08-09线性代数(2)试题A

合集下载

2008年线性代数考试A卷

2008年线性代数考试A卷

2
第 2 页 共 7页
学院
姓名
学号
任课老师
选课号
………密………封………线………以………内………答………题………无………效……
0 0⎞ ⎛ 1 ⎟ ⎜ P = ⎜ 2 −1 0⎟ , ⎜ − 4 1 1⎟ ⎠ ⎝
−1
所以有
0 0⎞ ⎛ 1 0 0 ⎞⎛ 1 0 0 ⎞⎛ 1 ⎟ ⎟⎜ ⎟⎜ ⎜ A = PBP = ⎜ 2 − 1 0 ⎟⎜ 0 0 0 ⎟⎜ 2 − 1 0 ⎟ ⎜ 2 1 1 ⎟⎜ 0 0 − 1⎟⎜ − 4 1 1 ⎟ ⎠ ⎠⎝ ⎠⎝ ⎝
⎛ λ1 0 ⎜ ⎜ 0 λ2 T −1 P AP = P AP = ⎜ " " ⎜ ⎜0 0 ⎝
0⎞ ⎟ " 0⎟ , " "⎟ ⎟ " λn ⎟ ⎠ "
3.设 n 元非齐次线性方程组是 Ax = b ,它对应的齐次线性方程组是 Ax = 0 ,则下面结 论中正确的是( ② ). ① 若 Ax = 0 有惟一解,则 Ax = b 也有惟一解; ② 若 Ax = b 有无穷多个解,则 Ax = 0 也有无穷多个解; ③ 若 Ax = 0 有无穷多个解,则 Ax = b 也有无穷多个解; ④ 若 Ax = 0 有惟一解,则 Ax = b 无解. 分析:A 未必是方阵。 4.设 α 1 , α 2 , β 线性无关, α 2 , α 3 , β 线性相关,则下面结论正确的是( ④ )。 ① ③ k1α 1 + k 2α 2 + k 3α 3 = 0 仅有零解; k1α 2 + k 2α 3 = β 必有解; ② ④ k1α 1 + k 2α 2 + k 3α 3 = 0 必有非零解; k1α 1 + k 2α 2 + k 3 β = α 3 必有解。

2008线性代数A参考答案

2008线性代数A参考答案

2007~2008学年第二学期《线性代数》A 卷参考答案及评分标准一、单项选择(每小题2分,共20分)请将正确选项前的字母填入下表中1、2-。

2、159206915-⎛⎫⎪-⎝⎭。

3、4。

4、213/21/2-⎛⎫⎪-⎝⎭。

5、 3 。

6、3。

7、 0 。

8、2。

9、1/λ。

10、222123122344x x x x x x x ++++ 三、计算题(1、2每小题6分,其余每小题6分,共40分)1、解:212223242322A A A A +++=1222232********* ……3分122201220011001---=1=- ……6分2、解:由AX A X =+有()A E X A -=()1002001002001101200101201111120112A E A ⎛⎫⎛⎫⎪ ⎪-=→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ……4分 200120012X ⎛⎫⎪∴=- ⎪ ⎪-⎝⎭……6分 3、解:由225A A E O --=有()()32A E A E E -+= ……3分320A E A E -+=≠有30A E -≠ 所以3A E -可逆 ……6分 且11(3)()2A E A E --=+ ……7分4、解:()1234310111512112370122318100001397000TTTTαααα⎛⎫ ⎪--⎛⎫⎪⎪- ⎪ ⎪-=→ ⎪ ⎪- ⎪ ⎪- ⎪⎝⎭ ⎪⎝⎭……3分 ∴1234,,,αααα线性相关,1234(,,,)2R αααα=,12,αα是它的一个极大无关组,……4分且31241237, 222αααααα=-=+. ……7分5、解:矩阵A 的特征方程为0)1)(2(163530642=--=-+--=-λλλλλλA E得特征值 12321==-=λλλ ……3分当21-=λ时有⎩⎨⎧=-=+⎪⎩⎪⎨⎧=-+=+=--00,036303306632313212121x x x x x x x x x x x 即它的基础解系是⎪⎪⎪⎭⎫ ⎝⎛-111,所以对应于21-=λ的全部特征向量是)0(111≠⎪⎪⎪⎭⎫⎝⎛-c c ……5分当132==λλ时有 02,6306306321212121=+⎪⎩⎪⎨⎧=+=+=--x x x x x x x x 即它的基础解系是向量⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-100012及,所以对应于132==λλ的全部特征向量是不全为零)2121,(100012c c c c ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛- ……7分6、解: 22020021201002000410011201001201001A E -⎛⎫⎛⎫⎪ ⎪---⎪⎪⎪⎪-⎛⎫=→⎪ ⎪⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭……3分112012001P -⎛⎫⎪∴=- ⎪ ⎪⎝⎭……6分 222123123(,,)24f x x x y y y=-+ ……7分 四、证明题(每题5分,共10分)1、证明:由 AB O = 有 12(,,,)s A X X X O = 即12(,,,)s AX AX AX O = 得i AX O = ()1,2,i s =即i X 为A X O =的s 个解 ……2分 显然12()(,,,)()s R B R X X X n R A =≤-即()()R A R B n +≤ ……3分 2、证明:()123,,3R ααα= ,()1234,,,3R αααα= 123,,ααα 线性无关 1234,,,αααα线性相关 则有 4112233m m m αααα=++ 成立 ……2分 设 112233454()0k k k k ααααα+++-=有 112233454112233()0k k k k k m m m ααααααα+++-++= 1411242234334()()()0k k m k k m k k m kαααα-+-+-+=……3分 ()1235,,,4R αααα=1235,,,αααα 线性无关则有141242343400k k m k k m k k m k -=⎧⎪-=⎪⎨-=⎪⎪=⎩ 解之有 12340k k k k ==== ……4分故 12354,,,ααααα-线性无关 即12354(,,,)4R ααααα-=……5分。

2008-2009学年线性代数试卷A及答案

2008-2009学年线性代数试卷A及答案

华南农业大学期末考试试卷(A 卷)2008-2009学年第2学期 考试科目: 线性代数考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业 题号 一 二 三 四 五 六 总分 得分 评阅人试卷说明: T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,1A -表示矩阵A 的逆矩阵,A 表示方阵A 的行列式, R (A )表示矩阵A 的秩, I 是单位矩阵.一. 选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内1. 设n B A 均为,阶方阵,满足等式0=AB ,则必有( C )(A) 0=A 或 0=B(B) 0=+B A () 0||=A 或 0||=B(D) 0||||=+B A2. 已知,,A B C 均为n 阶可逆方阵,且ABC I =,则下列结论必然成立的是( C )(A) ACB I = (B) BAC I = () BCA I = (D) CBA I =3.设有n 维向量组(Ⅰ):12,,,r ααα 和(Ⅱ):12,,,()m m r ααα> ,则( B )(A) 向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关() 向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关 (C) 向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关 (D) 向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4.设n 元齐次线性方程组AX =0的系数矩阵A 的秩为r ,则AX =0有非零解的充分必要条件是( B )5. Matlab 软件中, 在命令窗口输入[1:3][321]'*, 显示ans=( D )二、填空题(本大题共6小题,每小题4分,满分24分)6. ⎪⎪⎪⎭⎫ ⎝⎛=100010021A ,则=-1A120010001-⎛⎫⎪ ⎪ ⎪⎝⎭. (A) r=n() r<n(C) r ≥n(D) r>n(A) 7 (B) 8 (C) 9 () 107. 设t ηηη,,,21 及t t ηληληλ+++ 2211都是非齐次线性方程组b A =X 的解向量,则=+++t λλλ 21______1__________.8. 矩阵20002023A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵10002000B b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似, 则a b += . 9. 设123,1,1),0,2,3),1,0,1),k ααα===(((则当k = 时,α1,α2,α3 线性相关.10.设A 为三阶方阵,其特征值2,1,3,- 则*A = .11.已知二次型222123112132233(,,)2245f x x x x tx x x x x x x x =+-+++正定, 则t 的取值范围为 .三、计算题12.(7分) 已知100110,021A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭131011,002B ⎛⎫⎪=- ⎪ ⎪⎝⎭求:2T A AB +13.(8分)计算下列行列式3214214314324321四、解方程组14. (10分)求方程组123412341234311232x x x xx x x xx x x x⎧⎪--+=⎪-+-=⎨⎪⎪--+=-⎩的通解.五、解答题15.(10分)求下列向量组的秩,并求一个最大无关组:a1=(1, 2,-1, 4)T,a2=(9, 100, 10, 4)T, a3= (-2,-4, 2,-8)T.16. (8分) 已知1121 342 012A--⎛⎫⎪= ⎪⎪-⎝⎭,求A的伴随矩阵*A.17.(12分) 设212122221A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求一个正交阵P ,使1P AP -=Λ为对角阵.六、证明题18.(6分) 设向量组322211,a a b a a b +=+= 433,a a b += 144,a a b +=, 证明向量组4321,,,b b b b 线性相关.2008—2009第二学期《线性代数》(A )参考答案和评分标准一. 选择题(本大题共5小题,每小题3分,共15分)1. C2. C3. B4. B5. D二、填空题(本大题共6小题,每小题4分,满分24分)6. 120010001-⎛⎫⎪ ⎪⎪⎝⎭ 7. 18. 8 9. -1/2 10. 36 11. 405t -<<三、计算题12.T T A AB A E B 2(2)+=+=1001001001102010310021001112⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦3分100300110330021114⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭ 5分 300030754⎛⎫ ⎪= ⎪ ⎪⎝⎭7分 13.将行列式第2、3、4列加到第1列上,得3214214314324321=32110214101431043210=101110222031104321------ 4分=10400440311--- 6分=160 8分14.11110111101111011131002410024111231/200121/200000⎛⎫⎛⎫⎛⎫------ ⎪ ⎪ ⎪--→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭ 4分 x x x x x x 1234340241--+=⎧⎨-=⎩,x x x x x x x x 1324132431-=-⎧⎨+=++⎩, 5分 取x x 2400⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得*120120η⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 6分取x x 2410,01⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,x x 1311,02⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 8分 得齐次方程组基础解系为121110,0201ξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 9分通解为x x k kx x 12123411120101022010⎛⎫⎪⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10分 15. 192192192210040820010110201900004480320000A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦6分rank(A)=2 7分 所以向量组的秩为2. 8分 a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T 不成比例,所以 a 1,a 2为最大无关组. 10分16. 因为1*1,||A A A -=2分*1111||||A A AA A ---==4分 1||1A -=- 6分*1||1*A A -=-=121342012--⎛⎫ ⎪--- ⎪ ⎪-⎝⎭8分17.123(1)(1)(5),1,1,5A E λλλλλλλ-=-+--=-==, 3分对应于11λ=-,由 ()0A E x += 得111122ξ-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,单位化,得111162p -⎛⎫ ⎪=- ⎪ ⎪⎝⎭; 6分 对应于21λ=,由 ()0A E x -= 得2110ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得211120p -⎛⎫⎪= ⎪ ⎪⎝⎭ 8分 对应于35λ=,由 (5)0A E x -= 得3111ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得311131p ⎛⎫⎪= ⎪ ⎪⎝⎭. 10分 11162311162321063P ⎛⎫-- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭,有1100010005TP AP P AP --⎛⎫⎪==Λ= ⎪ ⎪⎝⎭. 12分18. 设有4321,,,x x x x 使得044332211=+++b x b x b x b x即0)()()()(144433322211=+++++++a a x a a x a a x a a x 3分整理得 01100011000111001)(43214321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛x x x x a a a a 4分而011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛x x x x 有非零解,所以结论成立 6分。

线性代数2008A答案

线性代数2008A答案

上海财经大学成人高等教育线性代数试题参考 答案(2008A 卷)姓名 学号 专业 班级一、 单选题(每小题2分,共计10分)1. 设,A B 均为方阵,且0AB =, 则以下结论中正确的是 ( 4 ) .(1) 0AB = (2) 0,0A B == (3) 0A =或0B = (4) 0A =或0B =2. 以下矩阵中是对称矩阵的是 ( 2 ).(1) 123212025⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ (2)123204341⎛⎫⎪ ⎪ ⎪-⎝⎭ (3) 123211301⎛⎫⎪ ⎪ ⎪⎝⎭ (4) 111011001⎛⎫⎪ ⎪ ⎪⎝⎭3. 以下矩阵中是初等矩阵的是 ( 2 ).(1) 100010000⎛⎫ ⎪- ⎪ ⎪⎝⎭ (2)100010001⎛⎫⎪ ⎪ ⎪-⎝⎭ (3) 101010001⎛⎫⎪ ⎪ ⎪-⎝⎭ (4) 101011001⎛⎫⎪ ⎪ ⎪⎝⎭4. 下列不是n 阶矩阵A 可逆的充分必要条件的为 ( 1 ) .(1) 0A ≠ (2) 0A ≠ (3) ()R A n = (4) A 与单位阵E 等价5. 下列矩阵中是分块矩阵00A B ⎛⎫⎪⎝⎭的逆矩阵为 ( 4 ). (1) 1100A B --⎛⎫⎪⎝⎭ (2) 1100B A --⎛⎫⎪⎝⎭(3) 1100A B--⎛⎫⎪⎝⎭(4) 1100B A --⎛⎫ ⎪⎝⎭二、 填选题(每小题3分,共计30分)6. 行列式 111253_____.4259= (- 6)7. 设4阶行列式的第三行元素为1,2,3,4,其对应的余子式为4,3,2,1,则该行列式的值等于______.( 0 )……………………………………………………………装订线…………………………………………………8. 设A 是3阶方阵,TA 是A 的转置矩阵且 2,A =则 3____.T A =; ( 54 )9. 设211123223,322141113A B ⎛⎫⎛⎫⎪⎪=-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭, 则 _____________AB =; (487731112514⎛⎫ ⎪- ⎪ ⎪-⎝⎭)10.设矩阵 120340002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1A -=__________. ; (312212210000--⎛⎫⎪ ⎪ ⎪⎝⎭) 11. 设矩阵 200030004A ⎛⎫⎪= ⎪ ⎪⎝⎭,则*A =__________.(*A 是A 的伴随矩阵); (12000800012⎛⎫⎪ ⎪ ⎪⎝⎭) 12. 设矩阵 123024003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则*1()A -=__________; (12310246003⎛⎫⎪ ⎪ ⎪⎝⎭)13. 设矩阵 121211212112121,a a a a a A b b B b b b c c c c c -⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,且AP B =,则初等阵P _____________;(1101-⎛⎫ ⎪⎝⎭) 14. 设 123(1,1,1),(2,3,4),(3,4,5)ααα===,则 123,,ααα的秩等于_______.;( 2 ) 15. 设123(1,1,1),(1,3,4),(3,4,5)ααα===,则 123,,ααα的极大无关组的个数为 _____.( 3 )三、 计算题(共计47分)16. 求解方程:2452450245x x x++=+ (本题满分10分)解:由于311113111132245(1)024500(1)47245(1)245047x r r x xx x x x x x c c x x a A x xx r r x x ++-+--+=-+-==-++-+++则原方程即2(11)0x x += 因而原方程的解为:120,11x x ==。

线性代数测试试卷及答案

线性代数测试试卷及答案

线性代数A 卷一﹑选择题每小题3分,共15分1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是 A AB BA = B 222()AB A B = C 222()2A B A AB B +=++ D A B B A +=+2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为A nB sC n s -D 以上答案都不正确3.如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于 A 10, 8 B 8, 10 C 10, 8-- D 10, 8--4. 设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么A 2331A ⎛⎫= ⎪-⎝⎭B 2241A ⎛⎫= ⎪-⎝⎭C 2121A ⎛⎫= ⎪-⎝⎭D 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则 A A 的行向量组和列向量组均线性相关 BA 的行向量组线性相关,列向量组线性无关 C A 的行向量组和列向量组均线性无关 DA 的列向量组线性相关,行向量组线性无关 二﹑填空题每小题3分,共30分1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2. 设100210341A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为 ;9. 若二次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围为 ;10. 设A 为n 阶方阵,且满足2240A A I +-=,这里I 为n 阶单位矩阵,那么1A -= . 三﹑计算题每小题9分,共27分1. 已知210121012A ⎛⎫⎪= ⎪ ⎪⎝⎭,100100B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X 使之满足AX X B =+.2. 求行列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的一个最大无关组和秩.四﹑10分设有齐次线性方程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=⎧⎪-++=⎨⎪++-=⎩ 问当λ取何值时, 上述方程组1有唯一的零解﹔2有无穷多个解,并求出这些解. 五﹑12分求一个正交变换X PY =,把下列二次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑6分已知平面上三条不同直线的方程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于一点的充分必要条件为0a b c ++=.线性代数A 卷答案一﹑1. D 2. C 3. B 4. A 5. A二﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解 由AX X B =+得1()X A I B -=-. 2分下面求1()A I --. 由于110111011A I ⎛⎫ ⎪-= ⎪ ⎪⎝⎭4分而1()A I --=011111110-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 7分所以10111001()11101111100011X A I B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 9分2. 解1234234134124123=10234103411041210123123413411014121123= 4分 123401131000440004-=-- 8分 160= 9分 .3. 解 由于3112341234011301131301053307330733r r --⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪- ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭324212345011300212700424r r r r -⎛⎫⎪--- ⎪ ⎪+ ⎪--⎝⎭ 43123401132002120000r r -⎛⎫⎪-- ⎪+ ⎪ ⎪⎝⎭6分 故向量组的秩是 3 ,123,,ααα是它的一个最大无关组;9分 四﹑解 方程组的系数行列式111111111A λλλ-=--2(1)(2)λλ=-+- 2分①当2(1)(2)0A λλ=-+-≠,即1λ≠-且2λ≠时,方程组有唯一的零解; 4分 ②当1λ=-时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为12 1 21 1 11 2 A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,它有一个二阶子式123021-=-≠-,因此秩A 2n =<这里3n =,故方程组有无穷多个解.对A 施行初等行变换,可得到方程组的一般解为132333,,,x x x x x x =⎧⎪=⎨⎪=⎩ 其中3x 可取任意数; 7分 ③当2λ=时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为11 1 11 1 11 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭,显然,秩A 1n =<这里3n =,所以方程组也有无穷多个解.对A 施行初等行变换可得方程组的一般解为1232233,,,x x x x x x x =--⎧⎪=⎨⎪=⎩ 其中23,x x 可取任意数. 10分 五﹑ 解 二次型的矩阵为12 2 21 2 22 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭, 2分因为特征多项式为212 221 2 (1)(5)22 1I A λλλλλλ----=---=+----, 所以特征值是1-二重和5. 4分把特征值1λ=-代入齐次线性方程组()0I A X λ-=得1231231232220,2220,2220,x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩ 解此方程组可得矩阵A 的对应于特征值1λ=-的特征向量为12(1,0,1),(0,1,1)T T αα=-=-.利用施密特正交化方法将12,αα正交化:11(1,0,1)T βα==-, 211(,1,)22T β=--,再将12,ββ单位化得1T η=,2(T η=, 8分 把特征值5λ=代入齐次线性方程组()0I A X λ-=得1231231234220,2420,2240,x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ 解此方程组可得矩阵A 的对应于特征值5λ=的特征向量为3(1,1,1)T α=.再将3α单位化得3Tη=. 10分 令123(,,)0P ηηη⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭则P 是一个正交矩阵,且满足1100010005T P AP P AP --⎛⎫ ⎪==- ⎪ ⎪⎝⎭.所以,正交变换X PY =为所求,它把二次型化成标准形222123123(,,)5f x x x y y y =--+. 12分六﹑证明:必要性由123,,l l l 交于一点得方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有解,可知231()()230()10231a b cb c R A R A bc a a b c c a c a ba b=⇒=⇒++= 2分由于2221211[()()()]01b cca b a c b a c a b=--+-+-≠,所以0a b c ++= 3分充分性:0()a b c b a c ++=⇒=-+2222222()2[()][()]022312366()10231a bac b ac a c a c a c b c a b c a b c b c b c a b c a a b c c a c a b c a b a b ⎫⇒=-=-+=-++-≠⎪⎪⎪⎬⎪==++=⎪⎪⎭又因为()()2R A R A ⇒==, 5分 因此方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有唯一解,即123,,l l l 交于一点. 6分线性代数习题和答案第一部分选择题共28分一、单项选择题本大题共14小题,每小题2分,共28分在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内;错选或未选均无分;1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于A. m+nB. -m+nC. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A是A的伴随矩阵,则A中位于1,2的元素是A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩A T等于A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1α1+β1+λ2α2+β2+…+λsαs+βs=0C.有不全为0的数λ1,λ2,…,λs使λ1α1-β1+λ2α2-β2+…+λsαs-βs=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有A.秩A<nB.秩A=n-1=0 D.方程组Ax=0只有零解10.设A是一个n≥3阶方阵,下列陈述中正确的是A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使λE-Aα=0,则λ是A的特征值的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是A.|A|2必为1B.|A|必为1=A T的行列向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题共72分二、填空题本大题共10小题,每小题2分,共20分不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;15.11135692536=.16.设A=111111--⎛⎝⎫⎭⎪,B=112234--⎛⎝⎫⎭⎪.则A+2B= .17.设A=a ij3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式i,j=1,2,3,则a 11A 21+a 12A 22+a 13A 232+a 21A 21+a 22A 22+a 23A 232+a 31A 21+a 32A 22+a 33A 232= . 18.设向量2,-3,5与向量-4,6,a 线性相关,则a= .19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .20.设A 是m ×n 矩阵,A 的秩为r<n,则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积α+β,α-β= . 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .23.设矩阵A =010********---⎛⎝ ⎫⎭⎪⎪⎪,已知α=212-⎛⎝ ⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为 .24.设实二次型fx 1,x 2,x 3,x 4,x 5的秩为4,正惯性指数为3,则其规范形为 .三、计算题本大题共7小题,每小题6分,共42分25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求1AB T ;2|4A |.26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数; 29.设矩阵A =12102242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:1秩A ;2A 的列向量组的一个最大线性无关组;30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形fx 1,x 2,x 3=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换;四、证明题本大题共2小题,每小题5分,共10分32.设方阵A 满足A 3=0,试证明E -A 可逆,且E -A -1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明 1η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; 2η0,η1,η2线性无关;答案:一、单项选择题本大题共14小题,每小题2分,共28分二、填空题本大题共10空,每空2分,共20分 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c η2-η1或η2+c η2-η1,c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题本大题共7小题,每小题6分,共42分25.解1AB T =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=861810310⎛⎝ ⎫⎭⎪⎪⎪. 2|4A |=43|A |=64|A |,而|A |=1203401212-=-. 所以|4A |=64·-2=-12826.解 311251342011153351111113100105530------=-----=511 1111 550 ----=5116205506255301040 ---=---=+=.27.解AB=A+2B即A-2EB=A,而A-2E-1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝⎫⎭⎪⎪⎪-.所以B=A-2E-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=386 296 2129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为2,1,1.解二考虑α4=x1α1+x2α2+x3α3,即-++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x xx xx xx x x.方程组有唯一解2,1,1T,组合系数为2,1,1.29.解对矩阵A施行初等行变换A−→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102 00062 03282 09632−→−-----⎛⎝⎫⎭⎪⎪⎪⎪−→−----⎛⎝⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B.1秩B=3,所以秩A=秩B=3.2由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组;A的第1、2、5列或1、3、4列,或1、3、5列也是30.解A的属于特征值λ=1的2个线性无关的特征向量为ξ1=2,-1,0T, ξ2=2,0,1T.经正交标准化,得η1=25555//-⎛⎝⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝⎫⎭⎪⎪⎪所求正交矩阵为T=25521515135545152305323////////--⎛⎝⎫⎭⎪⎪⎪.对角矩阵D=100 010 008-⎛⎝⎫⎭⎪⎪⎪.也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.31.解fx1,x2,x3=x1+2x2-2x32-2x22+4x2x3-7x32=x1+2x2-2x32-2x2-x32-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪, 即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩;经此变换即得fx1,x2,x3的标准形y12-2y22-5y32 .四、证明题本大题共2小题,每小题5分,共10分32.证由于E-AE+A+A2=E-A3=E,所以E-A可逆,且E-A-1= E+A+A2 .33.证由假设Aη0=b,Aξ1=0,Aξ2=0.1Aη1=Aη0+ξ1=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解;2考虑l0η0+l1η1+l2η2=0,即l0+l1+l2η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾;所以l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .所以η0,η1,η2线性无关;。

《线性代数》自测题二及 答案

《线性代数》自测题二及 答案

测试题二(矩阵)一.单项选择题1. 设A 为n 阶矩阵,且O A =3,则( C )(A )A E A E +-,均不可逆; (B )A E -不可逆,但A E +可逆(C )A E -,E A A +-2均可逆;(D )A E -可逆,但E A A +-2不可逆2.设B A ,都是n 阶非零矩阵,且O AB =,则B A ,的秩( B )(A )必有一个等于零 (B )都小于n(C )一个小于n ,一个等于n (D )都等于n3.若A 为n 阶可逆矩阵,则下列结论不正确的是( D ).(A )11)()(--=k k A A ; (B )T k k T A A )()(=; (C )k k A A )()(**=; (D )**=kA kA )(.4. 设B A ,为n 阶矩阵,下列结论正确的是( D )(A )||||||B A B A +=+ (B )||||||B A B A -=-(C )若B AB =,则BA AB = (D )若E B AB +=,则BA AB = 5.B A ,均为三阶可逆矩阵,则下列等式成立的是( A ).(A )111)(---=B A AB ; (B )A A =-; (C )B A B A B A +-=-22; (D )A A 22=.6.设()353=⨯A R ,那么53⨯A 必满足 ( D ).(A )三阶子式全为零; (B )至少有一个四阶子式不为零;(C )二阶子式全为零; (D )至少有一个二阶子式不为零.7.⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n b a b a b a b a b a b a b a b a b a A 212122122111,02121≠n n b b b a a a ,秩=A (B ). (A )0; (B )1 ; (C )2; (D )n .8.设B A ,为n 阶矩阵,**,B A 是伴随矩阵,⎪⎪⎭⎫ ⎝⎛=B O O A C ,则=*C ( C ). (A ) ⎪⎪⎭⎫ ⎝⎛**B B O O A A ; (B ) ⎪⎪⎭⎫ ⎝⎛**A A O O B B ; (C ) ⎪⎪⎭⎫ ⎝⎛**B A O O A B ; (D ) ⎪⎪⎭⎫ ⎝⎛**A B O O B A .9.设B A ,均为n 阶矩阵,A 与B 等价,下列结论不正确的是( A ).(A )若0||>A ,则0||>B(B )若0||≠A ,则存在可逆矩阵P 使得E PB =(C )若A 与E 等价,则B 是可逆矩阵(D )存在可逆矩阵Q P ,,使得B PAQ =10.设)3(≥n n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a b a b a b a a A ,其中0≠ab ,若1)(-=n A r ,则b a , 应满足( B ) (A )0=+b a (B )a n b )1(-= (C )0=-b a (D )a n b )1(-=11.设B A ,均为n m ⨯矩阵,1)(r A r =,2)(r B r =,若方程组α=Ax 有解,β=Bx 无解,且r B A r =),,,(βα,则( D )(A )21r r r += (B )21r r r +≤ (C )121++=r r r (D )121++≤r r r二.填空题1.若⎪⎪⎭⎫ ⎝⎛=4321A ,⎪⎪⎭⎫ ⎝⎛=0110P ,那么=20042003AP P ⎪⎪⎭⎫ ⎝⎛2143. 2.B A ,为三阶矩阵,1-=A ,2=B ,则()='-212B A 2 . 3.已知53)(2+-=x x x f ,⎪⎪⎭⎫ ⎝⎛=b a A 00,则=)(A f ⎪⎪⎭⎫ ⎝⎛+-+-53005322b b a a . 4.若C B A ,,均为n 阶矩阵,且E CA BC AB ===,则=++222C B A 3E . 5.α是三维列向量,⎪⎪⎪⎭⎫ ⎝⎛----='111111111αα,则='αα 3 .6.若A 为)2(≥n n 阶可逆矩阵,*A 是A 的伴随矩阵,则**)(A = A A n 2||-.三.判断题(正确打V ,错误打×)1.*A A =的充分必要条件是1-=A A A .( × )2.3223⨯⨯B A 不可逆.( V )3.如果E AB =,则1-=A B .( V )4.B A ,为n 阶非零矩阵,若,O AB =则0==B A .( V )5.()ij a A =为n 阶可逆矩阵,若A 的每行元素之和全为a ,则1-A 的每行元素之和全为1-a .( V )6.若A 为)2(≥n n 阶可逆矩阵,*A 是A 的伴随矩阵,则**)(A A -=-( × )四.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=110011001A ,求n A . 五.讨论参数a 的取值,求矩阵⎪⎪⎪⎭⎫ ⎝⎛=68963642321a A 的秩.六.设122101221,021425000A B -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,是否存在可逆阵P 使PA B =,若存在,求出P 。

线性代数考试练习题带答案(2)

线性代数考试练习题带答案(2)

线性代数试题集与答案解析二、判断题(判断正误,共5道小题)9.设A ,B 是同阶方阵,则AB=BA 。

正确答案:说法错误解答参考:10. n维向量组{ α 1 , α 2 , α 3 , α 4 } 线性相关,则{ α 2 , α 3 , α 4 } 线性无关。

正确答案:说法错误解答参考:11.若方程组Ax=0 有非零解,则方程组Ax=b 一定有无穷多解。

正确答案:说法错误解答参考:12.若A ,B 均为n阶方阵,则当| A |>| B | 时,A ,B 一定不相似。

正确答案:说法正确解答参考:相似矩阵行列式值相同13.设A是m×n 阶矩阵且线性方程组Ax=b 有惟一解,则m≥n 。

正确答案:说法正确解答参考:(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。

在线只需提交客观题答案。

)三、主观题(共12道小题)14.设A是m×n 矩阵, B是p×m 矩阵,则A T B T 是×阶矩阵。

参考答案:A T B T是n×p 阶矩阵。

15.由m个n维向量组成的向量组,当m n时,向量组一定线性相关。

参考答案:m>n时向量组一定线性相关16.参考答案:a=6(R( A )=2⇒| A |=0)17._________________。

参考答案:( 1 2 3 4 ) T+k ( 2 0 −2 −4 ) T。

因为R ( A )=3 ,原方程组的导出组的基础解系中只含有一个解向量,取为η2+ η3−2 η1,由原方程组的通解可表为导出组的通解与其一个特解之和即得。

18.时方程组有唯一解。

参考答案:当a=−2 时方程组无解,当a=1 时方程组有无穷多个解,当a≠1,−2 时方程组有唯一解。

19.参考答案:2420.参考答案:t=6 21.参考答案:22.参考答案:23.参考答案:24.已知方阵(1)求a,b的值;(2)求可逆矩阵P及对角矩阵D,使得参考答案:25.参考答案:本次作业是本门课程本学期的第1次作业,注释如下:一、单项选择题(只有一个选项正确,共8道小题)1. 下列矩阵中,不是初等矩阵。

2008-2009第二学期线性代数试卷及标答(B卷)

2008-2009第二学期线性代数试卷及标答(B卷)

12n n n b b b ;12312⎛⎫ ⎪,2⎛武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、2A E +;2、1;3、4;4、3;5、 0.二、选择题(每小题3分,共15分)1、C2、C3、A4、D 5 、B三、解答题(每小题7分,共35分)1、 2212111nn nn i i n b b a b b D a b b a b =+⎡⎤=+⎢⎥⎣⎦+∑ ………………………………………………………(3分) 11n i iaa b a =⎡⎤=+⎢⎥⎣⎦∑ ………………………………………………………………(6分)11n n i i a b a -=⎡⎤=+⎢⎥⎣⎦∑…………………………………………………………………………………(7分) 2、 因为()123240,312402231024A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭……………………………………………………………(2分) 553100444333010444131001222r r ⎛⎫- ⎪ ⎪ ⎪−−→−−→- ⎪ ⎪ ⎪- ⎪⎝⎭………………………………………………(6分)所以 X=55313334262-⎛⎫ ⎪- ⎪ ⎪-⎝⎭………………………………………………………………(7分) 3、 因 22|3|3||T AA A =29||A = ……………………………………………………(5分)2229()a b =+。

……………………………………………………(7分)4、设10,T X α= 即123220x x x ++= ……………………………………… (2分)解得基础解系12221,001ηη--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

……………………………………… (4分)Schmidt 正交化12,ηη,得到222132222252[,]41,[,]501ηααηαηααα⎛⎫- ⎪-⎛⎫ ⎪ ⎪ ⎪===-=- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭即为所求。

线性代数试题(A 卷)

线性代数试题(A 卷)

线性代数试题(A 卷)一、单项选择题1.如果将n 阶行列式中所有元素都变号,该行列式的值的变化情况为( ) (A) 不变; (B)变号;(C)若n 为奇数,行列式变号;若n 为偶数,行列式不变; (D)若n 为奇数,行列式不变;若n 为偶数,行列式变号. 2.设0λ是可逆矩阵A 的一个特征值,则( ) (A)0λ可以是任意一个数; (B)00>λ; (C)00≠λ; (D) 00<λ.3.设Ax=b 是一非齐次线性方程组,1η和2η是其任意2个解,则下列结论错误的是( )(A) 12ηη+是Ax=0的一个解; (B) 121122ηη+是Ax=b 的一个解;(C) 12ηη-是Ax=0的一个解;(D) 122ηη-是Ax=b 的一个解.4. 若1112α=-(,,),2764α=(,,),3000α=(,,),则向量组123,,ααα是( )(A) 线性相关; (B) 线性无关;(C) 可能线性相关,可能线性无关; (D) 秩123(,,)3ααα=.5.设100020004A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值为 ( )(A) 1,1,2 ; (B) 1,2,2 ; (C) 1,2,4 ; (D) 2,4,4.二、填空题(每小题4分,本大题共20分) 1. 排列32514的逆序数为 .2. 已知矩阵⎪⎪⎭⎫ ⎝⎛=1111A ,则矩阵=3A . 3. 设3阶方阵A 的元素全为1,则秩(A )为 .4.二次型12(,)f x x =22112264x x x x ++的矩阵是 .5.实对称矩阵A 为正定矩阵的充分必要条件是A 的所有特征值全是 .三、(本题10分)计算行列式ef cf bf de cd bd aeac ab ---.四、(本题10分)求方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025 的逆矩阵.五、(本题12分) 求线性方程组 ⎪⎩⎪⎨⎧=++-=++-=++-211117847246373542432143214321x x x x x x x x x x x x 的通解.六、(本题12分)求三阶方阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的特征值及特征向量,并判断A 是否与对角形矩阵相似?七、(本题8分)设321,,ααα线性无关,证明3213221,,ααααααα++++也线性无关. 八、(本题8分)证明:若A 为n n ⨯阶非零矩阵,则秩(A )=1的充分必要条件是A 可写为一列向量与一行向量的积.参考答案和评分标准一、单项选择题(每小题4分,本大题共20分) 1.C ; 2.C ; 3. A ; 4. A ; 5. C 二、填空题(每小题4分,本大题共20分)1. 5 ;2、4444⎛⎫⎪⎝⎭;3. 1 ;4.⎥⎦⎤⎢⎣⎡4331 ;5.正数. 三、(本题10分)计算行列式efcf bf de cdbd aeacab ---.解:ef cfbf de cdbd aeac ab ---=ec b e c bec b adf ---……….…….…..…………(3分) =111111111---adfbce ……………………………………………………………………………….(6分) =abcdef 4……….………………………………………………………....……(10分)四、(本题10分)求方阵⎪⎪⎪⎪⎪⎭⎫⎝⎛2500380000120025的逆矩阵. 解:,21⎪⎪⎭⎫ ⎝⎛=A O O A A ,112251==A ,125382==A .……….……..……..(3分) ,5221111⎪⎪⎭⎫⎝⎛--==*-A A .……….……………………………………………(5分),8532212⎪⎪⎭⎫ ⎝⎛--==*-A A .…………………………………………..……..…(7分)⎪⎪⎪⎪⎪⎭⎫⎝⎛-=- 8 5-003-2000000 2- 1 521A .……….…………………………………….…(10分) 五、(本题12分) 求线性方程组 ⎪⎩⎪⎨⎧=++-=++-=++-211117847246373542432143214321x x x x x x x x x x x x 通解.解.对方程组的增广矩阵作初等行变换⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---=0000175100172021211117847246373542A ………………………..(4分) 于是方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧-=++=434217517221x x x x x ,42,x x 为自由未知量……………………..………..(8分) 所以方程组的通解为:21432117507200120101k k x x x x ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ . …………….…..….(12分) 六、(本题12分)解:A 的特征方程为2134011||----+=-λλλλA E =0)1)(2(2=--λλ,……………..………....(2分)故A 的特征值为21=λ,132==λλ. ……………..………………….……..(5分)(1) 对于特征值21=λ,得到齐次线性方程组 ⎪⎩⎪⎨⎧=-=-=-0040312121x x x x x ,它的基础解系是⎪⎪⎪⎭⎫ ⎝⎛100, 所以属于特征值2的全部特征向量为,100⎪⎪⎪⎭⎫⎝⎛k (0≠k ).………..…….(7分)(2) 对于特征值132==λλ,得到齐次线性方程组 ⎪⎩⎪⎨⎧=--=-=-002402312121x x x x x x ,它的基础解系是⎪⎪⎪⎭⎫ ⎝⎛-121,所以属于特征值1的全部特征向量为,121⎪⎪⎪⎭⎫⎝⎛-k (0≠k ).………...(9分)因此A 不与对角形矩阵相似. .…………….…………………………….(12分) 七、(本题8分)设321,,ααα线性无关,证明3213221,,ααααααα++++也线性无关.证明:设0)()()(3213322211=++++++αααααααk k k ,………..…….(2分) 则有0)()()(3322321131=++++++αααk k k k k k k , ……………….(4分)321,,ααα 线性无关,⎪⎩⎪⎨⎧=+=++=+∴0003232131k k k k k k k ,0321===∴k k k ……….….(6分)所以3213221,,ααααααα++++线性无关. …………………………..….(8分) 八、(本题8分) 证明:若A 为n n ⨯阶非零矩阵,则秩(A )=1的充分必要条件是A 可写为一列向量与一行向量的积.证明:必要性:因为秩(A )=1,所以存在可逆矩阵P 和Q ,使得10010000(100)0000PAQ ⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,.……………………..….(2分)得到11)001(001--⎪⎪⎪⎪⎪⎭⎫⎝⎛=Q P A=)(2121n n b b b a a a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛,这里⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 21=⎪⎪⎪⎪⎪⎭⎫⎝⎛-0011 P ,)(21n b b b =1)001(-Q 。

线性代数试题(济南大学2008~2009学年第二学期课程考试试卷(A卷))

线性代数试题(济南大学2008~2009学年第二学期课程考试试卷(A卷))

济南大学2008~2009学年第二学期课程考试试卷(A 卷)一、选择题(每小题3分,共15分)1.D 2333231232221131211==a a a a a a a a a ,则333132312321222113111211322322322a a a a a a a a a a a a ---的值为 [ C ] (A ) 4; (B ) 6; (C ) 8; (D ) 10.2. 设n 阶方阵A ,B ,C ,满足ABC=E ,则必有 [ D ](A ) ACB=E ; (B ) CBA=E ; (C ) BAC=E ; (D ) BCA=E .二、填空题(每空3分,共24分)1. 行列式225144196151214111=_________.2. 设矩阵A ,⎥⎦⎤⎢⎣⎡=1102,230311⎥⎦⎤⎢⎣⎡-=B 则=B A T .6. 4阶行列式D 某一行的所有元素都相等且它们对应的余子式也相等,则D = 0 . 三、(本题满分10分)计算4阶行列式 b b a a -+-+1111111111111111.四、(本题满分12分)设矩阵A =⎪⎪⎪⎭⎫⎝⎛400021012,矩阵B 满足:AB=A+2B ,求矩阵B .五、(本题满分14分)试求b 为何值时, 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++-=---=++=+++bx x x x x x x x x x x x x x 43214324324321223121220有解,并求其通解.一、选择题(每小题3分,共18分) 1.若622211211=a a a a ,则120020221221112--a a a a 的值为 [ A ] (A ) 12-; (B )12; (C ) 18; (D ) 0.3. 设n 元齐次线性方程组=Ax 0的系数矩阵的秩为r ,则方程组=Ax 0有非零解的充分必要条件是 [ D ] (A ) n r =; (B ) n r ≥; (C ) n r >; (D ) n r <. 5. 设n 阶方阵A ,B ,C 满足ABC=E ,则必有 [ B ](A ) ACB=E ; (B ) BCA =E ; (C ) BAC=E ; (D ) CBA =E .二、填空题(每空3分,共24分)1. 行列式222111c b a c b a=_________. 2. 设A ,B 均为3阶方阵,且A =2,21=B ,则12-A B T =_____ __.4. 非齐次线性方程组b Ax =有解的充分必要条件是 . 56. 设n 阶矩阵A 满足=-+E A A 102320,则1)2(--E A = .三、(本题满分10分)计算4阶行列式aa a a a a a a aa a a 0000. 四、(本题满分12分)设AX +B =X ,其中A =,⎪⎪⎪⎭⎫ ⎝⎛---101111010B =⎪⎪⎪⎭⎫ ⎝⎛3-5021-1,求矩阵X .五、(本题满分14分)试求a 为何值时, 线性方程组⎪⎩⎪⎨⎧-=++-=++-=++322321321321a x x ax x ax x ax x x有唯一解、无解、有无穷多解?并在无穷多解时求其通解.一、填空题(每小题3分,共18分)2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100020101A ,则(A +3E )-1 (A 2-9E )=.3. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200031021A ,则A -1=.二、选择题(每小题3分,共18分)1. 若矩阵A 有一个r 阶子式不为零,则下列结论正确的是 [ ](A ) R (A )<r ; (B ) R (A )≤ r ; (C ) R (A )>r ; (D ) R (A )≥ r .2. 设A ,B 为同阶可逆矩阵,则下列结论一定成立的是 [ D ](A ) AB = BA ; (B ) 存在可逆矩阵P ,使P -1 AP =B ; (C ) 存在可逆矩阵C ,使C T AP =B ; (D ) 存在可逆矩阵P 和Q ,使P -AQ =B . 5. 矩阵方程AX =B 有解的充分必要条件是 [ C ](A ) R (A )= R (B ); (B ) R (B )=R (A , B ); (C ) R (A )=R (A , B ); (D ) R (A )<R (A , B ).6. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=133312321131131211232221333231232221131211,a a a a a a a a a a a a a a a a a a a a a B A ,,101010001,10000101021⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=P P 则[ D ](A ) B =P 1AP 2; (B ) B =P 2AP 1; (C ) B =A P 1P 2; (D ) B =P 1P 2A .三、计算题(第1、2题每小题10分,第3小题12分,共32分)1. 计算行列式3321322132113211111b a a a a b a a a a b a a a a +++.2. 求齐次线性方程组⎪⎩⎪⎨⎧=++=++=+++000224214324321x x x x x x x x x x 的全部解.3. 已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--=2001,1121B P 满足P -1AP=B ,计算: (1) |-A 5|; (2) A 3.济南大学2011~2012学年第二学期课程考试试卷(A 卷)课 程 线 性 代 数 考试时间 2012 年 7 月 2 日一、填空题(每小题3分,满分27分)1、设行列式==11110342226111304z y xzy x,则行列式_________. 4、设矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛1100120000120025,则A -1=________________. 6、三元线性方程x 1+ x 2+ x 3=1的全部解是_______________.三、计算题(每小题9分,满分18分)(1)D =cc b b a a ------1100110011001.(2)设矩阵A =⎪⎪⎪⎭⎫⎝⎛161020101,而X 满足AX +E =A 2+X ,求X .四、应用题(每小题10分,满分20分)(2)设A =⎪⎪⎪⎭⎫ ⎝⎛-1-11020011-λλλ, b =⎪⎪⎪⎭⎫⎝⎛11-a ,已知非齐次线性方程组Ax=b 存在两个不同的解,求(I )a ,λ的值;(II )Ax =b 的通解.。

线性代数A卷试卷+答案

线性代数A卷试卷+答案

线性代数A卷试卷+答案-CAL-FENGHAI.-(YICAI)-Company One1《线性代数》期末考试题A 题一、 填空题 (将正确答案填在题中横线上。

每小题2分,共10分) 1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。

2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,1、若方程13213602214x x xx -+-=---成立,则x 是(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+; (B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B 3、设A 为可逆n 阶方阵,则()**A =(A )A E ; (B )A ;(C )n A A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关;(B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关;(D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。

线性代数(经济数学2)-习题集(含答案)

线性代数(经济数学2)-习题集(含答案)

《线性代数(经济数学2)》课程习题集一、计算题11. 设三阶行列式为231021101--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12,A 13.2. 用范德蒙行列式计算4阶行列式12534327641549916573411114--=D3. 求解下列线性方程组:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---1111322112132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x其中 ),,2,1,,(n j i j i a a j i =≠≠4. 问λ, μ取何值时, 齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?5. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?二、计算题26. 计算6142302151032121----=D 的值。

7. 计算行列式5241421318320521------=D 的值。

8. 计算0111101111011110=D 的值。

9. 计算行列式199119921993199419951996199719981999的值。

10. 计算4124120210520117的值。

11. 求满足下列等式的矩阵X 。

2114332X 311113---⎛⎫⎛⎫-=⎪ ⎪----⎝⎭⎝⎭12. A 为任一方阵,证明T A A +,T AA 均为对称阵。

13. 设矩阵⎪⎪⎭⎫⎝⎛-=212321A ⎪⎪⎪⎭⎫⎝⎛-=103110021B 求AB .14. 已知⎪⎪⎭⎫⎝⎛--=121311A ⎪⎪⎪⎭⎫ ⎝⎛--=212211033211B 求T )(AB 和T T A B15. 用初等变换法解矩阵方程 AX =B 其中⎪⎪⎪⎭⎫ ⎝⎛--=011220111A ⎪⎪⎪⎭⎫⎝⎛-=121111B16. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2100430000350023A求1-A17. 求⎪⎪⎪⎭⎫⎝⎛=311121111A 的逆。

08-09年第二学期《线性代数Ⅱ》课程考试试卷B答案

08-09年第二学期《线性代数Ⅱ》课程考试试卷B答案

2008─2009学年 第 二 学期《线性代数Ⅱ》课程考试试卷B 答案注意:1、本试卷共 3 页; 2、考试时间120分钟一、单选题 (每小题 2 分,共 20 分)1.设A 为n 阶方阵,且2,n ≥则5A -等于( A );(A ) (5)n A -; (B ) 5A -; (C ) 5A ; (D ) 5nA .2.设,,A B C 为同阶方阵,则()T ABC 等于 ( B );(A ) T T T A B C ; (B ) T T T C B A ; (C ) T T T C A B ; (D ) T T T A C B .3.设矩阵1122A ⎛⎫= ⎪⎝⎭,则和A 等价的矩阵是( B );(A ) 1022A ⎛⎫= ⎪⎝⎭;(B ) 1313A ⎛⎫= ⎪⎝⎭;(C ) 111222A ⎛⎫= ⎪⎝⎭;(D ) 112222A ⎛⎫⎪= ⎪⎪⎝⎭. 4.若向量组s ααα,...,,21,(2s )线性无关的充要条件是( D ); (A ) s ααα,...,,21 均不为零向量;(B ) s ααα,...,,21中任意两个向量不成比例; (C ) s ααα,...,,21任意s-1个向量线性无关;(D ) s ααα,...,,21中任意一个向量均不能由其余s-1个向量线性表示.5.已知12,ββ为非齐次线性方程组Ax b =两个不同的解,12,αα为其导出组0Ax =的一个基础解系,12,c c 为任意常数,则Ax b =的通解可以表示为( A );(A ) )()(212121121αααββ++++c c ;(B ) )()(212121121αααββ+++-c c ;(C ) )()(212121121ββαββ-+++c c ;(D ) )()(212121121ββαββ+++-c c . 6.设A 为n 阶方阵,且032=-+E A A则=+-1)2(E A ( A );(A ) E A -;(B ) E A +;(C ))(31E A -;(D ))(31E A +. 7.设n 阶可逆方阵A 有一个特征值为3,对应的特征向量为x, 则下列等式中不正确的是( B );()3A Ax x = 1()3B A x x -= 11()3C A x x -= 2()9D A x x =.8.写出二次型1231213(,,)22f x x x x x x x =+的规范形( C );(A )221222y y -; (B )221222y y +; (C )2212y y -; (D )2212y y +. 9.设3阶矩阵A 与B 相似,A 的特征值为4,2,3. 则B 等于( D );1()24A ; 1()9B ; ()9C ; ()24D .10.二次型212311323(,,)44f x x x x x x x x =++的矩阵为( D );(A ) 104004440⎛⎫ ⎪ ⎪ ⎪⎝⎭;(B ) 1022002000⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭;(C ) 1002000220⎛⎫⎪⎪⎪ ⎪ ⎪⎝⎭;(D ) 102002220⎛⎫ ⎪ ⎪ ⎪⎝⎭.二、计算下列行列式 (每小题6分,共12分)1.123233249499367677=02.1115115115115111=512三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….………….………………试 题 不 要 超 过 密 封 线………….………………………………三、计算矩阵 (共20分)设111210101A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,123120001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭求(1)A AB 23-;(5分) (2)B A T;(5分)(3)判断矩阵A 是否可逆?若可逆,求1-A .(10分)解:(1)242126124AB ⎛⎫⎪= ⎪ ⎪⎝⎭ (2)2421114108323126221018181241011610AB A -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (5)(2)12112336411012000310*******TA B ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭………10 (3)40A =-≠,故A 可逆,……………………13 并且**1111222, (17)113111111222444113111 (204)222113444A A A A ----⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭ ⎪===- ⎪- ⎪ ⎪-- ⎪⎝⎭四、(每小题4分,共16分)已知向量组13125α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭21112α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭32013α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭41101α⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(1)若123430αααβ+--=,求β;(2)求向量组的秩),,,(4321ααααR ;(3)求向量组4321,,,αααα的一个最大无关组; (4)将其余向量组用此最大无关组线性表示.解:(1)1135383193β⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ (4)(2)31211011110101122110000052310000A ⎛⎫⎛⎫⎪ ⎪---⎪ ⎪=→⎪ ⎪⎪ ⎪⎝⎭⎝⎭向量组的秩),,,(4321ααααR =2 (8)(3)向量组4321,,,αααα的一个最大无关组为12,αα (12)(4)312412,2αααααα=-=- (16)三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….………….………………试 题 不 要 超 过 密 封 线………….………………………………五、(共15分)求下列非齐次线性方程组的通解及对应的齐次方程组的基础解系:123451234523451234513235226254337x x x x x x x x x x x x x x x x x x x ++++=-⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=-⎩ 解111111101153321135012262012262000000543317000000-----⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→⎪ ⎪⎪⎪--⎝⎭⎝⎭因R(A)=R(A,b)=2 5.故有无穷解. (5)原方程组的同解方程组为13452345532262x x x x x x x x =++-⎧⎨=---+⎩ (7)特解*32,000η-⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ (9)齐次的基础解系123115226,,100010001ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)通解为*112233k k k ηηξξξ=+++(123,,k k k 为任意常数) (15)六、(共17分) 设矩阵100032023A ⎛⎫ ⎪= ⎪ ⎪⎝⎭.(1)求矩阵A 的特征值和特征向量;(2)求一正交矩阵P ,使得AP P 1-为对角矩阵.解:(1)10032(1)(1)(5)0023A E λλλλλλλ--=-=---=- 得A 的特征值为1231,5λλλ===……………4 对应121λλ==,解方程0)(=-x E A 得特征向量⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,⎪⎪⎪⎭⎫ ⎝⎛=0012ξ (8)1ξ,2ξ为对应于121λλ==的特征向量.对应53=λ,解方程0)5(=-x E A 得特征向量⎪⎪⎪⎭⎫ ⎝⎛=1103ξ (10)3ξ为对应于53=λ的特征向量.(2)将321,,ξξξ单位化有,11021,001,11021321⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=P P P ......... (12)令),,(321P P P P =(不唯一)有⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P (15)三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….………….………………试 题 不 要 超 过 密 封 线………….………………………………。

线性代数试题集与答案解析(二)

线性代数试题集与答案解析(二)

线性代数试题集与答案解析一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

第1题A. A的主子式全大于零B. A没有负的特征值C. 负惯性指数为零D. 正惯性指数为n【正确答案】 D【你的答案】本题分数2分第2题A. 1B. 12C. -24D. 24【正确答案】 D【你的答案】本题分数2分第3题【正确答案】 C【你的答案】本题分数2分第4题【正确答案】 C【你的答案】本题分数2分第5题A. k≠-1B. k≠3C. k≠-1且k≠3D. k≠-1或k≠3【正确答案】 C【你的答案】本题分数2分第6题实对称矩阵A正定的充分必要条件为()A. |A|>0B. A的所有顺序主子式非负C. A的正惯性指数为nD. A的负惯性指数为0【正确答案】 C第7题A. 0或1B. 1或2C. 0或2D. 2【正确答案】 C【你的答案】本题分数2分第8题初等矩阵()A. 都是可逆阵B. 所对应的行列式值为1C. 相乘仍是初等阵D. 相加仍是初等阵【正确答案】 A【你的答案】本题分数2分第9题【正确答案】 C第10题【正确答案】 C二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

第1题题中空白处答案应为:___【正确答案】 3【你的答案】本题分数2分你的得分修改分数第2题题中空白处答案应为:___【正确答案】【你的答案】本题分数2分你的得分修改分数第3题题中空白处答案应为:___【正确答案】 -5【你的答案】本题分数2分你的得分修改分数第4题题中空白处答案应为:___【正确答案】 3【你的答案】本题分数2分你的得分修改分数第5题题中空白处答案应为:___【正确答案】 a>1【你的答案】本题分数2分你的得分修改分数第6题图中空白处应填的答案为:________【正确答案】k≠-2且k≠1【你的答案】本题分数2分你的得分修改分数第7题 ___【正确答案】【你的答案】本题分数2分你的得分修改分数第8题 ___【正确答案】【你的答案】本题分数2分你的得分修改分数第9题 ___【正确答案】【你的答案】本题分数2分你的得分修改分数第10题 ___【正确答案】三、计算题(本大题共6小题,每小题9分,共54分)第1题【正确答案】【你的答案】本题分数9分你的得分修改分数第2题【正确答案】【你的答案】本题分数9分你的得分修改分数第3题【正确答案】【你的答案】本题分数9分你的得分修改分数第4题【正确答案】提示:k=5.【你的答案】本题分数9分你的得分修改分数第5题【正确答案】【你的答案】本题分数9分你的得分修改分数第6题【正确答案】【你的答案】四、证明题(本题6分) 第1题【正确答案】【你的答案】一、填空题(共6小题,每小题 3 分,满分18分)1. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=*8030010000100001A ,则A = .2. A 为n 阶方阵,T AA =E 且=+<E A A 则,0 .3.设方阵12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且AB=O ,则=t . 4. 设向量组m ααα,,,21 线性无关,向量β不能由它们线性表示,则向量组,,,,21m ααα β 的秩为 .5.设A 为实对称阵,且|A |≠0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x = . 6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;),1,2,1(1=βT,()()232,3,4,3,4,3ββ==TT,则由基123,,a a a 到基123,,βββ的过渡矩阵为 .二、单项选择题(共6小题,每小题3分,满分18分)1. 设D n 为n 阶行列式,则D n =0的必要条件是[ ].(A ) D n 中有两行元素对应成比例; (B ) D n 中各行元素之和为零;(C) D n 中有一行元素全为零;(D)以D n 为系数行列式的齐次线性方程组有非零解.2.若向量组α,β,γ 线性无关,α,β,σ 线性相关,则[ ]. (A) α必可由β,γ,σ 线性表示;(B) β必可由α,γ,σ 线性表示; (C) σ必可由β,γ,α 线性表示; (D) γ必可由β,α,σ 线性表示.3.设3阶方阵A 有特征值0,-1,1,其对应的特征向量为P 1,P 2,P 3,令P =(P 1,P 2,P 3),则P -1AP =[ ].(A)100010000⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (B) 000010001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (C) 000010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-; (D)100000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-. 4.设α1,α2,α3线性无关,则下列向量组线性相关的是[ ].(A)α1,α2,α3 - α1; (B)α1,α1+α2,α1+α3; (C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2-α3,α3-α1. 5.若矩阵A 3×4有一个3阶子式不为0,则A 的秩R(A ) =[ ]. (A) 1; (B) 2; (C) 3; (D) 4.6.实二次型f =x T Ax 为正定的充分必要条件是 [ ].(A) A 的特征值全大于零; (B) A 的负惯性指数为零; (C) |A | > 0 ; (D) R (A ) = n .三、解答题(共5小题,每道题8分,满分40分)1.求112233100110011011b b b D b b b --=----的值.2. 求向量组)4,1,1,1(1=α,)5,3,1,2(2=α,)2,3,1,1(3--=α,)6,5,1,3(4=α的一个极大无关组,并把其余的向量用该极大无关组线性表出.3.设A 、P 均为3阶矩阵,且T 100010,000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦P AP=若P =(α1,α2,α3), Q =(α1+α2,α2,α3),求Q T AQ .4.设A 是n 阶实对称矩阵,O A A =+22,若)0()(n k k R <<=A ,求E A 3+.5.设矩阵22082006a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A=相似于对角矩阵Λ,求a . 四、(本题满分10分)对线性方程组23112131231222322313233323142434.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩,,,(1) 若4321,,,a a a a 两两不等,问方程组是否有解,为什么?(2)若b a a ==31, b a a -==42 (b ≠0),且已知方程的两个解T 1(1,1,1)=-ξ, T 2(1,1,1)=-ξ,试给出方程组的通解.五、(本题满分8分)设二次曲面方程122=++byz xz axy (0>a )经正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Q ,化成12222=-+ζηξ,求a 、b 的值及正交矩阵Q .六、(本题满分6分)设A 为n 阶实矩阵,α为A 的对应于实特征值λ的特征向量,β为A T 的对应于实特征值μ的特征向量,且λ≠μ,证明α与β正交.卷参考答案一、填空题(共6小题,每小题 3 分,满分18分)1. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=*8030010000100001A ,则A = 2 .2. A 为n 阶方阵,T AA =E 且=+<E A A 则,0 0 .3.设方阵12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且AB=O ,则=t -3 . 4. 设向量组m ααα,,,21 线性无关,向量β不能由它们线性表示,则向量组,,,,21m ααα β 的秩为 m +1 .5.设A 为实对称阵,且|A |≠0,则二次型 f =x T A x 化为f =y T A -1 y 的线性变换是x =____y 1-A __ . 6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;T 1(1,2,1,)=β,()()232,3,4,3,4,3ββ==TT,则由基123,,a a a 到基123,,βββ的过渡矩阵P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---101010432.二、单项选择题(共6小题,每小题3分,满分18分)1. 设n D 为n 阶行列式,则n D =0的必要条件是[ D ].(A) n D 中有两行元素对应成比例; (B) n D 中各行元素之和为零;(C)n D 中有一行元素全为零;(D)以n D 为系数行列式的齐次线性方程组有非零解. 2.若向量组α,β,γ 线性无关,α,β,σ 线性相关,则[ C ].(A) α必可由β,γ,σ 线性表示. (B) β必可由α,γ,σ 线性表示.(C) σ必可由β,γ,α 线性表示. (D) γ必可由β,α,σ 线性表示.3.设3阶方阵A 有特征值0,-1,1,其对应的特征向量为P 1,P 2,P 3,令P =(P 1,P 2,P 3),则P -1AP =[ B ].(A)100010000⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (B) 000010001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (C) 000010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-;(D) 100000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-. 4.设α1,α2,α3线性无关,则下列向量组线性相关的是[ D ].(A )α1,α2,α3 - α1; (B )α1,α1+α2,α1+α3; (C )α1+α2,α2+α3,α3+α1; (D )α1-α2,α2-α3,α3-α1. 5.若矩阵43⨯A 有一个3阶子式不为0,则[ C ].(A )R(A )=1; (B ) R(A )=2; (C ) R(A )=3;(D ) R(A )=4 . 6.实二次型f =x 'Ax 为正定的充分必要条件是 [ A ]. (A) A 的特征值全大于零; (B) A 的负惯性指数为零; (C) |A | > 0 ; (D) R (A ) = n .三、解答题(共5小题,每道题8分,满分40分)1.求1122331001100110011b b b D b b b --=----的值 解:111222233333100100100010010010 1.01100100101101101b b b b b b D b b b b b b ====------2. 求向量组)4,1,1,1(1=α,)5,3,1,2(2=α,)2,3,1,1(3--=α,)6,5,1,3(4=α的一个极大无关组,并把其余的向量用该极大无关组线性表出.解:极大无关组12,αα, 12332ααα-=,1242ααα-=.3.设A 、P 均为3阶矩阵,且T 100010,000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦P AP=若 P =(α1,α2,α3),Q =(α1+α2,α2,α3),求Q T AQ .解:由于Q =(α1+α2,α2,α3)= (α1,α2,α3) 100100110110,001001⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 于是Q T AQ =TT 100100110100110110010110001001001001⎛⎫⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥= ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭ P A P P AP 110100100210010010110110.001000001000⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦4.设A 是n 阶实对称矩阵,O A A =+22,若)0()(n k k R <<=A ,求E A 3+.解: 由O A A =+22知, A 的特征值-2或0,又)0()(n k k R <<=A ,且A 是n 阶实对称矩阵,则22~00-⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A (k 个-2),故E A 3+3n k-=. 5.设矩阵22082006a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A=相似于对角矩阵Λ,求a . 解: 由|A -λE |=0,得A 的三个特征值λ1=λ2=6,λ3= -2.由于A 相似于对角矩阵,R (A -6E )=1,即42021084~00000000a a --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 显然,当a =0时,R (A-6E )=1,A 的二重特征值6对应两个线性无关的特征向量.四、(本题满分10分)对线性方程组23112131231222322313233323142434.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩,,,(1) 若4321,,,a a a a 两两不等,问方程组是否有解,为什么?(2)若b a a ==31, b a a -==42 (b ≠0),且已知方程的两个解T 1(1,1,1)=-ξ, T 2(1,1,1)=-ξ,试给出方程组的通解.解:(1)因为0))()()()()((111134241423131234244332333222231211≠------=a a a a a a a a a a a a a a a a a a a a a a a a ,故()()R R ≠A b A ,无解. (2)2)(=A R ,3=n ,故通解21121()01,()21k k k -⎡⎤⎡⎤⎢⎥⎢⎥=-+=+∈⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦x ξξξR .五、(本题满分8分)设二次曲面的方程122=++byz xz axy )0>a 经正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Q ,化成12222=-+ζηξ,求a 、b 的值及正交矩阵Q .解:设0120210a ab b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A ,由0,20-=+=A E A E 知1,2-==b a .当1λ=时,111111111~000111000---⎡⎤⎡⎤⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦A E ,t )0,1,1(1=ξ,T )2,1,1(2-=ξ 当2λ=-时,1012~011000⎡⎤⎢⎥+-⎢⎥⎢⎥⎣⎦A E T 3(1,1,1).=-ξ故正交阵0=⎢⎢⎣Q .六、(本题满分6分)设A 为n 阶实矩阵,α为A 的对应于实特征值λ的特征向量,β为A T 的对应于实特征值μ的特征向量,且λ≠μ,证明α与β正交.证 :依题意得Aα=λα, A T β=μβ,将Aα=λα的两边转置得,αT A T =λαT ,在上式的两边右乘β得,αT A T β =λαT β,即μαT β=λαT β,亦即(μ-λ)αT β=0,由于λ≠μ,所以αT β=0,故α与β正交.。

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。

2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。

3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。

4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。

5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。

二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。

线性代数2007-2008第二学期试卷A答案

线性代数2007-2008第二学期试卷A答案

n 4, 有唯一解 III)a 2且a 1时,r r
综上,a 2且b 1时,方程组无解。
1 0 (2)a 2, b 1时,A 0 0
1 0 a 1时,A 0 0 0 0 1 1 0 0 1 0 0 2 0 0
3、 设 A, B 均为 3 阶方阵, 且满足 A 2, B 3 , 则 ( AB ) 6 ; ( AB ) = 36 。

1 1 1 1 1 1 2 3 的秩为 4、矩阵 3 1 5 1 1 3 4 2
4
1 0 ,它的行最简形是 0 0
1
1 3 6 0 0 1 和 2 。 3 6 1 1 3 6
6,3,2
8、 设三阶方阵 A 、B 相似,A 的特征值为 1、 2、 3, 则 B* 的特征值为

二、单项选择题(每小题 2 分,共 12 分) 得 分
1 3 0
2 3 2 ( 1) 3
3 1 2 1 0 1 1 0 1 A E 5 2 3 0 1 1 0 1 1 1 0 1 0 2 2 0 0 0 1 ( A E ) x 0的基础解系为 1 , 1 A只有一个线性无关的特征向量,因此A不能对角化。
3310分分设为一向量组12341131151?21893??????317?????????????????????????????????????????????????????????????????1
浙 江 工 业 大 学
《线 性 代 数》试 卷 (A)

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

线性代数试题集与答案解析大全(2)

线性代数试题集与答案解析大全(2)

线性代数期末考试试卷及答案一、单项选择题(每小题2分,共40分)。

1.设矩阵22, B 23, C 32A ⨯⨯⨯为矩阵为矩阵为矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2 +E =0,其中E 是n 阶单位矩阵,则必有 【 】A. 矩阵A 不是实矩阵B. A=-EC. A=ED. det(A)=1 3.设A 为n 阶方阵,且行列式det(A)=1 ,则det(-2A)= 【 】A. 2-B. ()n2- C. n 2- D. 14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a -6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D. 02131= b b a a 9.方程组12312312321 21 3 321x x x x x x x x x a ++=⎧⎪++=⎨⎪++=+⎩有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=110. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1-η3,η1-η2-η311. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni in aa a aC. },,2,1,|),,,{(21n i z a a a a i n =∈D. }1|),,,{(121∑==n i inaa a a14.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 201B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 101 B. ⎥⎦⎤⎢⎣⎡4- 1 01- C. ⎥⎦⎤⎢⎣⎡4 2-00 D. ⎥⎦⎤⎢⎣⎡4- 2-01-15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

线性代数2试卷及答案

线性代数2试卷及答案

线性代数(经管类)试题(出卷人:黄继忠)试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式。

一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 是3阶方阵,且|A |=-21,则|A -1|=( ) A .-2 B .-21 C .21 D .2 2. 设A 为n 阶方阵,令方阵B =A +A T ,则必有( ) A .B T =B B .B =2A C .B T =-B D .B =03. 设A 为四阶矩阵,且,2=A 则=*A ( ) A.2 B.4 C.8 D.124. 下列矩阵中,是初等矩阵的为( ) A .⎪⎪⎭⎫ ⎝⎛0001B .⎪⎪⎪⎭⎫⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000105. 设A 是m ×n 矩阵,B 是m ×n 矩阵,则下列结果中是n 阶方阵的是(m ≠n )( )A .AB T B .A T BC .B A TD .A B 6. 已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( ) A. 4321,,,αααα线性无关 B. 4321,,,αααα线性相关 C. 1α可由432,,ααα线性表示D. 43,αα线性无关7. 设A 为m n ⨯矩阵,方程AX=0仅有零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的行向量组线性相关 C.A 的列向量组线性无关 D.A 的列向量组线性相关 8. 设3阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是( ) A .E-A B .-E-AC .2E-AD .-2E-A9. 与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( )A.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001 B.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011 C.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001 D.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101 10. 设A=⎥⎦⎤⎢⎣⎡--2111,则二次型f(x 1,x 2)=x T Ax 是( ) A.正定 B.负定 C.半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. n 阶方阵 A , 满足 A − 7 A − 4 E = 0 , A 可逆,A−1 = 则 3.设向量组为 a1 = (1,1,1, 0) , a2 = (0, 0, 0,1) , a3 = (2, 2, 0,1) ,
T T T
.
α1 , α 2 ; (B) α1 , α 2 , α 3 ; (C) α1 , α 2 , α 4 ;
解: 有解?在有解时,用其导出组的基础 装

A


4
页 共
4

第四题 得分 班级 线
签名
四、证明(10 分): 设向量组 α1 , α 2 ,L , α n 线性无关,则向量组
β1 = α1 , β 2 = α1 + α 2 ,L , β n = α1 + α 2 + L + α n
)成立.
α1 , α 2 , α 3 , α 4 . a4 = (0, 0, 2,1)T , 则该向量组线性
, 且该向量组的秩为____ .
1 0 1 (A) det( AB ) = 0, 则 A = 0 或 B = 0 (B) AB ≠ 0 ,则 det A ≠ 0 或 det B ≠ 0 ; 4.设 A = 0 2 0 ,则 A2 = 1 0 1 (C) det( AB ) = 0 , det A = 0 或 det B = 0 ; AB = 0 , A = 0 或 B = 0 . 则 (D) 则 a11 a12 a13 a11 3a12 k 2 1 5.已知 a21 a22 a23 = 1 ,则 a31 3a32 3. 2 k 0 = 0 的充分必要条件是 k = ( ). a31 a32 a33 a21 3a22 1 −1 1
(A) 等于 n ; (B) 小于 n ; (C) 等于 m ; (D) 小于 m . 第二题 得分 签名
注意事项: 注意事项: 命题教师:1.出题用五号字体输入 出题用五号字体输入, 纸张。 命题教师:1.出题用五号字体输入,打印用正规 A4 纸张。 2.除装订线内的三栏外 其它各项均由命题教师填写,不得漏填。 除装订线内的三栏外, 2.除装订线内的三栏外,其它各项均由命题教师填写,不得漏填。 1.装订线内的 班级” 学号” 姓名”三栏由考生本人填写。 装订线内的“ 考 生:1.装订线内的“班级”“学号”“姓名”三栏由考生本人填写。 、 、 2.一律用黑色的签字笔答题 否则试卷无效。 一律用黑色的签字笔答题, 2.一律用黑色的签字笔答题,否则试卷无效。
也线性无关. 证明:
姓名 学号 装

A


1
页 共
4

西安财经学院试题 A 卷
命题教师 吴玉梅 学期 08 — 09 学年第 二 学期 阅卷教师签名
四 五 六 七 八 九 十 总分
(A) 2或0 ; (B) -2或0 ; (C) 2或3 ; (D) -2或3 . 4. 设 A, B, C 为 n 阶方阵,且 ABC = E ,则( )一定成立.
2. 设 A 和 B 为 n 阶方阵,则下列结论中(
, An =
.
4a13 4a33 = 4a23
.
学号
A


2
页 共
4

第三题 得分 三、计算(45 分):
签名
2.(10 分)解矩阵方程 AX = 2 X + B ,其中
− a1 0 0 1.(10 分)计算 n + 1 阶行列式 Dn +1 = L 0 1
经济、金融、国贸、 使用班级 经济、金融、国贸、保险 08 级 考核方式 闭卷笔试
班级 线
课程名称 线性代数
题号 得分 一 二 三
(A) CAB = E ;(B) ACB = E ;(C) CBA = E ;(D) BAC = E . 5. 设 A 是 m × n 矩阵,齐次线性方程 AX = 0 仅有零解的充要条件是 系数矩阵的秩 r ( A) ( ).
二、填空(3 分×10): 1. A 是 8 阶方阵,| A |= 8 ,则 AT = ,| 8 A |= _ _ ,

第一题 答案
1
2
3
4
5
得分
签名
A−1 = __
_
_, (8 A) −1 = ________ .
2
姓名
一、单项选择题(3 分×5): 1.设 α1 = (1,1, 0, 0), α 2 = (0, 0,1,1), α 3 = (1, 0,1, 0), α 4 = (1,1,1,1), 则它的极 大无关组是( 装 (A) ). (D)
解:
a1 −a2 0 L 0 1
0 a2 − a3 L 0 1
班级 线
L L L L L L
0 0 0 0 0 0 . L L − an an 1 1
3 0 0 3 6 A = 0 1 −1 , B = 1 1 . 0 1 4 2 −3
解:
姓名 学号 装

A


3
页 共
4

3.(10 分) 向量组 a1 = (1, −1, 0, 4) , a2 = (2,1, 5, 6) , a3 = (1, −1, −2, 0) ,
T T T
班级 线
x1 + x2 + 2 x3 + 3x4 = 1 x + 3x + 6 x + x = 3 1 2 3 4 4.(15 分) a 取何值时,线性方程组 的 T a4 = (3, 0, 7, k ) .当 k 为何值时,向量组 a1 , a2 , a3 , a4 线性相关?当线性相关 x1 + 5 x2 + 10 x3 − x4 = 5 3x1 + 5 x2 + 10 x3 + 7 x4 = a 时,求出的向量组的秩和一个极大无关组.
相关文档
最新文档