弹簧类问题
弹簧问题
弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
弹簧类型题
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
弹簧问题专项复习及练习题(含详细解答)
高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。
问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。
2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。
弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。
有些问题要结合简谐运动的特点求解。
4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。
它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。
规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。
当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。
系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。
(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。
在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。
物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。
弹簧类系列问题 Microsoft Word 文档
弹簧类系列问题轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,,引起足够重视.(一)弹簧类问题的分类1、弹簧的瞬时问题:弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题:这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k•△x来求解。
3、弹簧的非平衡问题:这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、弹力做功与动量、能量的综合问题:在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
(二)弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk =-(½kx22-½kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=½kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.例1、如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴紧),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为()例2如图3-5-2所示,倾角为30°的光滑杆上套有一个小球和两根轻质弹簧a 、b ,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态,设拔去销钉M 瞬间,小球的加速度大小为6m/s 2,若不拔去销钉M ,而拔去销钉N 瞬间,小球的加速度是(g 取10m/s 2)( ) A .11m/s 2,沿杆向上 B .11m/s 2,沿杆向下 C .1m/s 2, 沿杆向上 D .1m/s 2, 沿杆向下例3、如图示,倾角30°的光滑斜面上,并排放着质量分别是m A =10kg 和m B =2kg 的A 、B 两物块,一个劲度系数k=400N/m 的轻弹簧一端与物块B 相连,另一端与固定挡板相连,整个系统处于静止状态,现对A 施加一沿斜面向上的力F ,使物块A 沿斜面向上作匀加速运动,已知力 F 在前0.2s 内为变力,0.2s 后为恒力,g 取10m/s 2 , 求F 的最大值和最小值。
有关弹簧问题的分析与计算
跟踪练习: 1.如图所示,在一粗糙水平面上有两个质量分别为 m1 和 m2 的木块 1 和 2,中间用一原长为 L、劲度系数为 K 的轻弹 簧连结起来,木块与地面间的动摩擦因数为 μ。现用一水平力向右拉木块 2,当两木块一起匀速运动时,两木块之间的距离 是:( )
A.
B.
C.
D.
2.如图所示,质量分别为 mA 和 mB 的 A 和 B 两球用轻弹簧连接,A 球用细绳悬挂起来,两球均处于静止状态,如果 将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加速度各是多少?
C.aA=g, aB=-g D.aA=-g,aB=
图 3-2-5
10.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小球,电梯中有质量为 50kg 的乘客如图 3-2-3 所示,在电 梯运行时乘客发现轻质弹簧的伸长量是电梯静止时的一半,这一现象表明 ( ) A.电梯此时可能正以 1m/s2 的加速度大小加速上升,也可能是以 1m/s2 加速大小减速上升 B. 的加速度大小加速下降 C.电梯此时可能正以 5m/s2 的加速度大小加速上升,也可能是以 5m/s2 大小的加速度大小减速下降 D.不论电梯此时是上升还是下降,加速还是减速,乘客对电梯地板的压力大小一定是 250N
〖例 8〗如图所示,原长分别为 L1=0.1m 和 L2=0.2m、劲度系数分别为 k1=100N/m 和 k2=200N/m 的轻质弹簧竖直悬挂 在天花板上。两弹簧之间有一质量为 m1=0.2kg 的物体,最下端挂着质量为 m2=0.1kg 的另一物体,整个装置处于静止状态。 g=10N/kg。问:若用一个质量为 M 的平板把下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两弹簧的原长之 和,求这时平板施加给下面物体 m2 的支持力多大?
机械能守恒定律 弹簧类问题
1、如图所示,轻弹簧k 一端与墙相连,处于自然状态,质量为4kg 的滑块沿光滑水平面以5m/s 的速度运动并开始压缩弹簧,求弹簧的最大弹性势能及滑块被弹回速度增大到3m/s 时弹簧的弹性势能。
2、如图所示,质量为m =2kg 的小球系在轻弹簧一端,另一端固定在悬点O 点处,将弹簧拉至水平位置A 处(弹簧无形变)由静止释放,小球到达距O 点下方h 处的B 点时速度为2 m/s .求小球从A 运动到B 的过程中弹簧弹力做的功(h =0.5 m).
3、一个质量m =0.20kg 的小球系于轻质弹簧的一端,且套在光滑竖立的圆环上,弹簧的上端固定于环的最高点A ,环的半径R =0.5m ,弹簧的原长L 0=0.5m ,劲度系数为4.8N/m ,如图10所示,若小球从图中所示位置B 点由静止开始滑动到最低点C 时,弹簧的弹性势能E p 弹=0.6J ,求
(1)小球到C 点时的速度vc 的大小。
(2)小球在C
点对环的作用力。
(g=10m/s 2)
A B C O R m 图10 60° h
4、如下图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B
点,第二次将物体先拉到C点,再回到B点.则这两次过程
中( )
A.重力势能改变量相等
B.弹簧的弹性势能改变量相等
C.摩擦力对物体做的功相等
D.弹簧弹力对物体做功相等。
4力学中弹簧类问题
4、力学中弹簧类问题高一物理精英一、基本概念:力、重力、弹力、摩擦力二、类型:静力学中的弹簧问题。
2 、动力学中的弹簧问题在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防以偏概全.有关弹簧问题的动力学问题中,同学们应注意以下几个问题:一是因弹簧的弹力是变力,物体在弹簧弹力(通常还要考虑物体的重力)作用下做变加速运动,这类问题的动态情景分析是解答这类问题的关键.二是要注意弹簧是弹性体,形变的发生和恢复都需要一定的时间,即弹簧的弹力不能突变.三是要注意弹簧问题的多解性.在某一作用瞬间弹力会保持不变。
在较长过程中弹力是变力,弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度发生变化。
三、典型例析1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.2、如图所示,在光滑水平面上有两个质量分别为m1和m2的物体A、B,m1>m2,A、B间水平连接着一轻质弹簧测力计.若用大小为F的水平力向右拉B,稳定后B的加速度大小为a1,弹簧测力计示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧测力计示数为F2.则以下关系式正确的是()A.a= a2,F1> F2B.a1= a2,F1< F2C.a1< a2,F1= F2D.a1> a2,F1> F23、如图所示,a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状4、如图所示,重力为G的质点M与三根相同的轻质弹簧相连,静止时,相邻两弹簧间的夹角均为120 ,已知弹簧A、B对质点的作用力均为2G,则弹簧C对质点的作用力大小可能为()A.2GB.GC.0D.3G四、绳与弹簧产生力的区别①绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此模型处理。
高考物理培优讲堂 弹簧类问题
常见弹簧类问题归类剖析一、“轻弹簧”类问题簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.【例1】如图1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【12F F a m-= 1F 】二、质量不可忽略的弹簧【例2】如图2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【x xT F L=】三、弹簧长度的变化问题(胡克定律的理解与应用)F k x ∆=∆ 弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例3】如图3所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【221221()m m m g k + 21121211()()m m m g k k ++】四、与物体平衡相关的弹簧问题【例4】(山东卷)如图所示,用完全相同的轻弹簧A 、B 、C 将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o,弹簧C 水平,则弹簧A 、C 的伸长量之比为 A .4:3 B.3:4 C. 1:2 D. 2:1五、与动力学相关的弹簧问题【例5】如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( )A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下六、弹簧弹力瞬时问题(弹簧的弹力不能突变)【例6】如图6所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是Aa =与B a=【,1.5g 】图2图1图 3【例7】一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,弹力与形变量的关系如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少?【 k 1=100N/m k 2=200N/m) 】八、弹簧形变量可以代表物体的位移【例8】如图8所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【()sin A B A F m m g a m θ-+= ()sin AB m m g d kθ+=】九、最大转速和最小转速问题【例9】 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为Ffm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?【12πk L F m L L fm ∆∆++()和12πk L F m L L fm ∆∆-+()】拓展:若盘面光滑,弹簧的原长为L0,当盘以W 匀角速度转动时,弹簧的伸长量为多少?【)(02x L mw x k ∆+=∆】十、弹力变化的运动过程分析(弹簧振子振动模型)【例10】如图10所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?(此问自主招生选做)【答案】022gx32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.图 8图 10两物体分离之前加速度与速度均相同,刚分离时二者之间弹力为零。
动量能量---弹簧类问题
我成功,因为我志在成功!一:形变量相同时,弹性势能相同1.如图所示,质量mB =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k =100N /m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA =1.6kg 的小球A 连接。
已知直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°。
初始时使小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的张力F 为45N 。
已知AO1=0.5m ,重力加速度g 取10m /s2,绳子不可伸长.现将小球A 从静止释放,则:(1)在释放小球A 之前弹簧的形变量;(2)若直线CO1与杆垂直,求物体A 运动到C 点的过程中绳子拉力对物体A 所做的功;(3)求小球A 运动到底端D 点时的速度。
二.两过程代换2.(20分)如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水 平地面上,弹簧的劲度系数为k ,木块A 和木块B 的质量均为m.(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高 度时,木块B 将离开水平地面.(2)若弹簧的劲度系数k 是未知的,将一物块C 从A 的正上方某位 置处无初速释放与A 相碰后,立即粘在一起(不再分离)向下运动,它 们到达最低点后又向上运动。
已知C 的质量为m 时,把它从距A 高H 处释放,则最终能使B 刚好要离开地面。
若C 的质量为2m,要使B 始终不离开地面,则释放时,C 距A 的高度h 不能超过多少? 三、完全压紧不能再压缩:3、如图6-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v0. (1)求弹簧所释放的势能ΔE.(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE ′是多少? (3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为2v0,A 的初速度v 应为多大?变式:如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为mA=1kg ,mB=1kg ,mC=2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失).现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在B 、C 之间的弹簧第一次恢复到原长时追上B ,并且与B 发生碰撞后粘在一起.求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值.四、弹簧中的临界问题:4、多过程分析(11分)在赛车场上,为了安全起见,在车道外围一定距离处一般都放有废旧的轮胎组成的围栏。
弹簧问题类型含答案
弹簧问题类型轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。
动量之弹簧类问题
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
弹簧类问题
弹簧类问题一、弹簧弹力大小问题弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能的)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
证明如下:以轻弹簧为对象,设两端受到的弹力分别为F1、F2,根据牛顿第二定律,F1+F2=ma,由于m=0,因此F1+F2=0,即F1.F2一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)例1.质量分别为m和2m的小球P、Q用细线相连,P用轻弹簧悬挂在天花板下,开始系统处于静止。
下列说法中正确的是:A.若突然剪断细线,则剪断瞬间P、Q的加速度大小均为gB.若突然剪断细线,则剪断瞬间P、Q的加速度大小分别为0和gC.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小均为gD.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小分别为3g和0分析与解:剪断细线瞬间,细线拉力突然变为零,弹簧对P的拉力仍为3mg竖直向上,因此剪断瞬间P的加速度为向上2g,而Q的加速度为向下g;剪断弹簧瞬间,弹簧弹力突然变为零,细线对P、Q的拉力也立即变为零,因此P、Q的加速度均为竖直向下,大小均为g。
选C。
例2.如图所示,小球P、Q质量均为m,分别用轻弹簧b和细线c悬挂在天花板下,再用另一细线d、e与左边的固定墙相连,静止时细线d、e水平,b、c与竖直方向夹角均为θ=37?。
弹簧类问题的几种模型及其处理方法
弹簧类问题的几种模型及其处理方法直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。
答案:m2上升的高度为,增加的重力势能为,m1上升的高度为,增加的重力势能为。
点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。
注意缓慢上提,说明整个系统处于动态平衡过程。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。
所以,此问题要分两种情况进行分析。
(1)若弹簧处于压缩状态,则通过对A、B受力分析可得:,(2)若弹簧处于拉伸状态,则通过对A、B受力分析可得:,答案:B、D。
点评:此题主要针对弹簧既可以压缩又可以拉伸的这一特点,考查学生对问题进行全面分析的能力。
有时,表面上两种情况都有可能,但必须经过判断,若某一种情况物体受力情况和物体所处状态不符,必须排除。
所以,对这类问题必须经过受力分析结合物体运动状态之后作出判断。
平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况。
只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
2.突变类问题例3.(2001年上海)如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态。
弹簧类问题
B
(05年全国)如图所示,质量为的物体A经一轻质弹簧与下方 地面上的质量为的物体B相连,弹簧的劲度系数为k,A、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连 物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态, A上方的一段绳沿竖直方向.现在挂钩上挂一质量为的物体 C并从静止状态释放,已知它恰好能使B离开地面但不继续 上升.若将C换成另一个质量为的物体D,仍从上述初始位 置由静止状态释放,则这次B刚离地时D的速度的大小是多 少?已知重力加速度为g.
L0
m O
(06全国Ⅱ)如图所示,位于光滑水平桌面上的小 滑块P和Q都可视作质点,质量相等。Q与轻质 弹簧相连。设Q静止,P以某一初速度向Q运动 并与弹簧发生碰撞。在整个碰撞过程中,弹簧 具有的最大弹性势能等于 A.P的初动能 B.P的初动能的1/2 C.P的初动能的1/3 D.P的初动能的1/4
v0 P Q
物体A、B质量均为MA=MB=8kg,中间由弹簧 相连,静止于水平地面上,如图所示。另一质量 为m=8kg的物体C由A物体正上方0.8m高处释 放,与A碰撞后粘合在一起。当A、C一起运动 到最高点P时,物体B对地面的压力恰好为零。 如果将C的质量变为24kg,则当A、C运动到P 点时的速度是多少?
E +
如图所示,物体A质量为m,物体B质量为M, 通过轻质弹簧连接,弹簧的劲度系数为k,令 物体A在竖直方向上做简谐运动,当物体A运动 到最高点时,物体B恰好对地面无压力,求物 体A简谐运动的振幅以及A运动到最低点时,物 体B对地面的压力。
A k
B
如图所示,一个劲度系数为k,由绝缘材料制成 的轻弹簧,一端固定,另一端与质量为m,带正电 荷q的小球相连,静止在光滑绝缘水平面上,当加 入如图所示的场强为E的匀强电场后,小球开始运 动,下列说法正确的是 A.球的速度为零时,弹簧伸长qE/k B.球做简谐振动,振幅为qE/k C.运动过程中,小球的机械能守恒 D.运动过程中,小球的电势能、动能和弹性势能 相互转化
弹簧类问题的求解
弹簧类问题的求解由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型,导致解题思路不清、效率低下,错误率较高。
下面我们归纳六类问题探求解法。
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F ,另一端受力一定也为F 。
若是弹簧秤,则弹簧秤示数为F 。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力F 1、F 2,且F 1>F 2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m-= 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1 说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
二、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。
例2、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。
弹簧问题
图 1图2 弹簧问题解答ABC在我们的日常生活中,弹簧虽然形态各异,大小不同,但是从弹簧秤,机动车的减震装置,各种复位按钮和机械钟表内的动力装置等,弹簧处处在为我们服务.因为弹簧本身的特性,如弹簧弹力的方向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类试题多年来深受物理命题专家的青睐。
在解决弹簧类问题时,应注意以下几点:(1)一般问题中的轻弹簧是一种理想模型,不计质量。
(2) 弹簧弹力不能突变,弹力变化需要形变量变化,需要时间的积累。
(3)弹力变化:F = kx 或△F=k △x ,其中F 为弹力(△F 为弹力变化),k 为劲度系数,x 为形变量(△x 为形变变化量)。
(4)弹簧可以贮存能量,弹力做功和弹性势能的关系为:W =-△E P 其中W 为弹簧弹力做功,△E P 为弹性势能变化。
另外, 弹性势能计算公式暂不做要求。
一、轻弹簧的弹力与弹簧秤的读数1、如图1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同:⑴弹簧的左端固定在墙上⑵弹簧的左端受到大小也为F 的拉力作用⑶弹簧的左端拴一小物块m ,物块在光滑的水平面上滑动⑷弹簧的左端拴一个小物块m ,物块在粗糙的水平面上滑动以1l 、2l 、3l 、4l 依次表示四条弹簧的伸长量,则有A 、1l >2lB 、4l >3lC 、1l >3lD 、2l =4l解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。
当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a 为多少,仍然可以得到弹簧两端受力大小相等。
由于弹簧弹力F 弹与施加在弹簧上的外力F 是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。
6弹簧类问题归纳整理
弹簧类问题归纳整理一、对弹簧的理解1、轻弹簧是一个理想模型:不考虑其质量,称之为"轻弹簧"2、弹簧的拉力是变力 表现在:可能两个方向,大小随形变量的变化而变化3、胡克定律:F=-KX ,弹簧振子的简谐运动问题例:一弹簧振子作简谐振动,周期为T 。
(A)若t 时刻和(t 十Δt)时刻振子运动的位移大小相等、方向相同,则Δt 一定等于T 的整数倍。
(B)若t 时刻和(t 十Δt)时刻振子运动速度大小相等、方向相反,则一Δt 定等于T /2的整数倍(C)若Δt =T ,则t 时刻和(t 十Δt)时刻振子运动的加速度一定相等(D)若Δt =T /2,则T 时刻和(t 十Δt)时刻弹簧的长度一定相等4、功能关系:W=-△E P 其中W 为弹簧弹力做功,△E P 为弹性势能变化。
W k =-(21kx 22-21kx 12), 5、弹簧弹力不能突变,例:如图7(A )所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态.现将l 2线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的一种解法:解:设l 1线上拉力为T 1,l 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡:T 1cos θ=mg,T 1sin θ=T 2,T 2=mgtan θ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.因为mgtan θ=ma,所以加速度a=gtan θ,方向在T 2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
二、考试题型分析1、对弹簧弹力的概念的理解,(1)如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。
若小车以1m/s 2的加速度向右运动后,则(g=10m/s 2)( ) A .物体A 相对小车仍然静止B .物体A 受到的摩擦力减小C .物体A 受到的摩擦力大小不变D .物体A 受到的弹簧拉力增大(2)(02广东)图中a 、b 、c 为三个物块,M 、N 为两个轻质弹簧,R滑轮的轻绳,它们连接如图并处于平衡状态。
力学中的弹簧类问题课件
控制与执行机构
弹簧在航空航天器的控制与执行机构 中起到关键作用,如起落架的缓冲和 收放系统。
减震装置
卫星姿态调整
弹簧在卫星姿态调整机构中发挥重要 作用,通过弹簧的伸缩实现卫星姿态 的微调。
为了减轻着陆时对航空器的冲击,弹 簧被用于减震装置的设计。
CHAPTER
05
弹簧类问题04
弹簧在工程问题中的应用
弹簧在车辆工程中的应用
01
02
03
悬挂系统
弹簧用于车辆悬挂系统中 ,以吸收和缓冲路面不平 整引起的振动,提高乘坐 舒适性。
减震器
弹簧在减震器中起到关键 作用,控制车辆在行驶过 程中产生的冲击和振动。
弹性支撑
弹簧用于支撑车辆重要部 件,如发动机和变速器, 起到减震和保护作用。
总结词
弹簧的振动频率与阻尼系数有关,影响 振动的持续时间。
VS
详细描述
当一个振动物体连接到一个弹簧上时,弹 簧的劲度系数和阻尼系数将影响振动的频 率和持续时间。根据振动理论,弹簧的振 动周期与劲度系数和阻尼系数有关。因此 ,通过调整弹簧的劲度系数和阻尼系数, 可以改变振动的频率和持续时间。
弹簧的振动频率与阻尼
CHAPTER
02
弹簧动力学问题
弹簧与力的平衡
总结词
弹簧在力的作用下会产生形变,从而影响力的平 衡。
总结词
弹簧的弹力与形变量的关系是线性关系,可以用 胡克定律表示。
详细描述
当弹簧受到外力作用时,会发生形变,形变的大 小与外力的大小成正比,同时弹簧的弹力与形变 量的大小成正比。因此,弹簧可以用于平衡外力 ,维持系统的稳定。
将采集到的数据整理成表格,绘制形变量与作用力之间的关系图。
弹簧类问题
1、弹簧上的弹力是变力,弹力的大小随弹簧的形变 量发生变化。 2、只有一端有关联物体,另一端固定的弹簧。其运 动过程符合弹簧振子的运动规律(注意过程的周期 性、对称性及特殊点)。如当弹簧伸长到最长或压 缩到最短时,物体的速度最小(为零),弹簧的弹 性势能最大,此时,也是联系物体的速度方向发生 改变的时刻。若关联物与接触面间光滑,当弹簧恢 复原长时,物体速度最大,弹性势能为零。若关联 物与接触面间粗糙,物体速度最大时弹力与摩擦力 平衡,此时弹簧并没有恢复原长,弹性势能也不为 零。若关联物同时处在电磁场中,要注重过程分析。
m A m0
v0
C
B
例3:如图所示,质量相同的木块A、B用轻 弹簧连接后置于光滑的水平面上,开始弹簧处 于自然状态,现用水平恒力F拉木块A,则弹 簧第一次被拉至最长的过程中 A.A、B速度相同时,加速度aA=aB B.A、B速度相同时,加速度aA<aB C.A、B加速度相同时,速度vA<vB D.A、B加速度相同时,速度vA>vB
例4:质量相等的两物块P、Q间用一轻弹簧连接, 放在光滑的水平地面上,并使Q物块紧靠在墙上,现 用力F推物块P压缩弹簧,如图1-32所示,待系统静 止后突然撤去F,从撤去力F起计时,则 ( ) A.P、Q及弹簧组成的系统机械能总保持不变 B.P、Q的总动量保持不变 C.不管弹簧伸到最长时,还是缩短到最短时,P、 Q的速度总相等 D.弹簧第二次恢复原长时,P的速度恰好为零,而 Q的速度达到最大
例1:一个劲度系数为k,由绝缘材料制成的轻 质弹簧,一端固定,另一端与质量为m、电量 为+q的小球相连,静止在光滑的绝缘水平面上, 如图,当加入所示的水平向右的匀强电场后, 小球开始运动,下列说法正确的是( ) A、小球的振幅为qE/k; B、运动过程中弹簧的最大伸长量为qE/k; C、小球做简谐运动,机械能守恒; D、运动过程中,弹簧的最大弹性势能为 2q2E2/k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧类问题
5.(2015•普兰店市模拟)如图所示,竖直放置的弹簧,小球从弹簧正上方某一高处落下,从球接触弹簧到弹簧被压缩到最大的过程中,关于小球运动的下述说法中正确的是()
弹簧,当木块接触弹簧后,下列判断正确的是()
连,并由一与水平方向成θ=45°角的拉力F拉着物块,如图所示,此时物块处于静止平衡状态,且水平面对物块的弹力恰好为零.取g=10m/s2,以下说法正确的是()
轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零.在剪断轻绳的瞬间(g取10m/s2),下列说法中正确的是()
m/s
于静止状态.若将一个质量为3kg的物体B竖直向下轻放在A上的一瞬间,则B对A的压力大小为(取g=10m/s2)()
了△x(小球与弹簧不拴接),如图所示,则将细线烧断后()
11.(2015•合肥一模)如图所示,a、b两物体的质量分别为m1和m2,由轻质弹簧相连.当用恒力F竖直向上拉着a,使a、b﹣起向上做匀加速直线运动时,弹簧伸长量为为x1,加速度大小为a1;当用大小仍为F的恒力沿水平方向拉着a,使a、b﹣起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,加速度大小为a2.则有()
于斜面底端.轻质弹簧的下端固定在挡板上,上端拴接小物体A,质量相同的小物体B紧靠A但不粘连,初始时都处于静止状态,现用沿斜面向上的拉力F作用在物体B上,使物体B开始向上做匀加速直线运动,已知拉力F随物体A运动位移x的关系如图乙所示(g=10m/s2)则下列结论正确的是()
水平地面上.在外力作用下,木块将弹簧压缩了一段距离后静止于A点,如图所示.现撤去外力,木块向右运动,当它运动到O点时弹簧恰好恢复原长.在此过程中()
别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态.现用一平行于斜面向上的恒力F 拉物块A使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v.则此时()
m
两木块A,B用一劲度系数为k的轻弹簧相连,系统处于静止状态,弹簧压缩量为l.如果用平行斜面向上的恒力F(F=m A g)拉A,当A向上运动一段距离x后撤去F,A运动到最高处B刚好不离开C,重力加速度为g,则下列说法正确的是()
沿斜面上升的初始加速度大小为
均在粗糙水平面上不动,弹簧处于原长状态.在物体B上作用一水平向右的恒力F,使物体A、B向右运动.在此过程中,下列说法中正确的为()
17.(2015•河南二模)如图是某缓冲装置,劲度系数足够大的轻质弹簧与直杆相连,直杆可在固定的槽内移动,与槽间的滑动摩擦力恒为F f,直杆质量不可忽略.一质量为m的小车以速度v0撞击弹簧,最终以速度v弹回.直杆足够长,且直杆与槽间的最大静摩擦力等于滑动摩擦力,不计小车与地面的摩擦.则()
直杆在槽内移动的距离等于(mv﹣
长度时物块位于O点.现将物块拉到A点后由静止释放,物块运动到最低点B,图中B点未画出.下列说法正确的是()
别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态.现用一平行于斜面向上的恒力F 拉物块A使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v,则此时()
m
簧拴接的物块恰好静止于斜面底端.物块与斜面的动摩擦因数为,且最大静摩擦力等于滑动摩擦力.现用一平行于斜面的力F拉动弹簧的A点,使m缓慢上滑到斜面顶端.此过程中()
B均处于静止状态.现通过细绳将A向上缓慢拉起,第一阶段拉力做功为W1时,弹簧变为原长;第二阶段拉力再做功W2时,B刚要离开地面.弹簧一直在弹性限度内,则()
向下压缩弹簧至离地高度h=0.1m处,滑块与弹簧不拴接.现由静止释放滑块,通过传感器测量到滑块的速度和离地高度h并作出如图2滑块的E k﹣h图象,其中高度从0.2m上升到0.35m范围内图象为直线,其余部分为曲线,以地面为零势能面,取g=10m/s2,由图象可知()
23.(2015•延安模拟)如图所示,小车A、小物块B由绕过轻质定滑轮的细线相连,小车A放在足够长的水平桌面上,B、C两小物块在竖直方向上通过劲度系数为k的轻质弹簧相连,C放在水平地面上.现用手控制住A.并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与桌面平行.已知A、
B、C的质量均为m.A与桌面间的动摩擦因数为0.2,重力加速度为g,弹簧的弹性势能表达式为E P=k△x2,
式中七是弹簧的劲度系数:△x是弹簧的伸长量或压缩量,细线与滑轮之间的摩擦不计.开始时,整个系统处于静止状态,对A施加一个恒定的水平拉力F后,A向右运动至速度最大时,C恰好离开地面,则()
做的功为
长度时物块位于O点,现将物块拉到A点后由静止释放,物块运动到最低点B(图中B点未画出),下列说法正确的是()
轻弹簧连接于光滑轻滑轮两侧,P为固定在斜面上且与斜面垂直的光滑挡板,物体A、B的质量分别为m 和4m,开始时用手托住物体,滑轮两边的细绳恰好伸直,且左边的细绳与斜面平行,弹簧处于原长状态,A距离地面高度为h时开始下落,在A下落至地面前的瞬间,物体B恰好对挡板无压力.空气阻力不计,下列关于物体A的说法正确的是()
26.(2015•广元二模)如图所示,绝缘水平面上O处放质量为m、电荷量为q的带负电荷的小物体.劲度系数为k的绝缘轻弹簧的一端固定在墙上,另一端与小物体接触(未固定),弹簧水平且无形变.O点左
侧有竖直向下的匀强电场,电场强度为E=.用水平力F缓慢向右推动物体,在弹性限度内弹簧被压缩
了x0,此时物体静止.撤去F后,物体开始向左运动,运动的最大距离为4x0,物体与水平面间的动摩擦因素为µ,重力加速度为g.则()
后,物体刚运动时的加速度大小为
物体离开弹簧时速率为
状态.t=0时刻起用一竖直向上的力F拉动木块A,使A向上做匀加速直线运动.t1时刻弹簧恰好恢复原长,t2时刻木块B恰好要离开水平面.以下说法正确的是()
用手托住物体使它从A处缓慢下降,到达B处时,手和物体自然分开.此过程中,物体克服手的支持力所做的功为W.不考虑空气阻力.关于此过程,下列说法正确的有()
自由状态,斜面倾角为θ.一质量为m的物块(可视为质点)从离弹簧上端距离为l1处由静止释放,物块与斜面间动摩擦因数为µ,物块在整个过程中的最大速度为v,弹簧被压缩到最短时物体离释放点的距离为l2(重力加速度为g).则()
mv
mv
30.(2015•大庆一模)如图所示,一轻弹簧固定于地面上,上面依次放置两木块A、B,用一力F竖直向下作用在物体B上,撤去力F后,弹簧恰能恢复原长,有关上升过程中机械能的说法正确的是()
弹簧类问题
5.A 6.C 7.AB 8.B 9.C 10.CD 11.B 12.BC 13.D 14.CD 15.D 16.AC 17.BC 18.BCD 19.BD 20.B 21.B 22.BC 23.ACD 24.ABD
25.BC 26.BC 27.BC 28.AD 29.AB 30.CD。