示过两圆交点的直线,即两圆公共弦所在的直线.(2)两圆公共弦长的求法①代数法:将两圆方程联立,求出公共弦所在直线的方程,将所得直线方程与任一圆的方程再联立,解出两交点的坐标,利用两点间的距离公式求公共弦长.②几何法:将两圆的方程联立,求出公共弦所在的直线的方程,由点到直线的距离公式求出弦心距,利用勾股定理解直角三角形,求出弦长.经典例题1.已知圆与圆相交于两点.(1)(2)求两圆的公共弦所在直线的方程.求两圆的公共弦长.A. B.C.D.2.两圆和相交于两点,,则线段的长为().巩固练习(1)(2)1.已知圆,圆.分别写出这两个圆的圆心坐标和半径的长,并求两个圆心的距离.求这两个圆的公共弦的长.A.B.C.D.2.两圆相交于两点和,且两圆圆心都在直线上,则的值是().3. 知识总结(一)两圆的位置关系设,则有:圆心距与半径的关系圆与圆的位置关系公切线条数与外离与外切与相交与内切与内含(二)两个圆的公共弦(1)公共弦所在直线设圆①圆②①-②得:③方程③表示过两圆交点的直线,即两圆公共弦所在的直线.(2)公共弦长代数法、几何法三、与圆有关的应用1. 求圆的轨迹方程的方法(1)直接法:直接由题目给出的条件列出方程;(2)定义法:根据圆的定义列方程;(3)几何法:利用圆的几何性质列方程;(4)代入法(即相关点法):找到所求点与已知点的关系,代入已知点满足的关系式.经典例题1.在直角坐标系中,点在圆上移动,动点和定点连线的中点为,求中点的轨迹方程.A. B.C.D.2.已知点和圆:,过点的动直线与圆交于,,则弦的中点的轨迹方程(). 3.已知定点,是圆上一动点,的平分线交于点,求的轨迹方程.巩固练习1.已知直角坐标系中,,动点满足,则点的轨迹方程是 ;轨迹为.2.已知为圆上一动点,定点,求线段中点的轨迹方程.2. 与圆有关的最值问题(1)距离型最值问题:形如形式的最值问题,可转化为动点到定点的距离的平方的最值问题;(2)过圆内一点的最长弦为过此点的直径,最短弦为垂直于此点的圆心连线的弦;(3)直线与圆不相交,圆心到直线的距离为,则圆上一点到直线的最小距离为,最大距离为.经典例题(1)(2)1.已知,,动点满足,设动点的轨迹为.求动点的轨迹方程.点在轨迹上,求最小值.2.已知直线,点是圆上的动点,则点到直线的距离的最小值为.(1)(2)3.在平面直角坐标系中,,动点满足.求点的轨迹方程.设为圆:上的动点,求的最小值.A.B.C.D.4.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:平面内到两个定点,的距离之比为定值的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,,,点满足.当,,三点不共线时,面积的最大值为().A.最大值是,最小值是 B.最大值是,最小值是C.最大值是,最小值是D.最大值是,最小值是5.如图所示,在平面直角坐标系中,点,分别在轴和轴非负半轴上,点在第一象限,且,,那么,两点间距离的().巩固练习A.B. C.D.1.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是().2.已知实数,满足,则的取值范围是.3.已知半径为的圆经过点,则其圆心到原点的距离的最大值为 .A.B.C.D.4.若点在圆上运动,,则的最小值为( ).3. 与圆有关的对称问题(1)圆的轴对称性圆关于直径所在的直线对称.(2)圆关于点对称①求已知圆关于某点的对称的圆的方程,只需要确定所求圆的圆心,即可写出标准方程;②两圆关于某点对称,则此点为两圆圆心连线的中点.(3)圆关于直线对称①求已知圆关于某条直线对称的圆的方程,只需确定所求圆的圆心,即可写出标准方程;②两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线.经典例题A. B.C. D.1.圆关于直线对称的圆的方程为().A. B.C.D.2.已知圆上两点,关于直线对称,则圆的半径为().A. B.C.D.3.已知圆:关于直线对称的圆为圆:,则直线的方程为().A.B. C. D.4.若圆:关于直线对称,则由点向圆所作的切线长的最小值是().5.在平面直角坐标系中,若圆:()上存在点,且点关于直线的对称点在圆:上,则的取值范围是.6.点,分别为圆与圆上的动点,点在直线上运动,则的最小值为.巩固练习A. B.C.D.1.已知直线过圆的圆心,且与直线垂直,则直线的方程为().A. B. C.D.不存在2.圆:上有两个点和关于直线对称,则().3.圆关于直线对称,则的值是( ).A. B. C. D.4.已知圆:关于直线:对称,则原点到直线的距离为().A. B. C. D.4. 知识总结(1)求圆的轨迹方程的方法直接法、定义法、几何法、代入法(2)与圆有关的最值问题①斜率型最值问题②截距型最值问题③距离型最值问题④过圆内一点的最长弦为过此点的直径,最短弦为垂直于此点的圆心连线的弦、⑤直线与圆不相交,圆心到直线的距离为,则圆上一点到直线的最小距离为,最大距离为.(3)与圆有关的对称问题圆的轴对称性、圆关于点对称、圆关于直线对称思维导图你学会了吗?画出思维导图总结本课所学吧!出门测1.从直线上的点向定圆作切线,则切线长的最小值为().A. B. C. D.2.从圆外一点向圆引两条切线,切点分别为,,则().A. B. C. D.3.若圆与圆相交于,两点,且两圆在点处的切线互相垂直,则线段的长度是().A. B. C. D.。

与圆有关的最值(范围)问题

与圆有关的最值(范围)问题

xx与圆有关的最值(范围)问题圆是数学中优美的图形,具有丰富的性质.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形性质,利用数形结合求解.当然,根据《教学要求》的说明,“平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想”,因此在此类问题的求解中,有时也会用到函数思想和基本不等式思想等.本文将就与圆的最值问题有关的题目进行归纳总结,希望能为学生在处理此类问题时提供帮助. 类型一:圆上一点到直线距离的最值问题应转化为圆心到直线的距离加半径,减半径例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 . 【分析】:这是求解“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,这一结论在解题时可直接应用.解:如图1,圆心C到直线y=x +1的距离d =圆半径1r =,故1PQ PC r ≥-=变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QAB S V 的最小值为 .【分析】本题要求QAB S V 的最大值,因为线段AB 为定长,由三角形面积公式可知,只需求“Q 到AB l 的最小值”,因此问题转化为“圆上一动点到直线的最小距离”,即例1. 解:如图2,设Q h 为Q 到AB l 的距离,则11)42QAB Q Q S AB h =⋅===+V图1 图2变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为 【分析】一般地,当直线和圆相切时,应连接圆心和切点,构造直销三角形进行求解.因为222PA PC r =-,故即求PC 的最小值,即例1.解:如图3,22221PA PC r PC =-=-,∵minPC =min PA =变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大.【分析】APB APC ∠=∠,故即求角APC ∠的最大值,利用其正弦值即可转化为求PC 的最小值,即例1.解:如图4,∵APB APC ∠=∠,1sin APC PC∠=,∵min PC =,∴PC =APC ∠最大,即APB ∠最大.图3 图4变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .【分析】将四边形面积转化为两个全等的三角形的面积,从而转化为PA 的最小值,问题又转化为求切线段的最小值问题.解:如图4,1222PAC PAB PAB S S S S PA AC PA ∆∆∆=+==⨯⋅⋅=四边形PACB ,由变式2可知,min PA =PACB【解题回顾】在上面例1及几个变试题的解题过程中,我们可以总结一句“万变不离其宗”,一般地,求“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,“圆心到直线的距离加半径”即为最大距离,这一结论在解题时可直接应用.另:和切线段有关的问题常利用“连接圆心和切点,构造直销三角形“进行求解.也即将“ 两个动点的问题转化为一个动点的问题”.如下例.例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.【分析】本题中,由于点P 和点M 均在动,故直接做很难求解.联系到PM 是切线段,因此可利用222PM PC r =-将条件PM=PO 转化为只含有一个变量P 的式子即可求解.解:由题意,令(,)P x y ,∵222PM PC =-,∴222PC PO -=, 即2222(1)(2)2x y x y ++--=+,化简得:2430x y -+=. ∵PM=PO ,∴即求直线2430x y -+=到原点O (0,0)的最小距离.d==PM 类型二:利用圆的参数方程转化为三角函数求最值x例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.【分析】本题是典型的用圆的参数方程解决的题型,利用圆的参数方程将所求式转化为三角函数求最值,利用辅助角公式即得最大值.解:22(1)(2)5x y ++-=,令1()2x R y θθθ⎧=-+⎪∈⎨=+⎪⎩, 则255cos()5x y θθθϕ-=-+-=+-(其中cos ϕϕ==) ∴当cos()1θϕ+=时,max (2)550x y -=-=,故x-2y 的最大值为0.【解题回顾】和圆有关的一次式的求解,利用圆的参数方程可以比较方便的求到最值.类型三:抓住所求式的几何意义转化为线性规划问题求最值值.比如例2中,这类题通常转化为直线方程的纵截距求解. 解法二:令2x y z-=,则1122y x z =-小时,z 最大,此时直线和圆相切,故圆心到直线的距离 d =故010z =-或,由题意,max0z =,即x-2y 的最大值为0.除了转化为直线的截距求解,还有一些式子具有明显的几何意义,比如斜率、两点间距离、点到直线的距离等.比如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,则可以分别用如下方法求解: 对12y x --,转化为圆上任意一点P 到点(2,1)A 连线斜率的最大值,可设过点(2,1)A 的直线为1(2)y k x -=-,直线和圆相切时,即圆心到直线的距离 d ==,可得122k =-或,故1[2,)(,2k ∈+∞⋃-∞-.对22(2)(1)x y -+-,转化为圆上任意一点P 到点(2,1)A 距离的平方的取值范围,由例1易得[PA CA CA ∈-,即222(2)(1)[50PA x y =-+-∈-+ 对1x y --,联想到点到直线的距离公式中有类似的元素.可将问题转化为圆上任意一点P 到直线10x y --=的距离的问题,易得,圆心到直线的距离为,故圆上任一点P (x,y )到直线10x y --=,即1[4x y --∈.【解题回顾】当所求式子含有明显的几何意义时,注意联系线性规划,用线性规划的思路求解可将问题简单化和直观化. 类型四:向函数问题转化平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想.有些问题,单纯利用圆的几何性质无法求解.此时应考虑如何利用代数思想将问题转化为函数问题.例4( 2010年高考全国卷I 理科11)已知圆O :221x y +=,P A 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ⋅u u u r u u u r的最小值为【分析】本题中,由于A 、B 都是动点,故将PA PB ⋅u u u r u u u r转化为坐标形式较难求解.此时考虑到向量数量积的定义,令2APB α∠=,cos 2PA PB PA PB α⋅=u u u r u u u r u u u r u u u r,而切线段PA=PB 也可用α表示,故所求式可转化为关于α的三角函数求解. 解:令2((0,))2APB παα∠=∈,cos 2PA PB PA PB α⋅=u u u r u u u r u u u r u u u r ,1tan PA PB α==,∴222222cos 2cos cos 2(1sin )(12sin )tan sin sin PA PB αααααααα⋅--⋅===u u u r u u u r , 令2sin (0)t t α=>,则(1)(12)1233t t PA PB t t t--⋅==+-≥u u u r u u u r (当且仅当2t =2sin 2α=时取等号) 【解题回顾】本题以向量定义为载体,巧妙地利用了设角为变量,将与圆有关的问题转化为三角函数的问题求解.将几何问题代数化,利用函数思想求解.同时运用了换元思想,基本不等式思想等解题方法,是一道综合题. 类型五:向基本不等式问题转化例5已知圆C :22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点,(1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值.【分析】由于EF 和GH 都是圆的弦长,因此可利用222=+半径半弦长弦心距将EF +GH 转化,用基本不等式的相关知识点.解:(1)令圆心C 到弦EF 的距离为1d ,到弦GH 的距离为2d ,则EF +GH =,又222121d d CA +==,2≤==(当且仅当122d d ==取等号)故EF +GH ≤=(2)∵EF GH ⊥,∴22128()12722d d S EF GH -+=⋅=≤⋅=四边形EFGH(当且仅当122d d ==取等号)【解题回顾】本题(1)是利用2a b +≤(22a b +≤.基本不等式是求最值的基本方法.在利用基本不等式求最值时应注意如何构造“定量”.由于圆的对称性,在与圆有关的最值问题中,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.同时,由于最值问题从代数意义上讲和函数的最值联系紧密,因此在解题过程中灵活的应用函数、不等式等代数思想使问题代数化、简单化也是需要注意的.。

直线和圆综合问题题型分类全面

直线和圆综合问题题型分类全面

第九讲直线和圆问题一、直线与圆(一) 直线和圆的位置关系及其特点1. 直线和圆相交:直线和圆有两个公共点 3.直线和圆相离:直线和圆没有公共点(二) 直线和圆的位置关系的判断小来判断.代数法:联立直线与圆的方程组成方程组,代数法:若直线y kx b 与圆有两个交点 A (x 1, y 1)> B (x 2,y 2),则弦长公式I A B =3.相交弦中点求法几何法:求出经过圆心与相交弦I 垂直的直线方程I ,则I 、丨的交点即为相交弦中点. 为中点弦坐标. (四)圆的切线1 .圆的切线条数点在圆内时: _____2. 圆的切线方程求法(1)求过圆上一点(x o , y o )的切线方程求法几何法:利用圆心O (a,b )到直线Ax By C0的距离d 卜;Bbq 与半径r 的大的一元二次方程,通过根的判别式(三)相交弦长1.定义:当直线和圆相交时,我们把两个交点的距离叫做相交弦长.2. 求相交弦长的两种方法几何法:如图,半径r ,弦心距d ,弦长I 的一半构成直角三角形,满足勾股定理:2. 直线和圆相切:直线和圆有一个公共点消去其中一个未知量,得到关于另外一个未知量b 24ac 来判断.代数法:联立直线I 和圆C 的方程,消去 y 后得到关于x 的一元二次方程,其两根分别为X i , X 2则相交弦的中点横坐标为 X oX i X 22,再把X 0代入直线I 的方程求得y o ,(X 0, y 。

)即;点在圆上时:;点在圆外时:先求切点与圆心连线的斜率k,由垂直关系可知切线斜率为k,由点斜式方程求得切线方程.若k 0或k 不存在,则由图形可以直接求得切线方程.(2)求过圆外一点(X o , y o )的切线方程求法几何法:设切线方程为点斜式,由圆心到直线距离等于半径求出斜率 k ,从而求出切线方程. 代数法:设切线方程为点斜式, 将切线方程代入圆的方程消去 y ,得到关于x 的一元二次方 程,利用 0求出k ,从而求出切线方程.(五)圆系方程1.以(a,b)为圆心的圆系方程是2.与圆x 2y 2Dx Ey F o 同心的圆系方程是3.过同一定点(a,b)的圆系方程是2 24.过直线Ax By C 0与圆X y Dx Ey F 0的交点的圆系方程是5.过两圆 C 1 :x 2 y 2D 1X E" F 10,C 2: x 2 y 2 D 2X E z y F 20 的交点的圆系方程是 ___________________ 二、圆和圆(一) 圆和圆的位置关系 圆与圆之间有几种位置关系?(二) 圆和圆的位置关系判断 几何法:设两圆的半径分别为「1,「2,圆心距为d ,比较d 和r i ,r 2的大小关系.(1)经过圆 X 22y r 2上一点 P (X o , y o )的切线方程为X o Xy o y(2)经过圆(X a)2(y b)22r 上一点P (X o , y o )的切线方程为(x o a)(x a) (y o b)(y b)2r .(3)经过圆X 22y Dx Ey F 0上一点P(X o , y o )的切线方程为x o x y o yD XX 2 E y o y2F 0.4.切线长:若 圆C:(x a)2 (y b)r ,则过圆外一点d J (X o a)2(y o b)22 r .r 25.切点弦:过圆 C : (X a)2(y b)2P(x o , y o )作圆C 的两条切线方程,切点分别为A,B ,则切点弦AB 所在直线方程为:(x o a)(x a) (y o b)(y b) r 2.3.过圆上一点(x o ,y o )的切线方程P(X o , y o )的切线长r 2外一点22D 1XE 1yF 10 和 C 2: x 2 y 2 D 2X E z y F 2 0 相交时,若两圆相交,方程 提示:当两圆相切时2.公共弦长的求法代数法:将两圆方程联立,解出交点坐标,利用两点距离公式求出弦长 .几何法:求出公共弦所在直线方程,求出弦心距,半径,利用勾股定理求出弦长.三、直线与圆的方程的应用坐标法:建立适当的直角坐标系后, 借助代数方法把要研究的几何问题, 转化为坐标之间的运算,由此解决几何问题.考点一、直线和圆的位置关系、圆和圆的位置关系相离、相交?变式 3:已知圆 C 1 : x2y 22x 8y 80,圆 C 2 :代数法:由两个圆的方程组成一个方程组消元化为一元二次方程.根据 来判断.(三)圆与圆的公共弦1.两圆的相交弦所在直线方程的求法22得 D 1 D 2 E 1 E 2F 1 F 2表示过两圆交点的直线,即为经过两圆交点的直线方程为两圆的公切线方程.例1 :已知动直线i :ykx 5和圆 C :(x 1)2 y 21,试问k 为何值时,直线与圆相切、 例2:若直线ax by 1 0与圆x 21相交,则点P (a,b )与圆的位置关系是例3:圆C 1 : x22mx 4y m0 与圆 C 2: x 2 y 222x 2my m 3 0.试问m 为何值时,两圆(1)外离;(2)外切;(3)相交;(4)内切;(5)内含;变式 1 圆 2x 2 + 2y2=1 与直线 xsinq + y —1= 0 ( R,k , k z )的位置关系是? 变式2:已知点M (a,b )在圆O:x2y 21外,则直线 ax by1与圆0的位置关系是4x 4y 2 0,试判断两圆的位置关系. 练习:1.直线 3x+ 4y+12=0与e C:(x- 1)2+ (y —1)2= 9的位置关系是 2.直线X y 1与圆X 2y 22ay 0(a0)有公共点,则a 的取值范围是多少?3.若直线x +y + m = 0与圆x 2+ y 2= m 相切,则m 的值为()C . 2考点二、直线和圆相交 (一)相交弦长例2:已知圆C 过点(1,0),且圆心在X 轴的正半轴上,直线l : y X 1被圆C 所截得的弦 长为2j2,求圆的方程.取值范围是A,B 两点,求|AB |及AOB 的面积.长为2 ,则a点,|AB | 2丿3,求.直线I 的方程. 练习:22x=0 和 X2)24. 圆 X 2 y 25. 圆 C 1: (X m)2 (y y 2 +4y 0的位置关系是9与圆C 2: (X 1)2(y m)2 4外切,则m 的值为多少? 6.判断直线L : (1 m)x (1 m)y 2m 0与圆0: X 2 y 29的位置关系.例1:求直线l :3x y6 0被圆C : X 2 y 2 2y 40截得的弦长.例 3:直线 y kx 3与圆(x 3)2 (y 2)24相交于M , N 两点,若I MN] 2J3,则k 的变式1:在平面直角坐标系 xOy 中,直线X2y 30与圆 C:(x 2)2 (y 1)24交于变式2:设直线ax y 30与圆(x 1)22(y 2)24相交于A 、B 两点,且弦AB 的变式3:已知圆M : (x 1)2(y 1)24 直线” l 过点P(2,3),且与圆M 相交于 A,B 两1.直线y 2x 3被圆X 2 y 26x 8y 0所截得的弦长等于多少? 2.已知圆y 22x 2y a 0截直线x y 20所得弦的长度为例1:已知圆x 2y 24x 6y12 0内一点 A(4, 2),求以为A 中点的弦所在直线的方例2:过点P(3,1),作圆M :(x 2)2(y 2)24的弦,其中最短的弦长为例3:直线y kx 与圆x 26x 4y 100相交于两个不同点,求中点轨迹方程变式1:设圆C : x2y 24x 5 0的一条弦的中点为 P(3,1),则该弦所在直线的方程为变式2: 过点(1,农)的直线l 将圆(X 2)2 y 24分成两段弧,当劣弧所对的圆心角最小时, 直线I 的的方程为■已知点P(0,5)及圆C : X 2+ y 2+ 4x — 12y + 24= 0.求过P 点的圆C 的弦的中点的轨迹方程. 练习:1. ( 1) 设直线2x 3y 1 0和圆x 2 y 22x 3 0相交于点A, B ,弦AB 的垂直平 分线的方程为?2(2)若点P (2,-1)为圆(x- 1) +y 2=25的弦AB 的中点,求直线 AB 的方程.2.过点(2,1)的直线被圆x 2y 22x 4y 0截得的弦长最短的直线方程是?3.经过原点作圆x 2+ y 2+ 2x- 4y + 4 = 0的割线I ,交圆于A B 两点,求弦AB 的中点M的轨迹方程.2 24.若直线y = 2x+b 与圆x +y = 4相交于A 、B 两点,求弦AB 的中点M 的轨迹.5.已知圆的方程为 X 2+ y 2— 6x — 8y = 0,设该圆过点 P(3,5)的最长弦和最短弦分别为AC 和(二)中点弦和弦的中点轨迹问题 3.直线I 过点Q(0,5),被圆C:(X 2)2 (y 6)2 16截得的弦长为4J3…求直线l 的方4.直线x 2y 30与圆C :(x 2)2 (y 3)2 9交于E 、F 两点,贝y ECF 的面积为5.求与X 轴相切,圆心在直线 3x0上, 且截直线x y 0的所得弦长为2J 7的圆的方程.6.直线屈y 2^0截圆x 2 + y 2=4的劣弧所对的圆心角是最大距离和最小距离.取值范围是值范围是6.曲线y 1 J 4 x 2 (|x| 2)与直线y k(x 2) 4有两个交点时,实数 k 的取值范围是考点三、直线和圆相切 (一)与圆相切的直线方程(点在圆上)例2:经过圆上一点P( 4, 8)作圆(x 7)2(y 8)29的切线方程为BD ,则四边形ABCD 的面积为()A . 1^/6B . 20^6C . 30^6D .4076(三)直线和圆相交最值问题2例1 :在圆x 2y 4上,与直线4x 3y-12 0的距离最小距离是.该点的坐标是.最大距离是.该点的坐标是例2:若圆x 2y 24x 4y 100上至少有三个不同的点到直线 l : axby 0的距离为2 J 2,则直线l 的倾斜角的取值范围是例3:若过定点M( 1,0)且斜率为k 的直线与圆 交点,贝y k 的取值范围是 _________________ . x 2 4x y 2 5 0在第一象限内的部分有变式1:已知点P(x, y)是圆(X 3)2(y 3)24上任意一点,求到直线 2x y 6 0的变式2:在平面直角坐标系 xoy 中, 已知圆x 24上有且仅有四个点到直线12x 5y c 0的距离为1,则实数变式3:直线I 过点A(0,2)且与半圆的斜率的范围是 ___________ . c的取值范围是2y 2i(y 0)有两个不同的交点,则直线I练习: 1.圆 x 2 y 21上的点到直线3x 4y 25 0的距离的最小值是(A . 62.设A 为圆(x 2)2 (y 2)21上一动点,贝U A 到直线x y5 0的最大距离为 3.圆x 2+y 2+ 2x+ 4y-3=0上到直线x+ y+1= 0的距离为A .1 个 B逗的点有(.4个4.若圆(x 3)2 (y 5)2r 2上有且只有两个点到直线4x 3y 2的距离等于 1,则半径r 的5.若圆(x 3)2 (y 5)2r 2上有且只有两个点到直线4x 3y 2的距离等于 1,则半径r 的取(点在圆外)例1:自点M(3,1)向圆x22y 1引切线,则切线方程是多少?例3:与圆C : X 2 (y 5)23相切、且纵截距和横截距相等的直线共有例4:把直线y绕原点逆时针方向旋转,使它与圆X 2 y 2 ^3x 2y 3 0相切,则3直线转动的最小正角是 _________________ .. 2 2变式1:求过A(3,5)且与圆C : X y 4x 4y 7 0相切的直线方程.射后光线所在直线的方程2.已知圆C 的半径为2,圆心在X 轴的正半轴上,直线 3xC 的方程为 _________________ . 3.已知圆C 的圆心是直线X y 10与X 轴的交点,且圆 变式2:圆X 2y 24x 0在点P(1, J 3)处的切线方程为练习:1.求过点A(2,2j2 2)的圆C: X 22+ y - 2x + 4y- 4=0的切线方程.2.已知圆0: X 2+y=16,求过点 P (4,6)的圆的切线PT 的方程.3.已知过点P(2,2) 的直线与圆(X1)2 y 25相切.,且与直线axy 1 0垂直,则a( )A.-2B. 1C. 2D.4. 一条光线从点A( 2,3)射出,经X 轴反射后,与圆 C:(X 3)2(y22) 1相切,求反5.垂直于直线y X 1且与圆X1相切于第一象限的直线方程是(B. XC. X y 1 0D. X6.若经过点P( 1, 0)的直线与圆是 __________ .(二)与直线相切的圆方程X 22y 4x 2y0相切,则此直线在 y 轴上的截距例:求圆心在直线l 1: 5x 3y 0 上,并且与直线12: X 6y 10 0相切于点P(4,-1)圆的方程.变式:若圆C 经过坐标原点和点(4,0),且与直线y = 1相切,则圆C 的方程是练习:1.圆心为(1 , 2)且与直线5X12y 70相切的圆的方程为4y 4 0与圆C 相切,则圆C 与直线X y 3 0相切,则l:2x- y+10 =0上一点做圆O: x 2+ y 2= 4的切线,切点为 A 、B ,求四边形PAOB 面积的最小值.5.已知e O: x 2 + y 2=1和定点A (2,1),由e O 外一点P(a,b)向e O 引切线PQ ,切点为圆C 的方程为 _______________________ . (三)切点弦、切线长 例1:过点P(2,3)向圆C: x 2+ y 2=1上作两条切线 PA PB ,则弦AB 所在的直线方程为例2:自点 A( 1,4)作圆(X 2)2(y 3)21的切线,则切线长为例3:已知P 是直线3x 4y 80上的动点,PA, PB 是圆C : x 2y 22x 2y 1 0 的两条切线,A 、B 是切点,C 是圆心,(1)那么四边形 PACB 面积的最小值为多少?(2)直线上是否存在点P 使 BPA 60 ?若存在求出点的坐标,若不存在说明理由例4.自动点P 引圆x 2y 210的两条切线PA, PB ,直线PA, PB 的斜率分别为 灯k 2. (1 )若 k , k 2 k 1k 21,求动点P 的轨迹方程;(2)若点P 在直线xy m 上,且PA PB ,求实数m 的取值范围.变式1:过点3,1作圆(X 1)2y 2 1的两条切线,切点分别为A , B ,则直线AB 的方程为变式2 :自直线y = x 上的点向圆x 2+y 2-6x + 7 = 0引切线,则切线长的最小值为 ■变式3:由动点P 向圆x 2y 21引两条切线PA PB ,切点分别为 A B ,P 的轨迹方程为 .APB 60 ,则动点 练习1.过圆 x 2y 24外一点M(4, 1)引圆的两条切线,则经过两切点的直线方程为A. 4x y 40 B . 4x y 4 0 C . 4x y 4 0 D . 4x y 42.过点离为(2 2C (6,— 8)作圆x+ y= 25的切线于切点 A B ,那么C 到两切点 A )B 连线的距A. 153.由直线 A. 1C 寸15 2y= x+1上的点向圆C: X 2+ y 2— 6x+ 8=0引切线,则切线长的最小值为 ( )B. 2眾D. 3 B. 1C.D. 54.从直线Q,且满足|PQ|=|PA .⑴求实数a,b 间满足的等量关系; ⑵求线段PQ 的最小值.(四)利用直线和圆的位置关系解决最值问题(1 )求—的最大值和最小值;X(2)求X y 的最大值和最小值; (3)求X 2y 2的最大值和最小值.练习1.已知 x,y 是实数,且 X 2 +y 2- 4x- 6y+12 = 0,练习:(二)圆与圆相交X y 4 0上的圆的方程.例1:已知实数X 、y 满足方程X 24x 1 0,变式:若实数x,y 满足X2y 22x4y 0,贝U x 2y 的最大值为求(1) 2的最值;(2)XX 2 + y 2的最值;(3) X + y 的最值;(4) x y 的最值. 2.已知实数X, y 满足x 2 + y 2 =1,则■^-2的取值范围为 X 1考点四、圆与圆(一)圆与圆相例1:求与圆X 2y 2 25内切于点(5, 0),且与直线3x-4y 5 0也相切的圆方程.变式:已知半径为1的动圆与圆 (X 5)2(y 7)216相切,则动圆圆心的轨迹方程是1.圆 M :(X 1)2(y1)2圆N 的圆心为N (2,2)且与圆M 相切,求圆N 的方程.2.求过点A (0,6)且与圆X 2 y 2 10x 10y 0切于原点的圆的方程.例1:求两圆:X 26x 4y 0及X 22y 4x 2y 40的公共弦所在直线方程和公共弦长.例2:已知圆C 1 : X 线段AB 的中垂线方程为2y 2 6x 72 20与圆C 2: X y 6y 27 0相交于A, B 两点,则例3:求过两圆X 2y26X 40和X 2y 2 6y 280的交点,且圆心在直线变式 1:圆 X 2y 22x 0 和 X 2y 24y0的公共弦所在直线方程为(OP OQ ,贝U F 的值为例2:在以O 为原点的直角坐标系中,点A(4, 3)为 OAB 的直角顶点,已知|AB 2OA , 且点B 的纵坐标大于0.(1) 求A B 的坐标;(2) 求圆X 2— 6x +y 2+ 2y = 0关于直线OB 对称的圆的方程.例 3:已知圆 G : (X- 2)2+(y- 3)2=1 ,圆 C 2: (X- 3)2+(y- 4)2=9, M 、N 分别是圆G 、C 2上的动点,16及(x 4)2(y 3)2r 2在交点处的切线互相垂直,求实数 r 的值. 2y 4和直线y mx 的交点分别为 P 、Q 两点,O 为坐标原点,则op| |OQ |的值为考点七、实际运用例:有一种大型商品, A 、B 两地均有出售且价格相同,某地居民从两地之一购得商品运回 来,每公里的运费 A 地是B 地的两倍,若 A B 两地相距10 km ,顾客选择 A 地或B 地购买 这种商品的运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品的地点?变式:如图,已知一艘海监船 O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘A. x 2y 0B.x 2y 0 C. 2xy 0 D. 2x变式2:已知两圆x 210x 10y 0 和 x 22y 6x 2y 400,则它们的公共弦长为, 练习:1.圆 x 2 y 20和圆 5的公共弦直线方程为;公共弦长2.已知圆M : X 210和圆N : X 2x 2y 14 0,求过两圆交点,・且面积最小的圆的方程.考点六、综合拓展(设而不求、对称问题) 例1:已知直线x 2y 30交圆x 2x 6y F 0于点P,Q , O 为坐标原点,且P 为x 轴上的动点,PM PN 的最小值.变式1:若圆C :(X 3)2 (y 1)29与直线 x y a 0交于A 、B 两点,且OAOB ,求a 的值.变式2: 为(A. X y练习1.已知圆 若圆 )x 2B.y 2 8 和圆 X 2 y 2 4xx y 0 C. x y4y 4 0关于直线I 对称,则直线I2 0 D. x y 2 0C i :(x+1)2+ (y-1)2=1,圆C 2与圆C i 关于直线x-y-1=0对称,则圆C 2的方程为( A.(x+ 2)2+ (y-2)2=1 C.(x+ 2)2+ (y+ 2)2=1 B.(x-2)2+ (y+2)2=122 的方程.. 2 22.若两圆x y23.已知圆(3-x)外籍轮船从位于海监船正东40 km的A处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被我海监船监测到?若能,持续时间多长?练习:航行前方的河道上有一圆拱桥,在正常水位时,拱圆最高点距水面 9米,拱圆内水面 宽为22米,船只在水面上部高为 6.5米,船顶宽4米,故船行无阻.近日水位暴涨了 2.7米, 船只已不能通过桥洞,船员必须加重船载,降低船身.问:船身必须降低多少,才能通过桥洞? 巩固训练 1.直线 3x + 4y + 12 = 0 与O C : (x - 1)2+ (y - 1)2= 9 的位置关系是( A.相交并且过圆心 2.已知圆X 2 y 2 圆的位置关系为( A.相交 B B •相交不过圆心 C 61 2y ——16 ) .外切 ,圆(X C .相切 sin )2 (y .内切 1)2 ) •相离 1 —,其中0 16 .相交或外切 3. 若曲线y v'1 x 与直线y 4.圆X 2 + y 2- 4x + 4y + 6 = 0截直线x - y -5= 0所得弦长等于 A . V G B.晋 5. 若圆X 2+ y 2= 4与圆x 2+y 2+ 2ay - 6 = 0(a > 0)的公共弦的长为 2寸3,则6. 若过点 A(4,0)的直线I b 始终有两个交点,则 b 的取值范围是 C . 1 90,则两 a = _______ .与曲线(X - 2)2 + y 2= 1有公共点,则直线 I 斜率的取值范围为 7.直线x y 1与圆x 2 y 2 2ay 0(a 0)没有公共点,则a 的取值范围是8.设 P 是圆(X 3)2 (y 1)2 4上的动点,Q 是直线X 3上的动点,则I pQ 的最小值为 9. 过点P10. 求与圆" 4y 11.过点(2,1)的直线中被圆 2 2(X+3) + (y- 2) = 4相切的直线方程是 1 2X 0同心,且与直线2x y 1 0相切的圆的方程. y 22x 4y 0截得的弦长最大的直线方程是 () A. 3x y 5 0 B. 3x 7 0 C. x 3y 5 0 D. x 3y 5 0 12•点P 在圆C i : |PQ|的最小值是( A. 5 C. 3\f 5 - 5 13.动点在圆 A. (x 3)2C. (2x 3)2X 2+ y 2- 8x -4y + 11= 0 上,点 Q 在圆 C 2: x 2+y 2+4x +2y + 1 = 0 上,则 ) 4y 14.设 P(x, y)是圆 x 2B. 1 D. 3^/5 + 5 1上移动时,它与定点 B(3,0)连线的中点的轨迹方程是 ( B. (x 3)2 15. 辆卡车宽2.7米,要经过一个半径为 4.5 卡车的平顶车蓬蓬顶距离地面的高度不得超过 A. 1.4 米C. 3.6 米 16. 已知圆C 和y 轴相切,圆心C 在直线X 求圆C 的方程.,3 2 D. (X -) 2 y 28x 6y 16 0上一点,贝y —的最大值是 ______ . X 米的半圆形隧道(双车道,不得违章),则这辆 ( B. D. 3y) 3.0米 4.5米 0上,且被直线y X 截得的弦长为 R 7,20.已知过点M 3, 3的直线I 与圆X 2 y 24y 210相交于A,B 两点,⑴若弦AB 的长为2/15,求直线I 的方程;(2)设弦AB 的中点为P ,求动点P 的轨迹方程.21. 已知圆 C : X 2+ (y — 1)2= 5,直线 I : mx — y + 1 — m = 0. ⑴求证:对任意 m € R ,直线I 与圆C 总有两个不同的交点; ⑵设I 与圆C 交于A , B 两点,若|AB|={17,求I 的倾斜角; ⑶求弦AB 的中点M 的轨迹方程.22. 为了适应市场需要,某地准备建一个圆形生猪储备基地 从基地中心0处向东走1 km 是储备基地的边界上的点的点B ;从基地中心 0向正北走8 km 到达公路的另一点 C.现准备在储备基地的边界上选一 点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.17.已知直线I 过点P(5,5),且和圆C : X 2y 25相"交于A,B 两点, 截得的弦长为4j 5 ,求谊线I 的方程. 18. 求经过圆 C 1 : X 2 y 24x 2y 1 (2 , 2)的圆的方程. 19. 已知O M : X 2+ (y — 2)2= 1, Q 是x 轴上的动点, QA , QB 分别切O (1)若|AB| =纠2,求|MQ|、Q 点的坐标以及直线 MQ 的方程; 3⑵求证:直线 AB 恒过定点. 20与圆C 2 : X 2 -y 6x0的交点,且过点M 于A ,B 两点.(如图),它的■■附近有一条公路,A ,接着向东再走 7 km 到达公路上。

与圆有关的综合问题

与圆有关的综合问题

与圆有关的综合问题题型一:与圆有关的轨迹问题[典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法[针对训练]1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′),由题意得,⎩⎪⎨⎪⎧ x ′+4=2x ,y ′-2=2y ,则⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y +2,故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A.2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ). 由题设知CM ―→·MP ―→=0, 故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.题型二:与圆有关的最值或范围问题[例1] (2019·兰州高三诊断)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( ) A .[-2,6] B .[-3,5] C .[2,6]D .[3,5][解析] 法一:当MA ,MB 是圆C 的切线时,∠AMB 取得最大值.若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=(5-1)2+(t -4)2≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.法二:由于点M (5,t )是直线x =5上的点,圆心的纵坐标为4,所以实数t 的取值范围一定关于t =4对称,故排除选项A 、B.当t =2时,|CM |=25,若MA ,MB 为圆C 的切线,则sin ∠CMA =sin ∠CMB =1025=22,所以∠CMA =∠CMB =45°,即MA ⊥MB ,所以t =2时符合题意,故排除选项D.选C. [答案] C[例2] 已知实数x ,y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.(2)y -x 可看成是直线y =x +b 在y 轴上的截距.当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6. (3)x 2+y 2表示圆上的一点与原点距离的平方.由平面几何知识知,x 2+y 2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值. 因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43, 最小值是(2-3)2=7-4 3.[方法技巧]与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:[针对训练]1.(2019·新余一中月考)直线x +y +t =0与圆x 2+y 2=2相交于M ,N 两点,已知O 是坐标原点,若|OM ―→+ON ―→|≤|MN ―→|,则实数t 的取值范围是________. 解析:由|OM ―→+ON ―→|≤|MN ―→|=|ON ―→-OM ―→|, 两边平方,得OM ―→·ON ―→≤0, 所以圆心到直线的距离d =|t |2≤22×2=1, 解得-2≤t ≤2,故实数t 的取值范围是[-2, 2 ]. 答案:[-2, 2 ]2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点A (2,1)连线的斜率.当直线PA 与圆相切时,k 取得最大值与最小值.设过(2,1)的直线方程为y -1=k (x -2),即kx -y +1-2k =0. 由|2k |k 2+1=1,解得k =±33.答案:33,-333.(2019·大庆诊断考试)过动点P 作圆:(x -3)2+(y -4)2=1的切线P Q ,其中Q 为切点,若|P Q |=|PO |(O 为坐标原点),则|P Q |的最小值是________.解析:由题可知圆(x -3)2+(y -4)2=1的圆心N (3,4).设点P 的坐标为(m ,n ),则|PN |2=|P Q |2+|N Q |2=|P Q |2+1,又|P Q |=|PO |,所以|PN |2=|PO |2+1,即(m -3)2+(n -4)2=m 2+n 2+1,化简得3m +4n =12,即点P 在直线3x +4y =12上,则|P Q |的最小值为点O 到直线3x +4y =12的距离,点O 到直线3x +4y =12的距离d =125,故|P Q |的最小值是125.答案:125[课时跟踪检测]1.(2019·莆田模拟)已知圆O :x 2+y 2=1,若A ,B 是圆O 上的不同两点,以AB 为边作等边△ABC ,则|OC |的最大值是( ) A.2+62B. 3 C .2D.3+1解析:选C 如图所示,连接OA ,OB 和OC . ∵OA =OB ,AC =BC ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°, 在△OAC 中,由正弦定理得OA sin 30°=OCsin ∠OAC ,∴OC =2sin ∠OAC ≤2,故|OC |的最大值为2,故选C.2.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b 2的最小值为( ) A .2 B .4 C .8D .9解析:选D 圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b 2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.3.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( ) A .3 B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45.因为P 在圆C 上,所以P ⎝⎛⎭⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎨⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.4.(2019·拉萨联考)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,则点P 到直线l :x -2y -5=0的距离的最小值是( ) A .4 B. 5 C.5+1 D.5-1解析:选D 圆C :x 2+y 2-4x -2y +4=0化为(x -2)2+(y -1)2=1,圆心C (2,1),半径为1,圆心到直线l 的距离为|2-2-5|12+22=5,则圆上一动点P 到直线l 的距离的最小值是5-1.故选D. 5.(2019·赣州模拟)已知动点A (x A ,y A )在直线l :y =6-x 上,动点B 在圆C :x 2+y 2-2x -2y -2=0上,若∠CAB =30°,则x A 的最大值为( ) A .2 B .4 C .5D .6解析:选C 由题意可知,当AB 是圆的切线时,∠ACB 最大,此时|CA |=4.点A 的坐标满足(x -1)2+(y -1)2=16,与y =6-x 联立,解得x =5或x =1,∴点A 的横坐标的最大值为5.故选C.6.(2018·北京高考)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( ) A .1 B .2 C .3D .4解析:选C 由题知点P (cos θ,sin θ)是单位圆x 2+y 2=1上的动点,所以点P 到直线x -my -2=0的距离可转化为单位圆上的点到直线的距离.又直线x -my -2=0恒过点(2,0),所以当m 变化时,圆心(0,0)到直线x -my -2=0的距离d =21+m 2的最大值为2,所以点P 到直线x -my -2=0的距离的最大值为3,即d 的最大值为3.7.(2019·安徽皖西联考)已知P 是椭圆x 216+y 27=1上的一点,Q ,R 分别是圆(x -3)2+y 2=14和(x +3)2+y 2=14上的点,则|P Q |+|PR |的最小值是________.解析:设两圆圆心分别为M ,N ,则M ,N 为椭圆的两个焦点, 因此|P Q |+|PR |≥|PM |-12+|PN |-12=2a -1=2×4-1=7,即|P Q |+|PR |的最小值是7. 答案:78.(2019·安阳一模)在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ),由题意得x 2+(y +3)2=2x 2+y 2, 整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组⎩⎨⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3,解得0≤a ≤3, 综上可得,实数a 的取值范围是[0,3]. 答案:[0,3]9.(2019·唐山调研)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|Q M |的最小值. 解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2. 化简可得(x -5)2+y 2=16,故此曲线方程为(x -5)2+y 2=16. (2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题知直线l 2与圆C 相切,连接C Q ,CM , 则|Q M |=|C Q |2-|CM |2=|C Q |2-16,当C Q ⊥l 1时,|C Q |取得最小值,|Q M |取得最小值,此时|C Q |=|5+3|2=42,故|Q M |的最小值为32-16=4.10.(2019·广州一测)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k . 当k 1k 2=3时,求k 的取值范围. 解:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2(x -1)2+y 2. 整理得,x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎪⎨⎪⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2.②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2, 即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >33.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0,所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦ 由⑤⑥⑦,得k 的取值范围为[-3,-1)∪⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1∪(1, 3 ].。

直线与圆的方程综合题、典型题[1]

直线与圆的方程综合题、典型题[1]

直线与圆的方程综合题、典型题、高考题1、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。

解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M 的坐标为(a由于CM ⊥l ,∴k CM ⋅k l = -1 ∴k CM =112-=-+a b , 即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA ==2)3(92222+--=-=a b CMCB MB ,222b a OM += ∴2222)3(9b a a b +=+-- ②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =,联立方程组,根与系数关系代入得到关于b 的方程比较简单3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2= m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2= m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-. (II )当m >OB 时,||||m m 即 13m 13m >-<或. ∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2= m 2与线段AB 无交点.4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围. 解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。

高二数学直线与圆的位置关系试题

高二数学直线与圆的位置关系试题

高二数学直线与圆的位置关系试题1.动圆经过点并且与直线相切,若动圆与直线总有公共点,则圆的面积()A.有最大值B.有最小值C.有最小值D.有最小值【答案】【解析】设动圆圆心,半径为,依题意则有①,②,③,由①②得,代入③得,即,所以,因此圆的面积有最小值,故选择.【考点】2.过点的直线l与圆有公共点,则直线l的倾斜角的取值范围是A.B.C.D.【答案】D【解析】设直线l的倾斜角为,当时,直线l的斜率,则直线l的方程可写成:即:,由直线l与圆有公共点,得,,解得,故选D.【考点】1.直线与圆的位置关系;2.点到直线的距离.3.对任意实数λ,直线l1:x+λy-m-λn=0与圆C:x2+y2=r2总相交于两不同点,则直线l2:mx+ny=r2与圆C的位置关系是.【答案】相离【解析】由题意得:对任意实数λ恒成立,,且,即,,因此直线l2:mx+ny=r2与圆C相离.【考点】直线与圆位置关系4.已知圆,从点发出的光线,经轴反射后恰好经过圆心,则入射光线的斜率为()A.B.C.D.【答案】C【解析】圆心,点关于轴的对称点为。

,则直线方程为,即,令得,即轴上的反射点为,所以入射光线的斜率为。

故C正确。

【考点】1数形结合思想;2直线的斜率。

5.在平面直角坐标系中,若圆上存在,两点关于点成中心对称,则直线的方程为 .【答案】x+y=3【解析】由题意,圆的圆心坐标为C(0,1),∵圆上存在A,B两点关于点P(1,2)成中心对称,∴CP⊥AB,P为AB的中点,∵,∴,∴直线AB的方程为y-2=-(x-1),即x+y-3=0.【考点】直线与圆的位置关系.6.已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.(1)求圆的方程;(2)当时,求直线的方程.【答案】(1);(2)或.【解析】(1)由直线与以为圆心的圆相切得到该圆的半径,然后根据圆心的坐标与半径即可写出圆的标准方程;(2)先由弦的长与圆的半径得到圆心到直线的距离,进而设出直线的方程(注意检验直线斜率不存在的情况),由点到直线的距离公式即可算出的取值,从而可写出直线的方程.试题解析:(1)由题意知到直线的距离为圆半径圆的方程为(2)设线段的中点为,连结,则由垂径定理可知,且,在中由勾股定理易知当动直线的斜率不存在时,直线的方程为时,显然满足题意;当动直线的斜率存在时,设动直线的方程为:由到动直线的距离为1得或为所求方程.【考点】1.圆的标准方程;2.点到直线的距离公式;3.直线与圆的位置关系.7.已知圆的方程为,点是坐标原点.直线与圆交于两点.(1)求的取值范围;(2)过作圆的弦,求最小弦长?【答案】(1)或;(2).【解析】(1)根据直线与圆相交,得到圆心到直线的距离小于半径,即可求出的取值范围;(2)当圆心与连线为弦心距时,弦长最小,利用两点间的距离公式求出弦心距,由垂径定理及勾股定理求出最小弦长即可.试题解析:(1)圆心到直线的距离,解得或.(2)当圆心与连线为弦心距时,弦长最小,∵圆心到的距离为,半径,根据题意得:最小弦长为.【考点】直线与圆的位置关系.8.直线与圆相交所得的弦的长为()A.B.C.D.【答案】B【解析】由圆的方程可知圆心为原点,半径为,则圆心到直线的距离为,设弦的长为。

(word版)高中数学直线与圆的位置关系练习题

(word版)高中数学直线与圆的位置关系练习题

高中数学直线与圆的位置关系一、单选题1.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 42.从点P(m,3)向圆C:(x+2)2+(y+2)2=1引切线,则切线长的最小值为()A. 2√6B. √26C. 4+√2D. 53.圆x2+y2−4x+2y+1=0与圆x2+y2+4x−4y−1=0的公切线有()A. 1条B. 2条C. 3条D. 4条4.过点P(−2,4)作圆O:(x−2)2+(y−1)2=25的切线l,直线m:ax−3y=0与直线l平行,则直线l与m的距离为()A. 4B. 2C. 85D. 1255.已知圆C:x2−6x+y2+2ay+7+a2=0关于直线3x+y−1=0对称,则a=()A. 4B. 6C. 8D. 106.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A. 1条B. 2条C. 3条D. 4条7.设O为原点直线y=kx+2与圆x2+y2=4相交于A,B两点,当▵ABO面积最大值时,k=()A. ±√22B. ±1C. ±√2D. ±28.圆C1:(x+1)2+(y+2)2=4与圆C2:(x−1)2+(y+1)2=9的位置关系是()A. 内切B. 相交C. 外切D. 相离9.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. √2B. 2−√2C. 1D. √2−110.若点P(1,1)为圆C:x2+y2−6x=0的弦MN的中点,则弦MN所在的直线方程为()A. 2x+y−3=0B. x−2y+1=0C. x+2y−3=0D. 2x−y−1=011. 已知圆C 的圆心为原点O ,且与直线x +y +4√2=0相切.点P 在直线x =8上,过点P 引圆C 的两条切线PA ,PB ,切点分别为A ,B ,如图所示,则直线AB 恒过定点的坐标为( )A. (2,0)B. (0,2)C. (1,0)D. (0,1)12. 若圆C 的半径为1,圆心在第一象限,且与直线4x −3y =0和x 轴都相切,则该圆的标准方程是( )A. (x −2)2+(y −1)2=1B. (x −2)2+(y +1)2=1C. (x +2)2+(y −1)2=1D. (x −3)2+(y −1)2=1二、多选题(本大题共2小题,共10.0分) 13. 已知圆M:x 2+y 2−4x −1=0,点P (x,y )是圆M 上的动点,则下列说法正确的有( )A. 圆M 关于直线x +3y −2=0对称B. 直线x +y =0与M 的相交弦长为√3C. t =y x+3的最大值为12D. x 2+y 2的最小值为9−4√514. 已知A (−2,0),B (2,0),若圆(x −2a +1)2+(y −2a −2)2=1上存在点M 满足MA →⋅MB →=0,实数a 可以是( ) A. −1 B. −0.5 C. 0D. 1三、单空题15. 已知点P 是直线y =x 上一个动点,过点P 作圆(x +2)2+(y −2)2=1的切线,切点为T ,则线段PT 长度的最小值为 .16. 若过点P(1,√3)作圆O:x 2+y 2=1的两条切线,切点分别为A 和B ,则|AB |= .17. 与直线y =x +3平行且与圆(x −2)2+(y −3)2=8相切的直线的方程为________________________.18.已知坐标原点为O,过点P(2,6)作直线2mx−(4m+n)y+2n=0(m,n不同时为零)的垂线,垂足为M,则|OM|的取值范围是______.19.若P(2,1)是圆(x−1)2+y2=25的弦AB的中点,则直线AB的方程为.20.已知直线x−√3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为______.21.已知点P在直线x−y+4=0上,由点P向圆x 2+y 2=4作两条切线,切点分别为A,B,则∠APB的最大值为__________.四、多空题(本大题共1小题,共5.0分)22.已知圆C1:x2+y2=4与圆C2:x2+y2−8x+6y+m=0外切,则m=(1),此时直线l:x+y=0被圆C2所截的弦长为(2).五、解答题23.已知点M(3,1),圆O1:(x−1)2+(y−2)2=4.(1)若直线ax−y+4=0与圆O1相交于A,B两点,且弦AB的长为2√3,求a的值;(2)求过点M的圆O1的切线方程.24.已知圆C1:x2+y2−2x=0和圆C2:x2+y2−6x−4y+4=0相交于A,B两点.(1)求公共弦AB的垂直平分线方程.(2)求ΔABC2的面积。

直线与圆综合问题

直线与圆综合问题

四直线与圆综合问题【学习目标】1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两圆的方程,判断两圆的位置关系;2.能用直线和圆的方程解决一些简单问题3.初步了解用代数方法解决几何问题的思想。

要求:平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

③能根据斜率判定两条直线平行或垂直。

④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。

⑤能用解方程组的方法求两直线的交点坐标。

⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。

③能用直线和圆的方程解决一些简单的问题。

【典型例析】例1直线y x m =-+与圆221x y +=在第一象限内有两个不同交点,则m 的取值范围是( )()A 0m <<()B 1m <<()C 1m ≤≤()D m <<例2 设圆上的点(2,3)A 关于直线20x y +=的对称点仍在圆上,且与直线0x y y -+=相交的弦长为,求圆的方程。

例3 若过点()10,A 和B ()m B ,4并且与x 轴相切的圆有且只有一个,求实数m 的值和这个圆的方程。

例4 已知直线为 ax-by+2=0( a>0 ,b>0 ),圆的方程为x+y+2x-4y+1=0 ,直线与圆截得到弦长为4 , 求a1 +b1 的最小值。

例5.已知直线:2830L mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明L 与C 总相交。

高考数学复习考点题型归类解析40直线与圆综合应用(解析版)

高考数学复习考点题型归类解析40直线与圆综合应用(解析版)

高考数学复习考点题型归类解析专题40直线与圆综合应用一、关键能力1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题,初步了解用代数方法处理几何问题的思想.二、教学建议直线与圆是高考的必考内容,它包括直线、圆和直线与圆综合应用等内容.高考常以选填题和解答题形式出现,对解析几何知识和数学思想方法的应用进行考查.近几年高考直线、圆试题的考查特点,一是考查两直线位置关系、点线距离、圆有关的概念、性质及其简单应用;二是以直线与圆位置关系为载体,在代数、向量等知识的交汇处设置解答题,考查解决轨迹、参数范围、探索型等综合问题的思想方法,并且注重测试逻辑推理和代数运算能力.三、自主梳理1.处理解析几何问题的两种方法:几何法、代数法2.圆上动点的处理方法:几何法:转化为具有几何意义的问题来解决(距离、角、斜率、截距);代数法:设点坐标,用坐标去表示目标,寻求解决办法。

3.直线与圆交点的处理方法:几何法:转化的思想代数法:设而不求的办法四、高频考点+重点题型考点一、与其他知识(向量、简易逻辑、函数、不等式)交汇例1-1(与简易逻辑交汇)直线x﹣y+m=0与圆x2+y2﹣2x﹣1=0有两个不同交点的一个充分不必要条件是()A.﹣3<m<1B.﹣4<m<2C.0<m<1D.m<1【解答】解:联立直线与圆的方程得:{x−y+m=0x2+y2−2x−1=0,消去y得:2x2+(2m﹣2)x+m2﹣1=0,由题意得:△=(2m﹣2)2﹣8(m2﹣1)=﹣4(m+1)2+16>0,变形得:(m+3)(m﹣1)<0,解得:﹣3<m<1,∵0<m<1是﹣3<m<1的一个真子集,∴直线与圆有两个不同交点的一个充分不必要条件是0<m<1.故选:C.例1-2(与三角函数交汇)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2√2.则直线l的倾斜角的取值范围是.【解答】解:圆x 2+y 2﹣4x ﹣4y ﹣10=0化简为标准方程,可得(x ﹣2)2+(y ﹣2)2=18,∴圆心坐标为C (2,2),半径r =3√2,∵在圆上至少有三个不同的点到直线l :ax +by =0的距离为2√2, ∴圆心到直线的距离应小于或等于r −2√2=√2, 由点到直线的距离公式,得√a 2+b 2≤√2,∴(2a +2b )2≤2(a 2+b 2),整理得(−ab )2−4(−ab )+1≤0, 解之得2−√3≤−ba ≤2+√3,∵直线l :ax +by =0的斜率k =−ab ∈[2−√3,2+√3]∴设直线l 的倾斜角为α,则tan α∈[2−√3,2+√3],即tan π12≤tan α≤tan 5π12. 由此可得直线l 的倾斜角的取值范围是[π12,5π12]. 故答案为:[π12,5π12] 例1-3(与向量的交汇) 已知直线x +y ﹣k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有OA →⋅OB →≥−2,那么k 的取值范围是( )A .(√3,+∞)B .[√2,2 √2)C .[√2,+∞)D .[√3,2 √2)【解答】解:根据题意,圆x 2+y 2=4的圆心为(0,0),半径r =2,设圆心到直线x +y ﹣k =0的距离为d ;若直线x +y ﹣k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,则d =√1+1=√22,则有k <2√2;设OA →与OB →的夹角即∠OAB =θ,若OA →⋅OB →≥−2,即|OA |×|OB |×cos θ≥﹣2,变形可得cos θ≥−12,则θ≤2π3,当θ=2π3时,d =1,若θ≤2π3,则d =√2≥1,解可得k ≥√2,则k 的取值范围为[√2,2√2); 故选:B .例1-4(与基本不等式交汇)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P ,则P A +PB 的取值范围是( )A .[5,25]B .[25,45]C .[10,45]D .[10,25] 答案:D解析:由动直线x +my =0知定点A 的坐标为(0,0),由动直线mx -y -m +3=0知定点B 的坐标为(1,3),且两直线互相垂直,故点P 在以AB 为直径的圆上运动. 故当点P 与点A 或点B 重合时,P A +PB 取得最小值,(P A +PB )min =AB =10. 当点P 与点A 或点B 不重合时,在Rt △P AB 中,有P A 2+PB 2=AB 2=10.因为P A 2+PB 2≥2P A ·PB ,所以2(P A 2+PB 2)≥(P A +PB )2,当且仅当P A =PB 时取等号,所以P A +PB ≤2P A 2+PB 2=2×10=25,所以10≤P A +PB ≤25, 所以P A +PB 的取值范围是[10,25].故选D .例1-5.过直线y =x 上一点作圆(x ﹣5)2+(y ﹣1)2=2的两条切线l 1,l 2,当l 1,l 2关于直线y =x 对称时,l 1,l 2的夹角的大小为.【解答】解:圆(x ﹣5)2+(y ﹣1)2=2的圆心(5,1),过(5,1)与y =x 垂直的直线方程:x +y ﹣6=0,它与y=x的交点N(3,3),N到(5,1)距离是2√2,两条切线l1,l2,它们之间的夹角为60°.故答案为:60°.例1-6.在平面直角坐标系xOy中,已知圆C:x2+y2﹣2x﹣4y﹣3=0与x轴交于A,B两点,若动直线l与圆C相交于M,N两点,且△CMN的面积为4,若P为MN的中点,则△PAB的面积最大值为.【解答】解:当y=0时,x2﹣2x﹣3=0得x=﹣1或x=3,即A(﹣1,0),B(3,0),圆的标准方程为(x﹣1)2+(y﹣2)2=8,则圆心C(1,2),半径R=√8=2√2,△CMN的面积为4,×2√2×2√2sin∠MCN=4,即S=12则sin∠MCN=1,即∠MCN=90°,则MN=√2CN=√2×2√2=4,则CP=1MN=2,点P轨迹是个圆2要使△PAB的面积最大,则CP⊥AB,此时三角形的高为PD=2+2=4,AB=3﹣(﹣1)=4,×4×4=8,则△PAB的面积S=12故答案为:8.考点二、直线与圆中的探索性问题例2-1.在平面直角坐标系xOy 中,已知半径为2的圆C ,圆心在x 轴正半轴上,且与直线x −√3y +2=0相切. (1)求圆C 的方程;(2)在圆C 上,是否存在点P ,满足|PQ |=√22|PO |,其中,点Q 的坐标是Q (﹣1,0).若存在,指出有几个这样的点;若不存在,请说明理由;(3)若在圆C 上存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交不同两点A ,B ,求m 的取值范围.并求出使得△OAB 的面积最大的点M 的坐标及对应的△OAB 的面积.【解答】解:(1)设圆心是(a ,0),(a >0),它到直线x −√3y +2=0的距离是d =√1+3=2,解得a =2或a =﹣6(舍去),所以,所求圆C 的方程是(x ﹣2)2+y 2=4.(4分) (2)假设存在这样的点P (x ,y ),则由PA =√22PO ,得x 2+y 2+4x +2=0.(6分)即,点P 在圆D :(x +2)2+y 2=2上,点P 也在圆C :(x ﹣2)2+y 2=4上.因为|CD|=4>r c +r d =2+√2,所以圆C 与圆D 外离,圆C 与圆D 没有公共点. 所以,不存在点P 满足条件.(8分)(3)存在,理由如下:因为点M (m ,n ),在圆C 上,所以(m ﹣2)2+n 2=4, 即n 2=4﹣(m ﹣2)2=4m ﹣m 2且0≤m ≤4. 因为原点到直线l :mx +ny =1的距离h =√m 2+n2=√4m1,解得14<m ≤4 (10分)而|AB |=2√1−ℎ2,所以S △OAB =12|AB |h =√ℎ2−ℎ4=√14m −(14m )2=√−(14m −12)2+14, 因为116≤14m <1,所以当14m =12,即m =12时,S △OAB 取得最大值12,此时点M 的坐标是(12,√72)或(12,−√72),△OAB 的面积的最大值是12.(12分)例2-2.如图,已知⊙C 的圆心在原点,且与直线x +3y +4√2=0相切. (1)求⊙C 的方程;(2)点P 在直线x =8上,过点P 引⊙C 的两条切线PA 、PB ,切点为A 、B . ①求四边形OAPB 面积的最小值; ②求证:直线AB 过定点.【解答】(1)解:依题意得:圆心(0,0)到直线x +3y +4√2=0的距离d =r , ∴r =d =√2|√10=4√55, ∴圆C 的方程为x 2+y 2=165;(2)①解:连接OA ,OB , ∵PA ,PB 是圆C 的两条切线, ∴OA ⊥AP ,OB ⊥BP ,∴S 四边形OAPB =2S △OAP =12OA ⋅PA =12×4√55√PO 2−165=2√55√PO 2−165.∴当PO 取最小值为8时,(S 四边形OAPB )min =2√55√64−165=8√195; ②证明:由①得,A ,B 在以OP 为直径的圆上, 设点P 的坐标为(8,b ),b ∈R ,则线段OP的中点坐标为(4,b2),∴以OP为直径的圆方程为(x−4)2+(y−b2)2=16+b24,即x2+y2﹣8x﹣by=0.∵AB为两圆的公共弦,∴联立{x2+y2=165x2+y2−8x−by=0得:直线AB的方程为8x+by=165,b∈R,即8(x−25)+by=0,则直线AB恒过定点(25,0).例2-3.在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线y=x2+mx﹣2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=﹣2,若AC⊥BC,则k AC•k BC=﹣1,即有1−00−x1•1−00−x2=−1,即为x1x2=﹣1这与x1x2=﹣2矛盾,故不出现AC⊥BC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,可得D=m,F=﹣2,圆的方程即为x2+y2+mx+Ey﹣2=0,由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,则圆的方程即为x2+y2+mx+y﹣2=0,另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),则由相交弦定理可得|OA|•|OB|=|OC|•|OH|,即有2=|OH|,再令x=0,可得y2+y﹣2=0,解得y=1或﹣2.即有圆与y轴的交点为(0,1),(0,﹣2),则过A、B、C三点的圆在y轴上截得的弦长为定值3.例2-4.已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组{(x −3)2+y 2=4y =kx ,消去y 可得:(1+k 2)x 2﹣6x +5=0, 由△=36﹣4(1+k 2)×5>0,可得k 2<45 由韦达定理,可得x 1+x 2=61+k 2,∴线段AB 的中点M 的轨迹C 的参数方程为{x =31+k 2y =3k 1+k 2,其中−2√55<k <2√55, ∴线段AB 的中点M 的轨迹C 的方程为:(x −32)2+y 2=94,其中53<x ≤3; (3)结论:当k ∈(−2√57,2√57)∪{−34,34}时,直线L :y =k (x ﹣4)与曲线C 只有一个交点. 理由如下: 联立方程组{(x −32)2+y 2=94y =k(x −4),消去y ,可得:(1+k 2)x 2﹣(3+8k 2)x +16k 2=0, 令△=(3+8k 2)2﹣4(1+k 2)•16k 2=0,解得k =±34, 又∵轨迹C 的端点(53,±2√53)与点(4,0)决定的直线斜率为±2√57, ∴当直线L :y =k (x ﹣4)与曲线C 只有一个交点时, k 的取值范围为[−2√57,2√57]∪{−34,34}.例2-5.如图,圆C :x 2﹣(1+a )x +y 2﹣ay +a =0.(Ⅰ)若圆C 与x 轴相切,求圆C 的方程;(Ⅱ)已知a >1,圆C 与x 轴相交于两点M ,N (点M 在点N 的左侧).过点M 任作一条直线与圆O :x 2+y 2=4相交于两点A ,B .问:是否存在实数a ,使得∠ANM =∠BNM ?若存在,求出实数a 的值,若不存在,请说明理由.【解答】(Ⅰ)因为由{y =0x 2−(1+a)x +y 2−ay +a =0可得x 2﹣(1+a )x +a =0, 由题意得△=(1+a )2﹣4a =(a ﹣1)2=0,所以a =1, 故所求圆C 的方程为x 2﹣2x +y 2﹣y +1=0.(Ⅱ)令y =0,得x 2﹣(1+a )x +a =0,即(x ﹣1)(x ﹣a )=0,求得x =1,或x =a , 所以M (1,0),N (a ,0).假设存在实数a ,当直线AB 与x 轴不垂直时,设直线AB 的方程为y =k (x ﹣1), 代入x 2+y 2=4得,(1+k 2)x 2﹣2k 2x +k 2﹣4=0,设A (x 1,y 1),B (x 2,y 2),从而x 1+x 2=2k 21+k 2,x 1x 2=k 2−41+k 2. 因为NA 、NB 的斜率之和为 y 1x1−a+y 2x2−a=k[(x 1−1)(x 2−a)+(x 2−1)(x 1−a)](x 1−a)(x 2−a),而(x 1﹣1)(x 2﹣a )+(x 2﹣1)(x 1﹣a )=2x 1x 2﹣(a +1)(x 2+x 1)+2a =2k 2−41+k 2−(a +1)2k 21+k 2+2a =2a−81+k 2,因为∠ANM =∠BNM ,所以,NA 、NB 的斜率互为相反数,y 1x 1−a+y 2x 2−a=0,即2a−81+k 2=0,得a =4.当直线AB 与x 轴垂直时,仍然满足∠ANM =∠BNM ,即NA 、NB 的斜率互为相反数. 综上,存在a =4,使得∠ANM =∠BNM .例2-6.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,求出点N 的坐标;若不存在,请说明理由. 解 (1)设圆心C (a ,0)⎝ ⎛⎭⎪⎫a >-52, 则|4a +10|5=2,解得a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, x 1,2=2k 2±4k 4-4(k 2+1)(k 2-4)2(k 2+1),所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ,即y 1x 1-t +y 2x 2-t =0,则k (x 1-1)x 1-t +k (x 2-1)x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0,即2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0,解得t =4,所以当点N 的坐标为(4,0)时,能使得x 轴平分∠ANB 总成立. 例2-7.已知t ∈R ,圆C :x 2+y 2-2tx -2t 2y +4t -4=0. (1) 若圆C 的圆心在直线x -y +2=0上,求圆C 的方程;(2) 圆C 是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由. 解析:(1) 配方得(x -t )2+(y -t 2)2=t 4+t 2-4t +4,其圆心C (t ,t 2).依题意t -t 2+2=0,解得t =-1或2.即x 2+y 2+2x -2y -8=0或x 2+y 2-4x -8y +4=0为所求方程.(2) 整理圆C的方程为(x 2+y 2-4)+(-2x +4)t +(-2y )·t 2=0,令⎩⎨⎧x 2+y 2-4=0,-2x +4=0,-2y =0解得⎩⎨⎧x =2,y =0. 故圆C 过定点(2,0).考点三、与实际结合考察例3-1.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸 【答案】A 【分析】连接OC ,设半径为r ,则1OD r =-,在直角三角形OAD 中应用勾股定理即可求得r ,进而求得扇形OAB 的面积,减去三角形OAB 即可得阴影部分的面积. 【详解】连接OC ,设半径为r ,5AD =寸,则1OD r =-在直角三角形OAD 中,222OA AD OD =+ 即()22251r r =+-,解得13r = 则5sin 13AOC ∠=,所以22.5AOC ∠= 则222.545AOB ∠=⨯=所以扇形OAB 的面积21451316966.333608S ππ⨯⨯=== 三角形OAB 的面积211012602S =⨯⨯= 所以阴影部分面积为1266.3360 6.33S S -=-= 所以选A例3-2.如图,某城市中心花园的边界是圆心为O ,直径为1千米的圆,花园一侧有一条直线型公路l ,花园中间有一条公路AB (AB 是圆O 的直径),规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:道路PB ,QA 不穿过花园.已知OC l ⊥,BD l ⊥(C 、D 为垂足),测得OC =0.9,BD =1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为_____元.【答案】2.1m 【分析】根据几何关系考虑道路不穿过花园,求解最小距离,即可得到最小费用. 【详解】如图:过点B 作直线BP AB ⊥交l 于P ,取BD 与圆的交点M , 连接,MA MB ,则MA MB ⊥, 过点A 作直线AQ AB ⊥交l 于Q , 过点A 作直线AC l '⊥交l 于C ',根据图象关系可得,直线上,点P 左侧的点与B 连成线段不经过圆内部, 点Q 右侧的点与A 连成的线段不经过圆的内部, 最短距离之和即PB AC '+,根据几何关系:PBD BAM QAC '∠=∠=∠,3sin 5BAM ∠=,所以4cos cos cos 5PBD BAM QAC '∠=∠=∠=, 所以 1.5BP =,2BD AC OC '+=,所以0.6AC '=,最小距离为2.1千米.修建道路总费用的最小值为2.1m 元. 故答案为:2.1m例3-3.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向cos θ⎛⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?【答案】(1)否;(2)12小时. 【分析】建立直角坐标系,则城市A (0,0),当前台风中心(P -,设t 小时后台风中心P 的坐标为(x ,y ),由题意建立方程组,能求出10小时后,该台风还没有开始侵袭城市A .(2)t 小时后台风侵袭的范围可视为以()P -为圆心,60+10t 为半径的圆,由此利用圆的性质能求出结果. 【详解】(1)如图建立直角坐标系, 则城市()0,0A ,当前台风中心(P -,设t 小时后台风中心P 的坐标为(),x y ,则x y ⎧=⎪⎨=-⎪⎩,此时台风的半径为6010t +,10小时后,184.4PA ≈km ,台风的半径为r =160km , 因为r PA <,故10小时后,该台风还没有开始侵袭城市A . (2)因此,t 小时后台风侵袭的范围可视为以()P -为圆心,6010t +为半径的圆,若城市A ()6010t + 230010800864000t t ⇒-+≤,即2362880t t -+≤,解得1224t ≤≤答:该城市受台风侵袭的持续时间为12小时.例3-4.唐代诗人李顾的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点(3,0)A 处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营孙在区域即为回到军营.(1)若军营所在区域为222x y Ω+≤:,求“将军饮马”的最短总路程;(2)若军营所在区域为22x y Ω+≤’:,求“将军饮马”的最短总路程.【答案】(1(2 【分析】(1)根据利用圆的方程的知识画出军营区域及河岸线,作出A 关于河岸线的对称点'A ,根据对称性质和圆的性质即可求得;(2)先画出在第一象限的军营区域,再利用对称性画出运营区域,注意观察军营区域内哪一个到'A 最近,即可求得. 【详解】(1)若军营所在区域为22:2Ωx y +, 圆:222x y +=, 作图如下:设将军饮马点为P ,到达营区点为B ,'A 为A 关于直线4x y +=的对称点, 因为()3,0A ,所以()'4,1A .则总路程||||||||PB PA PB PA '+=+,要使得路程最短,只需要||||PB PA '+最短, 即点A '到军营的距离最短,即点A '到222x y +的最短距离,为OA '(2)若军营所在区域为:||2||2Ωx y +,对于||2||2x y =+,在x ≥0,y ≥0时为22,x y +=令0x =,得1y =,令0y =,则2x =,图象为连接点()0,1和()2,0的线段,根据对称性得到||2||2x y =+的图象如图所示的菱形,Ω':22x y+为这个菱形的内部(包括边界). 作图如下:由图可知,最短路径为连接()2,0点和'A 的连线,交直线4x y +=于点P ,饮马最佳点为P ,所以点A '到区域Ω最短距离A B '即“将军饮马”例3-5.如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直,保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解 (1)如图,过点B 作BE ⊥OC 于点E ,过点A 作AF ⊥BE 于点F .∵∠ABC =90°,∠BEC =90°,∴∠ABF =∠BCE ,∴tan ∠ABF =tan ∠BCO =43. 设AF =4x (m),则BF =3x (m),∵∠AOE =∠AFE =∠OEF =90°,∴OE =AF =4x (m),EF =AO =60(m), ∴BE =(3x +60)m.∵tan ∠BCO =43,∴CE =34BE =⎝ ⎛⎭⎪⎫94x +45 m ,∴OC =⎝ ⎛⎭⎪⎫4x +94x +45 m ,∴4x +94x +45=170,解得x =20.∴BE =120 m ,CE =90 m. 综上所述,BC =150 m.(2)如图,设BC 与⊙M 切于点Q ,延长QM ,CO 交于点P ,∵∠POM =∠PQC =90°.∴∠PMO =∠BCO . 设OM =x m ,则OP =43x m ,PM =53x m. ∴PC =⎝ ⎛⎭⎪⎫43x +170m ,PQ =⎝ ⎛⎭⎪⎫1615x +136m.设⊙M 的半径为R ,∴R =MQ =⎝ ⎛⎭⎪⎫1615x +136-53x =⎝ ⎛⎭⎪⎫136-35x m ,∵A ,O 到⊙M 上任一点的距离不少于80 m ,则⎩⎨⎧R -OM ≥80,R -AM ≥80,即⎩⎪⎨⎪⎧136-35x -x ≥80,136-35x -(60-x )≥80.解得10≤x ≤35.当且仅当x =10时R 取到最大值.∴当OM =10 m 时,保护区面积最大, 综上所述,当OM =10 m 时,保护区面积最大.课后作业一、单项选择题1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A B C D答案:B解析:由题意可设圆的标准方程为()()222x a y a a -+-=,则()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y --=的距离均为15d ==;圆心()5,5到直线230x y --=的距离均为2d ==,所以圆心到直线230x y --=.故选B .2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为( )A .95B .185C .2910D .295答案:C解析:因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知PQ 的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以PQ 的最小值为2910.3.圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b 的最小值是( )A .23B .203C .323D .163 答案:C解析:由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39,∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,∴该直线经过圆心(-2,6),即-2a -6b +6=0,∴a +3b =3(a >0,b >0),∴2a +6b =23(a +3b )⎝ ⎛⎭⎪⎫1a +3b =23⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥23⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =323,当且仅当3b a =3a b ,即a =b 时取等号,故选C. 4.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .[1-2,1+2]B .[1-2,3]C .[1-22,3]D .[-1,1+2] 答案:C解析:由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3). ∴曲线y =3-4x -x 2是半圆,如图中实线所示. 当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±22.由图可知b =1-22.∴b 的取值范围是[1-22,3].故选C .5.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且有|OA→+OB →|≥33|AB →|,则k 的取值范围是( ) A .(3,+∞) B .[2,22) C .[2,+∞) D .[3,22) 答案:B解析:当|OA +OB |=33|AB |时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2;当k >2时,|OA +OB |>33|AB |,又直线与圆x 2+y 2=4存在两交点,故k <22,综上,k 的取值范围为[2,22).故选B .6.已知点A (-5,0),B (-1,-3),若圆C :x 2+y 2=r 2(r >0)上恰有两点M ,N ,使得△MAB 和△NAB 的面积均为5,则r 的取值范围是( ) A .(1,5) B .(1,5)C .(2,5) D .(2,5) 答案:B解析:由题意可得AB =(-1+5)2+(-3-0)2=5,根据△MAB 和△NAB 的面积均为5,可得两点M ,N 到直线AB 的距离为2.由于直线AB 的方程为3x +4y +15=0,若圆上只有一个点到直线AB 的距离为2,则有圆心(0,0)到直线AB 的距离|0+0+15|9+16=r +2,解得r =1;若圆上只有三个点到直线AB 的距离为2,则有圆心(0,0)到直线AB 的距离|0+0+15|9+16=r -2,解得r =5.所以实数r 的取值范围是(1,5).故选B .二、多项选择题7.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a 的值为( ) A .33B .-33 C .4+15D .4-15 答案:CD解析:圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以AB =BC =2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.故选CD . 8.已知圆C :(x -3)2+(y -3)2=72,若直线l :x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则直线l 的方程是( ) A .x +y -2=0 B .x +y -4=0C .x +y -8=0D .x +y -10=0 答案:AD解析:由题意知,圆心C (3,3)到直线l 的距离为13×62=22,即|3+3-m |2=22,解得m =2或m =2,因此直线l 的方程为x +y -2=0或x +y -10=0.故选AD .三、填空题9.已知点A (-1,1),B (2,-2),若直线l :x +my +m =0与线段AB 相交(包含端点的情况),则实数m 的取值范围是______________. 答案:⎝ ⎛⎦⎥⎤-∞,12∪[2,+∞)解析:直线l :x +my +m =0可化为x +m (y +1)=0,所以直线恒过定点P (0,-1). ∵点A (-1,1),B (2,-2),∴k P A =-2,k PB =-12,∵直线l :x +my +m =0与线段AB 相交(包含端点的情况),∴-1m ≤-2或-1m ≥-12, ∴m ≤12或m ≥2(经验证m =0也符合题意).∴实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,12∪[2,+∞).10.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a 等于____. 答案:2解析:圆心为O (1,0),由于P (2,2)在圆(x -1)2+y 2=5上,∴P 为切点,OP 与P 点处的切线垂直.∴k OP =2-02-1=2,又点P 处的切线与直线ax -y +1=0垂直.∴a =k OP =2.11.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P到直线l 的距离为2,则符合题意的点P 有________个.答案:2解析:由题意知圆的标准方程为(x +2)2+(y -3)2=42, ∴圆心到直线l 的距离d =|-6-12-5|5=235>4,故直线与圆相离,则满足题意的点P 有2个.12.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m ,0),存在C 上的点P 和l上的Q 使得AP →+AO →=0,则实数m 的取值范围为________.答案:[2,3]解析:曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m ,0),存在C 上的点P 和l 上的Q 使得AP →+AQ →=0,说明A 是PQ 的中点,Q的横坐标x =6,∴m =6+x P2∈[2,3].四、解答题13.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程; (2)若a =2,过点M 的圆的两条弦AC ,BD 互相垂直,求AC +BD 的最大值. 解析:(1)由条件知点M 在圆O 上,所以1+a 2=4,则a =±3. 当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1).即x +3y -4=0, 当a =-3时,点M 为(1,-3),k OM =-3,k 切=33.此时切线方程为y +3=33(x -1).即x -3y -4=0. 所以所求的切线方程为x +3y -4=0或x -3y -4=0.(2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0),则d 21+d 22=OM 2=3. 又有AC =24-d 21,BD =24-d 22,所以AC +BD =24-d 21+24-d 22. 则(AC +BD )2=4×(4-d 21+4-d 22+24-d 21·4-d 22)=4×[5+216-4(d 21+d 22)+d 21d 22] =4×(5+24+d 21d 22).因为2d 1d 2≤d 21+d 22=3,所以d 21d 22≤94,当且仅当d 1=d 2=62时取等号,所以4+d 21d 22≤52, 所以(AC +BD )2≤4×(5+2×52)=40.所以AC +BD ≤210,即AC +BD 的最大值为210.14.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点,已知AB =2OA ,且点B 的纵坐标大于0.(1)求AB→的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程. 解析:(1)设AB →=(x ,y ),由AB =2OA ,AB →·OA→=0,得⎩⎨⎧ x 2+y 2=100,4x -3y =0,解得⎩⎨⎧ x =6,y =8或⎩⎨⎧x =-6,y =-8.若AB →=(-6,-8),则y B =-11与y B>0矛盾.∴⎩⎨⎧x =-6,y =-8舍去.即AB →=(6,8). (2)圆x 2-6x +y 2+2y =0,即(x -3)2+(y +1)2=(10)2,其圆心为C (3,-1),半径r =10, ∵OB →=OA →+AB →=(4,-3)+(6,8)=(10,5),∴直线OB 的方程为y =12x . 设圆心C (3,-1)关于直线y =12x 的对称点的坐标为(a ,b ),则⎩⎪⎨⎪⎧b +1a -3=-2,b -12=12·a +32,解得⎩⎨⎧a =1,b =3,∴所求圆的方程为(x -1)2+(y -3)2=10.。

直线和圆的方程综合能力测试及答案

直线和圆的方程综合能力测试及答案

直线和圆的方程综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2009·湖北荆州质检二)过点P (1,2),且方向向量v =(-1,1)的直线的方程为( )A .x -y -3=0B .x +y +3=0C .x +y -3=0D .x -y +3=0 答案:C解析:方向向量为v =(-1,1),则直线的斜率为-1,直线方程为y -2=-(x -1)即x +y -3=0,故选C.2.(2009·重庆市高三联合诊断性考试)将直线l 1:y =2x 绕原点逆时针旋转60°得直线l 2,则直线l 2到直线l 3:x +2y -3=0的角为 ( )A .30°B .60°C .120°D .150° 答案:A解析:记直线l 1的斜率为k 1,直线l 3的斜率为k 3,注意到k 1k 3=-1,l 1⊥l 3,依题意画出示意图,结合图形分析可知,直线l 2到直线l 3的角是30°,选A.3.(2009·东城3月)设A 、B 为x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程x -y +1=0,则直线PB 的方程为 ( )A .2x +y -7=0B .2x -y -1=0C .x -2y +4=0D .x +y -5=0 答案:D解析:因k P A =1,则k PB =-1,又A (-1,0),点P 的横坐标为2,则B (5,0),直线PB 的方程为x +y -5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x 轴上的截距为 ( )A .-32 B.32 C .3 D .-3答案:A解析:由两点式,得y -31-3=x -0-1-0,即2x -y +3=0,令y =0,得x =-32,即在x 轴上的截距为-32.5.直线x +a 2y +6=0和(a -2)x +3ay +2a =0无公共点,则a 的值是 ( ) A .3 B .0 C .-1 D .0或-1 答案:D解析:当a =0时,两直线方程分别为x +6=0和x =0,显然无公共点;当a ≠0时,-1a 2=-a -23a,∴a =-1或a =3.而当a =3时,两直线重合,∴a =0或-1.6.两直线2x -my +4=0和2mx +3y -6=0的交点在第二象限,则m 的取值范围是( )A .-32≤m ≤2B .-32<m <2C .-32≤m <2D .-32<m ≤2答案:B解析:由⎩⎪⎨⎪⎧2x -my +4=0,2mx +3y -6=0,解得两直线的交点坐标为(3m -6m 2+3,4m +6m 2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m -6m 2+3<0且4m +6m 2+3>0⇒-32<m <2.7.(2009·福建,9)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0,(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) A .-5 B .1C .2D .3答案:D解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0所围成的区域如图所示.∵其面积为2,∴|AC |=4,∴C 的坐标为(1,4),代入ax -y +1=0, 得a =3.故选D. 8.(2009·陕西,4)过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 3 答案:D解析:∵直线的方程为y =3x ,圆心为(0,2),半径r =2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=2 3.故选D. 9.(2009·西城4月,6)与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是 ( )A .(x +1)2+(y +1)2=2B .(x +1)2+(y +1)2=4 C .(x -1)2+(y +1)2=2 D .(x -1)2+(y +1)=4 答案:C解析:圆x 2+y 2+2x -2y =0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x -y -4=0垂直的直线方程为x +y =0,所求的圆的圆心在此直线上,排除A 、B ,圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009·安阳,6)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为 ( )A .2B .-2C .2或-2 D.6或- 6 答案:C解析:由|OA →+OB →|=|OA →-OB →|得|OA →+OB →|2=|OA →-OB →|2,OA →·OB →=0,OA →⊥OB →,三角形AOB 为等腰直角三角形,圆心到直线的距离为2,即|a |2=2,a =±2,故选C.11.(2009·河南实验中学3月)若直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则点P (a ,b )与圆C 的位置关系是 ( )A .点在圆上B .点在圆内C .点在圆外D .不能确定 答案:C解析:直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则1a 2+b 2<1,a 2+b 2>1,点P (a ,b )在圆C 外部,故选C.12.(2010·保定市高三摸底考试)从原点向圆x 2+(y -6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2 C .arccos 79 D .arcsin 229 答案:C解析:如图,sin ∠AOB =26=13,cos ∠BOC =cos2∠AOB =1-2sin 2∠AOB =1-29=79,∴∠BOC =arccos 79,故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。

直线与圆的综合问题

直线与圆的综合问题

直线与圆的综合问题考点一 与圆有关的最值问题考法(一) 斜率型最值问题[典例] 已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx 的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆. yx的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取得最大值或最小值, 此时|2k -0|k 2+1=3, 解得k =± 3.所以yx 的最大值为3,最小值为- 3.[解题技法]形如μ=y -bx -a 型的最值问题,可转化过定点(a ,b )的动直线斜率的最值问题求解.如本题y x =y -0x -0表示过坐标原点的直线的斜率.考法(二) 截距型最值问题[典例] 已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y -x 的最大值和最小值. [解] y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.[解题技法]形如μ=ax +by 型的最值问题,常转化为动直线截距的最值问题求解.如本题可令b =y -x ,即y =x +b ,从而将y -x 的最值转化为求直线y =x +b 的截距的最值问题.另外,此类问题也常用三角代换求解.由于圆的方程可整理为(x -2)2+y 2=3,故可令⎩⎨⎧ x -2=3cos θ,y =3sin θ,即⎩⎨⎧x =3cos θ+2,y =3sin θ,从而y -x =3sin θ-3cos θ-2=6sin ⎝⎛⎭⎫θ-π4-2,进而求出y -x 的最大值和最小值.考法(三) 距离型最值问题[典例] 已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值. [解] 如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为 (2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43, x 2+y 2的最小值是(2-3)2=7-4 3. [解题技法]形如μ=(x -a )2+(y -b )2型的最值问题,可转化为动点(x ,y )与定点(a ,b )的距离的平方求最值.如本题中x 2+y 2=(x -0)2+(y -0)2,从而转化为动点(x ,y )与坐标原点的距离的平方.[题组训练]1.已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点,则y -2x -1的最大值为________. 解析:设y -2x -1=k ,即kx -y -k +2=0,圆心C (-2,0),r =1.当直线与圆相切时,k 有最值, ∴|-2k -0-k +2|k 2+1=1,解得k =3±34.∴y -2x -1的最大值为3+34.答案:3+342.设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A ―→·PB ―→的最大值为________.解析:由题意,知P A ―→=(2-x ,-y ),PB ―→=(-2-x ,-y ),所以P A ―→·PB ―→=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以P A ―→·PB ―→=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以,当y =4时,P A ―→·PB ―→的值最大,最大值为6×4-12=12.答案:12考点二 直线与圆的综合问题[典例] 已知直线l :4x +ay -5=0与直线l ′:x -2y =0相互垂直,圆C 的圆心与点(2,1)关于直线l 对称,且圆C 过点M (-1,-1).(1)求直线l 与圆C 的方程.(2)过点M 作两条直线分别与圆C 交于P ,Q 两点,若直线MP ,M Q 的斜率满足k MP+k M Q =0,求证:直线P Q 的斜率为1.[解] (1)∵直线l :4x +ay -5=0与直线l ′:x -2y =0相互垂直, ∴4×1-2a =0,解得a =2. ∴直线l 的方程为4x +2y -5=0. 设圆C 的圆心C 的坐标为(m ,n ). ∵圆心C (m ,n )与点(2,1)关于直线l 对称,∴⎩⎪⎨⎪⎧n -1m -2·(-2)=-1,4×m +22+2×n +12-5=0,解得⎩⎪⎨⎪⎧m =0,n =0,∴C (0,0).∴圆C 的半径r =|CM |= 2. ∴圆C 的方程为x 2+y 2=2.(2)证明:设过点M 的直线MP 的斜率为k ,则过点M 的直线M Q 的斜率为-k ,直线MP 的方程为y +1=k (x +1).∵直线MP 与圆C 相交,∴联立得方程组⎩⎪⎨⎪⎧y +1=k (x +1),x 2+y 2=2,消去y 并整理,得(1+k 2)x 2+2k (k -1)x +k 2-2k -1=0. ∵圆C 过点M (-1,-1),∴x P ·(-1)=k 2-2k -11+k 2,∴x P =2k +1-k 21+k 2.同理,将k 替换成-k ,可得x Q =-k 2-2k +11+k 2.∴k P Q =y Q -y P x Q -x P =-k (x Q +1)-1-k (x P +1)+1x Q -x P =-k (x Q +x P )-2kx Q -x P =1.[解题技法] 直线与圆的综合问题的求解策略(1)利用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决.(2)直线与圆和平面几何联系十分紧密,可充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放到一起综合考虑.[题组训练]1.(2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A 设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2=22,可得d max =22+r =32,d min =22-r = 2. 由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2.综上,△ABP 面积的取值范围是[2,6].2. (2019·湖北八校联考)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,|MN |=|AB |,求直线l 的方程;(2)在圆C 上是否存在点P ,使得|P A 2|+|PB 2|=12?若存在,求出点P 的个数;若不存在,说明理由.解:(1)因为圆C 的标准方程为(x -2)2+y 2=4, 所以圆心C (2,0),半径为2. 因为l ∥AB ,A (-1,0),B (1,2), 所以直线l 的斜率为2-01-(-1)=1,设直线l 的方程为x -y +m =0, 则圆心C 到直线l 的距离d =|2-0+m |2=|2+m |2. 因为|MN |=|AB |=22+22=22, |CM 2|=d 2+⎝⎛⎭⎫|MN |22,所以4=(2+m )22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x -2)2+y 2=4,|P A |2+|PB |2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,即x 2+(y -1)2=4,因为|2-2|<(2-0)2+(0-1)2<2+2, 所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交, 所以存在点P ,使得|P A |2+|PB |2=12,点P 的个数为2.[课时跟踪检测]A 级1.已知圆C :x 2+y 2-2x -2my +m 2-3=0关于直线l :x -y +1=0对称,则直线x =-1与圆C 的位置关系是( )A .相切B .相交C .相离D .不能确定解析:选A 由已知得C :(x -1)2+(y -m )2=4,即圆心C (1,m ),半径r =2,因为圆C 关于直线l :x -y +1=0对称,所以圆心(1,m )在直线l :x -y +1=0上,所以m =2.由圆心C (1,2)到直线x =-1的距离d =1+1=2=r 知,直线x =-1与圆C 相切.故选A.2.直线ax +1a y +2=0与圆x 2+y 2=r 2相切,则圆的半径最大时,a 的值是( )A .1B .-1C .±1D .a 可为任意非零实数解析:选C 由题意得,圆心(0,0)到直线ax +1a y +2=0的距离等于半径r ,即|0+0+2|a 2+1a 2=r .由基本不等式,得r ≤22=2,当且仅当a 4=1,即a =±1时取等号.故选C. 3.与圆x 2+y 2+22y +1=0相切,且在两坐标轴上截距相等的直线的条数为( ) A .2 B .3 C .4D .6解析:选B 圆的标准方程为x 2+(y +2)2=1,设切线方程为y =kx +m ,则|2+m |k 2+1=1,整理得(2+m )2=k 2+1,又因为切线在两坐标轴上的截距相等,所以m =-mk,联立方程得⎩⎪⎨⎪⎧(2+m )2=k 2+1,m =-mk ,解得⎩⎪⎨⎪⎧ m =0,k =±1或⎩⎨⎧k =-1,m =-22,所以切线方程为y =±x 或y =-x -22,切线共有3条.4.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A .3 B.212C .2 2D .2解析:选D 圆C :x 2+y 2-2y =0的圆心为(0,1),半径r =1.由圆的性质,知S 四边形P ACB=2S △PBC .∵四边形P ACB 的最小面积是2,∴S △PBC 的最小值为1,则12rd min =1(d 是切线长),∴d min =2.∵圆心到直线kx +y +4=0的距离就是PC 的最小值,∴|PC |min =51+k2=d 2+1= 5.∵k >0,∴k =2.故选D.5.(2019·赣州七校联考)已知圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)的圆心在直线3x -y +3=0上,且圆C 上的点到直线 3x +y =0的距离的最大值为1+3,则a 2+b 2的值为( )A .1B .2C .3D .4解析:选C 易知圆的标准方程为(x -a )2+(y -b )2=1,所以圆心为(a ,b ),由圆心在直线3x -y +3=0上,可得3a -b +3=0,即b =3(a +1) ①.圆C 上的点到直线 3x +y =0的距离的最大值d max =1+|3a +b |2=3+1,得|3a +b |=23 ②.由①②得 |2a+1|=2,又a <0,所以a =-32,a 2+b 2=a 2+3(a +1)2=3.6.已知实数x ,y 满足(x +5)2+(y -12)2=25,那么x 2+y 2的最小值为________. 解析:由题意得x 2+y 2=(x -0)2+(y -0)2表示点P (x ,y )到原点的距离,所以x 2+y 2的最小值表示圆(x +5)2+(y -12)2=25上一点到原点距离的最小值.又圆心(-5,12)到原点的距离为(-5)2+122=13,所以x 2+y 2的最小值为13-5=8.答案:87.已知P (x ,y )为圆(x -2)2+y 2=1上的动点,则|3x +4y -3|的最大值为________. 解析:设t =3x +4y -3,即3x +4y -3-t =0.由圆心(2,0)到直线3x +4y -3-t =0的距离d =|6-3-t |32+42≤1,解得-2≤t ≤8.所以|3x +4y -3|max =8. 答案:88.(2018·贵阳适应性考试)已知直线l :ax -3y +12=0与圆M :x 2+y 2-4y =0相交于A ,B 两点,且∠AMB =π3,则实数a =________.解析:直线l 的方程可变形为y =13ax +4,所以直线l 过定点(0,4),且该点在圆M 上.圆的方程可变形为x 2+(y -2)2=4,所以圆心为M (0,2),半径为2.如图,因为∠AMB =π3,所以△AMB 是等边三角形,且边长为2,高为3,即圆心M 到直线l 的距离为3,所以|-6+12|a 2+9=3,解得a =± 3.答案:±39.已知曲线C 上任一点M (x ,y )到点E ⎝⎛⎭⎫-1,14和直线a :y =-14的距离相等,圆D :(x -1)2+⎝⎛⎭⎫y -122=r 2(r >0). (1)求曲线C 的方程;(2)过点A (-2,1)作曲线C 的切线b ,并与圆D 相切,求半径r . 解:(1)由题意得(x +1)2+⎝⎛⎭⎫y -142=⎪⎪⎪⎪y +14. 两边平方并整理,得y =(x +1)2. ∴曲线C 的方程为y =(x +1)2. (2)由y =(x +1)2,得y ′=2(x +1). ∵点A (-2,1)在抛物线C 上,∴切线b 的斜率为y ′|x =-2=-2.∴切线b 的方程为y -1=-2(x +2),即2x +y +3=0. 又直线b 与圆D 相切,∴圆心D ⎝⎛⎭⎫1,12到直线b 的距离等于半径, 即r =⎪⎪⎪⎪2×1+12+35=11510.10.已知过点A (1,0)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)OM ―→·ON ―→=12,其中O 为坐标原点,求|MN |.解:(1)设过点A (1,0)的直线与圆C 相切,显然当直线的斜率不存在时,直线x =1与圆C 相切.当直线的斜率存在时,设切线方程为y =k 0(x -1),即k 0x -y -k 0=0. ∵圆C 的半径r =1, ∴圆心C (2,3)到切线的距离为|k 0-3|k 20+1=1,解得k 0=43. ∵过点A 且斜率为k 的直线l 与圆C 有两个交点, ∴k >43,即k 的取值范围为⎝⎛⎭⎫43,+∞. (2)将直线l 的方程y =k (x -1)代入圆C 的方程,得(1+k 2)x 2-(2k 2+6k +4)x +k 2+6k +12=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=2k 2+6k +41+k 2,x 1x 2=k 2+6k +121+k 2.∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2(x 1x 2-x 1-x 2+1)=9k 21+k 2. ∴OM ―→·ON ―→=x 1x 2+y 1y 2=10k 2+6k +121+k 2=12,解得k =3或k =0(舍去).∴直线l 的方程为3x -y -3=0. 故圆心(2,3)在直线l 上,∴|MN |=2r =2.B 级1.已知圆M :(x -2)2+(y -2)2=2,圆N :x 2+(y -8)2=40,经过原点的两直线l 1,l 2满足l 1⊥l 2,且l 1交圆M 于不同两点A ,B ,l 2交圆N 于不同两点C ,D ,记l 1的斜率为k .(1)求k 的取值范围;(2)若四边形ABCD 为梯形,求k 的值.解:(1)显然k ≠0,所以可设l 1的方程为y =kx ,则l 2的方程为y =-1k x .依题意得点M 到直线l 1的距离d 1=|2k -2|1+k 2< 2.整理,得k 2-4k +1<0, 解得2-3<k <2+ 3.① 同理,点N 到直线l 2的距离d 2=|8k |1+k 2<210, 解得-153<k <153.② 由①②可得2-3<k <153, 所以k 的取值范围为⎝⎛⎭⎫2-3,153. (2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),将直线l 1的方程代入圆M 的方程,得(1+k 2)x 2-4(1+k )x +6=0, 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=61+k 2. 将直线l 2的方程代入圆N 的方程,得(1+k 2)x 2+16kx +24k 2=0, 所以x 3+x 4=-16k 1+k 2,x 3x 4=24k 21+k 2.由四边形ABCD 为梯形可得x 1x 2=x 4x 3,所以x 1x 2+x 2x 1+2=x 4x 3+x 3x 4+2,所以(x 1+x 2)2x 1x 2=(x 3+x 4)2x 3x 4,所以(1+k )2=4,解得k =1或k =-3(舍去). 故k 的值为1.2.(2019·成都双流中学模拟)已知曲线C 上任意一点到点A (1,-2)的距离与到点B (2,-4)的距离之比均为22. (1)求曲线C 的方程;(2)设点P (1,-3),过点P 作两条相异的直线分别与曲线C 相交于E ,F 两点,且直线PE 和直线PF 的倾斜角互补,求线段EF 的最大值.解:(1)设曲线C 上的任意一点为Q (x ,y ),由题意得(x -1)2+(y +2)2(x -2)2+(y +4)2=22,整理得x 2+y 2=10,故曲线C 的方程为x 2+y 2=10.(2)由题意知,直线PE 和直线PF 的斜率存在,且互为相反数,因为P (1,-3),故可设直线PE 的方程为y +3=k (x -1),联立方程得⎩⎪⎨⎪⎧y +3=k (x -1),x 2+y 2=10,消去y 得(1+k 2)x 2-2k (k+3)x +k 2+6k -1=0,因为P (1,-3)在圆上,所以x =1一定是该方程的解,故可得x E =k 2+6k -11+k 2,同理可得x F =k 2-6k -11+k 2,所以k EF =y E -y F x E -x F =k (x E -1)-3+k (x F -1)+3x E -x F =-2k +k (x E +x F )x E -x F =-13,故直线EF 的斜率为定值-13,设直线EF 的方程为y =-13x +b ,则圆C 的圆心(0,0)到直线EF 的距离d =|-3b |1+9,所以|EF |=210-d 2=210-9b 210⎝⎛⎭⎫-103<b <103,所以当b =0时,线段EF 取得最大值,最大值为210.第六节椭圆一、基础知识1.椭圆的定义平面内与两个定点F1,F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆,这两个定点F1,F2叫做椭圆的焦点.2.椭圆的标准方程(1)中心在坐标原点,焦点在x轴上的椭圆的标准方程为x2a2+y2b2=1(a>b>0).(2)中心在坐标原点,焦点在y轴上的椭圆的标准方程为y2a2+x2b2=1(a>b>0).3.椭圆的几何性质❶长轴与短轴的交点叫做椭圆的中心.❷离心率表示椭圆的扁平程度.当e越接近于1时,c越接近于a,从而b=a2-c2越小,因此椭圆越扁.二、常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b 2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).第一课时 椭圆及其性质 考点一 椭圆的标准方程[典例] (1)已知椭圆的中心在原点,焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的标准方程为( )A.x 26+y 24=1 B.x 216+y 236=1 C.x 236+y 216=1 D.x 249+y 29=1 (2)已知中心在坐标原点的椭圆过点A (-3,0),且离心率e =53,则椭圆的标准方程为________.[解析] (1)由长、短半轴长之和为10,焦距为45,可得a +b =10,2c =45,∴c =2 5.又a 2=b 2+c 2,∴a 2=36,b 2=16.∵焦点在x 轴上,∴所求椭圆方程为x 236+y 216=1.故选C.(2)若焦点在x 轴上,由题知a =3,因为椭圆的离心率e =53,所以c =5,b =2,所以椭圆方程是x 29+y 24=1.若焦点在y 轴上,则b =3,a 2-c 2=9,又离心率e =c a =53,解得a 2=814,所以椭圆方程是y 2814+x 29=1.[答案] (1)C (2)x 29+y 24=1或y 2814+x 29=1[题组训练]1.(2018·济南一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1 D.x 216+y 212=1 解析:选B 椭圆长轴长为6,即2a =6,得a =3, ∵两焦点恰好将长轴三等分, ∴2c =13·2a =2,得c =1,∴b 2=a 2-c 2=9-1=8,∴此椭圆的标准方程为x 29+y 28=1.故选B.2.椭圆C 的中心在原点,焦点在x 轴上,若椭圆C 的离心率等于12,且它的一个顶点恰好是抛物线x 2=83y 的焦点,则椭圆C 的标准方程为______________.解析:由题意设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).由题设知抛物线的焦点为(0,23),所以椭圆中b =2 3. 因为e =c a =12,所以a =2c ,又a 2-b 2=c 2,联立⎩⎪⎨⎪⎧a =2c ,b =23,a 2-b 2=c 2,解得c =2,a =4,所以椭圆C 的标准方程为x 216+y 212=1.答案:x 216+y 212=13.已知椭圆中心在原点,且经过A (3,-2)和B (-23,1)两点,则椭圆的标准方程为________.解析:设所求椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ).依题意有⎩⎪⎨⎪⎧3m +4n =1,12m +n =1,解得⎩⎨⎧m =115,n =15.∴所求椭圆的方程为x 215+y 25=1.答案:x 215+y 25=1考点二 椭圆的定义及其应用[典例] (1)(2019·郑州第二次质量预测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为12,则椭圆C 的标准方程为( )A.x 23+y 2=1 B.x 23+y 22=1 C.x 29+y 24=1 D.x 29+y 25=1(2)已知点P (x ,y )在椭圆x 236+y 2100=1上,F 1,F 2是椭圆的两个焦点,若△PF 1F 2的面积为18,则∠F 1PF 2的余弦值为________.[解析] (1)由椭圆的定义,知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =12,所以a =3.因为椭圆的离心率e =c a =23,所以c =2,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1,故选D.(2)椭圆x 236+y 2100=1的两个焦点为F 1(0,-8),F 2(0,8),由椭圆的定义知|PF 1|+|PF 2|=20,两边平方得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=202,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos ∠F 1PF 2=162, 两式相减得2|PF 1||PF 2|(1+cos ∠F 1PF 2)=144. 又S △PF 1F 2=12|PF 1||PF 2|sin ∠F 1PF 2=18,所以1+cos ∠F 1PF 2=2sin ∠F 1PF 2, 解得cos ∠F 1PF 2=35.[答案] (1)D (2)35[变透练清]1.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7解析:选D 因为a 2=25,所以2a =10,由定义知,|PF 1|+|PF 2|=10,所以|PF 2|=10-|PF 1|=7.2.(变结论)若本例(2)条件不变,则△PF 1F 2的内切圆的面积为________.解析:由椭圆的定义可知△PF 1F 2的周长的一半为a +c =18,所以由三角形的面积公式S =pr (其中p ,r 分别为三角形的周长一半,内切圆的半径),得r =1,所以△PF 1F 2的内切圆的面积为π.答案:π考点三 椭圆的几何性质考法(一) 求椭圆离心率的值(或范围)[典例] (1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2-3 C.3-12D.3-1(2)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( )A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1[解析] (1)在Rt △PF 1F 2中,∠PF 2F 1=60°, 不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2, 则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,在方程x 2a 2+y 2b 2=1中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.(2)根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆的左、右焦点的距离和为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2,所以e =ca =1-b 2a2=1-b 24.因为1≤b <2,所以0<e ≤32.[答案] (1)D (2)A[解题技法] 求椭圆离心率的方法(1)定义法:根据条件求出a ,c ,直接利用公式e =ca求解.(2)方程法:根据条件得到关于a ,b ,c 的齐次等式(不等式),结合b 2=a 2-c 2转化为关于a ,c 的齐次等式(不等式),然后将该齐次等式(不等式)两边同时除以a 或a 2转化为关于e 或e 2的方程(不等式),解方程(不等式)即可得e (e 的取值范围).考法(二) 与椭圆性质有关的最值问题[典例] 已知点F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,点M 是该椭圆上的一个动点,那么|MF 1―→+MF 2―→|的最小值是( )A .4B .6C .8D .10 [解析] 设M (x 0,y 0),F 1(-3,0),F 2(3,0). 则MF 1―→=(-3-x 0,-y 0),MF 2―→=(3-x 0,-y 0), 所以MF 1―→+MF 2―→=(-2x 0,-2y 0), |MF 1―→+MF 2―→|=4x 20+4y 20=4×25⎝⎛⎭⎫1-y 216+4y 20= 100-94y 20,因为点M 在椭圆上,所以0≤y 20≤16, 所以当y 20=16时,|MF 1―→+MF 2―→|取最小值为8. [答案] C[解题技法] 椭圆几何性质的应用技巧(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.[题组训练]1.(2018·贵阳摸底)P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠P AF =12,则椭圆的离心率e 为( )A.23B.22C.33D.12解析:选D 不妨设点P 在第一象限,因为PF ⊥x 轴,所以x P =c ,将x P =c 代入椭圆方程得y P =b 2a ,即|PF |=b 2a ,则tan ∠P AF =|PF ||AF |=b 2a a +c =12,结合b 2=a 2-c 2,整理得2c 2+ac-a 2=0,两边同时除以a 2得2e 2+e -1=0,解得e =12或e =-1(舍去).故选D.2.已知P 在椭圆x 24+y 2=1上,A (0,4),则|P A |的最大值为( )A.2183B.763 C .5D .25解析:选C 设P (x 0,y 0),则由题意得x 204+y 20=1, 故x 20=4(1-y 20), 所以|P A |2=x 20+(y 0-4)2 =4(1-y 20)+y 20-8y 0+16 =-3y 20-8y 0+20 =-3⎝⎛⎭⎫y 0+432+763, 又-1≤y 0≤1,所以当y 0=-1时,|P A |2取得最大值25, 即|P A |最大值为5.故选C.3.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 的离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1 D.⎝⎛⎦⎤0,13解析:选C 如图所示, ∵线段PF 1的中垂线经过F 2, ∴|PF 2|=|F 1F 2|=2c , 即椭圆上存在一点P , 使得|PF 2|=2c . ∴a -c ≤2c <a +c . ∴e =c a ∈⎣⎡⎭⎫13,1.[课时跟踪检测]A 级1.椭圆以x 轴和y 轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的标准方程为( )A.x 24+y 2=1 B.y 216+x 24=1 C.x 24+y 2=1或y 216+x 24=1 D.x 24+y 2=1或y 24+x 2=1 解析:选C 由题意知,椭圆的长轴长是短轴长的2倍,即a =2b .因为椭圆经过点(2,0),所以若焦点在x 轴上,则a =2,b =1,椭圆的标准方程为x 24+y 2=1;若焦点在y 轴上,则a=4,b =2,椭圆的标准方程为y 216+x 24=1,故选C.2.已知方程x 2|m |-1+y 22-m=1表示焦点在y 轴上的椭圆,则m 的取值范围为( )A.⎝⎛⎭⎫-∞,32 B .(1,2)C .(-∞,0)∪(1,2)D .(-∞,-1)∪⎝⎛⎭⎫1,32 解析:选D 依题意得不等式组⎩⎪⎨⎪⎧|m |-1>0,2-m >0,2-m >|m |-1,解得m <-1或1<m <32,故选D.3.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13 B.33C.22D.12解析:选B 由题意得椭圆的标准方程为x 2m 2+y 2m 3=1,所以a 2=m 2,b 2=m3,所以c 2=a 2-b 2=m 6,e 2=c 2a 2=13,e =33. 4.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P ―→·F 2A ―→的最大值为( )A.32B.332C.94D.154解析:选B 由椭圆方程知c =1, 所以F 1(-1,0),F 2(1,0).因为椭圆C 上的点A 满足AF 2⊥F 1F 2,则可设A (1,y 0), 代入椭圆方程可得y 20=94,所以y 0=±32. 设P (x 1,y 1),则F 1P ―→=(x 1+1,y 1),F 2A ―→=(0,y 0), 所以F 1P ―→·F 2A ―→=y 1y 0.因为点P 是椭圆C 上的动点,所以-3≤y 1≤3, 故F 1P ―→·F 2A ―→的最大值为332.5.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B.2 C .2D .22解析:选D 设a ,b ,c 分别为椭圆的长半轴长,短半轴长,半焦距,依题意知,当三角形的高为b 时面积最大,所以12×2cb =1,bc =1,而2a =2b 2+c 2≥22bc =22(当且仅当b =c =1时取等号),故选D.6.(2019·惠州调研)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.59C.49D.513解析:选D 如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,故|PF 2||PF 1|=513,故选D. 7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________.解析:∵圆的标准方程为(x -3)2+y 2=1,∴圆心坐标为(3,0),∴c =3.又b =4,∴a =b 2+c 2=5. ∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0). 答案:(-5,0)8.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆方程为________.解析:法一:设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2-b 2=c 2=5,且9a 2+4b 2=1,解方程组⎩⎪⎨⎪⎧a 2-b 2=5,9a 2+4b 2=1,得a 2=15,b 2=10,故所求椭圆方程为x 215+y 210=1.法二:椭圆x 29+y 24=1的焦点坐标为(±5,0),设所求椭圆方程为x 2λ+5+y 2λ=1(λ>0),代入点A (3,-2)得9λ+5+4λ=1(λ>0),解得λ=10或λ=-2(舍去),故所求椭圆方程为x 215+y 210=1.答案:x 215+y 210=1 9.已知△ABC 的顶点A (-3,0)和顶点B (3,0),顶点C 在椭圆x 225+y 216=1上,则5sin C sin A +sin B=________.解析:由椭圆x 225+y 216=1知长轴长为10,短轴长为8,焦距为6,则顶点A ,B 为椭圆的两个焦点.在△ABC 中,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则c =|AB |=6,a +b =|BC |+|AC |=10,由正弦定理可得5sin C sin A +sin B =5c a +b =5×610=3. 答案:310.点P 是椭圆上任意一点,F 1,F 2分别是椭圆的左、右焦点,∠F 1PF 2的最大值是60°,则椭圆的离心率e =________.解析:如图所示,当点P 与点B 重合时,∠F 1PF 2取得最大值60°,此时|OF 1|=c ,|PF 1|=|PF 2|=2c .由椭圆的定义,得|PF 1|+|PF 2|=4c =2a ,所以椭圆的离心率e =c a =12. 答案:1211.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0), 依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4, 所以椭圆的标准方程为x 225+y 216=1. (2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12. 12.已知焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,求PF ―→·P A ―→的最大值和最小值.解:设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1, ∴b 2=a 2-c 2=3,∴椭圆方程为x 24+y 23=1. ∴-2≤x 0≤2.又F (-1,0),A (2,0),PF ―→=(-1-x 0,-y 0),P A ―→=(2-x 0,-y 0),∴PF ―→·P A ―→=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=2时,PF ―→·P A ―→取得最小值0,当x 0=-2时,PF ―→·P A ―→取得最大值4.B 级1.若椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝⎛⎭⎫b 2+c 2有四个交点,其中c 为椭圆的半焦距,则椭圆的离心率e 的取值范围为( )A.⎝⎛⎭⎫55,35 B.⎝⎛⎭⎫0,25 C.⎝⎛⎭⎫25,35 D.⎝⎛⎭⎫35,55 解析:选A 由题意可知,椭圆的上、下顶点在圆内,左、右顶点在圆外, 则⎩⎨⎧ a >b 2+c ,b <b 2+c ,整理得⎩⎪⎨⎪⎧(a -c )2>14(a 2-c 2),a 2-c 2<2c ,解得55<e <35. 2.(2018·南昌摸底考试)P 为椭圆x 225+y 29=1上一点,F 1,F 2分别是椭圆的左、右焦点,过P 点作PH ⊥F 1F 2于点H ,若PF 1⊥PF 2,则|PH |=( )A.254B.83 C .8 D.94解析:选D 由椭圆x 225+y 29=1得a 2=25,b 2=9, 则c =a 2-b 2=25-9=4,∴|F 1F 2|=2c =8.由椭圆的定义可得|PF 1|+|PF 2|=2a =10,∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=64.∴2|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-(|PF 1|2+|PF 2|2)=100-64=36,∴|PF 1|·|PF 2|=18.又S △PF 1F 2=12|PF 1|·|PF 2|=12|F 1F 2|·|PH |, ∴|PH |=|PF 1|·|PF 2||F 1F 2|=94.故选D. 3.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0). 由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c = 3.所以b 2=a 2-c 2=1. 所以椭圆C 的方程为x 24+y 2=1. (2)证明:设M (m ,n ),则D (m,0),N (m ,-n ).由题设知m ≠±2,且n ≠0.直线AM 的斜率k AM =n m +2, 故直线DE 的斜率k DE =-m +2n. 所以直线DE 的方程为y =-m +2n(x -m ). 直线BN 的方程为y =n 2-m(x -2). 联立⎩⎨⎧y =-m +2n (x -m ),y =n 2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2. 由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S△BDE=12|BD|·|y E|=25|BD|·|n|,S△BDN=12|BD|·|n|.所以△BDE与△BDN的面积之比为4∶5.。

直线与圆的方程的实际应用

直线与圆的方程的实际应用

直线与圆的方 程的实际应用
综合应用
直线与圆的方 程的实际应用
坐标法
综合应用
典例精析
题型二:坐标法的应用
例2.如图所示,AB是圆O的直径,CD是圆O的一条弦,且AB⊥CD,E为垂足.利用坐
标法证明E是CD的中点.
证明:如图所示,以O为坐标原点,以直 即b1,b2是关于b的方程m2+b2=r2的根,
径AB所在直线为x轴建立平面直角坐标系, 解方程得 b r2 m2 , 设圆O的半径为r,|OE|=m,则圆O的方 则CD的中点坐标为
12 (1)2
2
答案:-2
跟踪练习
2.如图,圆弧形拱桥的跨度AB=12 m,拱高CD=4 m, 则拱桥的直径为________ m.
解析:设圆心为O,半径为r,则由勾股定理得,|OB|2=|OD|2+|BD|2,
即 r 2 (r 4)2 62
解得 r 13
2
所以拱桥的直径为13 m.
答案:13
3
求新桥BC的长.
又因为AB⊥BC,所以直线AB的斜率
k AB
3 4
,
设点B的坐标为(a,b),

k AB
b 60 a0
3 4
, kBC
b0 4, a 170 3
解得a=80,b=120. BC (170 80)2 (0 120)2 150,
因此新桥BC的长为150 m.
课堂小结
直线与圆的方 程的实际应用
新知探索
直线与圆的方程的实际应用方法
仔细读题(审题)→建立数学模型→解答数学模型→检验,给 出实际问题的答案.
新知探索
直线与圆的方程的实际应用方法
用坐标法解决平面几何问题的“三步曲”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一道直线与圆的综合问题
已知圆22:30C x y Dx Ey ++++=关于直线10x y +-=
(1)求圆C 的方程;
(2)是否存在斜率为2的直线l ,l 截圆C 的弦为AB ,且以AB 为直径的圆过原点,若存在,则求出l 的方程;若不存在,请说明理由。

解:(1)圆心坐标为(,)22
D E --,在直线10x y +-=上,所以20D E ++=, 圆心在第二象限,所以0,0D E ><, 又2221224
D E r +-==, 解得2,4D E ==-,所以圆C 的方程为222430x y x y ++-+=。

(2)假设存在这样的直线,满足题意。

设直线:2l y x b =+, 因为以AB 为直径的圆过原点,
所以AB 的中点到原点的距离等于2
AB 。

AB 的中点为直线2y x b =-+与12(1)2y x -=
+的交点,求得交点坐标为5210(,)33b b --。

圆心(1,2)-到直线的距离为d ==, 由勾股定理,得2
22()2AB d r +=,所以222(2)5210()()2533b b b ---++=, 化简,得2342365710b b -+=, 因为2
2364345710∆=-⨯⨯<,
所以不存在直线l 满足题意。

相关文档
最新文档