初中数学最新-概率初步课后练习2 精品
人教版九年级数学上册 第二十五章概率初步25.3 用频率估计概率 课后练习
人教版九年级数学上册第二十五章概率初步25.3 用频率估计概率课后练习一、选择题1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同2.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③4.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m5.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16B.18C.20D.226.设a,b是两个任意独立的一位正整数, 则点(a,b)在抛物线y=ax2-bx上方的概率是( )A.1181B.1381C.1781D.19817.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8 B.9 C.10 D.128.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x2﹣2x+a﹣2与x轴有交点,且关于x的分式方程11222axx x-+=--有解的概率为()A.12B.13C.56D.169.从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组53(2)x ax x-≤⎧⎨--⎩<无解,且关于x的分式方程1322x ax x--=--有整数解的概率为()A.15B.25C.35D.4510.从-3,1,-2这三个数中,任选两个数的积作为k的值,则使正比例函数y=kx的图象经过第二、四象限的概率是( )A.13B.12C.16D.23二、填空题11.去游泳馆游泳,要换拖鞋,如果鞋柜里只剩下尺码相同的4双红色的鞋和3双蓝色的鞋混合放在一起,闭上眼睛随意拿出2只,它们正好是一双的概率为_________.12.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程2322x m mx x++=--有正实数解的概率为________.13.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.14.一种游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,无奖金,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是____.15.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.三、解答题16.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x ,y ,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y 低于0.4的有 人;②将20名患者的指标x 的平均数记作1x ,方差记作21s ,20名非患者的指标x 的平均数记作2x ,方差记作22s ,则1x 2x ,21s 22s (填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有 人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.17.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天需求量与当天本地最高气温有关.为了制定今年六月份的订购计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数),等数据统计如下:以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须力100的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶的利润最大?19.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中白棋子的数量.20.[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)21.小晶和小红玩掷骰子游戏,每人将一个各面分别标有1、2、3、4、5、6的正方体骰子掷一次,把两个人掷得的点数相加,并约定‘点数之和等于6,小晶赢,点数之和等于7,小红赢,点数之和是其他数,两人不分胜负’,问,他们两人谁获胜的概率大,请你用“画树形图”的方法加以说明。
人教版七年级数学下《概率练习》习题
人教版七年级数学下《概率练习》习题
1. 骰子的概率问题
- 问题:如果我们掷一颗六面的普通骰子,那么掷到数字4的
概率是多少?
- 解答:普通骰子有六个面,每个面上的数字分别是1、2、3、4、5、6。
因此,掷到数字4的概率是1/6。
2. 抽取彩球的概率问题
- 问题:一个箱子里有10个彩球,其中3个红色,4个蓝色,3个绿色。
如果我们从箱子中随机抽取一个球,那么抽到红色球的概
率是多少?
- 解答:总共有10个球,其中3个是红色的。
因此,抽到红色
球的概率是3/10。
3. 一个魔术师的把戏
- 问题:一个魔术师手中有10张牌,其中4张是红色的,6张
是蓝色的。
他让观众从中选一张牌,然后重新洗牌,最后再由观众
自己将选中的牌找出来。
在观众重新洗牌之前,魔术师有没有可能
知道观众选中的牌是哪一张?
- 解答:魔术师手中有10张牌,观众只选中其中一张。
因此,
魔术师在观众重新洗牌之前不可能知道观众选中的是哪张牌。
4. 抽奖的概率问题
- 问题:在一个抽奖活动中,一个人购买了5张彩票,总共有100张彩票参与抽奖。
那么这个人中奖的概率是多少?
- 解答:这个人购买了5张彩票,总共有100张彩票参与抽奖。
因此,这个人中奖的概率是5/100,或者可以简化为1/20。
以上是《概率练习》中的一些习题及其解答。
希望对你的学习
有所帮助!。
人教版九年级数学下册 概率初步测试习题及答案
专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A .25%B .50%C .75%D .85%3.(贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( ) A.110 B.15 C.310 D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.16 6.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝⎛⎭⎫23,32,⎝⎛⎭⎫-5,-15,从中随机选取一个点,在反比例函数y =1x图象上的概率是________. 10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x+a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a ,1-x ≤2a 有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格: 事件A 必然事件 随机事件m 的值 ________ ________(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x ,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取4吗?请用列表法或画树状图法说明理由;如果x 的值不可以取4,请写出一个符合要求的x 的值.参考答案1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16. 17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 23 2 3 3 3 5 35 2 5 3 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
沪科版数学 九年级下册 第26章 概率初步 课后练习题
一、单选题1. 下列事件是随机事件的是()A.太阳从西边升起B.任意画一个三角形,其内角和一定是C.内错角相等D.袋中有6个黑球和2个白球,摸一次一定摸到红球2. 下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.若某篮球运动员投篮投中的概率为0.5,则他投10次一定可投中5次C.投掷一枚硬币正面朝上是随机事件D.明天太阳从东方升起是随机事件3. 在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球.从口袋中任意摸出一个球是红球的概率是:【】A.B.C.D.4. 在-2,,,这4个数中随机选择2个数,至少有一个无理数的概率是().A.B.C.D.5. 下列事件,是必然事件的是()A.投掷一枚硬币,向上一面是正面B.射击一次,击中靶心C.天气热了,新冠病毒就消失了D.任意画一个多边形,其外角和是360°二、填空题6. 如图,正方形的边长为2,分别以正方形的四条边为直径向内做半圆,随机向正方形内投一粒米,则米粒落在阴影部分的概率为________________.7. 在五个完全相同的小球上分别写上1,2,3,4,5这五个数字,然后装入一个不透明的口袋内觉匀,从口袋内随机取出一个球,记下数字后放回袋中搅匀,然后再从口袋中随机取出一个球,记下数字,则两次取到的球上的数字相同的概率是_____.8. 有4张卡片(形状、大小、质地都相同),上面分别画有下列图形:①平行四边形;②菱形;③矩形;④正方形;将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是______.三、解答题9. 已知直线∥,点A,B,C在直线上,点E,F,G在直线上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线上的概率.10. 在一个不透明的口袋中有三个完全相同的小球,小明把它们分别标号-1,0,1.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用画树状图的方法表示两次摸出小球上的标号的所有结果.(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.(3)如果小明随机摸出一个小球记下标号后不放回,再从中随机摸出一个小球记下标号.试用列表法求出两次摸出的小球标号之和为0的概率.11. 某市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶,为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机调查部分学生;根据调查结果,绘制了如图所示的两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次共调查了多少名学生?扇形统计图中“灰”所在扇形的圆心角的度数是多少度?(2)将条形统计图补充完整;(3)若该校有2400名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;(4)王老师计划从A,B,C,D四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图或列表法求出恰好抽中A,B两人的概率.。
人教版九年级数学上册 第二十五章 概率初步 25.1.2 概率 课后练习
人教版九年级数学上册第二十五章概率初步25.1.2 概率课后练习一、选择题1.下列说法正确的是()A.“打开电视机,正在播世界杯足球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.24,乙组数据的方差S甲2=0.03,则乙组数据比甲组数据稳定2.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( )A.13B.12C.14D.153.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是().A.从甲箱摸到黑球的概率较大B.从乙箱摸到黑球的概率较大C.从甲、乙两箱摸到黑球的概率相等D.无法比较从甲、乙两箱摸到黑球的概率4.在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国”四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为()A.23B.58C.34D.9165.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟不落在花圃上的概率为()A.1936B.12C.1736D.17326.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()A.1B.14C.12D.347.下列说法中,正确的是( )A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D.“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.8.如图,在ABC中,D是线段AB上的点,且:1:2AD BD=,F是线段BC上的点,DE BC,FE BA.小亮同学随机在ABC内部区域投针,则针扎到DEF(阴影)区域内的概率是,,A.13B.29C.518D.499.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x2﹣2x+a﹣2与x轴有交点,且关于x的分式方程11222axx x-+=--有解的概率为()A .12B .13C .56D .1610.从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a ,若a 使得关于x 的不等式组053(2)x a x x -≤⎧⎨--⎩<无解,且关于x 的分式方程1322x a x x--=--有整数解的概率为( ) A .15 B .25 C .35 D .45二、填空题11.现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2202a x x -+=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为______. 12.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC 和BD 的菱形,使不规则区域落在菱形内,其中AC=8m ,BD=4m ,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m 2.13.为了庆祝“六一儿童节”,育才初一年级同学在班会课进行了趣味活动,小舟同学在模板上画出一个菱形ABCD ,将它以点O 为中心按顺时针方向分别旋转90°,180°,270°后得到如图所示的图形,其中120ABC ∠=︒,AB =,然后小舟将此图形制作成一个靶子,那么当我们投飞镖时命中阴影部分的概率为______.14.如图,已知平行四边形ABCD ,过A 做AH CD ⊥于点H ,8,4AB AH ==,若在平行四边形内取一点,则该点到平行四边形的四个顶点的距离均不小于1的概率为_______.15.如图,以扇形AOB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为()2,0,45AOB∠=.现从3112,,1,,0,222----中随机选取一个数记为a,则a的值既使得抛物线212y x a=+与扇形AOB的边界有公共点,又使得关于x的方程112axx+=--的解是正数的概率是________.三、解答题16.在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的数量分别应是多少?17.如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转).(1)转动转盘,求转出的数字大于3的概率;(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别作为三条线段的长度,求这三条线段能构成三角形的概率.18.为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图:请根据以上信息,解答下列问题(1)这次接受调查的家长总人数为________人;(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少.19.为了缓解新冠病毒疫情带来的影响,某商场设立了一个可以自由转动的转盘吸引顾客,并规定:顾客每购买100元商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券.(转盘等分成16个扇形),如果冲冲的妈妈购物120元.(1)她获得购物券的概率是多少?(2)冲冲的妈妈获得100元、50元、20元购物券的概率分别是多少?20.我们来定义下面两种数:(一)平方和数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=(最左边数)2+(最右边数)2,我们就称该整数为平方和数.例如:对于整数251.它中间的数字是5,最左边数是2,最右边数是1.222+1=5∴,251是一个平方和数又例如:对于整数3254,它的中间数是25,最左边数是3,最右边数是4,223+4=25∴,3254是一个平方和数.当然152和4253这两个数也是平方和数;(二)双倍积数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=2⨯最左边数⨯最右边数,我们就称该整数为双倍积数.例如:对于整数163,它的中间数是6,最左边数是1,最右边数是3,⨯⨯∴,是一个双倍积数,213=6163又例如:对于整数3305,它的中间数是30,最左边数是3,最右边数是5,,是一个双倍积数,当然361和5303这两个数也是双倍积数.235=303305⨯⨯∴注意:在下面的问题中,我们统一用字母a 表示一个整数分拆出来的最左边数,用字母b 表示该整数分拆出来的最右边数,请根据上述定义完成下面问题:(1)①若一个三位整数为平方和数,且十位数为4,则该三位数为________;②若一个三位整数为双倍积数,且十位数字为 6 ,则该三位数为_________;③若一个整数既为平方和数,又是双倍积数,则,a b 应满足的数量关系为_______;(2)若565a b (即这是个最左边数为a ,中间数为565,最右边数为b 的整数,以下类同)是一个平方和数, 276a b 是一个双倍积数,求22a b 的值.(3)从所有三位整数中任选一个数为双倍积数的概率.21.一堆彩球有红、黄两种颜色,首先数出的50个球中有49个红球,以后每数出8个球中都有7个红球,一直数到最后8个球,正好数完,在已经数出的球中红球的数目不少于90,,,1)这堆球的数目最多有多少个?,2)在(1)的情况下,从这堆彩球中任取两个球,恰好为一红一黄的概率有多大?22.A,B 两人做游戏,掷一枚硬币,若正面出现则A 得1分,反面出现则B 得1分,先得10分者获胜,胜者获得全部赌金,现在A 已得8分,B 已得7分,而游戏因故中断,问赌金应如何分配才合理?23.写出下列事件发生的可能性,并标在图中的大致位置上.(1)袋中有10个红球,摸到红球;(2)袋中有10个红球,摸到白球;(3)一副混合均匀的扑克牌(除去大、小王),从中任意抽取一张,这一张恰好是A ;(4)一个布袋中有2个黑球和2个白球,从中任意摸出一个球,恰好是黑球;(5)任意掷出一个质地均匀的骰子(每个面上分别标有数字1,2,3,4,5,6),朝上一面的数字大于2.【参考答案】1.D 2.A 3.B 4.B 5.A 6.D 7.A 8.B 9.A 10.A11.1612.4.13.214.132π-15.1616.(1)12,33 ;(2) 5个和2 个 17.(1)23;(2)5618.(1)200;(2)36°;(3)1519.(1)她获得购物券的概率=716;(2)冲冲的妈妈获得100元、50元、20元的概率分别为116、18、14. 20.(1)①240;②361或163;③a b =;(2) 493±;(3)17900 21.,1,210个(2,0.1822.赌金按照11:5来分23.(1)1(2)0(3)113(4)12(5)23。
概率练习题(打印版)初中
概率练习题(打印版)初中一、单项选择题(每题3分,共30分)1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.5B. 0.6C. 0.8D. 0.42. 如果一个事件的概率为0.3,那么这个事件是:A. 必然事件B. 不可能事件C. 随机事件D. 确定事件3. 抛一枚公平硬币两次,两次都是正面朝上的概率是多少?A. 0.25B. 0.5C. 0.75D. 0.1254. 一个袋子里有10个球,其中3个是白球,7个是黑球。
随机抽取一个球,抽到黑球的概率是:A. 0.3B. 0.7C. 0.25D. 0.55. 一个骰子有6个面,每个面上的点数分别为1到6。
掷一次骰子,掷出3的概率是多少?A. 0.2B. 0.25C. 0.3D. 0.56. 一个袋子里有4个红球和6个黄球,随机抽取两个球,两个都是红球的概率是多少?A. 0.05B. 0.1C. 0.2D. 0.37. 一个袋子里有5个球,其中2个是白球,3个是黑球。
随机抽取一个球,抽到白球的概率是:A. 0.4B. 0.33C. 0.25D. 0.28. 一个袋子里有8个球,其中4个是红球,4个是蓝球。
随机抽取两个球,两个都是红球的概率是多少?A. 0.0625B. 0.125C. 0.25D. 0.59. 一个袋子里有3个红球和2个蓝球,随机抽取一个球,抽到蓝球的概率是:A. 0.25B. 0.33C. 0.4D. 0.610. 一个袋子里有7个球,其中4个是白球,3个是黑球。
随机抽取一个球,抽到黑球的概率是:A. 0.3B. 0.4C. 0.5D. 0.6二、填空题(每题4分,共20分)1. 如果一个事件的概率是0.6,那么这个事件的对立事件的概率是____。
2. 一个袋子里有5个红球和5个蓝球,随机抽取一个球,抽到红球的概率是____。
3. 抛一枚公平硬币三次,至少一次正面朝上的概率是____。
4. 一个袋子里有10个球,其中6个是白球,4个是黑球。
初中概率练习题及答案
初中概率练习题及答案一、选择题(每题2分,共10分)1. 一个袋子里有10个红球和5个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 2/3C. 3/5D. 5/152. 掷一枚均匀的硬币,连续掷两次,出现两次正面朝上的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/163. 有5个学生参加数学竞赛,其中3个是男生,2个是女生。
随机选2名学生,选到至少1名女生的概率是多少?A. 1/5B. 2/5C. 3/5D. 4/5二、填空题(每题2分,共10分)4. 一个班级有30名学生,其中15名男生和15名女生。
如果随机选一名学生作为班长,那么选到男生的概率是________。
5. 一个骰子有6个面,每个面出现的概率相同。
掷一次骰子,得到偶数点数的概率是________。
6. 一个盒子里有3个白球和2个黑球,随机抽取2个球,抽到一个白球和一个黑球的概率是________。
三、计算题(每题5分,共15分)7. 一个袋子里有3个红球和2个绿球,如果随机抽取2个球,求抽到一个红球和一个绿球的概率。
8. 一个班级有40名学生,其中有20名男生和20名女生。
如果随机选3名学生参加学校的活动,求至少有1名男生的概率。
四、解答题(每题10分,共20分)9. 一个袋子里有7个白球和3个黑球。
如果随机抽取3个球,求抽到至少2个白球的概率。
10. 一个班级有50名学生,其中25名男生和25名女生。
如果随机选5名学生组成一个小组,求这个小组中恰好有3名男生的概率。
答案:1. C2. C3. C4. 15/30 = 1/25. 3/6 = 1/26. (3C1 * 2C1) / 5C2 = 6/10 = 3/57. (3C1 * 2C1) / 5C2 = 6/10 = 3/58. 1 - (20C3 / 40C3) = 1 - (1190 / 3838) ≈ 0.6979. (7C2 * 3C1 + 7C3) / 10C3 = (21 + 35) / 120 = 56/120 = 7/1510. (25C3 * 25C2) / 50C5 = 2300 / 2118760 ≈ 0.108。
初中概率练习题及答案
初中概率练习题及答案初中概率练习题及答案概率是数学中的一个重要概念,它描述了某个事件发生的可能性。
在初中数学中,概率是一个重要的章节,涉及到了一系列的概念和计算方法。
下面,我们将介绍一些常见的初中概率练习题,并提供相应的答案。
1. 一个骰子有6个面,分别标有1、2、3、4、5、6。
如果将骰子掷一次,求出现奇数的概率是多少?答案:骰子的总面数为6,其中奇数的面有3个,即1、3、5。
所以,出现奇数的概率为3/6=1/2。
2. 一副扑克牌共有52张牌,其中红桃有13张。
如果从中随机抽取一张牌,求抽到红桃的概率是多少?答案:扑克牌共有52张,其中红桃有13张。
所以,抽到红桃的概率为13/52=1/4。
3. 有一个装有8个红球和4个蓝球的盒子,从中随机抽取一球,求抽到红球的概率是多少?答案:盒子中共有8个红球和4个蓝球,所以一共有12个球。
抽到红球的概率为8/12=2/3。
4. 有一个装有5个红球、3个蓝球和2个绿球的盒子,从中连续抽取两个球,求第一个球是红球,第二个球是蓝球的概率是多少?答案:第一个球是红球的概率为5/10=1/2。
在第一个球是红球的情况下,第二个球是蓝球的概率为3/9=1/3。
所以,第一个球是红球,第二个球是蓝球的概率为(1/2)×(1/3)=1/6。
5. 有一个装有4个红球和6个蓝球的盒子A,另一个装有5个红球和5个蓝球的盒子B。
现在随机选择一个盒子,再从选中的盒子中随机抽取一球,求抽到红球的概率是多少?答案:选择盒子A的概率为1/2,选择盒子B的概率也为1/2。
在选择盒子A 的情况下,抽到红球的概率为4/10=2/5。
在选择盒子B的情况下,抽到红球的概率为5/10=1/2。
所以,抽到红球的概率为(1/2)×(2/5)+(1/2)×(1/2)=9/20。
通过以上的练习题,我们可以看到,在计算概率时,需要先确定事件的总数和有利结果的数量,然后将有利结果的数量除以总数,得到概率值。
初中概率练习题及答案
初中概率练习题及答案概率是数学中一个重要的概念,也是统计学的基础。
理解概率可以帮助我们更好地分析和解释事件发生的可能性。
本文将为大家提供一些初中阶段常见的概率练习题及答案,并对解题思路进行详细解析。
题目一:一副标准扑克牌有52张牌,其中有4种花色:黑桃、红桃、梅花、方块。
每种花色都由13张牌组成。
现从中随机抽取一张牌,求抽到黑桃或红桃的概率。
解析:首先,我们需要计算总的样本空间。
一副标准扑克牌有52张牌,所以总的样本空间为52。
接下来,我们需要计算有利事件的个数。
黑桃有13张牌,红桃也有13张牌,所以有利事件的个数为13 + 13 = 26。
最后,我们可以计算概率。
概率等于有利事件的个数除以总的样本空间的个数,即26/52 = 1/2。
所以,抽到黑桃或红桃的概率为1/2。
题目二:某班级有30名学生,其中有15名男生和15名女生。
现从中随机抽取一名学生,求抽到男生的概率。
解析:与题目一类似,我们可以先计算总的样本空间。
班级中共有30名学生,所以总的样本空间为30。
接下来,我们需要计算有利事件的个数。
班级中有15名男生,所以有利事件的个数为15。
最后,我们可以计算概率。
概率等于有利事件的个数除以总的样本空间的个数,即15/30 = 1/2。
所以,抽到男生的概率为1/2。
题目三:一枚硬币被抛掷3次,求出现两次正面的概率。
解析:首先,我们需要计算总的样本空间。
一枚硬币被抛掷3次,每次抛掷都有两种可能的结果:正面或反面。
所以总的样本空间为2 * 2 * 2 = 8。
接下来,我们需要计算有利事件的个数。
出现两次正面共有3种情况:正正反、正反正、反正正。
所以有利事件的个数为3。
最后,我们可以计算概率。
概率等于有利事件的个数除以总的样本空间的个数,即3/8。
所以,出现两次正面的概率为3/8。
通过以上三个例题,我们可以看到计算概率的基本思路:确定总的样本空间、确定有利事件的个数,然后计算概率。
在实际运用中,还可以通过列举样本空间来帮助计算,或者利用排列组合的知识来简化计算过程。
24概率初步二每课一练(新人教版九年级上)
学科:数学专题:概率初步(二)重难点易错点解析频率概率.题一题面:对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(2)该厂生产乒乓球优等品的概率约为多少?金题精讲题一题面:为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.用频率估计概率满分冲刺题一题面:为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:(2)请设计另一种标记的方法,使得估计更加精准.用频率估计概率题二题面:小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内画出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:用频率估计概率、几何概型题三题面:地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?用频率估计概率思维拓展题一像投针实验一样,用通过概率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo method).题二另一个有趣的概率问题:关于蒙蒂霍尔问题:汽车与羊的概率.讲义参考答案重难点易错点解析题一答案:(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9.金题精讲题一答案:200满分冲刺题一答案:(1)先求有标记数与总条数的比得池塘鱼数条,估计可能不太准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.题二答案:随实验次数的增加,可以看出石子落在⊙O内(含⊙O上)的频率趋近0.5,有理由相信⊙O面积会占封闭图形ABC面积的一半,所以求出封闭图形ABC的面积为2π..题三答案:如图,当所抛圆碟的圆心在图中边框内(宽为5cm)部分时,圆碟将与地砖间的间隙相交,因此所求概率等于一块正方形地砖内的边框部分和该正方形的面积比,结果为.思维拓展题一(有趣的故事)题二(有趣的故事)。
中考试题概率初步(一)课后练习二及详解.docx
学科:数学专题:概率初步(一)重难点易错点解析题一:题面:下列说法正确的是()A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定.B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生.C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大.D、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法.金题精讲题一:题面:分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.B.C.D.满分冲刺题一:题面:为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是()A.袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率.B.用计算器随机地取不大于10的正整数,计算取得奇数的概率.C.随机掷一枚质地均匀的硬币,计算正面朝上的概率.D.如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率.题二:题面:要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A.23B.13C.12D.16题三:题面:有三张正面分别标有数字-2,3, 4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.16课后练习详解重难点易错点解析题一:答案:C.详解:根据方差的意义,概率的意义,调查方法的选择逐一作出判断:A、两名同学5次成绩的平均分相同,则方差较小的同学成绩更稳定,故本选项错误;B、某班选出两名同学参加校演讲比赛,结果不一定是一名男生和一名女生,故本选项错误;C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大,故本选项正确;D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故本选项错误.故选C.金题精讲题一:答案:B.详解:用是负数的卡片数除以总卡片数即为所求的概率,即可选出:∵五张卡片分别标有0,-1,-2,1,3五个数,数字为负数的卡片有2张,∴从中随机抽取一张卡片数字为负数的概率为.故选B.满分冲刺题一:答案:D.详解:分析每个试验的概率后,与原来掷一个质地均匀的骰子的概率比较即可:A、袋中装有1个红球一个绿球,它们除颜色外都相同,随机摸出红球的概率是12,故本选项正确;B、用计算器随机地取不大于10的正整数,取得奇数的概率是12,故本选项正确;C、随机掷一枚质地均匀的硬币,正面朝上的概率是12,故本选项正确;D、将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,指针指向甲的概率是13,故本选项错误.题二:答案:B.详解:因为从小强、小红和小华三人中随机选两人作为旗手,共有小强和小红、小强和小华.小红和小华三种情况,小强和小红同时入选只有一种情况,所以小强和小红同时入选的概率是13.故选B.题三:答案:C.详解:根据题意画出树状图或列表,然后由图表求得所有等可能的结果与两次抽取的卡片上的数字之积为正偶数的情况,再利用概率公式求解即可求得答案:画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21=63.故选C.初中数学试卷鼎尚图文**整理制作。
七年级下册概率初步练习题(初级)(2021年整理)
七年级下册概率初步练习题(初级)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级下册概率初步练习题(初级)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级下册概率初步练习题(初级)(word版可编辑修改)的全部内容。
七年级下册概率初步练习题姓名:1.书包里有数学书3本、英语书2本、语文书5本,从中任意抽取一本,则是数学书的概率是( ). A.110 B.35 C.310D.15 2.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ).A .0。
05B .0。
5C .0。
95D .953.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21B .31C .51D .101 4.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______; (2)摸到红球的概率等于______;(3)摸到绿球的概率等于______; (4)摸到白球或红球的概率等于______;(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).5.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.6.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱。
通过大量反复试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ).A .12B .9C .4D .37.从某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是( ). A.32 B.35 C.23 D.258.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是( ).A 。
精品K12学习华师大版九年级数学下册课后练习:概率初步(二)+课后练习一及详解
学科:数学专题:概率初步(二)重难点易错点解析题一:题面:绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽的概率估计值是()A.0.96 B.0.95 C.0.94 D.0.90金题精讲题一:题面:一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6 B.10 C.18 D.20满分冲刺题一:题面:某地区为了估计该地区梅花鹿的数量,先捕捉了10只梅花鹿给它们做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉30只梅花鹿,发现其中5只有标记,从而估计这个地区的梅花鹿约有()只题二:题面:向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于()A.16B.14C.38D.58题三:题面:小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD 的两边AD.BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A.B.C.D.课后练习详解重难点易错点解析题一: 答案:B .详解:根据概率的意义,在一定条件下,重复做n 次试验,n A 为n 次试验中事件A 发生的次数,如果随着n 逐渐增大,频率n A /n 逐渐稳定在某一数值p 附近,则数值p 称为事件A 在该条件下发生的概率,概率是反映事件发生机会的大小的概念.因此试验次数越多,越接近概率估计值.因此,绿豆发芽的概率估计值是0.95.故选B . 金题精讲 题一: 答案:D .详解:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解:由题意可得,6n×100%=30%,解得,n =20(个).故选D .满分冲刺 题一: 答案:x =60详解:设这个地区的梅花鹿约有x 只,则10:x =5:30 解之得,x =60 题二: 答案:C .详解:求出阴影部分的面积与三角形的面积的比值即可解答: ∵阴影部分的面积与三角形的面积的比值是63168, ∴扔沙包1次击中阴影区域的概率等于38.故选C . 题三: 答案:C .详解:∵1S=S2ABFE ABFE四边形内阴影部分四边形,1S=S2DCFE DCFE 四边形内阴影部分四边形∴1S=S2ABCD阴影部分矩形.∴飞镖落在阴影部分的概率是12.故选C.。
中考试题概率初步(二)课后练习二及详解.docx
学科:数学专题:概率初步(二)主讲教师:黄炜北京四中数学教师重难点易错点解析题一:题面:对某工厂生产的大批同类产品进行合格率检查,分别抽取5件、10件、60件、150件、600件、900件、1200件、1800件,检查结果如下表所示:抽取的件数/n 5 10 60 150 600 900 1200 1800合格件数/m 5 8 53 131 542 820 1091 163.1合格频率(m/n) 1 0.8 0.883 0.873 0.913 0.911 0.909 0.906求该厂产品的合格率.金题精讲题一:题面:藏羚羊是国家保护动物,某地区为估计该地区藏羚羊的只数,先捕捉20只给它们分别作上记号然后放还,带有标记的羚羊完全混合于羊群后,第二次捕捉40只,发现其中有2只有标记.从而估计这个地区有藏羚羊只.满分冲刺题一:题面:生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为只.题二:题面:用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.14B.34C.13D.12题三:题面:向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.2319π- B.16C.3312π- D.15课后练习详解重难点易错点解析题一:答案:90%.详解:从上表的数据可看到,当抽取件数(即重复试验次数)n越大,“一件产品合格”事件发生的频率m n就越接近常数0.9,所以“一件产品合格”的概率约为0.9,我们通常说该厂产品的合格率为90%.金题精讲题一:答案:400.详解:通过样本去估计总体,总体百分比约等于样本百分比.40÷(2÷20)=40÷10%=400只.故答案为400.满分冲刺题一:答案:10000只.详解:重新捕获500只,其中带标记的有5只,可以知道,在样本中,有标记的占到5500.而在总体中,有标记的共有100只,根据比例即可解答.100÷5500=10000只.故答案为:10000.题二:答案:D.详解:由于第二个转盘不等分,所以首先将第二个转盘中的蓝色部分等分成两部分,然后画树状图,由树状图求得所有等可能的结果与可配成紫色的情况,再利用概率公式即可求得答案:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得:∵共有6种等可能的结果,可配成紫色的有3种情况,∴可配成紫色的概率是:31=62.故选D .题三:答案:A .详解:如图,设正六边形的边长为a ,则正六边形可由六个与△ABO 全等的等边三角形组成,△ABO 的边长也为a ,高32BH a =,面积为234a .正六边形的面积为2332a .阴影区域的面积为六个扇形(半径为a ,圆心角为600)面积减去六个上述等边三角形面积,即222()333360636022a a a ππ⋅-=⋅⋅-.∴飞镖插在阴影区域的概率为2233()22133332a a ππ-=-.故选A .初中数学试卷鼎尚图文**整理制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:数学
专题:概率初步(二)
主讲教师:黄炜北京四中数学教师
重难点易错点解析
题一:
题面:绿豆在相同条件下的发芽试验,结果如下表所示:
则绿豆发芽的概率估计值是()
A.0.96 B. 0.95 C.0.94 D.0.90
金题精讲
题一:
题面:一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()
A.6 B.10 C.18 D.20
满分冲刺
题一:
题面:某地区为了估计该地区梅花鹿的数量,先捕捉了10只梅花鹿给它们做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉30只梅花鹿,发现其中5只有标记,从而估计这个地区的梅花鹿约有()只
题二:
题面:向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔
沙包1次击中阴影区域的概率等于()
A.1
6 B.1
4
C.3
8
D.5
8
题三:
题面:小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD 的两边AD.BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()
A. B. C. D.
课后练习详解
重难点易错点解析
题一:
答案:B.
详解:根据概率的意义,在一定条件下,重复做n次试验,n A为n次试验中事件A发生的次数,如果随着n逐渐增大,频率n A/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,概率是反映事件发生机会的大小的概念.因此试验次数越多,越接近概率估计值.因此,绿豆发芽的概率估计值是0.95.故选B.
金题精讲
题一:
答案:D.
详解:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解: 由题意可得,6
n
×100%=30%,解得,n =20(个).故选D .
满分冲刺 题一:
答案:x =60
详解:设这个地区的梅花鹿约有x 只,则10:x =5:30 解之得,x =60
题二:
答案:C .
详解:求出阴影部分的面积与三角形的面积的比值即可解答: ∵阴影部分的面积与三角形的面积的比值是
63168
, ∴扔沙包1次击中阴影区域的概率等于3
8
.故选C .
题三:
答案:C .
详解:∵1S =S 2ABFE ABFE 四边形内阴影部分四边形, 1
S =S 2DCFE DCFE 四边形内阴影部分四边形 ∴1S =S 2ABCD
阴影部分矩形. ∴飞镖落在阴影部分的概率是1
2
.故选C .。