平行线及其判定与性质练习题
(完整版)平行线及其判定与性质练习题
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的判定和性质经典题
平行线的判定和性质经典题一.选择题(共18小题)1.如图所示,同位角共有()3.下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()8.下列所示的四个图形中,∠1和∠2是同位角的是()11.如图所示,BE∥DF,DE∥BC,图中相等的角共有()13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有()14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有()15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角16.把直线a 沿水平方向平移4cm ,平移后的像为直线b ,则直线a 与直线b 之间的距离为17.(2009•宁德)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是18.(2004•烟台)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是( )二.填空题(共12小题)19.已知∠α和∠β的两边互相平行,且∠α=60°,则∠β= _________ .20.(2004•西宁)如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有 _________ 个;若∠1=50°,则∠AHG= _________ 度.第20题 第21题 第22题21.(2009•永州)如图,直线a 、b 分别被直线c 、b 所截,如果∠1=∠2,那么∠3+∠4= _________ 度.直线a 、b 分别被直线c 、b 所截.22.(2010•抚顺)如图所示,已知a∥b,∠1=28°,∠2=25°,则∠3= _________ 度.23.如图,已知BO 平分∠CBA,CO 平分∠ACB,MN∥BC,且过点O ,若AB=12,AC=14,则△AMN 的周长是 _________ .第23题第24题24.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为_________ cm;(2)如图2,若∠_________ =∠_________ ,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=_________ 度;25.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为_________ .26.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有_________ 个.第26题第27题27.如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有_________ 个.28.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为_________ .第28题第29题第30题29.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动_________ 格.30.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是_________ cm2.平行线的判定和性质经典题参考答案与试题解析一.选择题(共18小题)1.如图所示,同位角共有()2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()3.下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()8.下列所示的四个图形中,∠1和∠2是同位角的是()10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()11.如图所示,BE∥DF,D E∥BC,图中相等的角共有()13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有()14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有()15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角16.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为17.(2009•宁德)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是18.(2004•烟台)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是( )二.填空题(共12小题)19.已知∠α和∠β的两边互相平行,且∠α=60°,则∠β= 60°或120° .20.(2004•西宁)如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有 5 个;若∠1=50°,则∠AHG=130 度.21.(2009•永州)如图,直线a、b分别被直线c、b所截,如果∠1=∠2,那么∠3+∠4= 180 度.直线a、b分别被直线c、b所截.22.(2010•抚顺)如图所示,已知a∥b,∠1=28°,∠2=25°,则∠3=53 度.23.如图,已知BO平分∠CBA,CO平分∠ACB,MN∥BC,且过点O,若AB=12,AC=14,则△AMN 的周长是26 .24.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为 2 cm;(2)如图2,若∠ 1 =∠ 2 ,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=25 度;25.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为2cm或8cm .26.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有 5 个.27.如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有 5 个.28.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为30 .29.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动9 格.30.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是36 cm2.。
平行线的性质与判定典型例题
1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.2.如图,AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF〔〕,所以∠EAC=∠FBD=90°〔垂直的定义〕.因为∠1=∠2〔〕,所以∠EAC+∠1=∠FBD+∠2〔等式的性质〕,即∠EAB=∠FBG,所以AE∥BF〔同位角相等,两直线平行〕.3.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.4.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.5.如下图,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.6.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2〔∠1+∠2〕=180°,∴AD∥BC.7.:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°〔垂直定义〕,∴DG∥AC〔同位角相等,两直线平行〕,∴∠2=∠ACD〔两直线平行,内错角相等〕,∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD〔同位角相等,两直线平行〕.8.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.〔1〕①假设∠DCB=45°,那么∠ACB的度数为135°.②假设∠ACB=140°,那么∠DCE的度数为40°.〔2〕由〔1〕猜测∠ACB与∠DCE的数量关系,并说明理由.〔3〕当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值〔不必说明理由〕.解:〔1〕①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;〔2〕猜测:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;〔3〕30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.9.:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO〔同位角相等,两条直线平行〕,∴∠EDO=∠BOD〔两直线平行,内错角相等〕,∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO〔同位角相等,两条直线平行〕.10.如图,∠A=∠C,∠E=∠F,试说明:AD∥BC.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.11.:如图,EG∥FH,∠1=∠2.求证:∠BEF+∠DFE=180°.解:∵EG∥HF∴∠OEG=∠OFH,∵∠1=∠2∴∠AEF=∠DFE∴AB∥CD,∴∠BEF+∠DFE=180°.12.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,〔两直线平行,内错角相等〕∵∠B=70°,∴∠BCD=70°,〔等量代换〕∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,〔同旁内角互补,两直线平行〕∴AB∥EF.〔平行于同一直线的两条直线互相平行〕13.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.14.完成以下推理过程::如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°〔〕∠1+∠DFE=180°〔邻补角定义〕∴∠2=∠DFE〔同角的补角相等〕∴EF∥AB〔内错角相等,两直线平行〕∴∠3=∠ADE〔两直线平行,内错角相等〕又∵∠3=∠B〔〕∴∠B=∠ADE〔等量代换〕∴DE∥BC〔同位角相等,两直线平行〕∴∠EDG+∠DGC=180°〔两直线平行,同旁内角互补〕15.:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空〔理由或数学式〕解:∵BE∥GF〔〕∴∠2=∠3〔两直线平行同位角相等〕∵∠1=∠3〔〕∴∠1=〔∠2〕〔等量代换〕∴DE∥〔BC〕〔内错角相等两直线平行〕∴∠EDB+∠DBC=180°〔两直线平行同旁内角互补〕∴∠EDB=180°﹣∠DBC〔等式性质〕∵∠DBC=〔70°〕〔〕∴∠EDB=180°﹣70°=110°16.如图,:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,AB∥CD,∠A=∠D,试说明:〔1〕AF∥ED;〔2〕∠BED=∠A;〔3〕∠1=∠2〔1〕证明:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D,∴AF∥ED;〔2〕证明:∵AF∥ED,∴∠BED=∠A;〔3〕证明:∵AF∥ED,∴∠1=∠CGD,又∵∠2=∠CGD,∴∠1=∠2.17.阅读理解,补全证明过程及推理依据.:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2〔〕∠2=∠DGF〔对顶角相等〕∴∠1=∠DGF〔等量代换〕∴BD∥CE〔同位角相等,两直线平行〕∴∠3+∠C=180°〔两直线平行,同旁内角互补〕又∵∠3=∠4〔〕∴∠4+∠C=180°〔等量代换〕∴AC∥DF〔同旁内角互补,两直线平行〕∴∠A=∠F〔两直线平行,内错角相等〕18.如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.〔1〕求∠α和∠β的度数.〔2〕求∠C的度数.解:〔1〕解方程组,得.〔2〕∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.19.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,20.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.21.如图,∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?解:∠BAC=∠DCA,理由:∵∠CFE=∠2,∠2+∠1=180°,∴∠CFE+∠1=180°,∴DE∥BC,∴∠AED=∠B,∵∠B=∠3,∴∠3=∠AEF,∴AB∥CD,∴∠BAC=∠DCA.22.如图,EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.〔请在下面的解答过程的空格内填空或在括号内填写理由〕.理由:∵∠1=∠C,〔〕∴GD∥AC,〔同位角相等,两直线平行〕∴∠2=∠DAC.〔两直线平行,内错角相等〕又∵∠2+∠3=180°,〔〕∴∠3+∠DAC=180°.〔等量代换〕∴AD∥EF,〔同旁内角互补,两直线平行〕∴∠ADC=∠EFC.〔两直线平行,同位角相等〕∵EF⊥BC,〔〕∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.23.如图1,BC⊥AF于点C,∠A+∠1=90°.〔1〕求证:AB∥DE;〔2〕如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.那么∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系〔不考虑点P与点A,D,C重合的情况〕?并说明理由.解:〔1〕如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.〔2〕如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如下图,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如下图,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.24.:如图,FE∥OC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.〔1〕求证:AB∥DC;〔2〕假设∠B=30°,∠1=65°,求∠OFE的度数.〔1〕证明:∵FE∥OC,∴∠1=∠C,∵∠1=∠A,∴∠A=∠C,∴AB∥DC;〔2〕解:∵AB∥DC,∴∠D=∠B,∵∠B=30°∴∠D=30°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=65°,∴∠OFE=30°+65°=95°.25.〔2021秋•牡丹区期末〕如图,AB∥DG,∠1+∠2=180°,〔1〕求证:AD∥EF;〔2〕假设DG是∠ADC的平分线,∠2=150°,求∠B的度数.证明:〔1〕∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;〔2〕∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.26.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?假设平分,请说明理由.平分.证明:∵AD⊥BC于D,EG⊥BC于G,〔〕∴∠ADC=∠EGC=90°,〔垂直的定义〕∴AD∥EG,〔同位角相等,两直线平行〕∴∠2=∠3,〔两直线平行,内错角相等〕∠E=∠1,〔两直线平行,同位角相等〕又∵∠E=∠3〔〕∴∠1=∠2〔等量代换〕∴AD平分∠BAC〔角平分线的定义〕.27.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.〔1〕问直线CD与AB有怎样的位置关系?并说明理由;〔2〕假设∠CEF=70°,求∠ACB的度数.解:〔1〕CD和AB的关系为平行关系.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°﹣130°=50°,又∵∠CBF=20°,∴∠ABC=70°,∵∠DCB=70°,∴∠DCB=∠ABC,∴CD∥AB;〔2〕∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.28.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,那么EF也是∠AED的平分线.完成以下推理过程:证明:∵BD是∠ABC的平分线〔〕∴∠1=∠2〔角平分线定义〕∵ED∥BC〔〕∴∠5=∠2〔两直线平行,内错角相等〕∴∠1=∠5〔等量代换〕∵∠4=∠5〔〕∴EF∥BD〔内错角相等,两直线平行〕∴∠3=∠1〔两直线平行,同位角相等〕∴∠3=∠4〔等量代换〕∴EF是∠AED的平分线〔角平分线定义〕。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的性质与判定经典题型
平行线的性质与判定经典题型1.在三角形ABC中,角B等于角ACB,CD平分角ACB 并交AB于点D,AE与DC平行并交BC延长线于点E。
已知角E等于36度,求角B的度数。
2.在图中,如果AB平行于CD,则角α、β、γ之间的关系是什么?3.在图中,AB平行于CD且CD平行于PN,角ABC等于50度,角CPN等于150度。
求角BCP的度数。
4.在图中,直线AB和CD被直线EF所截。
如果角BMN 等于角DNF且角1等于角2,那么MQ平行于NP。
为什么?5.在图中,将一个长方形纸片沿EF折叠后,点D和C分别落在D'和C'的位置。
如果角EFB等于65度,则角AED'等于多少度?6.在图中,如果角1等于角2且角C等于角D,则角A等于角F。
为什么?7.在图中,已知角1加角2等于180度,角3等于角B。
试判断角AED和角ACB的大小关系,并说明理由。
8.已知AB平行于CD,分别探讨下列四个图形中角APC和角PAB、角PCD的关系。
从所得四个关系中任选一个并说明理由。
9.在图中,已知角1等于角2,角3等于角4,角5等于角6.证明AD平行于BC。
10.在图中,已知CD垂直于AB于点D,EF垂直于AB于点F,角DGC等于105度,角BCG等于75度。
求角1加角2的度数。
11.在图中,AD垂直于BC于点D,EF垂直于BC于点F,EF交AB于点G,交CA的延长线于点E,且角1等于角2.AD是否平分角BAC?说明理由。
12.在图中,如果AB平行于CD且角1等于角2,则角E等于角F。
为什么?13.在图中,DB平行于FG平行于EC,角ABD等于60度,角ACE等于36度,AP平分角BAC。
求角PAG的度数。
14.在图中,AB平行于CD,角1等于115度,角2等于140度。
求角3的度数。
15.已知:AC平行于DE,DC平行于EF,CD平分角BCD。
证明:EF平分角BED。
16.已知:AB平行于CD,角1等于角B,角2等于角D。
平行线及其判定与性质练习题
g r e平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为:______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________.(______,________)(3)如果∠2+∠1=180°,那么_____.(________,______)(4)如果∠5=∠3,那么_______.(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________.(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B =∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B +∠BCE =180°(已知),∴______∥______.(______,______)4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC ,且∠1=∠3.求证:AB ∥DC .证明∵∠ABC =∠ADC ,∴( ).2121ADC ABC ∠=∠又∵BF 、DE 分别平分∠ABC 与∠ADC ,∴( ).212,211ADC ABC ∠=∠∠=∠∵∠______=∠______.( )∵∠1=∠3,( )∴∠2=______.( )∴______∥______.( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:∴a∥______,(_________,_________)①∵∠3+∠4=180°∴c∥______,(_________,_________)②由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.t i m em11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___对平行线。
平行线的性质与判定典型例题
1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.2.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).3.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.4.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.5.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.6.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC.7.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).8.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.(1)①若∠DCB=45°,则∠ACB的度数为135°.②若∠ACB=140°,则∠DCE的度数为40°.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).解:(1)①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;(2)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;(3)30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.9.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,内错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).10.如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.11.已知:如图,EG∥FH,∠1=∠2.求证:∠BEF+∠DFE=180°.解:∵EG∥HF∴∠OEG=∠OFH,∵∠1=∠2∴∠AEF=∠DFE∴AB∥CD,∴∠BEF+∠DFE=180°.12.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)13.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.14.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)15.已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空(理由或数学式)解:∵BE∥GF(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠3(已知)∴∠1=(∠2)(等量代换)∴DE∥(BC)(内错角相等两直线平行)∴∠EDB+∠DBC=180°(两直线平行同旁内角互补)∴∠EDB=180°﹣∠DBC(等式性质)∵∠DBC=(70°)(已知)∴∠EDB=180°﹣70°=110°16.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,AB ∥CD,∠A=∠D,试说明:(1)AF∥ED;(2)∠BED=∠A;(3)∠1=∠2(1)证明:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D,∴AF∥ED;(2)证明:∵AF∥ED,∴∠BED=∠A;(3)证明:∵AF∥ED,∴∠1=∠CGD,又∵∠2=∠CGD,∴∠1=∠2.17.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等)18.如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.19.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,20.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.21.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?解:∠BAC=∠DCA,理由:∵∠CFE=∠2,∠2+∠1=180°,∴∠CFE+∠1=180°,∴DE∥BC,∴∠AED=∠B,∵∠B=∠3,∴∠3=∠AEF,∴AB∥CD,∴∠BAC=∠DCA.22.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.23.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C 重合的情况)?并说明理由.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.24.已知:如图,FE∥OC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:AB∥DC;(2)若∠B=30°,∠1=65°,求∠OFE的度数.(1)证明:∵FE∥OC,∴∠1=∠C,∵∠1=∠A,∴∠A=∠C,∴AB∥DC;(2)解:∵AB∥DC,∴∠D=∠B,∵∠B=30°∴∠D=30°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=65°,∴∠OFE=30°+65°=95°.25.(2018秋•牡丹区期末)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.26.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.平分.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠2=∠3,(两直线平行,内错角相等)∠E=∠1,(两直线平行,同位角相等)又∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).27.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系?并说明理由;(2)若∠CEF=70°,求∠ACB的度数.解:(1)CD和AB的关系为平行关系.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°﹣130°=50°,又∵∠CBF=20°,∴∠ABC=70°,∵∠DCB=70°,∴∠DCB=∠ABC,∴CD∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.28.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)。
平行线的判定与性质练习题
平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。
从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。
在几何学中,我们需要学会判定平行线,并掌握它们的性质。
下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。
练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。
A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。
A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。
A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。
2. 若两条平行线被一条横线所截,那么对应的外角相等。
3. 若两条直线分别与一条平行线相交,那么对应的内角相等。
4. 若两条直线分别与一条平行线相交,那么同旁内角互补。
练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。
2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。
3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。
4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。
通过以上练习题,我们可以加深对平行线的判定与性质的理解。
判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。
而平行线的性质则是通过观察线段之间的关系得出的。
掌握这些性质可以帮助我们解决更复杂的几何问题。
在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。
平行线的判定与性质专项训练(20题)(学生版)
平行线的判定与性质专项训练(20题)一、解答题1.已知:如图,∠1=∠C,∠2+∠3=180°.求证:AD∥EF.3.如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠24.已知AB∥DE,∠1=∠2,若∠C=54°,求∠AEC的度数.5.如图,C为∠AOB平分线上一点,CD//OB交OA于点D.求证:OD=CD.6.如图,在四边形ABCD中,AB=CD,AD=BC,点O为BD上任意一点,过点O的直线分别交AD,BC于M,N两点.求证:∠1=∠2.7.如图,AB∥CD,∠ABE=∠DCF.求证:∠E=∠F.8.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数.9.如图,BE平分∠ABC,EB∥CD,∠ABC=2∠1.判断直线AD与BC的位置关系,并说明理由.10.已知:∠DEC+∠C=180°,DE平分∠ADF,∠F=∠1.求证:∠B=∠C.11.如图,已知∠1=∠2,AB∥EF,∠3=130°,求∠4的度数.12.如图,AB//CD,点C为直线BC,CD的交点,∠B+∠CDE=180°.求证:BC//DE.13.如图,已知AD∥BE,∠1=∠C,请判断∠A与∠E是否相等?并说明理由.14.如图,已知∠ABC=∠1,∠P=∠Q.试说明∠2=∠3.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,求∠ABD,∠CED的度数.16.如图,A,C,F,D在同一直线上,AB∥DE,AB=DE,AF=DC,求证:BC∥EF.17.如图,∠1=60°,∠2=60°,∠3=100°。
要使AB∥EF,∠4应为多少度?说明理由。
18.如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.19.如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,∠AED=∠C,EF//AB.求证:∠B=∠DEF.20.如图,∠1+∠2=180°,∠C=∠D.求证:AD∥BC.。
平行线的判定与性质习题28道
1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.2.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?3.已知:如图,直线AB与CD被EF所截,∠1=∠2,求证:AB∥CD.4.已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.5.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.6.如图,∠B=40°,∠A+10°=∠1,∠ACD=65°.求证:AB∥CD.7.如图,已知点E在AB上,CE平分∠ACD,∠ACE=∠AEC.求证:AB∥CD.8.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.9.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠C=∠D.求证:AC∥DF.10.如图,已知∠ABC=∠E,∠E+∠AME=180°,BA、EF相交于点M,试判断BC与EF是否平行,并说明理由.11.如图,已知∠1=∠2,∠3=∠4,求证:BC∥EF.12.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.13.如图,已知AB∥CD,若∠ACD=66°,∠AFE=30°,求∠BEF的度数.14.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.15.如图,∠1=∠2,AD∥BE,求证:∠A=∠E.16.如图,AB∥CD,∠CDE=122°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.17.如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.18.如图,已知AB∥CD,若∠C=35°,AB是∠F AD的平分线.(1)求∠F AD的度数;(2)若∠ADB=110°,求∠BDE的度数.19.如图,已知∠1=∠2,AB∥EF.求证:∠A=∠E.20.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,求∠AFE的度数.21.如图,已知CD⊥AB,DE∥BC,∠1=∠2.求∠BGF的度数.22.如图,AB∥CD,点E是CD上一点,∠AEC=48°,EF平分∠AED交AB于点F,求∠AFE的度数.23.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是;(2)若∠BFE=65°,求∠EBF的度数.24.如图,点D在BC上,AC∥ED,AB∥FD,∠EDF=65°,求∠A的度数.25.已知:AB∥CD,∠1:∠2:∠3=1:2:3,求∠BDF的度数.26.如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠AED的度数.27.如图,AB∥CD,EG分别交AB、CD于点E、G,EF平分∠BEG,交CD于F.若∠EGF=40°,求∠GFE度数.28.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=130°,∠FEC=15°.求∠ACF 的度数.。
平行线的性质与判定综合训练(含答案)
平行线的性质与判定综合训练(含答案)1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。
(完整版)平行线的判定定理和性质定理练习题
(完整版)平行线的判定定理和性质定理练习题平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E,则 ∥ ;若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则a b .3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ .6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.ACB41 23 5图4ab c d 123 图3A B C ED 1 2 3 图1 图243 2 1 5ab1 2 3A F C DB E图8EBAF D C图9ADCBO图5图65 1 243 l 1 l 2图754 32 1 A DC B12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。
平行线及其判定与性质练习题
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.证明∵∠ABC=∠ADC,∴.2121ADCABC∠=∠( )又∵BF、DE分别平分∠ABC与∠ADC,∴.212,211ADCABC∠=∠∠=∠( )∵∠______=∠______.( )∵∠1=∠3,( )∴∠2=______.( )∴______∥______.( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______,(_________,_________)①∵∠3+∠4=180°∴c∥______,(_________,_________)②由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.图612、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___对平行线。
平行线判定与性质习题经典
∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行
平行线的判定和性质经典题
平行线的判定和性质经典题一.选择题(共18小题)1.如图所示,同位角共有()A. 6对B. 8对C.10对D.12对2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A. 平行 B. 垂直 C. 平行或垂直D. 无法确定3.下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A.1个 B. 2个C. 3个 D. 4个4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A. 平行B. 垂直C.平行或垂直D.无法确定5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()A.150°和110° B. 140°和100° C. 110°和70°D.70°和30°6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()A.40°B.50°C. 60°D.不能确定7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()A.10°B.15° C. 20° D. 30°8.下列所示的四个图形中,∠1和∠2是同位角的是( )A. ②③B.①②③C.①②④ D. ①④9.已知∠AOB=40°,∠CDE的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于() A.50°B. 130°C.50°或130°D.100°10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A. 5个 B. 4个C. 3个D.2个11.如图所示,BE∥DF,DE∥BC,图中相等的角共有()A.5对B.6对 C. 7对 D. 8对12.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=( )A. 50°B.130°C. 100° D. 50°或130°13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有()A.6对B.5对 C. 4对D.3对)14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有(15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A. 42°、138° B. 都是10°C. 42°、138°或42°、10°D.以上都不对16.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为()A.等于4cm B.小于4cm C.大于4cm D. 小于或等于4cm17.(2009•宁德)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A.B. C. D.18.(2004•烟台)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象)形文字是(二.填空题(共12小题)19.已知∠α和∠β的两边互相平行,且∠α=60°,则∠β= _________.20.(2004•西宁)如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有_________个;若∠1=50°,则∠AHG= _________ 度.21.(2009•永州)如图,直线a、b分别被直线c、b所截,如果∠1=∠2,那么∠3+∠4= _________ 度.直线a、b分别被直线c、b所截.22.(2010•抚顺)如图所示,已知a∥b,∠1=28°,∠2=25°,则∠3=_________度.23.如图,已知BO平分∠CBA,CO平分∠ACB,MN∥BC,且过点O,若AB=12,AC=14,则△AMN的周长是_________ .24.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为_________ cm;(2)如图2,若∠_________ =∠ _________ ,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=_________度;25.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为_________.26.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有_________ 个.27.如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有_________个.28.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为_________.29.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动_________格.30.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是_________cm2.ﻬ平行线的判定和性质经典题参考答案与试题解析一.选择题(共18小题)1.如图所示,同位角共有()A.6对B.8对 C. 10对D.12对考点: 同位角、内错角、同旁内角.分析:在基本图形“三线八角”中有四对同位角,再看增加射线GM、HN后,增加了多少对同位角,求总和.解答:解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,射线GM和直线CD被直线EF所截,形成2对同位角;射线GM和直线HN被直线EF所截,形成2对同位角;射线HN和直线AB被直线EF所截,形成2对同位角.则总共10对.故选C.点评:本题主要考查同位角的概念.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行 B. 垂直C.平行或垂直 D. 无法确定考点:平行线;垂线.分析:根据平行公理和垂直的定义解答.解答:解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选C.点评:本题利用平行公理和垂直定义求解,需要熟练掌握.3.下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A. 1个B.2个C.3个D.4个考点:平行线;垂线.分析:本题从平行线的定义及平行公理入手,对选项逐一分析即可.解答:解:①不相交的两条直线叫做平行线必须是在同一个平面内才能成立,故错误.②平面内,过一点有且只有一条直线与已知直线垂直是正确的.③平行于同一条直线的两条直线互相平行,故正确.④在同一平面内,两条直线不是平行就是相交是正确的.故答案为C.点评:本题考查平行线的定义及平行公理,需熟练掌握.4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A. 平行B. 垂直C. 平行或垂直 D. 无法确定考点: 平行线的判定.分析:如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.解答:解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A点评:灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()A. 150°和110°B. 140°和100°C. 110°和70°D.70°和30°考点: 平行线的性质.专题: 计算题.分析:若两个角的两边分别平行,可运用平行线的性质得出两角相等或互补,根据题意,两角不相等,只有互补,逐一排除.解答:解:根据两个角的两边分别平行,则两角相等或互补.又这两个角的差为40°,则只有互补的情况,则这两角的度数分别是110°和70度.故选C.点评:此题要特别注意两种情况的考虑,以及互补情况的排除.6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()A.40°B.50° C. 60° D. 不能确定考点: 平行线的性质;垂线.专题: 计算题.分析:先根据垂直得到DE与AC平行,然后可知其内错角∠EDC的度数,再利用CD与AB 垂直就可以求出.解答:解:∵AC⊥BC,DE⊥BC,∴DE∥AC,∴∠EDC=∠ACD=40°又CD⊥AB,∴∠BDE=90°﹣∠EDC=90°﹣40°=50°;故选B.点评:首先根据平面内垂直于同一条直线的两条直线平行得到两条平行线,再根据平行线的性质得到两个内错角相等,最后根据垂直的定义进行求解.7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()A. 10° B. 15°C.20°D.30°考点: 平行线的性质.专题:计算题.分析:过点P作一条直线平行于AB,根据两直线平行内错角相等得:∠APC=∠BAP+∠PC D,得到关于α的方程,解即可.解答:解:过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴45°+α=(60°﹣α)+(30°﹣α),解得α=15°.故选B.点评:注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.8.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③ B. ①②③ C. ①②④D. ①④考点: 同位角、内错角、同旁内角.分析:此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.解答:解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选C.点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.9.已知∠AOB=40°,∠CDE的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()A. 50° B. 130° C. 50°或130°D.100°考点:平行线的性质;垂线.专题:计算题;分类讨论.分析:作出草图,根据平行,先求出∠AED的度数,再利用垂直,即可得到∠CDE的度数.解答:解:如图,∵DE∥OB,∴∠AED=∠AOB=40°,∵CD⊥OA,∴∠1=50°,∴∠2=130°∵∠CDE可能是∠1也可能是∠2,∴∠CDE等于50°或130°.故选C.点评:正确根据题目的叙述作出满足条件的图形,是解决这类题的有效方法;会有些同学只求出一个解,而忽视了另一个的情况导致出错.10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A.5个B.4个C.3个D.2个考点: 平行线的性质.分析:由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.解答:解:∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.点评:本题考查了平行线的性质,找到相等关系的角是解题的关键.11.如图所示,BE∥DF,DE∥BC,图中相等的角共有( )A. 5对B.6对 C. 7对D.8对考点: 平行线的性质.分析:分别找出两组平行得到的内错角和同位角.解答:解:∵DE∥BC,∴∠EBC=∠DEB、∠AED=∠ACB、∠ADE=∠ABC;∵BE∥DF,∴∠DFE=∠BEC、∠FDE=∠DEB、∠ADF=∠ABE、∠AFD=∠AEB;∴∠FDE=∠EBC;共8对,故选D.点评:本题主要考查两直线平行时,内错角与同位角相等,另外本题对图象的识别要求较高,需要同学们仔细,做到不重不漏.12.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=()A.50° B. 130° C. 100°D.50°或130°考点:平行线的性质.专题:分类讨论.分析:根据平行线的性质,若两个角的两边互相平行,则这两个角相等或互补.解答:解:如图:∠B=50°或130°;故选D.点评:注意此题要分两种情况进行讨论,互补的情况学生可能考虑不到.13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有()A. 6对B.5对C.4对 D. 3对考点: 平行线的性质;同位角、内错角、同旁内角.分析:根据同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.解答:解:根据两直线平行,同位角相等,DE∥BC时有2对同位角:∠ADE与∠ABC,∠AED 与∠ACB;DC∥FG时有3对同位角:∠ADC与∠AFG,∠BFG与∠BDC,∠BGF与∠BCD;所以在图中共有5对同位角相等.故选B.点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据两直线平行,同位角相等,来判断相等同位角的个数.14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有( )A. 2个B. 3个C.4个 D. 5个考点:平行线的性质;对顶角、邻补角.分析:根据平行线的性质:两直线平行同位角相等,内错角相等,以及对顶角相等,得到与α相等的角有:∠FGC=∠FCA=∠BCA=∠DAC,共4个.解答:解:∵AD∥EF∥BC,∴∠α=∠BCA=∠DAC;∵AC平分∠BCD,∴∠BCA=∠DAC;∵∠α=∠FGC,∴图中和α相等的角有4个,分别是:∠FGC=∠FCA=∠BCA=∠DAC.故选C.点评:平行线有三个性质,其基本图形都是两条平行线被第三条直线所截.解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C. 42°、138°或42°、10° D. 以上都不对考点: 平行线的性质.分析:根据两边分别平行的两个角相等或互补列方程求解.解答:解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.点评:本题主要运用两边分别平行的两个角相等或互补,学生容易忽视互补的情况而导致出错.16.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为()A. 等于4cmB. 小于4cmC. 大于4cmD. 小于或等于4cm考点:平行线之间的距离.专题:分类讨论.分析:分两种情况:如图(1)、如果直线与水平方向垂直,则直线a与直线b之间的距离为4cm;如图(2)、如果直线a与水平方向不垂直时,直线a与直线b之间的距离小于4cm.解答:解:根据两平行线间的距离的定义,4cm可以是直线a与直线b距离,也可以不是;故选D.点评:本题考查了直线的平移与平行线的距离,注意要分类讨论.17.(2009•宁德)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是() A. B. C.D.考点: 生活中的平移现象.分析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.解答:解:观察图形可知图案D通过平移后可以得到.故选D.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、B、C.18.(2004•烟台)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()考点:生活中的平移现象.分析:由平移的性质,结合图形,采用排除法判断正确结果.解答:解:原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有B符合.故选B.点评:本题利用了平移的基本性质:平移不改变图形的形状、大小和方向,只改变图形的位置.二.填空题(共12小题)19.已知∠α和∠β的两边互相平行,且∠α=60°,则∠β=60°或120°.考点: 平行线的性质.专题:计算题;分类讨论.分析:根据两边互相平行的两个角相等或互补解答.解答:解:∵a∥b,∴∠1=∠α,∠2+∠α=180°,∵c∥d,∴∠1=∠3,∠2=∠4,∴∠3=∠α,∠4+∠α=180°,即若两角的两边互相平行,则这两个角相等或互补.∴∠β与∠α相等或互补,∵∠α=60°,∴∠β=60°或120°.故答案为:60°或120°.点评:本题从两直线平行,同位角和同旁内角两种情况考虑比较简单.20.(2004•西宁)如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有5个;若∠1=50°,则∠AHG= 130度.考点: 平行线的性质;对顶角、邻补角.专题: 计算题.分析:此题主要是能够结合平行线正确找到同位角、内错角以及同旁内角.解答:解:∵AD∥EG∥BC,AC∥EF,∴∠1=∠3,∠3=∠4,∠4=∠5,∠5=∠6,∠5=∠2.故∠1相等的角(不含∠1)有∠3,∠4,∠2,∠5,∠6共5个.∵∠1=50°,∴∠4=50°.则∠AHG=180°﹣50°=130°.点评:本题很简单,考查的是平行线的性质,即两直线平行内错角相等,同位角相等,及两角互补的性质.21.(2009•永州)如图,直线a、b分别被直线c、b所截,如果∠1=∠2,那么∠3+∠4=180 度.直线a、b分别被直线c、b所截.考点:平行线的性质.专题: 计算题.分析:先根据∠1=∠2,判断出a∥b,再根据平线的性质便可解答.解答:解:∵直线a、b分别被直线c、b所截,∠1=∠2,∴a∥b,∴∠3+∠4=180°.点评:本题考查的是平行线的性质及平行线的判定定理,比较简单.22.(2010•抚顺)如图所示,已知a∥b,∠1=28°,∠2=25°,则∠3= 53度.考点:平行线的性质.专题: 计算题.分析:过∠3作a的平行线,则∠1=∠4,∠2=∠5,所以∠3=∠4+∠5=53°.解答:解:过∠3的顶点作a的平行线,则也平行于b,则∠1=∠4,∠2=∠5(内错角相等),∵∠3=∠4+∠5,∴∠3=∠4+∠5=53°.所以答案是53°.点评:解答此类题,若平行线无截线,可适当构造截线转化角的关系.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.23.如图,已知BO平分∠CBA,CO平分∠ACB,MN∥BC,且过点O,若AB=12,AC=14,则△AMN的周长是26.考点:平行线的性质;角平分线的定义.专题:计算题.分析:利用角平分线的性质和平行线的性质求得MN的长就是BM+CN的长,所以三角形的周长就是AB+AC的长.解答:解:BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠CBO,∠OCB=∠OCN;∵MN∥BC,∴∠MOB=∠CBO,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO;∴OM=BM,CN=ON,∴△AMN的周长=12+14=26.点评:本题主要考查角平分线的性质和平行线的性质以及三角形的周长求法,合理利用图中线段的相等关系是关键.24.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为2cm;(2)如图2,若∠ 1 =∠ 2 ,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=25度;考点:平行线之间的距离;角平分线的定义;平行线的判定与性质.专题: 计算题.分析:(1)夹在两条平行线间的垂线段的长度即为两平行线的距离.(2)运用的是平行线判定定理.(3)运用的是角平分线的定义和平行线的性质.解答:解:(1)已知四边形ABCD为长方形,则AB∥CD,∠C=90°,∠B=90°.又BC=2cm,故AB与CD之间的距离为2cm.故填2.(2)要使AD∥BC,根据平行线的判定定理可得∠1=∠2.故填∠1;∠2.(3)已知DE∥BC,根据平行线判定定理可得∠EDC=∠DCB,又CD是∠ACB的平分线,∴∠ECD=∠DCB,∵∠ACB=50°,∴∠EDC=25°.故填25.点评:此类题考查的是平行线的性质以及平行线的判定定理,考生一定要熟记.25.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为2cm或8cm.考点: 平行线之间的距离;点到直线的距离.专题: 分类讨论.分析:点M的位置不确定,可分情况讨论.(1)点M在直线b的下方,直线a和直线b之间的距离为5cm﹣3cm=2cm(2)点M在直线a、b的之间,直线a和直线b之间的距离为5cm+3cm=8cm. 解答:解:当M在b下方时,距离为5﹣3=2cm;当M在a、b之间时,距离为5+3=8cm.点评:本题需注意点M的位置不确定,需分情况讨论.26.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有5 个.考点:平行线的性质;角平分线的定义;对顶角、邻补角.分析:由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GC F;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠C GF.所以图中与∠AGE相等的角有5个.解答:解:∵AB∥CD∥EF,∴∠AGE=∠GAB=∠DCA;∵BC∥AD,∴∠GAE=∠GCF;又∵AC平分∠BAD,∴∠GAB=∠GAE;∵∠AGE=∠CGF.∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.∴图中与∠AGE相等的角有5个.点评:此题考查了平行线的性质、角平分线的定义以及对顶角的性质.注意数形结合思想的应用.27.如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有 5 个.考点:平行线的性质.专题:计算题.分析:两直线平行,同位角、内错角相等,找到图中和∠1成这两种关系的角即可.解答:解:根据两直线平行,同位角、内错角相等可知∠1=∠ENB=∠FMC=∠AME=∠DAC=∠FEN.所以共有5个.点评:考查了平行线性质,找角时一定要找全,不重不漏.28.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为30.考点: 平移的性质.分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.解答:解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=30.点评:主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.29.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动9格.考点: 平移的性质.专题: 网格型.分析:要使平移的个数最少,可将它们朝同一方向共同移动,此时需要平移的格数最少.解答:解:如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,根据平移的基本性质知:左边的线段向右平移3格,中间的线段向下平移2格,最右边的线段先向左平移2格,再向上平移2格,此时平移的格数最少为:3+2+2+2=9,其它平移方法都超过9格,∴至少需要移动9格.点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.30.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC 长的两倍,则图中的四边形ACED的面积是36cm2.考点: 平移的性质.分析:根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.解答:解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.点评:本题的关键是得出四边形ACED的面积是三个△ABC的面积.然后根据已知条件计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为:______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________.(______,________)(3)如果∠2+∠1=180°,那么_____.(________,______)(4)如果∠5=∠3,那么_______.(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________.(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC ,且∠1=∠3.求证:AB ∥DC .证明∵∠ABC =∠ADC , ∴.2121ADC ABC ∠=∠( )又∵BF 、DE 分别平分∠ABC 与∠ADC , ∴.212,211ADC ABC ∠=∠∠=∠( )∵∠______=∠______.( )∵∠1=∠3,( )∴∠2=______.( )∴______∥______.( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______,(_________,_________)①∵∠3+∠4=180°∴c∥______,(_________,_________)②由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___对平行线。
13、下列说法正确的是 ()(A)有且只有一条直线与已知直线垂直(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c平行线的性质1.基础知识(1)平行线具有如下性质①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.②性质2:两条平行线______,______相等.这个性质可简述为____________,______.③性质3:____________,同旁内角______.这个性质可简述为____________,______.2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是________.(2)如果AB∥DC,那么∠3=___,理由是______________.(3)如果AF∥BE,那么∠1+∠2=____,理由是________.(4)如果AF∥BE,∠4=120°,那么∠5=____,理由是____.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(_______________)(2)∵DE∥AB,( )∴∠3=______.(________________)(3)∵DE∥AB( ),∴∠1+______=180°.(____________)4.已知:如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______//_____. 解:∵∠1=∠2,( )∴______//______.(______________)∴∠4=_____=_____°.(_____________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证____//____. 证明:∵∠1+∠2=180°,( )∴______//______.(___________)∴∠3=∠4.(_______,________)6.已知:如图,∠A=∠C,求证:∠B=∠D.证明思路分析:欲证∠B=∠D,只要证_____//_____. 证明:∵∠A=∠C,( )∴______//______.(______,______)∴∠B=∠D.(_______,______)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,( )∴∠2=______.(_________,_________)但∠1=∠B,( )∴______=______.(等量代换)即CD是____ ___.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=______°(_______,______)而∠1=75°,∴∠ACD=∠1+∠2=______。
∵CD∥AB,( )∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解:∵AB∥CD,∠B=50°,( )∴∠DCE=∠______=______°(_________,______)又∵AD∥BC,( )∴∠D=∠______=______°(_________,______)想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,( )∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,( )∴∠BAC+∠______=180°( )∵PM∥AB,∴∠1=∠______,( )且PM∥______。
(平行于同一直线的两直线也互相平行)∴∠3=∠______。
(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,( )错误!不能通过编辑域代码创建对象。
( )错误!不能通过编辑域代码创建对象。
( )∴∠APC=∠2+∠3=∠1+∠4=90°( )总结:两直线平行时,同旁内角的角平分线______。
11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.14.如下图,AB∥DE,那么∠BCD=( ).(A)∠2-∠1 (B)∠1+∠2(C)180°+∠1-∠2 (D)180°+∠2-2∠115.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.19.如图,AB∥CD,FG⊥CD于N,∠EMB= ,则∠EFG等于( ).(A)180°- (B)90°+(C)180°+ (D)270°-20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个 (B)5个(C)4个(D)3个23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C′EF=32°(2)∠AEC=148°(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.图1 图2(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论。