与三角形有关的角课件

合集下载

三角形三边关系ppt课件

三角形三边关系ppt课件
高层建筑 高层建筑的结构设计中,经常采用三角形支撑结 构,利用三角形三边关系来增强建筑的稳定性和 抗风能力。
建筑设计软件 现代建筑设计软件中集成了三角形三边关系的计 算功能,帮助建筑师快速准确地完成设计。
地理测量中距离计算
三角测量法
01
在地理测量中,利用三角形三边关系和已知的两个角度或两条
边长,可以计算出未知的距离或角度。
04
与三角形三边关系相关的数学定理
勾股定理及其逆定理
01
02
03
勾股定理
在直角三角形中,直角边 的平方和等于斜边的平方。
勾股定理的逆定理
如果三角形的三边满足勾 股定理,则这个三角形是 直角三角形。
应用举例
通过勾股定理可以判断一 个三角形是否为直角三角 形,以及求解直角三角形 的未知边长。
余弦定理及其推论
特殊情况下的三边关系
等边三角形
三边长度相等,任意两边之和等 于两倍的第三边,任意两边之差
等于0。
等腰三角形
有两边长度相等,这两边之和大于 第三边,同时这两边之差等于0。
直角三角形
满足勾股定理,即直角边的平方和 等于斜边的平方。同时也满足任意 两边之和大于第三边和任意两边之 差小于第三边的条件。
03
三角形三边关系应用举例
判断三条线段能否构成三角形
定理应用:任意两边之和大于第三边,任 意两边之差小于第三边。
实例分析:如线段a=3cm, b=4cm, c=5cm,因为a+b>c, a+c>b, b+c>a, 所以能构成三角形。
2. 验证是否满足定理条件。
判断步骤 1. 测量或计算三条线段的长度。
余弦定理
在任意三角形中,任意一 边的平方等于其他两边平 方和减去这两边与它们夹 角的余弦的积的两倍。

三角形内角和ppt课件完整版

三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免

三角形的内角和PPT课件

三角形的内角和PPT课件
三角形的内角和PPT课与性质 • 三角形内角和定理及其证明 • 三角形外角性质与计算 • 三角形角度计算技巧与方法 • 三角形内角和在生活中的应用 • 总结回顾与拓展延伸
01
CATALOGUE
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
04
CATALOGUE
三角形角度计算技巧与方法
利用平行线求角度
平行线性质
两直线平行,同位角相等;内错角相等;同旁内角互补。
示例
已知三角形ABC中,角A=60度,角B=45度,求角C的度数。可以过点C作AB的 平行线,将角C分为两个与角A、角B分别相等或互补的角,从而求得角C的度数 。
利用相似三角形求角度
三角形分类
按边可分为不等边三角形、等腰 三角形;按角可分为锐角三角形 、直角三角形、钝角三角形。
三角形边与角关系
三角形边的关系
任意两边之和大于第三边,任意两边 之差小于第三边。
三角形角的关系
三个内角之和等于180°,外角等于与 它不相邻的两个内角之和。
特殊三角形性质
01
02
03
等腰三角形性质
两腰相等,两底角相等; 三线合一(即顶角的平分 线、底边上的中线、底边 上的高重合)。
相似三角形性质
两个三角形如果三边对应成比例,则这两个三角形相似。相 似三角形的对应角相等。
示例
已知三角形ABC中,AB=AC,D为BC上一点,且BD=DC。 求角BAD的度数。可以通过构造与三角形ABD相似的三角形 ,利用相似三角形的性质求得角BAD的度数。
利用三角函数求角度
三角函数性质
正弦、余弦、正切等三角函数在特定角度下有确定的值。

认识三角形三角形PPT优秀课件

认识三角形三角形PPT优秀课件

三角形稳定性及应用
三角形稳定性
当三角形的三条边的长度确定后,这个三角形的形状和大小也就唯一确定了,这 种性质叫做三角形的稳定性。
应用
在建筑、桥梁、机械等领域中,常常利用三角形的稳定性来增强结构的稳固性。 例如,在建筑中,常常使用三角形框架来支撑建筑物,以增加其抗震能力。
02
特殊三角形类型及特点
等腰三角形性质与判定
四边形的分类
根据四边形的边长和角度特征,四边形可分为平行四边形 、矩形、菱形、正方形等。
多边形的定义和性质
多边形是由三条或三条以上的线段首尾顺次连接所组成的 封闭图形。多边形的内角和为(n-2)×180度,其中n为 多边形的边数。
多边形的对角线
多边形中任意两个不相邻的顶点之间的连线称为多边形的 对角线。n边形的对角线总数为n(n-3)/2条。
定义:两个三角形如果它们的三边及三 角分别相等,则称这两个三角形全等。
全等三角形的面积和周长都相等。 对应角相等。
性质 对应边相等。
相似和全等条件比较
相似之处
01
02
都涉及三角形的角和边的关系。
都有对应的判定定理。
03
04
不同之处
相似仅要求对应角相等,而全等要求对应 边和对应角都相等。
05
06
相似的条件较为宽松,全等的条件更为严 格。
直角三角形中的特殊性质
勾股定理及其逆定理的应用,以及直角三角形的射影定理等。
三角形中的最值问题
通过三角形的性质和判定条件,解决与三角形有关的最值问题,如 最短路径、最大面积等。
拓展延伸:四边形等多边形知识
四边形的定义和性质
四边形是由四条不在同一直线上的线段首尾顺次连接所组 成的封闭图形。四边形的内角和为360度,且任意三个角 之和大于第四个角。

三角形内角和说课ppt课件

三角形内角和说课ppt课件

感谢观看
THANKS
三角形内角和的基础知识
三角形的定义和分类
三角形是由不在同一直线上的三条线段首尾顺次 相接所组成的图形。根据边长特点,三角形可以 分为等边三角形、等腰三角形和普通三角形。
等腰三角形有两边长度相等,对应的两角也相等 ,另一个角为顶角。
等边三角形三边长度相等,三个内角相等,均为 60°。
普通三角形三边长度和三个内角均不相等。
电子工程
在电子工程中,三角形内角和定理可以用于计算电路中的 电阻、电容、电感等元件的参数,以及确定电路的性能和 稳定性。
05
三角形内角和定理的拓展和
深化理解
对称三角形内角和定理的拓展
总结词
揭示规律,拓展思维
详细描述
通过对称三角形的案例分析,揭示三角形内角和定理背后的规律,引导学生拓展 思维,探索不同证明方法的可能性。
三角形内角和说课 ppt课件
• 引言 • 三角形内角和的基础知识 • 三角形内角和的证明方法 • 三角形内角和的应用 • 三角形内角和定理的拓展和深化
理解 • 总结与回顾
目录
01
引言
主题和目的
主题
探究三角形的内角和
目的
通过多种方法证明三角形内角和为180度,并运用该结论解决实际问题
背景和重要性
03
这种证明方法较为抽象,但可以借助计算机软件进行计算 和验证。
04
三角形内角和的应用
在几何学中的应用
证明定理
三角形内角和定理是几何学中最 基本的定理之一,它可以应用于
证明其他定理和性质。
计算角度
通过三角形内角和定理,我们可以 快速计算出三角形的内角大小,以 及一个角度相对于其他角度的大小 。

《认识三角形》优秀课件pptx

《认识三角形》优秀课件pptx
应用:判断三条线段能否构成三角形、求三角形周长取值范围等
三角形内心、外心、重心概念
内心
三角形内切圆的圆心, 到三角形三边距离相等
外心
三角形外接圆的圆心, 到三角形三个顶点距离 相等
重心
三角形三条中线的交点 ,具有将三角形面积平 分等性质
塞瓦定理和梅内劳斯定理简介
塞瓦定理
在一个三角形中,如果有三条过顶点且与对边有交点的线, 那么这三个交点是共线的当且仅当三条线的交点与对应顶点 的连线满足一定的比例关系
适用范围
适用于所有已知三边长的三角形面 积计算。
三角形面积与边长关系
等底等高原则
若两个三角形底边相等且高相等 ,则它们的面积相等。
边长比例关系
对于相似三角形,其面积之比等 于对应边长之比的平方。
三角形不等式
任意两边之和大于第三边,任意 两边之差小于第三边,与面积大
小有一定关联。
实际应用问题举例
土地测量
《认识三角形》优秀 课件pptx
目录
• 三角形基本概念与性质 • 三角形边角关系探究 • 三角形面积计算方法 • 三角形在生活中的应用 • 三角形相关数学问题解析 • 创新思维与拓展训练
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次相接所组成的图形。
三角形分类
01
在三角形中,当角度发生变化时,与之对应的边长也会发生变
化。
边长变化对角度的影响
02
在三角形中,当边长发生变化时,与之对应的角度也会发生变
化。
角度与边长的相互制约关系
03
在三角形中,角度与边长之间存在着相互制约的关系,即当一
个量发生变化时,另一个量也会随之变化。

11《三角形的内角》PPT课件人教版数学八年级上册

11《三角形的内角》PPT课件人教版数学八年级上册

A
证明:∵AD是BC边上的高,
∴∠DMC+∠DCM=90°.
∵∠DMC=∠AME,∠DCM=∠MAE,
E ∴∠AME+∠MAE=90°. ∴∠AEC =90°.
∴△ACE是直角三角形.
B
M ┌ DC
2.如图,在△ABC中,AD⊥BC,∠1=∠B. 求证:
△ABC是直角三角形.
A
证明:∵AD⊥BC,
1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点
D作DE//BC交AC于点E,若∠A=54°,∠B=48°,则
∠CDE的大小是( C )
A.44°
B.40°
C.39°
D.38° A
解析:∵∠A=54°,∠B=48°, ∴∠ACB=180°-54°-48°=78°.
∵CD平分∠ACB,
D
E
∴∠DCB=39°.
答:从B岛看A,C两岛的视角 ∠ABC是60度,从C岛看A,B 两岛的视角∠ACB是90度.


D
CE
B A
例3 如图,从A处观测C处的仰角∠CAD=30°,从B处 观测C处的仰角∠CBD=45°,从C处观测A,B两处的视 角∠ACB是多少度?
解:∵∠CAD=30°,∠ADC=90°,
C
∴∠ACD=60°.
直∴∠角AC三B角=∠形AC的D-性∠B质C与D=判15定°. 求则证∠B:AC△+A∠BBC+是∠直C=角18三0°.角形.
与△ABC的边BC有什么关系?由这个图, 两解岛:的 ∠A视CD角与∠∠ABC大B是小9相0度等..
∴∠C∠=C9D0B°=,90即°,△A∠BBC+是∠直BC角D=三90角°. 形.

解直角三角形(共30张)PPT课件

解直角三角形(共30张)PPT课件

比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。

与三角形有关的角

与三角形有关的角

第2讲与三角形有关的角一、知识重点1.三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:(3)理解与延伸:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等.(4)作用:已知两角求第三角或已知三角关系求角的度数.谈重点三角形内角和定理的理解三角形内角和定理是最重要的定理之一,是求角的度数问题中最基础的定理,应用非常广泛.【例1】填空:(1)在△AB C中,若∠A=80°,∠C=20°,则∠B=__________°;(2)若∠A=80°,∠B=∠C,则∠C=__________°;(3)已知△ABC的三个内角的度数之比∠A∶∠B∶∠C=2∶3∶5,则∠B=__________°,∠C=__________°.2.直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt△ABC中,如果∠C=90°,那么∠A+∠B=90°。

【例2-1】将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是().A.43°B.47°C.30°D.60°。

答案:B(2)直角三角形的判定:有两个角互余的三角形是直角三角形.如图所示,在△ABC中,如果∠A+∠B=90°,那么∠C=90°,即△ABC是直角三角形.【例2-2】如图所示,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,求证:△EPF是直角三角形..3.三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图,∠ACD 就是△ABC其中的一个外角.(2)特点:①三角形的一个外角和与它同顶点的内角互为邻补角,这是内、外角联系的纽带.②一个三角形有6个外角,其中两两互为对顶角,如图所示.破疑点三角形外角的理解外角是相对于内角而言的,也是三角形中重要的角,一个角对一个三角形来说是外角,而对于另一个三角形来说可能是内角;三角形的角是指的三角形的内角,这点要注意.【例3】在△ABC中,∠A等于和它相邻的外角的四分之一,这个外角等于∠B的两倍,那么∠A=__________,∠B=__________,∠C=__________.4。

人教版八年级数学上册《三角形的内角》三角形PPT精品课件

人教版八年级数学上册《三角形的内角》三角形PPT精品课件


在Rt△ABC中, “ 直 角 三 角 形 的 两 个 锐 角 互 余 ” 其 几 何 语 言 可 表 示 为∵:∠ A = 9 0 °
∴∠B+∠C=90°
若在三角形中,有两个锐角互余,则该三角形是否就是直角三角形呢?
新知讲解
已知:在△ABC中,∠A与∠B互余。 求证:该三角形为直角三角形
证明:∵∠A与∠B互余 ∴∠A+∠B=90° 由三角形内角和定理,可得 ∠A+∠B+∠C=180° ∴90°+∠C=180° ∴∠C=90° ∴△ABC为直角三角形
1、(2022·河南周口·八年级期末)若一个三角形的三个内角度数之比1:3:4,则这个三角
形是( B ) A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
【解析】∵三角形三个内角度数的比为1:3:4, ∴三个内角分别是 ∴该三角形是直角三角形 故选答案选B
课堂练习
2、(2022·湖南邵阳·八年级期中)在Rt△ABC中,∠C=90°,∠A=42°,则∠B=( A )
∠B=∠2(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°(等量代换)
∴∠A+∠B+∠ACB=180°(等量代换)
∴∠A+∠B+∠C=180°(等量代换)
新知讲解
方法三、证明:过点D作DE∥AC,DF∥AB
A E
F
B
D
C
∴∠C=∠EDB,∠B=∠FDC(两直线平行,同位角相等)
∴∠A+∠AED=180°,∠AED+∠EDF=180°(两直线平行,同旁内角互补) ∴∠A=∠EDF ∴∠EDB+∠EDF+∠FDC=180° ∴∠A+∠B+∠C=180°

与三角形有关的角

与三角形有关的角

与三角形有关的角一、三角形的内角和定理三角形的内角和等于180°.证明三角形内角和定理的几种辅助线的作法: (1)如图①,过点A 作DE ∥BC ;(2)如图②,过BC 上任意一点,作DE ∥AC ,DF ∥AB ; (3)如图③,过点C 作射线CD ∥AB .ABC ABC ABCDED EFD①②③二、三角形的外角及其性质三角形的一边与另一边的延长线组成的角,叫做三角形的外角. 性质1:三角形的一个外角等于与它不相邻的两个内角的和. 性质2:三角形的一个外角大于与它不相邻的任何一个内角.ABCD知识点一:三角形的内角和定理例1. 已知一个三角形三个内角的度数比是1∶5∶6,则其最大内角的度数为( ) A. 60° B. 75° C. 90° D. 120°例2. 如图所示,D 是△ABC 的BC 边上一点,∠B =∠BAD ,∠ADC =80°,∠BAC =70°,求:(1)∠B 的度数; (2)∠C 的度数.ABCD例3. 如图所示,在△ABC 中,∠B =60°,∠C =40°,AD 是BC 边上的高,AE 平分∠BAC ,求∠DAE 的度数.ABCD E例4. 如图所示,已知在△ABC 中,∠A =60°,∠B 与∠C 的角平分线相交于点D .求∠BDC 的度数.ABC D知识点二:三角形的外角例5. 如图所示,△ABC 中,∠A =90°,∠D 是∠B 、∠C 的外角平分线的夹角,求∠D 的度数.AB CDEF1234例6. 如图所示,∠C =48°,∠E =25°,∠BDF =140°,求∠A 与∠EFD 的度数.ABCDEF例7. 如图所示,已知CE 是△ABC 外角∠ACD 的平分线,CE 交BA 延长线于点E .求证:∠BAC >∠B .ABC DE12例8. (1)如图①所示,CD 是直角三角形斜边AB 上的高,图中有与∠A 相等的角吗?为什么?(2)如图②所示,把图①中的CD 平移得到ED ,图中还有与∠A 相等的角吗?为什么? (3)如图③所示,把图①中的CD 平移得到ED ,交BC 的延长线于E .图中还有与∠A 相等的角吗?为什么?AB CAB CABCD EE①②③和三角形有关的角的度数问题一般有两类:一类是求角的度数,解答这类问题时,通常要综合运用三角形的内角和定理、三角形外角的性质等.另一类是求证角之间的不等关系,解答这类问题时,应该依据“三角形的一个外角大于与它不相邻的任何一个内角”这一性质求解.分析解答这两类问题的共同之处是要分清已知角或所求角是哪一个三角形的内角,或是哪一个三角形的外角.(答题时间:60分钟)一、选择题.1. 在△ABC 中,∠A =2∠B =80°,则∠C 的度数为( ) A. 30° B. 40° C. 50° D. 60°2. 一个三角形的三个内角中至多有( ) A. 一个锐角 B. 两个锐角C. 一个钝角D. 两个直角3. 如图所示,∠A +∠B +∠C +∠D +∠E +∠F 等于( ) A. 480°B. 360°C. 240°D. 180° ABCD E FABC D EF第3题图 第5题图4. 三角形的一个外角小于与它相邻的内角,这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不确定5. 如图所示,已知直线AB ∥CD ,∠C =115°,∠A =25°,则∠E =( )A. 70°B. 80°C. 90°D. 100°6. 如图所示,已知D 是△ABC 中BC 边上的一点,连接AD ,E 是AD 上的任意一点,连接CE ,则∠ADB 和∠DCE 的大小关系是( )A. ∠ADB =∠DCEB. ∠ADB >∠DCEC. ∠ADB <∠DCED. 大小关系不确定A BCDEABC DABD C6x第6题图 第7题图 第8题图*7. 如图所示,∠C =∠ABC =2∠A ,BD 是AC 边上的高,则∠DBC 等于( ) A. 36° B. 18° C. 72° D. 28° **8. 如图所示,在直角△ADB 中,∠D =90°,C 为AD 上一点,则x 可能是( )A. 10°B. 20°C. 30°D. 40°二、填空题.9. 如图所示,l 1∥l 2,∠α=__________度.l 1l 2α25°120°AB C1240°1234第9题图 第10题图 第12题图10. 如图所示,用大于号“>”表示∠A 、∠1、∠2三者的关系是__________. 11. 在△ABC 中,∠A ∶∠B =2∶1,∠C =60°,那么∠A =__________. 12. 如图所示,∠1+∠2+∠3+∠4=__________度. **13. 三角形中至少有一个角不小于__________度.**14. 在△ABC 中,若∠A -∠B =50°,最小角为30°,则最大角为__________.三、解答题.15. 在△ABC 中,∠A +∠B =100°,∠C =2∠B .求∠A 、∠B 、∠C 的度数.16. 如图所示,∠BAF 、∠CBD 、∠ACE 是△ABC 的三个外角,试求∠BAF +∠CBD +∠ACE 的度数.123A B CEFD*17. 如图所示,P 是△ABC 中∠B 的角平分线与△ABC 的外角∠ACE 平分线的交点,则∠A =2∠P ,试说明理由.ABCEP18. 已知:如图所示,∠1是△ABC 的一个外角,E 为边AC 上一点,延长BC 到D ,连接DE .试说明∠1>∠2的理由.ABCD E F12345四、拓广探索.19. (1)如图甲所示,在五角星中,求∠A+∠B+∠C+∠D+∠E的度数.(2)把图乙、丙、丁叫做蜕化的五角星形,问它们的五角之和与五角星形的五角之和仍相等吗?ABC DE甲ABC DE乙ABC DE丙ABC DE丁一、选择题:1. D2. C3. B4. C5. C6. B7. B8. B二、填空题:9. 3510. ∠1>∠2>∠A11. 80°解析:设∠B=x,则∠A=2x,则x+2x+60°=180°,解得x=40°,则∠A =2x=80°.12. 280 解析:因为∠1+∠2+40°=180°,∠3+∠4+40°=180°,所以∠1+∠2=140°,∠3+∠4=140°,所以∠1+∠2+∠3+∠4=280°.13. 60 解析:因为三角形的三个内角之和等于180°,如果三角形的每个内角都小于60°,则三角形的三个内角之和一定小于180°,这就与定理矛盾了,所以三角形中至少有一个角不小于60°.14. 80°或100°解析:因为∠A-∠B=50°,所以最小角有可能是∠B或是∠C.(1)若∠B是最小角,则∠A-30°=50°,得∠A=80°,则∠C=180°-80°-30°=70°,这个三角形的三个内角分别是80°、30°、70°,则最大角是80°.(2)若∠C是最小角,则∠A+∠B=180°-30°=150°,又因为∠A-∠B=50°,所以∠A=50°+∠B,即50°+∠B+∠B=150°,解得∠B=50°,所以∠A=100°,这个三角形的三个内角分别是100°、50°、30°,则最大角是100°.综上所述,最大角为80°或100°.三、解答题:15. 解:因为∠A+∠B+∠C=180°,∠A+∠B=100°,所以∠C=180°-100°=80°,所以2∠B=80°,所以∠B=40°,所以∠A=180°-40°-80°=60°.16. 解:由三角形的外角的性质可知∠BAF=∠2+∠3,∠CBD=∠1+∠3,∠ACE=∠1+∠2.由此可将求三角形的三个外角和的问题转化为求三角形的内角和.解题过程如下:因为∠BAF、∠CBD、∠ACE是△ABC的三个外角,所以∠BAF=∠2+∠3,∠CBD=∠1+∠3,∠ACE=∠1+∠2,所以∠BAF+∠CBD+∠ACE=2(∠1+∠2+∠3).又因为∠1+∠2+∠3=180°,所以∠BAF+∠CBD+∠ACE=360°.17. 解:因为BP、CP分别是∠ABC、∠ACE的平分线,所以∠ABC=2∠PBC,∠ACE =2∠PCE.又因为∠A=∠ACE-∠ABC,所以∠A=2(∠PCE-∠PBC).又因为∠P=∠PCE-∠PBC,所以∠A=2∠P.18. 解:因为∠1是△ABC的一个外角,所以∠1>∠3.因为∠3是△DCE的一个外角,所以∠3>∠2,所以∠1>∠2.四、拓广探索:19. 解:(1)如图所示,标注两个字母.因为∠CGD是△ACG的一个外角,所以∠CGD=∠A+∠C,因为∠EFD是△EFB的一个外角,所以∠EFD=∠B+∠E.所以∠CGD+∠EFD=∠A+∠B+∠C+∠E.又因为∠CGD+∠EFD+∠D=180°,所以∠A+∠B+∠C+∠D+∠E=180°(2)仍然相等,用类似于(1)中的方法可以证明.。

与三角形有关的角

与三角形有关的角

又∵ ∠DCA+∠BCA=180°(平角意义).
∴ ∠ACB=80°(等式的性质).
随堂练习

你认识 外角吗?
已知:国旗上的正五角星形如图所示.
A
分求析:∠:设A法+∠利B用+∠外C角+把∠这D+五∠个E角的“度凑数”. 到一个三角形中,运用三角形内角和性B
这三个内角的度数为
4、如图:∠α=
。400,600,800
280
α

480
320
440
一 、选择题
(1) 在△ABC中,∠A:∠B:∠C =1:2:3,则∠B =( B )
A. 300 B. 600 C. 900 D. 1200
(2) 在△ABC中,∠A =500, ∠B =800,则∠C =( B )
了证实.
∴ AD∥BC (同位角相等,两直线平行).
想一想
一题多解思维灵活
例1 已知:如图6-13,在△ABC中,AD平分外角 ∠EAC,∠B= ∠C. 则AD∥BC.请说明理由.
AE· D
解:由解法1可得: ∠DAC=∠C (已证),
B ·C
∵ ∠BAC+∠B+∠C =1800 (三角形内角和定理).
A E
证明:延长B C至点D , 过点C作C E∥BA.
B
C
D
则∠ A =∠A C E ﹙两直线平行,内错角相等﹚
∠ B =∠E C D ﹙两直线平行,同位角相等﹚
∵ ∠ B C A +∠A C E +∠E C D =180° ﹙平角定义﹚
∴ ∠B C A +∠A +∠B = 180° ﹙ 等量代换﹚

四年级数学《认识三角形》PPT课件

四年级数学《认识三角形》PPT课件

相似三角形面积比关系
相似三角形面积比关系介绍
01
相似三角形的面积比等于其对应边长的平方比。
相似三角形面积比关系表达式
02
若两个三角形相似,且对应边长比为k,则它们的面积比为k^2

相似三角形面积比关系应用
03
利用相似三角形的性质,可以通过已知三角形的面积和边长比
,求出另一个相似三角形的面积。
实际问题中面积计算应用
选项A:80度 选项B:100度
选项C:140度
计算题:计算给定条件下三角形面积或边长
题目1
已知一个三角形的底边长为6cm ,高为4cm,求这个三角形的面
积。
题目2
已知一个等边三角形的周长为 18cm,求这个三角形的边长。
题目3
已知一个直角三角形的两条直角边 分别为3cm和4cm,求这个三角形 的面积和斜边长。
选项C
有一个角为90度的 图形
选择题:选择正确描述三角形性质的选项
题目1
下列关于三角形的描述中,正确的是?
选项A
任意两边之和大于第三边
选项B
任意两边之差小于第三边
选择题:选择正确描述三角形性质的选项
选项C
三角形的内角和等于180度
题目2
一个等腰三角形的一个底角是40度,那么它的顶角是多少度?
选择题:选择正确描述三角形性质的选项
三角形结构稳定性
实例展示
在建筑中,三角形结构被广泛用于提 高稳定性,如屋顶、桥梁和塔楼等结 构。
展示一些著名建筑如埃菲尔铁塔、金 字塔等,突出其三角形结构的设计。
原理解释
三角形具有稳定性是因为其三个内角 之和恒等于180度,这种特性使得三 角形在受到外力作用时不易变形。

全等三角形的判定角边角课件

全等三角形的判定角边角课件

培养逻辑思维
掌握全等三角形判定定理 对于培养学生的逻辑思维 和推理能力具有重要意义。
角边角判定定理在几何证明中的应用
解决实际问题
角边角判定定理在解决实际问题中发 挥着重要作用,如测量、计算等领域。
提高解题效率
掌握角边角判定定理有助于提高解题 效率,帮助学生更快地解决几何问题。
简化证明过程
使用角边角判定定理可以简化几何证 明的步骤,使证明过程更加简洁明了。
总结词
直角三角形全等判定定理的应用
详细描述
在直角三角形中,如果两个直角边和夹角相等,则两个三角形全等。 这个判定定理可以用于证明两个直角三角形是否全等。
实例分析
假设我们有两个直角三角形ABC和DEF,其中∠C=∠F=90°,AC=DF, AB=DE,并且∠A=∠D。根据角边角判定定理,我们可以得出 △ABC≌△DEF 。
在复杂的几何图形中,识别并证明满足角边 角定理的全等三角形。
练习3
解决涉及角边角定理的实际问题,如测量、 构造等。
05
总结与回顾
全等三角形判定定理的重要性
01
02
03
几何证明的基础
全等三角形判定定理是几 何证明中的基础工具,是 解决各种几何问题的关键。
实际应用
在实际生活中,全等三角 形判定定理的应用也非常 广泛,如建筑设计、机械 制造等领域。
04
角边角判定定理的练习题
基础练习题
01
02
03
04
总结词
理解角边角判定定理的基本应 用
练习1
给出两个三角形,其中一个角 和两条边相等,判断这两个三
角形是否全等。
练习2
根据给定的条件,构造一个全 等三角形。

人教版八年级数学上册 第11章 第2节 与三角形有关的角 课件(共50张PPT)

人教版八年级数学上册 第11章 第2节 与三角形有关的角 课件(共50张PPT)
三角形的外角和是360°
理论研讨 ∠1+∠2 +∠3 = ?
从哪些途径探究这个结果
A 1
3 B
C 2
三角形的外角和360° 方法1 方法2
A 1
B 2
解: ∠1+ ∠BAC=180°
∠2+ ∠ABC=180°
3 ∠3+ ∠ACB=180°
C
三个式子相加得到
∠1+ ∠2+ ∠3+ ∠BAC+ ∠ABC+∠ACB=540°
证法一 三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边,
CE为另一边作∠1=∠A,
于是CE∥BA (内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等). A
∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
B
E
12
CD
证法二 三角形的内角和等于1800.
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A ,
A
BD是AC边上的高,求∠DBC的度数。
解:设∠A=x0,则∠ABC=∠C=2x0
∴x+2x+2x=180(三角形内角和定理)
解得x=36 ∴∠C=2×360=720
D 在△BDC中,∵∠BDC=900
?
(三角形高的定义)
B
C
∴∠DBC=1800-900-720(三角形内角和定理)
A B
E
解:过C作CE平行于AB
2
1 ∴ ∠1= ∠B
C D (两直线平行,同位角相等)
∠2= ∠A
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B

《三角形的内角和与外角和》课件

《三角形的内角和与外角和》课件

06
练习题及拓展思考题
基础知识巩固练习题
已知三角形的两个内角分别为30°和60° ,求第三个内角的大小。
已知等腰三角形的一个底角为40°,求其 顶角的大小。
一个三角形的内角和是多少度?请说明 理由。
在直角三角形中,已知一个锐角为35°, 求另一个锐角的大小。
提高能力拓展思考题
请用多种方法证明三角形的 内角和为180°。
外角和为360度。
实际应用举例
例子一
在几何图形中,利用三角形外角和定理求解角度问题。例如 ,在一个五角星中,可以通过三角形外角和定理计算出五角 星的内角和。
例子二
在实际生活中,利用三角形外角和定理解决一些与角度有关 的问题。例如,在建筑设计中,可以利用三角形外角和定理 来计算出建筑物的某些角度,以确保建筑物的稳定性和美观 性。
连接三角形的一个 顶点和它所对边的 中点的线段。
三角形性质总结
三角形的两边之和大于第 三边,两边之差小于第三 边。
三角形的三个内角之和等 于180度。
等腰三角形的两腰相等, 两底角相等。
等边三角形的三边相等, 三个内角都相等且每个角 都是60度。
直角三角形的两个锐角互 余,且斜边的平方等于两 直角边的平方和(勾股定 理)。
已知四边形ABCD中, ∠A=∠C,∠B=∠D,求证: 四边形ABCD是平行四边形

在一个五边形中,已知四个 内角的大小,求第五个内角
的大小。
已知一个多边形的边数增加 1,其内角和增加多少度?
请说明理由。
01
02
03
04
05
答案解析与讨论
01
基础知识巩固练习题答案解析
通过三角形内角和定理及等腰三角形、直角三角形的性质求解各题,强

(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2三角形的内角教学课件

(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2三角形的内角教学课件
解:∠C=180°×2–(40°+40°+150°)
=130°.
巩固练习
11.2 与三角形有关的角/
3.如图,在△ABC中,∠B=46°,∠C=54°,AD平分
∠BAC,交BC于点D,DE∥AB,交AC于点E,则
∠ADE的大小是( C )
A.45°
B.54°
C.40°
D.50°
探究新知
11.2 与三角形有关的角/
1
∴∠ACE= 2 ×90°=45°,
∴∠DCE=∠ACD–∠ACE=60°–45°=15°.
巩固练习
11.2 与三角形有关的角/
5.完成下列各题.
①在△ABC中,∠A=35°,∠ B=43 °,则∠ C= 102°
.
②在△ABC中,∠A :∠B:∠C=1:2:3,则△ABC是
_________三角形
探究新知
11.2 与三角形有关的角/
变 式 题 如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,
∠B=70°,求∠EDC,∠BDC的度数.
解:∵∠A=50°,∠B=70°,
∴∠ACB=180°–∠A–∠B=60°.
∵CD是∠ACB的平分线,
1
2
∴∠BCD= ∠ACB=30°.
∵DE∥BC,
∴∠ACB=180°–54°–48°=78°,
∵CD平分∠ACB交AB于点D,

∴∠DCB= × 78°=39°,

∵DE∥BC,
∴∠CDE=∠DCB=39°.
课堂检测
11.2 与三角形有关的角/
基 础 巩 固 题
1.求出下列各图中的x值.
70

40
x

x=70

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件

03
在解决三角形相关问题时,可以运用该定理进行计算、证明等

回顾三角形内角和定理推导过程及应用方法
推导过程ห้องสมุดไป่ตู้
在三角形中作一条平行于底边的线段,将三角形分成两个直 角三角形,再运用平行线的性质和平角的定义推导出三角形 内角和定理。
应用方法
在解决与三角形相关的问题时,可以灵活运用三角形内角和 定理。例如,已知三角形两个内角的度数,可以求出第三个 内角的度数;已知三角形的一个内角及其相邻的两边,可以 求出该三角形的其他元素等。
促进彼此之间的交流和学习。
课堂小测验,检验学生对知识点的掌握情况
闭卷测试
成绩反馈
通过简短的闭卷测试,检验学生对三 角形内角和定理的掌握情况,包括定 理的表述、证明方法以及在实际问题 中的应用等。
及时公布测试结果,并对学生进行个 性化的成绩反馈,指出学生在哪些方 面已经掌握,哪些方面还需要进一步 学习和提高。
开卷测试
允许学生使用教材和笔记等资料,完 成一份稍复杂的测试卷,以检验学生 对三角形内角和定理的深入理解和应 用能力。
06
课程总结与回顾
总结本节课重点内容
三角形内角和定理
01
三角形的三个内角之和等于180度。
三角形内角和定理的推导过程
02
通过平行线的性质、平角的定义等几何知识推导得出。
三角形内角和定理的应用方法
解决实际问题中涉及三角形内角和问题
测量问题
在实际问题中,有时需要测量某个角度或距离。通过构造三角形并应用三角形内角和定理,可以间接 地求出所需的角度或距离。
工程问题
在建筑设计、机械制造等领域中,经常需要处理与三角形相关的问题。例如,在桥梁设计中需要计算 桥墩之间的角度以确保桥梁的稳定性;在机械制造中需要计算零件之间的角度以确保装配的准确性。 通过应用三角形内角和定理以及相关的数学知识,可以有效地解决这些问题。

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想
三角形的三个内角和是多少? 有什么办法可以验证呢 ?
三角形的三个内角和等于180°
结论对任意三角形都成立吗?
E
A
2 1 3
F
B
C
三角形的内角和等于1800. 证法1:过A作EF∥BA,
∵ EF∥BA ∴∠B=∠2(两直线平行,内错角相等 ) ∠C=∠1(两直线平行,内错角相等
) 又 ∵∠2+∠1+∠BAC=180° ∴∠B+∠C+∠BAC=180°
1 个直角?为什么?
1 个钝角?为什么?
(3)一个三角形中至少有
2 个锐角?为什么?
(4)任意 一个三角形中,最大的一个角的度数至少 为 60° .
例题 如图,C岛在A岛的北偏东50°方向,B岛
在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向。从C岛看A、B两岛的视角∠ACB是多少 度? 解: ∠CAB=∠BAD-∠CAD=800-500=300
解:在△ACD中
C
B
D
∠CAD =30 ° ∠D =90 °
∴ ∠ACD =180 ° -30 ° -90 °=6 0 °
在△BCD中 ∠CBD = 45 ° ∠D =90 °
∴ ∠BCD = 180 °-90°-45 °=45 °
∴ ∠ACB = ∠ACD -∠BCD = 6 0 °-45 °
=15°
2. 如图,一种滑翔伞是左 右对称的四边形ABCD,其 B 中∠A=150°,∠B=∠D =40°。求∠C的度数。
40 ° 150° 1 2 40 °
A
D
解:在△ABC中 ∠B+∠1+∠BAC=180° 在△ACD中 ∠D+∠2+∠DAC=180° ∴∠B+∠D+∠1+∠2+∠BAC+∠CAD=360 ° 即 ∠B+∠D+ ∠BCD +∠BAD= 360 ° 40 °+40 °+ ∠BCD +150 ° = 360 ° ∴ ∠BCD = 360 °-40 °-40 °- 150 ° =130 °
C
1、如图,某同学把一块三角形的玻 璃打碎成三片,现在他要到玻璃店去 配一块形状完全一样的玻璃,那么最 省事的办法是 ( C )



(A)带①去 (C)带③去
(B)带②去 (D)带①和②去
例题讲解:如图,∠C =∠D= 900 AD,BC相交于点E,∠CAE与 ∠DBE有什么关系?为什么? C D
A
解:在Rt△ACE中, ∠CAE=90°-∠AEC 在Rt△BDE中,
∠DBE=90°-∠BED 因为∠AEC=∠BED, 所以∠CAE =∠DBE.
B
例2 已知:在△ABC中,∠C=∠ABC=2∠A, BD是AC边上的高, 求∠DBC的度数.
分析:∠DBC在△BDC中,∠BDC=900,为求∠DBC的 度数,只要求出∠C的度数即可.
一 、选择题 (1) 在△ABC中,∠A:∠B:∠C =1:2:3,则∠B =( B ) A. 300 B. 600 C. 900 D. 1200
(2) 在△ABC中,∠A =500, ∠B =800,则∠C =( B )
A. 400
B. 500
C. 100
D. 1100
(3)在△ABC中,∠A =800, ∠B =∠C,则∠B =( A ) A. 500 二、填空 (1)∠A:∠B:∠C=3:4:5,则∠B = 600 600 750 B. 400 C. 100 D. 450

.
.
北 D
பைடு நூலகம்50°
C
1
E
2 40°
你能想出一个更 简捷的方法来求 ∠C的度数吗?
B F
A
解: 过点C画CF∥AD
∵ CF∥AD, 又AD ∥BE ∴ CF∥ BE
∴ ∠1=∠DAC=50 °,
∴∠2=∠CBE =40 ° ∴ ∠ACB=∠1﹢∠2 =50 °﹢ 40 ° =90 °
1. 如图,从A处观测C处时仰角 ∠CAD=30°,从B处观测C 处时仰角∠CBD=45°。 从C处观测A、B两处时视角 A ∠ACB是多少?

还有其 它方法 吗?
D
A
.
由AD∥BE,可得 E ∠BAD+∠ABE=1800 0-∠BAD 所以∠ ABE=180 C =1800-800=1000 ∠ABC=∠ABE-∠EBC =1000-400=600 B 在ΔABC中, 东∠ACB=1800-∠ABC-∠CAB =1800-600-300=900 答:从C岛看A、B两岛的视角∠ACB是900 。
(2)∠C =900,∠A =300,则∠B =
(3)∠B =800,∠A =3∠C,则∠A =
3. 在△ABC中,已知∠A-∠C=250,∠B∠A=100,求∠B的度数.
分析:根据三角形内角和定理可知: ∠A+∠B+∠C=1800,然后结合已知条件便可以求出 . 解:在△ABC中,
∠A+∠B+∠C=1800(三角形內角和定理) 联立∠A-∠C=250,∠B-∠A=100可得, ∠A=650,∠B=750,∠C=400 答:∠B的度数是750.
解:设∠A= x ,则∠C=∠ABC=2x. ∴x+ 2x+ 2x=180(三角形内角和定理). A 0 解方程,得x=36 . ∴ ∠C=2×360=720. 在Rt△BDC中, B ∵∠DBC=900-∠C ∴∠DBC=900-720=180.
D
C
3、在△ABC中,如果 1 1 ∠A= ∠B= ∠ C , 3 2 那么△ABC是什么三角形?
E B
4.如图:已知在△ABC中, EF与AC交于点G,与BC的延 长线交于点F,∠B=450 , 0 , 0 ∠CGF=70 , A∠F=30 求∠A的度数.
G C F
这节课你有那些收获?
点此播放视频
注意:辅助线应该用虚线表示
思路总结
为了说明三个角的和为1800,转化 为一个平角或同旁内角互补,这种转 化思想是数学中的常用方法.
三角形内角和定理: 三角形的内角和等于1800.
(1)在△ABC中,∠A=35°,∠ B=43 °
则∠ C= 102 ° . (2)在△ABC中, ∠A :∠B:∠C=2:3:4 则∠A = 40 ° ∠ B= 60 ° ∠ C= 80 ° . (1)一个三角形中最多有 (2)一个三角形中最多有
注意:辅助线应该用虚线表示
E
A
2
B
1
F
C
三角形的内角和等于1800.
证法2:作BC的延长线CD,
过C作CE∥BA, ∵ CE∥BA ∴∠B=∠2 (两直线平行,同位角相等) A ∠1=∠A(两直线平行, 内错角相等) 又∵∠1+∠2+∠ACB=180° ∴∠A+∠B+∠ACB=180°
E
1
2
B
C
D
相关文档
最新文档