【步步高高考数学总复习】§ 4.1 任意角和弧度制及任意角的三角函数

合集下载

4.1 任意角、弧度制及任意角的三角函数

4.1 任意角、弧度制及任意角的三角函数
难点正本 疑点清源
1.对角概念的理解要准确
(1)不少同学往往容易把“小于 90° 的角”等同于“锐角”, 把 “0° ~ 90° 的角 ” 等同于 “ 第 一象限的角”.其实锐角的集 合是{α|0° <α<90° }, 第一象限角 的集合为 {α|k· 360° <α<k· 360° + 90° ,k∈Z}. (2)终边相同的角不一定相等, 相等的角终边一定相同,终边 相同的角的同一三角函数值 相等.
-8
解析
C
C C
基础知识
题型分类
思想方法练出高分题型分类 Nhomakorabea深度剖析
题型一
【例 1】
角的有关问题
(1)写出终边在直线 y= 3x
思维启迪 解析 探究提高
上的角的集合; 6π 角的终边相同, 7 θ 求在 [0,2π)内终边与 角的终边相同 3 (2)若角 θ 的终边与 的角; (3)已知角 α 是第一象限角,试确定 α 2α、 所在的象限. 2
题型二 三角函数的定义
思维启迪 解析 探究提高
【例 2】 已知角 α 的终边经过点 P(x, 3 - 2) ( x ≠ 0) ,且 cos α = x , 6 1 求 sin α+ 的值. tan α
先根据任意角的三角函数的 1 定义求 x,再求 sin α+ tan α 的值.
基础知识
题型分类
思想方法
思想方法 练出高分
基础知识·自主学习
要点梳理
(3)角度制和弧度制的互化:180° = 180 π ° π rad,1° = 180 rad,1 rad= π . r ,扇形的 (4)扇形的弧长公式:l= |α|· 1 1 2 lr = | α |· r 面积公式:S= 2 . 2

【步步高】高考数学(文)(人教)大一轮复习课件:第四章任意角、弧度制及任意角的三角函数

【步步高】高考数学(文)(人教)大一轮复习课件:第四章任意角、弧度制及任意角的三角函数

(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α 用集合可表示为______I__m __N __a _o _g ___e _____. 答案 解析
No Image
No Image
思I维mNa升og华e
(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出 与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值 来求得所需的角. (2)利用终边相同的角的集合S={β|β=2kπ+α,k∈Z}判断一个角β所在 的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的 和,然后判断角α的象限.
2.弧度制
(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号
rad表示,读作弧度.正角的弧度数是一个 正数 ,负角的弧度数是一个
负数 ,零角的弧度数是 0 .
π
180
(2)角度制和弧度制的互化:180°= π
rad,1°=180 rad,1 rad=
π
.
1 (3)扇形的弧长公式:l= |α|·r ,扇形的面积公式:S= 2lr =
12|α|·r2
.
3.任意角的三角函数
任意角α的终边与单位圆交于点P(x,y)时,sin α= y,cos α= x,tan α y
= x (x≠0).
三个三角函数的初步性质如下表:
三角 函数
定义域
第一象 第二象 第三象 第四象限 限符号 限符号 限符号 符号
sin α
_R__




cos α
_R__
Image
设圆半径为r,则圆内接正方形的对角线长为2r,
No Image
No Image

高考数学一轮复习 专题4.1 任意角和弧度制及任意角的

高考数学一轮复习 专题4.1 任意角和弧度制及任意角的

第01节 任意角和弧度制及任意角的三角函数【考纲解读】考 点 考纲内容5年统计分析预测 1.任意角的概念、弧度制了解角、角度制与弧度制的概念,掌握弧度与角度的换算.无1.三角函数的定义;2.扇形的面积、弧长及圆心角.3.备考重点: (1) 理解三角函数的定义;(2) 掌握扇形的弧长及面积计算公式.2.三角函数的定义 理解正弦函数、余弦函数、正切函数的定义.无【知识清单】1.象限角及终边相同的角 1.任意角、角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值l r与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度. 对点练习:下列与9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+94π(k ∈Z )C.k ·360°-315°(k ∈Z )D.kπ+5π4(k ∈Z )【答案】C.确.2.三角函数的定义1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=y x,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线对点练习:【河南省林州一中2017-2018上学期开学】已知角α终边经过点3122P ⎛⎫⎪ ⎪⎝⎭,则cos α=( ) A.123312±【答案】B【解析】由于31,2r OP x ===,所以由三角函数的定义可得3cos 2x r α==,应选答案B.3. 扇形的弧长及面积公式弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.对点练习:已知一扇形的圆心角为α,半径为R ,弧长为l. (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【答案】(1) 10π3(cm).(2)圆心角为12.(3)l =10,α=2.【解析】(1)α=60°=π3 rad ,∴l =α·R=π3×10=10π3(cm).【考点深度剖析】高考对任意角三角函数定义的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求学生深刻认识利用坐标法定义任意角三角函数的背景和目的.纵观近几年的高考试题,主要考查以下两个方面:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标.【重点难点突破】考点1 象限角及终边相同的角 【1-1】已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M=18045,,N=18045,24k k x x k x x k ⎧⎫⎧⎫=⨯+∈=⨯+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z o o o o ,判断两集合的关系.【答案】(1)β=-675°或β=-315°.(2)M N ⊆. 【解析】(1)所有与角α有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而M N ⊆.【1-2】若sin 0θ>且sin 20θ>,则角θ的终边所在象限是( ) A .第一象限 B .第二象限C .第三象限 D .第四象限【答案】A【1-3】终边在直线y =3x 上的角的集合为________. 【答案】{α|α=k π+π3,k ∈Z }【解析】终边在直线y =3x 上的角的集合为{α|α=k π+π3,k ∈Z }.【1-4】若角α是第二象限角,试确定α2,2α的终边所在位置.【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限.【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上.综上所述,2的终边在第一象限或第三象限. 【领悟技法】1.对与角α终边相同的角的一般形式α+k ·360°(k ∈Z )的理解;(1)k ∈Z;(2)α任意角;(3)终边相同的角不一定相等,但相等的角终边一定相同.2.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角3.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置 【触类旁通】【变式一】如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )【答案】C当t =0时,d =2,排除A 、D ;当t =π4时,d =0,排除B.考点2 三角函数的定义【2-1】已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114 B.114 C .-4 D .4【答案】C【解析】由题意可知,cos α=m m 2+9=-45, 又m <0,解得m =-4.【2-2】已知角α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫x ,32,则tan α=( ) A. 3B .± 3 C.33D .±33【答案】B【解析】由|OP |2=x 2+34=1,得x =±12,tan α=± 3.【2-3】已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1 B .2 C.12D. 2【答案】B【解析】根据已知条件得tan α=t 2+1t =t +1t≥2,当且仅当t =1时,tan α取得最小值2.【2-4】已知角α的终边上一点P 的坐标为⎝⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6B.2π3C.5π3D.11π6 【答案】D【领悟技法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【触类旁通】【变式一】已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A.【变式二】已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.【答案】0【解析】设α终边上任一点为P (k ,-3k ), 则r =k 2+-3k2=10|k |.当k >0时,r =10k , ∴sin α=-3k10k=-310,1cos α=10 k k =10,∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10,∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.考点3 扇形的弧长及面积公式【3-1】【2018届黑龙江省齐齐哈尔八中8月月考】若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm . 【答案】833π 【解析】画出图形,如图所示.设扇形的半径为rcm ,由sin60°=6r,得r=43cm , ∴l=n πr 180=2π3×43= 833π cm. 【3-2】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? 【答案】 当r =10,θ=2时,扇形面积最大【领悟技法】(1)弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.【触类旁通】【变式一】一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π3 B.2π3 C. 3 D. 2 【答案】C【变式二】一扇形的圆心角为120°,则此扇形的面积与其内切圆的面积之比为________. 【答案】(7+43)∶9【解析】设扇形半径为R ,内切圆半径为r .则(R -r )sin 60°=r , 即R =1+233r .又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=7+439πr 2,∴S 扇πr 2=7+439. 【易错试题常警惕】易错典例:已知角α的终边过点(,2)m m ,0m ≠,求角α的的正弦值、余弦值. 易错分析:学生在做题时容易遗忘0m <的情况. 正确解析:当0m <时,2555,sin ,cos r m αα=-=-=-; 当0m >时,2555,sin ,cos r m αα=-== 温馨提醒:本题主要考察了三角函数的定义以及分类讨论思想方法,这也是高考考查的一个重点.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。

高三数学一轮复习知识点专题4-1任意角和弧度制及任意角的三角函数

高三数学一轮复习知识点专题4-1任意角和弧度制及任意角的三角函数

高三数学一轮复习知识点专题专题专题4.1 任意角和弧度制及任意角的三角函数【考情分析】1.了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义. 【重点知识梳理】 知识点一 角的概念 1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类角的分类⎩⎪⎨⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧ 正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合:S ={β|β=α+k ·360°,k ∈Z}或{β|β=α+2k π,k ∈Z}.知识点二 弧度制及应用 1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.弧度制下的有关公式知识点三 任意角的三角函数有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线【典型题分析】高频考点一 象限角的判断【例1】(2020·新课标Ⅱ)若α为第四象限角,则( ) A. cos2α>0 B. cos2α<0C. sin2α>0D. sin2α<0【答案】D 【解析】当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误;当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确;【变式探究】(2020·黑龙江省宁安市一中模拟)设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅【答案】B【解析】由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B 。

高考数学一轮复习第四章三角函数解三角形4.1任意角蝗制及任意角的三角函数课件理

高考数学一轮复习第四章三角函数解三角形4.1任意角蝗制及任意角的三角函数课件理

(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α 用集合可表示为_(2_k_π_+__π4_,__2_k_π_+__56_π_)_(k_∈__Z__) . 答案 解析
在[0,2π)内,终边落在阴影部分角的集合为π4,56π, ∴所求角的集合为2kπ+4π,2kπ+56π(k∈Z).
弧度数是 答案 解析
π
π
A.3
B.6
C.-π3
D.-π6
将表的分针拨快应按顺时针方向旋转,为负角,故A、B不正确;
又因为拨快10分钟,故应转过的角为圆周的 1 . 6
即为-16×2π=-π3.
(2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为
π
π
A.6
B.3
C.3
D. 3
答案
解析
如图,等边三角形ABC是半径为r的圆O的内接三角形,
2.弧度制
(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号
rad表示,读作弧度.正角的弧度数是一个 正数 ,负角的弧度数是一个
负数 ,零角的弧度数是 0 .
π
180
(2)角度制和弧度制的互化:180°= π
rad,1°=180 rad,1 rad=

π

.
1 (3)扇形的弧长公式:l= |α|·r ,扇形的面积公式:S= 2lr =
②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的 弧度数. 解答
由题意知l+2r=20,即l=20-2r, S=12l·r=12(20-2r)·r=-(r-5)2+25, 当r=5时,S的最大值为25. 当 r=5 时,l=20-2×5=10,α=rl=2(rad). 即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad.

高考数学复习:任意角和弧度制及任意角的三角函数

高考数学复习:任意角和弧度制及任意角的三角函数

当m=- 5 时,r=2 2,点P的坐标为 ( 3, 5),
所以cos x 3 6 ,tan y 5 15 ,
r 22 4
x 3 3
综上可知,cos θ=- ,t6an θ=- 或c1o5 s θ=- , 6
2
2.若圆弧长度等于圆内接正方形的边长,则该圆弧所对
圆心角的弧度数为 ( )
A.
B.
C. 2
D. 2
4
2
2
【解析】选D.设圆的直径为2r,则圆内接正方形的边长 为 2r, 因为圆的圆弧长度等于该圆内接正方形的边长, 所以圆弧的长度为 2r, 所以圆心角弧度为 2r 2.
r
考点三 任意角三角函数的定义及应用 【明考点·知考法】
【典例】函数y= sin x 3 的定义域为________.
2
世纪金榜导学号
【解析】由题意可得sin x- ≥30,即sin x≥ .作 3
2
2
直线y= 3交单位圆于A,B两点,连接OA,OB,则OA与OB围
2
成的区域(图中阴影部分含边界)即为角x的终边的范围,
故满足条件的角x的集合为
{x|2k x 2k 2 , k Z}.
2
答案:6π
题组二:走进教材
1.(必修4P5T4改编)下列与 9 的终边相同的角的表达
4
式中正确的是 ( )
A.2kπ+45°(k∈Z) C.k·360°-315°(k∈Z)
B.k·360°+ 9 π(k∈Z)
4
D.kπ+ 5 (k∈Z)
4
【解析】选C.由定义知终边相同的角的表达式中不能
同时出现角度和弧度,应为 +2kπ或k·360°+45°

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A.(,)B.(π,)C.(,)D.(,)∪(π,)【答案】D【解析】由已知得,解得α∈(,)∪(π,).4.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.【答案】cosα=-1,tanα=0.【解析】r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.5.设集合M=,N={α|-π<α<π},则M∩N=________.【答案】【解析】由-π<<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.7. tan(-1 410°)的值为()A.B.-C.D.-【答案】A【解析】tan(-1 410°)=tan(-4×360°+30°)=tan 30°=8.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.9.在平面直角坐标系中,若角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点(其中)则的值为( )A.B.C.D.【答案】D【解析】,根据任意角的三角函数的定义得,,所以.【考点】任意角三角函数的定义.10.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值11.在平面直角坐标系中,已知角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点,则 .【答案】【解析】由任意角的三角函数的定义得:.【考点】任意角的三角函数的定义.12.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.13.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.14.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.15.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα=.【答案】.【解析】由题意及图所示,易知A点的横坐标为,所以.【考点】三角函数的定义.16.已知函数的定义域为[a,b],值域为[-2,1],则的值不可能是()A.B.C.D.【答案】C【解析】因的值域[-2,1]含最小值不含最大值,根据图象可知定义域小于一个周期,故选D.【考点】三角函数的定义域和值域.17.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.18.若,则角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第二或第四象限角【答案】D【解析】因为,则角是第二或第四象限角,选D19.点位于直角坐标面的A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,位于直角坐标面的第四象限,选D20.已知圆与轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则=( )A.B.C.D.【答案】B【解析】设与轴正半轴的夹角分别为则,21.已知动点在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是()A.[0, 4]B.[4,10]C.[10,12]D.[0,4]和[10,12]【答案】D【解析】解:设动点A与x轴正方向夹角为α,则t=0时α=π/ 3 ,每秒钟旋转π /6 ,在t∈[0,1]上α∈[π/ 3 ,π/ 2 ],在[7,12]上α∈[3π/ 2 ,7π /3 ],动点A的纵坐标y关于t都是单调递增的.故选D.22.曲线与坐标轴所围的面积是【答案】3【解析】据余弦函数的图象,23.已知,且在第二象限,那么在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:∵sinθ="3" /4 ,且θ在第二象限,∴cosθ=-/4,所以sin2θ=2sinθcosθ=-3/16Cos2θ=1-2sin2θ=-1/8故2θ在第三象限。

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎨⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限.[课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12 >0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A.3 B .-5 C.5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________. 解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案:39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4 <α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧ sin α-cos α>0,tan α>0,即⎩⎨⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0),所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15; 当a <0时,r =-5a ,sin θ+cos θ=-35+45=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin(cos θ)的符号为正.。

高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数

高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数

-23-
(2)由题意,得 sin x≥√23,作直线 y=√23交单位圆于 A,B 两点,连 接 OA,OB,则 OA 与 OB 围成的区域(图中阴影部分)即为角 x 的终
Байду номын сангаас
边的范围,故满足条件的角 x 的集合为
������
2������π
+
π 3

������
≤ 2������π +
2π 3
,������∈Z
考点1
考点2
考点3
-18-
(3)方法一(角的集合表示):
∵2kπ+π<α<2kπ+32π(k∈Z),
∴kπ+π2
<
������ 2
<kπ+34π
(k∈Z).

k=2n(n∈Z)时,2nπ+π2
<
������ 2
<2nπ+34π
,
������ 2
是第二象限角;
当 k=2n+1(n∈Z)时,2nπ+3π < ������<2nπ+7π , ������是第四象限角.
-12-
知识梳理 双基自测
12345
5.(教材例题改编P13例3)若角θ同时满足sin θ<0,且tan θ<0,则角θ
的终边一定落在第
象限.
关闭
由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半 轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边
.
思考角的终边在一条直线上与在一条射线上有什么不同?已知角

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考纲解读 1.通过角的变换,判断角所在象限;2.常见的角度与弧度之间的转化;3.已知角的终边求正弦、余弦、正切值;4.利用三角函数线求角的大小或角的范围;5.利用扇形面积公式和弧长公式进行相关计算.[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按逆时针方向旋转形成的角; ②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2k π,k ∈Z }. 2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角. (2)角α的弧度数公式:|α|=lr .(3)角度与弧度的换算:360°=2π rad,1°=π180 rad,1 rad =(180π)°≈57°18′.(4)扇形的弧长及面积公式: 弧长公式:l =α·r . 面积公式:S =12l ·r =12α·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数 sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α(其中k ∈Z ),即终边相同的角的同一三角函数的值相等.[三基自测]1.单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.9π10 D.10π9答案:D2.若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C3.弧长为3π、圆心角为34π的扇形半径为________.答案:44.(必修4·4.1例题改编)α终边上一点P (-3,4).则sin α=________,cos α=________,tan α=________.答案:45 -35 -435.(2017·高考全国卷Ⅰ改编)若α的终边过点(3,4),则cos ⎝⎛⎭⎫α-π4=__________. 答案:7210[考点例题]考点一 终边相同的角及象限角|易错突破高考总复习·数学(理)第三章 三角函数、解三角形[例1] (1)若角α满足α=2k π3+π6(k∈Z ),则α的终边一定在( )A .第一象限或第二象限或第三象限B .第一象限或第二象限或第四象限C .第一象限或第二象限或x 轴非正半轴上D .第一象限或第二象限或y 轴非正半轴上(2)已知sin α>0,cos α<0,则12α所在的象限是( )A .第一象限B .第三象限C .第一或第三象限D .第二或第四象限(3)下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )[解析] (1)由α=2k π3+π6,k ∈Z ,当k =0时,α=π6,终边在第一象限.当k =1时,α=2π3+π6=5π6,终边在第二象限.当k =-1时,α=-2π3+π6=-π2,终边在y 轴的非正半轴上,故选D.(2)因为sin α>0,cos α<0,所以α为第二象限角,即π2+2k π<α<π+2k π,k ∈Z ,则π4+k π<12α<π2+k π,k ∈Z .当k 为偶数时,12α为第一象限角;当k 为奇数时,12α为第三象限角,故选C.(3)由定义知终边相同的角中不能同时出现角度和弧度,应为π4+2k π或k ·360°+45°(k ∈Z ).[答案] (1)D (2)C (3)C [易错提醒][纠错训练]1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ), 则令-720°<45°+k ×360°<0°, 得-765°<k ×360°<-45°, 解得-765360<k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°2.终边在直线y =3x 上的角的集合为__________. 解析:在坐标系中画出直线y =3x , 可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x 上的角的集合为 ⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z .答案:⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z考点二 扇形弧长、面积公式的应用|方法突破[例2] (1)(2018·合肥模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?( )A .120B .240C .360D .480(2)(2018·太原模拟)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2 sin 1[解析] (1)由题意可得:S =12×8×30=120(平方步).(2)如图:∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而弧AB 的长为l =α·r =2sin 1.[答案] (1)A (2)C [方法提升][母题变式]将本例(1)改为已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:设半径为r ,圆心角的弧度数为θ, 由S =12θr 2,得8=12×θ×4,∴θ=4.答案:A考点三 三角函数的定义|模型突破角度1 用三角函数的定义求值[例3] (1)(2018·大同模拟)已知角α的终边经过点P (-x ,-6),且cos α=-513,则x的值为________.(2)已知角α的终边在直线y =-3x 上,则10sin α+3cos α的值为________. [解析] (1)∵cos α=-x(-x )2+(-6)2=-x x 2+36=-513,∴⎩⎪⎨⎪⎧x >0,x 2x 2+36=25169,解得x =52.(2)设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10kk=10, ∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10, ∴10sin α+3cos α=310-310=0.[答案] (1)52 (2)0[模型解法]角度2 三角函数值符号的判断[例4] (1)(2018·怀化模拟)sin 2·cos 3·tan 4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] (1)∵π2<2<3<π<4<32π.∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2·cos 3·tan 4<0.(2)由题意可得⎩⎪⎨⎪⎧ cos α<0,tan α<0,则⎩⎪⎨⎪⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.[答案] (1)A (2)B [模型解法]角度3 利用三角函数线比较大小,解不等式[例5] (1)(2018·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α[解析] 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.[答案] C (2)y =sin x -32的定义域为________. [解析] ∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] ⎩⎨⎧⎭⎬⎫x |2k π+π3≤x ≤2k π+2π3,k ∈Z[模型解法]形如sin α≥a 或sin α≤a ()a ∈[-1,1]的解,其关键点为: (1)作出sin α=a 的函数线;(2)根据不等式,确定α的转动方向; (3)写出α的区域.[高考类题](2014·高考大纲全国卷)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:∵b =cos 55°=sin 35°>sin 33°=a ,∴b >a . 又∵c =tan 35°=sin 35°cos 35°>sin 35°=cos 55°=b ,∴c >b .∴c >b >a .故选C. 答案:C[真题感悟]1.[考点一、二] (2014·高考新课标全国卷Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案:C2.[考点二、三](2017·高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=__________.解析:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).1答案:3。

高考数学一轮复习第四篇三角函数解三角形第1讲 任意角弧度制及任意角

高考数学一轮复习第四篇三角函数解三角形第1讲 任意角弧度制及任意角

卜人入州八九几市潮王学校第1讲任意角、弧度制及任意角的三角函数【2021年高考会这样考】1.考察三角函数的定义及应用.2.考察三角函数值符号确实定.【复习指导】从近几年的高考试题看,这局部的高考试题大多为教材例题或者习题的变形与创新,因此学习中要立足根底,抓好对局部概念的理解.根底梳理1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边一样的角终边与角α一样的角可写成α+k·360°(k∈Z).(3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=,l是以角α作为圆心角时所对圆弧的长,r为半径.③用“弧度〞做单位来度量角的制度叫做弧度制,比值与所取的r的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度.⑤弧长公式:l=|α|r,扇形面积公式:S扇形=lr=|α|r2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的间隔为r(r>0),那么角α的正弦、余弦、正切分别是:sinα=,cosα=,tanα=,它们都是以角为自变量,以比值为函数值的函数.3.三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M,那么点M是点P在x 轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),即P(cos_α,sin_α),其中cosα=OM,sinα=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或者其反向延长线相交于点T,那么tanα=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.(2)终边落在x轴上的角的集合{β|β=kπ,k∈Z};终边落在y轴上的角的集合;终边落在坐标轴上的角的集合可以表示为.两个技巧(1)在利用三角函数定义时,点P可取终边上任一点,如有可能那么取终边与单位圆的交点,|OP|=r一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=πrad进展互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(A教材习题改编)以下与的终边一样的角的表达式中正确的选项是().A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)解析与的终边一样的角可以写成2kπ+π(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.答案C2.假设α=k·180°+45°(k∈Z),那么α在().A.第一或者第三象限B.第一或者第二象限C.第二或者第四象限D.第三或者第四象限解析当k=2m+1(m∈Z)时,α=2m·180°+225°=m·360°+225°,故α为第三象限角;当k=2m(m∈Z)时,α=m·360°+45°,故α为第一象限角.答案A3.假设sinα<0且tanα>0,那么α是().A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析由sinα<0知α是第三、四象限或者y轴非正半轴上的角,由tanα>0知α是第一、三象限角.∴α是第三象限角.答案C4.角α的终边过点(-1,2),那么cosα的值是().A.-B.C.-D.-解析由三角函数的定义可知,r=,cosα==-.答案A5.(2021·)角θ的顶点为坐标原点,始边为x轴非负半轴,假设P(4,y)是角θ终边上一点,且sinθ=-,那么y=________.解析根据正弦值为负数且不为-1,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角,∴y<0,sinθ==-⇒y=-8.答案-8考向一角的集合表示及象限角的断定【例1】►(1)写出终边在直线y=x上的角的集合;(2)假设角θ的终边与角的终边一样,求在[0,2π)内终边与角的终边一样的角;(3)角α是第二象限角,试确定2α、所在的象限.[审题视点]利用终边一样的角进展表示及判断.解(1)在(0,π)内终边在直线y=x上的角是,∴终边在直线y=x上的角的集合为.(2)∵θ=+2kπ(k∈Z),∴=+(k∈Z).依题意0≤+<2π⇒-≤k<,k∈Z.∴k=0,1,2,即在[0,2π)内终边与一样的角为,,.(3)∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z.∴2k·360°+180°<2α<2k·360°+360°,k∈Z.∴2α是第三、第四象限角或者角的终边在y轴非正半轴上.∵k·180°+45°<<k·180°+90°,k∈Z,当k=2m(m∈Z)时,m·360°+45°<<m·360°+90°;当k=2m+1(m∈Z)时,m·360°+225°<<m·360°+270°;∴为第一或者第三象限角.(1)相等的角终边一定一样,但终边一样的角却不一定相等,终边一样的角有无数个,它们之间相差360°的整数倍.(2)角的集合的表示形式不是唯一的,如:终边在y轴非正半轴上的角的集合可以表示为,也可以表示为.【训练1】角α与角β的终边互为反向延长线,那么().A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D.α=k·360°±180°+β(k∈Z)解析对于角α与角β的终边互为反向延长线,那么α-β=k·360°±180°(k∈Z).∴α=k·360°±180°+β(k∈Z).答案D考向二三角函数的定义【例2】►角θ的终边经过点P(-,m)(m≠0)且sinθ=m,试判断角θ所在的象限,并求cosθ和tanθ的值.[审题视点]根据三角函数定义求m,再求cosθ和tanθ.解由题意得,r=,∴=m,∵m≠0,∴m=±,故角θ是第二或者第三象限角.当m=时,r=2,点P的坐标为(-,),角θ是第二象限角,∴cosθ===-,tanθ===-.当m=-时,r=2,点P的坐标为(-,-),角θ是第三象限角.∴cosθ===-,tan===.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P的位置无关.假设角α已经给出,那么无论点P选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练2】(2021·课标全国)角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,那么cos2θ=().A.-B.-C.D.解析取终边上一点(a,2a),a≠0,根据任意角的三角函数定义,可得cosθ=±,故cos2θ=2cos2θ-1=-.答案B考向三弧度制的应用【例3】►半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.[审题视点](1)由条件可得△AOB是等边三角形,可得圆心角α的值;(2)利用弧长公式可求得弧长,再利用扇形面积公式可得扇形面积,从而可求弓形的面积.解(1)由⊙O的半径r=10=AB,知△AOB是等边三角形,∴α=∠AOB=60°=.(2)由(1)可知α=,r=10,∴弧长l=α·r=×10=,∴S扇形=lr=××10=,而S△AOB=·AB·=×10×=,∴S=S扇形-S△AOB=50.弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要纯熟地掌握弧度制下扇形的弧长与面积公式.【训练3】扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?解设圆心角是θ,半径是r,那么2r+rθ=40,S=lr=r(40-2r)=r(20-r)≤2=100.当且仅当r=20-r,即r=10时,S max=100.∴当r=10,θ=2时,扇形面积最大,即半径为10,圆心角为2弧度时,扇形面积最大.考向四三角函数线及其应用【例4】►在单位圆中画出适宜以下条件的角α的终边的范围.并由此写出角α的集合:(1)sinα≥;(2)cosα≤-.[审题视点]作出满足sinα=,cosα=-的角的终边,然后根据条件确定角α终边的范围.解(1)作直线y=交单位圆于A、B两点,连接OA、OB,那么OA与OB围成的区域(图中阴影局部)即为角α的终边的范围,故满足条件的角α的集合为.(2)作直线x=-交单位圆于C、D两点,连接OC、OD,那么OC与OD围成的区域(图中阴影局部)即为角α终边的范围,故满足条件的角α的集合为.利用单位圆解三角不等式(组)的一般步骤是:(1)用边界值定出角的终边位置;(2)根据不等式(组)定出角的范围;(3)求交集,找单位圆中公一共的局部;(4)写出角的表达式.【训练4】求以下函数的定义域:(1)y=;(2)y=lg(3-4sin2x).解(1)∵2cos x-1≥0,∴cos x≥.由三角函数线画出x满足条件的终边范围(如图阴影局部所示).∴定义域为(k∈Z).(2)∵3-4sin2x>0,∴sin2x<,∴-<sin x<.利用三角函数线画出x满足条件的终边范围(如图阴影局部所示),∴定义域为(k∈Z).标准解答7——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P(不与原点重合)的坐标为(x,y),它到原点的间隔是r(r=>0),那么sinα=、cosα=、tanα=分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x,y的符号由α终边所在象限确定,r的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x,y,r的值;然后对于含参数问题要注意分类讨论.【例如】►(此题总分值是12分)(2021·月考)角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.只要确定了r的值即可确定角α经过的点P的坐标,即确定角α所在的象限,并可以根据三角函数的定义求出所要求的值.[解答示范]∵P(x,-)(x≠0),∴P到原点的间隔r=,(2分)又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.(6分)当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-;(9分)当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.(12分)当角的终边经过的点不固定时,需要进展分类讨论,特别是当角的终边在过坐标原点的一条直线上时,在根据三角函数定义求解三角函数值时,就要把这条直线看做两条射线,分别求解,实际上这时求的是两个角的三角函数值,这两个角相差2kπ+π(k∈Z),当求出了一种情况后也可以根据诱导公式求另一种情况.【试一试】角α的终边在直线3x+4y=0上,求sinα+cosα+tanα.[尝试解答]取直线3x+4y=0上的点P1(4,-3),那么|OP1|=5,那么sinα=-,cosα=,tanα=-,故sinα+cosα+tanα=-++×=-;取直线3x+4y=0上的点P2(-4,3),那么sinα=,cosα=-,tanα=-.故sinα+cosα+tanα=-+×=-.综上,sinα+cosα+tanα的值是-或者-.。

高考数学一轮复习任意角和弧度制、三角函数的概念

高考数学一轮复习任意角和弧度制、三角函数的概念

3.(忽视对参数的讨论)已知角α的终边过点P(-8m,6m)(m≠0),则sin α= ________.
解析:由题意得 x=-8m,y=6m,所以 r=10|m|. 当 m> 0 时,sin α=160mm=53; 当 m< 0 时,sin α=-61m0m=-53. 答案:35或-35
Ⅲ.微点知能的优化拓展 1.掌握 5 个常用结论 (1)若 α∈0,π2,则 tan α> α> sin α. (2)α,β终边相同⇔β=α+2kπ,k∈Z. (3)α,β终边关于x轴对称⇔β=-α+2kπ,k∈Z. (4)α,β终边关于y轴对称⇔β=π-α+2kπ,k∈Z. (5)α,β终边关于原点对称⇔β=π+α+2kπ,k∈Z.
数时,α2为第二象限角;当 k 为奇数时,α2为第四象限角,而 2α 的终 边落在第一、二象限或 y 轴的非负半轴上. 答案:二、四 第一、二象限或 y 轴的非负半轴上
[一“点”就过] 1.利用终边相同的角的集合求适合某些条件的角 先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参 数k赋值来求得所需的角.
限角,故 C 正确;-315°=-360°+45°,所以-315°是第一象
限角,故 D 正确,故选 B 、C 、D . 答案:B C D
3.集合α|kπ+π4≤α≤kπ+π2,k∈Z中的角所表示的范围(阴影部分)是( )
解析:当 k=2n(n∈Z )时,2nπ+π4≤α≤2nπ+π2,此时 α 表示的范围 与π4≤α≤π2表示的范围一样;当 k=2n+1(n∈Z )时,2nπ+π+π4 ≤α≤2nπ+π+π2,此时 α 表示的范围与π+π4≤α≤π+π2表示的范 围一样,故选 C . 答案:C
4.设集合 M=x|x=k2·180°+45°,k∈Z,N=x|x=k4·180°+45°,k∈Z,

新高考数学一轮复习教师用书:第4章 1 第1讲 任意角和弧度制及任意角的三角函数

新高考数学一轮复习教师用书:第4章 1 第1讲 任意角和弧度制及任意角的三角函数

知识点最新考纲任意角的概念与弧度制、任意角的三角函数了解角、角度制与弧度制的概念,掌握弧度与角度的换算.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.同角三角函数的基本关系式与诱导公式理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.两角和与差的正弦、余弦及正切公式掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.简单的三角恒等变换掌握简单的三角函数式的化简、求值及恒等式证明.函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用了解函数y=Asin(ωx+φ)的实际意义,掌握y=Asin(ωx +φ)的图象,了解参数A,ω,φ对函数图象变化的影响.正弦定理和余弦定理掌握正弦定理、余弦定理及其应用.第1讲任意角和弧度制及任意角的三角函数1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类按旋转方向正角按逆时针方向旋转而成的角负角按顺时针方向旋转而成的角零角射线没有旋转按终边位置前提:角的顶点在原点,始边与x轴的非负半轴重合按终边位置象限角角的终边在第几象限,这个角就是第几象限角其他角的终边落在坐标轴上={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式角α的弧度数公式 |α|=l r角度与弧度的换算1°=π180rad,1 rad =⎝ ⎛⎭⎪⎫180π°≈57°18′ 弧长公式 l =|α|r 扇形面积公式 S =12lr =12|α|r 23.任意角的三角函数三角函数正弦余弦正切定 义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx 叫做α的正切,记作tan α各象限符号Ⅰ 正 正 正 Ⅱ正 负 负 Ⅲ 负 负 正 Ⅳ 负正负口诀一全正,二正弦,三正切,四余弦三角 函数线有向线段MP 为正弦线,有向线段OM 为余弦线,有向线段AT 为正切线[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ) (2)角α的三角函数值与其终边上点P 的位置无关.( ) (3)不相等的角终边一定不相同.( ) (4)终边相同的角的同一三角函数值相等.( )(5)若α∈⎝⎛⎭⎪⎫0,π2,则ta n α>sin α.( )(6)若α为第一象限角,则sin α+cos α>1.( )答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√ [教材衍化]1.(必修4P10A 组T7改编)角-225°=________弧度,这个角在第________象限. 答案:-5π4二2.(必修4P15练习T2改编)设角θ的终边经过点P(4,-3),那么2cos θ-sin θ=________. 解析:由已知并结合三角函数的定义,得sin θ=-35,cos θ=45,所以2cos θ-sin θ=2×45-⎝ ⎛⎭⎪⎫-35=115.答案:1153.(必修4P10A 组T6改编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度. 答案:π3[易错纠偏](1)终边相同的角理解出错; (2)三角函数符号记忆不准;(3)求三角函数值不考虑终边所在象限.1.下列与9π4的终边相同的角的表达式中正确的是( )A .2k π-45°(k∈Z)B .k ·360°+94π(k∈Z)C .k ·360°-315°(k∈Z)D .k π+5π4(k∈Z)解析:选C.与9π4的终边相同的角可以写成2kπ+9π4(k∈Z),但是角度制与弧度制不能混用,所以只有C 正确.故选C.2.若sin α<0,且tan α>0,则α是第____象限角.解析:由sin α<0知α的终边在第三、第四象限或y 轴的负半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.答案:三3.已知角α的终边在直线y =-x 上,且cos α<0,则tan α=________. 解析:如图,由题意知,角α的终边在第二象限,在其上任取一点P(x,y),则y =-x,由三角函数的定义得tan α=y x =-xx=-1.答案:-1象限角及终边相同的角(1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α|α=2kπ-π3,k ∈ZB.⎩⎨⎧⎭⎬⎫α|α=2kπ+2π3,k ∈ZC.⎩⎨⎧⎭⎬⎫α|α=kπ-2π3,k ∈ZD.⎩⎨⎧⎭⎬⎫α|α=kπ-π3,k ∈Z(3)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.【解析】 (1)因为α是第二象限角,所以π2+2kπ<α<π+2kπ,k ∈Z,所以π4+kπ<α2<π2+kπ,k ∈Z.当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.(2)根据题意,角α的终边在直线y =-3x 上,α为第二象限角时,α=2π3+2kπ=(2k +1)π-π3,k ∈Z ;α为第四象限角时,α=5π3+2kπ=(2k +2)π-π3,k ∈Z ;综上,角α的取值集合是⎩⎨⎧⎭⎬⎫α|α=kπ-π3,k ∈Z .故选D.(3)如图,在坐标系中画出直线y =3x,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.【答案】 (1)C (2)D (3)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π(1)表示区间角集合的三个步骤(2)求θn 或nθ(n∈N *)所在象限(位置)的方法①将θ的范围用不等式(含有k)表示. ②两边同除以n 或乘以n.③对k 进行讨论,得到θn或nθ(n∈N *)所在的象限(位置).1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k×360°(k∈Z), 则令-720°≤45°+k×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k<-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315° 2.若sin α·tan α<0,且cos αtan α<0,则α是第________象限角. 解析:由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限角;由cos αtan α<0,可知cos α,tan α异号,从而α为第三或第四象限角.综上,α为第三象限角.答案:三扇形的弧长、面积公式已知扇形的圆心角是α ,半径为R,弧长为l. (1)若α=60°,R =10 cm,求扇形的弧长l ;(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【解】 (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,则l =20-2R,所以S =12lR =12(20-2R)R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25, 此时l =10 cm,α=2 rad.弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式是l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量. [提醒] 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度制.1.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:选A.设扇形的弧长为l,则12l ·2=8,即l =8,所以扇形的圆心角的弧度数为82=4.2.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r,则扇形的半径为2r 3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎫2r 32πr 2=527, 所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·23r2πr =518.答案:518三角函数的定义(高频考点)三角函数的定义是高考的常考内容,多以选择题、填空题的形式考查,难度较小.主要命题角度有: (1)利用三角函数定义求值; (2)判断三角函数值的符号; (3)利用三角函数线解三角不等式;(4)三角函数定义中的创新. 角度一 利用三角函数定义求值已知α是第二象限的角,其终边的一点为P(x,5),且cos α=24x,则tan α=( ) A.155 B.153 C .-155D .-153【解析】 因为α是第二象限的角,其终边上的一点为P(x,5),且cos α=24x,所以x <0,cos α=xx 2+5=24x,解得x =-3,所以tan α=5-3=-153. 【答案】 D角度二 判断三角函数值的符号若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0D .cos 2α>0【解析】 因为tan α>0,所以α∈⎝ ⎛⎭⎪⎫k π,k π+π2(k∈Z)是第一、三象限角. 所以sin α,cos α都可正、可负,排除A,B. 而2α∈(2kπ,2k π+π)(k∈Z), 结合正弦函数图象可知,C 正确.取α=π4,则tan α=1>0,而cos 2α=0,故D 不正确.【答案】 C角度三 利用三角函数线解不等式函数y =sin x -32的定义域为________. 【解析】 由题意,得sin x ≥32,作直线y =32交单位圆于A,B 两点,连接OA,OB,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .【答案】 ⎣⎢⎡⎦⎥⎤2k π+π3,2k π+2π3,k ∈Z 角度四 三角函数定义中的创新(2020·台州质检)如图所示,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )【解析】 因为P 0(2,-2),所以∠P 0Ox =-π4.因为角速度为1,所以按逆时针旋转时间t 后,得∠POP 0=t,所以∠POx=t -π4.由三角函数定义,知点P 的纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,因此d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.令t =0,则d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫-π4= 2. 当t =π4时,d =0,故选C.【答案】 C(1)定义法求三角函数值的三种情况①已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.②已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.③已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.(2)三角函数值的符号及角的位置的判断已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.[提醒] 若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).1.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( )A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D.设点P 的坐标为(x,y), 则由三角函数的定义得⎩⎪⎨⎪⎧sin π4=y 2,cos π4=x 2,即⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).2.已知角α的终边经过点P(-3,m),且sin α=34m (m≠0),则角α为第________象限角. 解析:依题意,点P 到原点O 的距离为 r = (-3)2+m 2=3+m 2, 所以sin α=m 3+m2,又因为sin α=34m,m ≠0, 所以m 3+m2=34m, 所以m 2=73,所以m =±213.所以点P 在第二或第三象限. 答案:二或三[基础题组练]1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C.设扇形的半径为r,弧长为l,则由扇形面积公式可得2=12lr =12r 2α=12r 2×4,求得r =1,l=αr=4,所以所求扇形的周长为2r +l =6.2.若角α与β的终边相同,则角α-β的终边( ) A .在x 轴的正半轴上 B .在x 轴的负半轴上 C .在y 轴的负半轴上 D .在y 轴的正半轴上 解析:选A.由于角α与β的终边相同,所以α=k·360°+β(k∈Z),从而α-β=k·360°(k∈Z),此时角α-β的终边在x 轴正半轴上. 3.已知角α的终边过点P(-8m,-6sin 30°),且cos α=-45,则m 的值为( )A .-12B.12 C .-32D.32解析:选B.因为r =64m 2+9, 所以cos α=-8m64m 2+9=-45, 所以m >0,所以4m 264m 2+9=125,因此m =12.4.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k =2n 时,2n π+π4≤α≤2n π+π2(n∈Z),此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2(n∈Z),此时α的终边和π+π4≤α≤π+π2的终边一样.故选C.5.已知角α=2k π-π5(k∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( ) A .1 B .-1 C .3 D .-3解析:选B.由α=2k π-π5(k∈Z)及终边相同的概念知,角α的终边在第四象限, 又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.故选B.6.已知圆O 与直线l 相切于点A,点P,Q 同时从点A 出发,P 沿直线l 匀速向右,Q沿圆周按逆时针方向以相同的速率运动,当点Q 运动到如图所示的位置时,点P 也停止运动,连接OQ,OP,则阴影部分的面积S 1,S 2的大小关系是( )A .S 1≥S 2B .S 1≤S 2C .S 1=S 2D .先S 1<S 2,再S 1=S 2,最后S 1>S 2解析:选C.因为圆O 与直线l 相切,所以OA⊥AP ,所以S 扇形AOQ =12·AQ ︵·r =12·AQ ︵·OA,S △AOP =12OA ·AP,因为AQ ︵=AP, 所以S 扇形AOQ =S △AOP ,即S 扇形AOQ -S 扇形AOB =S △AOP -S 扇形AOB ,则S 1=S 2.故选C.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A,点A 的纵坐标为45,则cos α=________. 解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35. 答案:-358.已知点P(sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.解析:因为点P(sin θcos θ,2cos θ)位于第三象限,所以sin θcos θ<0,2cos θ<0,即⎩⎪⎨⎪⎧sin θ>0,cos θ<0,所以θ为第二象限角. 答案:二9.函数y =2cos x -1的定义域为________.解析:因为2cos x -1≥0,所以cos x ≥12. 由三角函数线画出x 满足条件的终边的范围(如图阴影部分所示).所以x∈[2kπ-π3,2k π+π3](k∈Z). 答案:⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k∈Z) 10.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________. 解析:因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3. 答案:⎩⎨⎧⎭⎬⎫-π3,5π3 11.已知角θ的终边上有一点P(x,-1)(x≠0),且tan θ=-x,求sin θ+cos θ的值. 解:因为θ的终边过点(x,-1)(x≠0),所以tan θ=-1x. 又tan θ=-x,所以x 2=1,即x =±1. 当x =1时,sin θ=-22,cos θ=22. 因此sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.12.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.解:设扇形AOB 的半径为r,弧长为l,圆心角为α,(1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6, 所以α=l r =23或α=l r=6. (2)因为2r +l =8,所以S 扇=12lr =14l ·2r ≤14(l +2r 2)2=14×(82)2=4, 当且仅当2r =l,即α=l r=2时,扇形面积取得最大值4.所以圆心角α=2,弦长AB =2sin 1×2=4sin 1.[综合题组练]1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( ) A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C.如图所示,作出角α的正弦线MP,余弦线OM,正切线AT,观察可得,AT >OM >MP,故有sin α<cos α<tan α.2.已知θ∈[0,π),若对任意的x∈[-1,0],不等式x 2cos θ+(x +1)2sin θ+x 2+x>0恒成立,则实数θ的取值范围是( )A.⎝⎛⎭⎪⎫π12,5π12 B.⎝ ⎛⎭⎪⎫π6,π4 C.⎝ ⎛⎭⎪⎫π4,3π4 D.⎝ ⎛⎭⎪⎫π6,5π6 解析:选A.由题意知,令f(x)=(cos θ+sin θ+1)·x 2+(2sin θ+1)x +sin θ>0,因为cos θ+sin θ+1≠0,所以f(x)>0在[-1,0]上恒成立,只需满足⎩⎪⎨⎪⎧f (-1)>0f (0)>0f ⎝ ⎛⎭⎪⎫-2sin θ+12(1+cos θ+sin θ)>0⇒⎩⎪⎨⎪⎧cos θ>0sin θ>0sin 2θ>12⇒ θ∈⎝ ⎛⎭⎪⎫π12,5π12,故选A. 3.若两个圆心角相同的扇形的面积之比为1∶4,则这两个扇形的周长之比为________.解析:设两个扇形的圆心角的弧度数为α,半径分别为r,R(其中r <R),则12αr 212αR 2=14,所以r∶R=1∶2,两个扇形的周长之比为2r +αr 2R +αR=1∶2. 答案:1∶24.已知x∈R ,则使sin x>cos x 成立的x 的取值范围是________.解析:在[0,2π]区间内,由三角函数线可知,当x∈(π4,5π4)时,sin x>cos x,所以在(-∞,+∞)上使sin x>cos x 成立的x 的取值范围是(2k π+π4,2k π+5π4),k ∈Z. 答案:(2k π+π4,2k π+5π4),k ∈Z 5.若角θ的终边过点P(-4a,3a )(a≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P(-4a,3a )(a≠0),所以x =-4a,y =3a,r =5|a|,当a >0时,r =5a,sin θ+cos θ=-15. 当a <0时,r =-5a,sin θ+cos θ=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎪⎫0,π2, cos θ=-45∈⎝ ⎛⎭⎪⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝ ⎛⎭⎪⎫-45<0; 当a <0时,sin θ=-35∈⎝ ⎛⎭⎪⎫-π2,0, cos θ=45∈⎝⎛⎭⎪⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝ ⎛⎭⎪⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin (cos θ)的符号为正.6.设α为锐角,求证:1<sin α+cos α<π2. 证明:如图,在平面直角坐标系中作出单位圆,设角α的终边为OP,过P 作PQ 垂直x 轴于Q,PR 垂直y 轴于R,则sin α=QP,cos α=OQ. 因为α为锐角,在△OPQ 中,QP +OQ>OP,所以sin α+cos α>1.①而S △OPB =12OB ·RP =12cos α, S △OAP =12OA ·QP =12sin α, S 扇形OAB =12×1×π2=π4. 又因为四边形OAPB 被扇形OAB 覆盖,所以S △OPB +S △OAP <S 扇形OAB ,即sin α+cos α<π2.② 由①,②得1<sin α+cos α<π2.。

高考数学一轮复习任意角和弧度制及任意角的三角函数

高考数学一轮复习任意角和弧度制及任意角的三角函数

(1)若 α=60° ,R=10 cm,求扇形的弧长及该弧所在弓形 的面积; (2)若扇形的周长是一定值 C(C>0),当 α 为多少弧度时, 该扇形有最大面积?
ቤተ መጻሕፍቲ ባይዱ
[分析]
(1)直接套用公式 l=αR 可求弧长,利用 S 弓=S 扇
-S△可求弓形面积. (2)将 S 扇表示为 α 的函数,转化为函数求最大值问题.
[答案] B
[解析] 边相同.
)
B.k· 360° +250° ,k∈Z D.k· 360° +270° ,k∈Z
由于 610° =360° +250° ,所以 610° 与 250° 角的终
4.(文)(教材改编题)已知 cosθ· tanθ<0,那么角 θ 是( A.第一或第二象限角 C.第三或第四象限角 B.第二或第三象限角 D.第一或第四象限角
)
[答案] C
[解析]
当角 α 的终边在 x 轴上时,可表示为 k· 180° ,k
∈Z.当角 α 的终边在 y 轴上时,可表示为 k· 180° +90° ,k∈Z. ∴当角 α 的终边在坐标轴上时,可表示为 k· 90° ,k∈Z.
(理)设角 α 终边上一点 P(-4a,3a)(a<0),则 sinα 的值为 ( ) 3 A. 5 4 C.5 3 B.- 5 4 D.-5
)
[答案] C
[解析]
∵cosθ· tanθ<0,
∴sinθ<0 且 cosθ≠0,即 θ 是第三或第四象限角.
3π (理)若-π>θ>- ,则点(tanθ,sinθ)在( 2 A.第一象限 B.第二象限 C.第三象限 D.第四象限
)
[答案] B
[解析] 易知 θ 在第二象限,则 tanθ<0,sinθ>0.

4.1任意角和弧度制及任意角的三角函数课件高三数学一轮复习

4.1任意角和弧度制及任意角的三角函数课件高三数学一轮复习

课堂考点突破
——精析考题 提升能力
考点一 角的概念及其表示 【题组练透】 1.与-2022°终边相同的最小正角是__1_3_8_°___.
【解析】 ∵-2022°=-6×360°+138°,∴138°与-2022°终边相同,又终边相同的 两个角相差 360°的整数倍,∴在[0°,360°]上只有 138°与-2022°终边相同,∴与-2022° 终边相同的最小正角是 138°.
6.设角 α 终边上一点 P(-4a,3a)(a<0),则 sinα 的值为__-__35____.
【解析】 由 x=-4a,y=3a,知 r= x2+y2= -4a2+3a2=5|a|. 又 a<0,所以 r=-5a.所以 sinα=yr=-3a5a=-35.
易错点睛:(1)注意终边落在直线上的角的表示方法. (2)三角函数推广的定义中,一定要注意 r=|OP|>0.
综上可知,5sinα+5cosα+4tanα=-4 或 5sinα+5cosα+4tanα=-2.
角度 2:三角函数值符号的判断
【例 3】 (1)若α为第四象限角,则( D )
A.cos2α>0 B.cos2α<0
C.sin2α>0
D.sin2α<0
(2)sin2cos3tan4 的值( C )
A.小于 0
【解析】 (1)由|OP|2=14+y2=1,得 y2=34,y=± 23.当 y= 23时,sinα= 23,tanα=
- 3,此时,sinα·tanα=-32.当 y=- 23时,sinα=- 23,tanα= 3,此时,sinα·tanα=- 32.所以 sinα·tanα=-32.故选 C.
第四章 三角函数、解三角形

高考数学一轮总复习 4.1 任意角和弧制及任意角的三角函数精品课件 理 新人教版

高考数学一轮总复习 4.1 任意角和弧制及任意角的三角函数精品课件 理 新人教版

定义
弦,记作 sin α,即 sin
α=y
x
叫做 α 的余
弦,记作 cos α,即
cos α=x
y
x
y
作 tan α,即 tan α= (x≠0)
x
















口诀
一全正,二正弦,三正切,四余弦
第七页,共31页。
叫做 α 的正切,记
梳理(shūlǐ)
自测
三角函数
终边相同
的角的三
“锐角”的范围为{α|0°<α<90°}.
第五页,共31页。
梳理
(shūlǐ)自

2.弧度制
(1)弧度制
长度等于
半径
长的弧所对的圆心角叫做 1 弧度的角,以
弧度
作为单位来度量角的制度叫做弧度制.
(2)角度与弧度之间的换算
360°=
π
2π rad,180°= π rad,1°=180 rad,1 rad=
A.第一或第三象限
B.第一或第二象限
C.第二或第四象限
D.第三或第四象限
关闭
当 k 为奇数时,α 在第三象限;当 k 为偶数时,α 在第一象限.
关闭
A
解析
解析
考点(kǎo diǎn)一
考点(kǎo diǎn)二
考点(kǎo
diǎn)三
第十六页,共31页。
误区警示
答案
(dá àn)
答案
探究
(tànjiū)突
3
π

π
2

21版:§4.1 任意角、弧度制及任意角的三角函数(步步高)

21版:§4.1 任意角、弧度制及任意角的三角函数(步步高)

§4.1 任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义. 考查三角函数定义的应用及三角函数的化简与求值,常与向量、三角恒等变换相结合.考查中渗透分类讨论思想和数形结合思想,题型以选择题为主,低档难度.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(3)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180rad ,1 rad =⎝⎛⎭⎫180π°.(3)扇形的弧长公式:l =α·r ,扇形的面积公式:S =12lr =12α·r 2.其中r 是半径,α(0<α<2π)为弧所对圆心角. 3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数 定义域第一象限符号第二象限符号 第三象限符号 第四象限符号 sin α R + + - - cos α R+ - - + tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过点A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限符号为正的规律. 提示 一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示 设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × )(4)若α为第一象限角,则sin α+cos α>1.( √ ) 题组二 教材改编2.一条弦的长等于半径,这条弦所对的圆心角大小为____弧度. 答案 π33.若角α的终边经过点Q ⎝⎛⎭⎫-22,22,则sin α=____,cos α=________. 答案22 -22题组三 易错自纠4.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C. 5.已知角θ的顶点与原点重合,始边与x 轴非负半轴重合,若A (-1,y )是角θ终边上的一点,且sin θ=-31010,则y =________.答案 -3解析 因为sin θ=-31010<0,A (-1,y )是角θ终边上一点,所以y <0,由三角函数的定义,得y y 2+1=-31010.解得y =-3.6.函数y =2cos x -1的定义域为__________________. 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是 ( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z ) D.k π+5π4(k ∈Z )答案 C解析 与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z )或k ·360°+45°(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4·180°+45°,k ∈Z ,那么( )A.M =NB.M ⊆NC.N ⊆MD.M ∩N =∅ 答案 B解析 由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为______________________. 答案 ⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π解析 如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.4.若角α是第二象限角,则α2是第________象限角.答案 一或三解析 ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角. 综上,α2是第一或第三象限角.思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk 的终边所在位置.弧度制及其应用例1 一扇形的圆心角为α,半径为R ,弧长为l .已知α=π3,R =10 cm ,求扇形的面积.解 由已知得α=π3,R =10 cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).若本例条件不变,求扇形的弧长及该弧所在弓形的面积.解 l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形 =12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2). 若本例已知条件改为:“扇形周长为20 cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解 由已知得,l +2R =20,则l =20-2R (0<R <10). 所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5 cm 时,S 取得最大值25 cm 2,此时l =10 cm ,α=2 rad. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1 (1)(2019·杭州第二中学模拟)若扇形的面积为3π8、半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π16 答案 B解析 设扇形的圆心角为α,∵扇形的面积为3π8、半径为1,∴3π8=12α·12,∴α=3π4. (2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为________. 答案3解析 如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r , 设弧长为l ,则l =3r , ∴所求圆心角α=l r =3rr= 3.三角函数的概念命题点1 三角函数定义的应用例2 (1)已知角α的终边与单位圆的交点为P ⎝⎛⎭⎫-12,y ,则sin α·tan α等于( ) A.-33 B.±33 C.-32 D.±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0, 综上可知,θ2为第二象限角.命题点2 三角函数线例3 (1)函数y =lg(2sin x -1)+1-2cos x 的定义域为________. 答案 ⎣⎡⎭⎫2k π+π3,2k π+5π6(k ∈Z ) 解析 要使原函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6(k ∈Z ). (2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是_______.答案 sin α<cos α<tan α解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出角α终边的位置.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 跟踪训练2 (1)(2019·临沂月考)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12B.-32C.12D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9, 所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0, 所以m =12.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是( ) A.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,πC.⎝⎛⎭⎫π4,5π4D.⎝⎛⎭⎫π4,π∪⎝⎛⎭⎫5π4,3π2答案 C解析 当x ∈⎣⎡⎭⎫π2,π时,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ∈⎝⎛⎦⎤0,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当x ∈⎝⎛⎭⎫π4,π2时,如图, OB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈⎣⎡⎭⎫π,5π4时,sin x >cos x ;当x ∈⎣⎡⎭⎫5π4,2π时,sin x ≤cos x ,故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档