苏科版八上数学期末复习知识点(最新2014填空)
苏教版八年级数学上册知识点总结(苏科版)
苏教版八年级数学上册知识点总结(苏科版)知识点总结:第一章:三角形全等全等三角形的定义是指能够完全重合的两个三角形。
全等三角形的形状和大小完全相等,与位置无关。
一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等。
三角形全等不因位置发生变化而改变。
全等三角形的性质包括对应边相等、对应角相等,周长相等、面积相等,以及对应边上的对应中线、角平分线、高线分别相等。
全等三角形的判定有边角边公理(SAS)、角边角公理(ASA)、推论(AAS)、边边边公理(SSS)、斜边、直角边公理(HL)。
证明两个三角形全等的基本思路是已知两边时找第三边(SSS),找夹角(SAS),或找是否有直角(HL);已知一边一角时找一角(AAS或ASA),或找夹边(SAS);已知两角时找夹边(ASA),或找其它边(AAS)。
第二章:轴对称轴对称图形是指关于直线对称的两个图形。
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
线段的垂直平分线的性质定理是线段垂直平分线上的点到线段两个端点的距离相等。
判定定理是到线段两个端点距离相等的点在这条线段的垂直平分线上。
三角形三条边的垂直平分线的交点到三个顶点的距离相等。
角的角平分线的性质定理是角平分线上的点到角两边的距离相等。
判定定理是到角两个边距离相等的点在这个角的角平分线上。
三角形三个角的角平分线的交点到三条边的距离相等。
等腰三角形的性质定理是两个底角相等(等边对等角)。
和立方1、定义:开平方和立方是数学中常见的运算。
2、表示方法:开平方用符号√,立方用符号³表示。
3、性质:1)开平方和立方的结果都是实数。
2)开平方和立方运算具有可逆性,即可以进行反向运算。
三、实数的分类1、定义:实数是数学中的一种数值,包括有理数和无理数。
2、分类:1)有理数:可以表示为两个整数之比的数,包括整数、分数和小数。
苏科版八年级上册数学知识点复习纲要(整理)
苏科版八年级上册数学知识点复习纲要
(整理)
本文档是对苏科版八年级上册数学知识点的复纲要进行整理,旨在帮助学生系统地回顾和巩固所学的数学内容。
以下是各个章节的重点知识点:
第一章数学的语言
- 数的定义和性质
- 各种数的表示方法:自然数、整数、有理数和无理数
- 有理数的运算:加法、减法、乘法和除法
- 小数和分数的相互转化
第二章代数式与方程
- 代数式的基本概念和运算法则
- 单项式和多项式:加法、减法和乘法
- 一次方程的解法
- 方程的实际应用
第三章图形的认识
- 点、线、面和体的概念
- 直线、射线和线段的关系
- 角的概念和分类
- 角的度量和衡量
- 平行线、垂直线和相交线的判断
第四章几何图形的性质
- 三角形:分类、内角和外角的性质、全等三角形、相似三角形
- 四边形:矩形、正方形、平行四边形、菱形和长方形的性质- 圆的基本概念和性质
- 圆的面积和周长的计算
第五章数据的统计和概率
- 数据的调查和收集
- 数据的整理和图表的绘制
- 数据的分析和解读
- 简单的概率计算
通过系统地复以上知识点,学生们可以更好地理解和掌握数学的基本概念和运算法则,提升数学能力,为研究八年级下册的数学打下坚实的基础。
祝愿大家学业进步!。
苏教版八年级数学上学期期末考前练习卷(含答案)
八年级数学上学期期末考前练习卷一.选择题(共4小题)1.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.2.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.103.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.44.如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点P,过点P作MN∥BC交AB 于点M,交AC于点N,那么下列结论:①BP=CP;②MN=BM+CN;③△BMP和△CNP都是等腰三角形;④△AMN的周长等于AB与AC的和,其中正确的有()A.②③④B.①②③④C.②③D.③二.填空题(共9小题)5.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.6.如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是.7.如图所示,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.8.若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为.9.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.10.在平面直角坐标系中,点A坐标为(﹣3,m+2),点B坐标为(1,m﹣2),若点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,则n1﹣n2=.11.已知点A(2m﹣1,4m+2015)、B(﹣n+,﹣n+2020)在直线y=kx+b上,则k+b 值为.12.在平面直角坐标系中,点P是一次函数y=x+b图象上的一个动点,O是坐标原点,连接OP,若OP的最小值为4.8,则b=.13.如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B (﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离P A之和最小时,则点E的坐标是.三.解答题(共27小题)14.如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB 运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.15.如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.(1)试判断线段AE、CD的数量关系,并说明理由;(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.16.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y 轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.(1)求P点坐标;(2)作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?若存在,请直接写出这个最小值;若不存在请说明理由;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.17.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:BE=CD;(2)模型应用:①已知直线l1:y=﹣x﹣4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(﹣8,6),A、C分别在坐标轴上,P是线段BC上动点,点D是直线y=﹣2x﹣4上的一点,若△APD是不以点A为直角顶点的等腰Rt△,请求出点D的坐标.18.如图,在平面直角坐标系中,已知A(16,0)、B(16,8),C(0,8),D(0,﹣4),点E从点A出发,以每秒1个单位的速度沿AB运动到点B停止,过点E且与AD平行的直线l与y轴相交于点F,设运动时间为t秒(t>0).(1)设t=6时,求直线l的函数表达式;(2)若点E运动t秒后,直线l与x轴相交于点N,且CN=CE,求t的值;(3)记EF的中点为P,请你探求线段OP随点E运动所形成的图形,说明理由并求其面积.19.如图,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a、b满足a2+b2﹣12a﹣12b+72=0,OC:OA=1:3.(1)求A、B、C三点的坐标;(2)若点D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为x E、x F,当BD平分△BEF的面积时,求x E+x F的值;(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在BM 上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否发生改变?若不变,请求其值,若改变,请说明理由.20.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲.乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲.乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h.(2)已知最终乙车比甲车早到B地0.5h,求甲车出发1.5h后直至到达B地的过程中,S 与x的函数关系式及x的取值范围,并在图2中补全函数图象.21.已知甲、乙两地相距3200m,小王、小李分别从甲、乙两地同时出发,相向而行,两人相遇后立即返回到各自的出发地并停止行进.已知小李的速度始终是60m/min,小王在相遇后以匀速返回,但比小李晚回到原地.在整个行进过程中,他们之间的距离y(m)与行进的时间t(min)之间的函数关系如图中的折线段AB﹣BC﹣CD所示,请结合图象信息解答下列问题:(1)a=,b=;(2)当t为何值时,小王、小李两人相距800m?22.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.23.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE 的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.24.(1)如图①,在正方形ABCD中,E、F分别是BC、CD上的点且∠EAF=45°.猜测线段EF、BE、FD三者存在哪种数量关系?直接写出结论.(不用证明)结论:.(2)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD 上的点,且∠EAF是∠BAD的一半.(1)中猜测的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;25.(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,求线段EF、BE、FD之间的数量关系小明提供了这样的思路:延长EB到G,使BG=DF,连结AG,根据小明的思路,请直接写出线段EF、BE、FD之间的数量关系:(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?说明理由;(3)如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.26.如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.27.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.28.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=130°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.(直接写出答案)29.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.30.图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.31.已知:如图,O为坐标原点,四边形OABC为长方形,A(10,0),C(0,4),点D 是OA的中点,点P在BC上运动,当△ODP是等腰三角形时.(1)求P点的坐标;(2)求满足条件的△ODP的周长最小值.(要有适当的图形和说明过程)32.已知:如图,∠BAC的平分线与BC的垂直平分线交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AB=15,AC=9,求CF的长.33.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于点E,DF⊥AC交AC的延长线于点F.(1)求证:AE=AF;(2)求证:BE=CF;(3)如果AB=12,AC=8,求AE的长.34.如图,AD平分∠BAC,DG⊥BC于点G且平分BC,DF⊥AB于点F,DE⊥AC于点E.(1)求证:BF=CE;(2)求证:AB=AC+2CE.35.某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:钳工(元/月)车工(元/月)A地18001400B地16001500(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.36.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100米,此时小军骑行的时间为分钟.37.已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.(1)求证:MN⊥BD.(2)若∠BAD=45°,连接MB、MD,判断△MBD的形状,并说明理由.38.在Rt△ABC和Rt△ADC中,∠ABC=∠ADC=90°,E是AC中点(1)如图(1),求证:∠DEB=2∠DCB;(2)如图(2),上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.39.已知:如图,∠ACB=∠ADB=90°,E为AB中点,连接DE、CE、CD.(1)求证:DE=CE;(2)若∠CAB=25°,∠DBA=35°,判断△DEC的形状,并说明理由;(3)当∠CAB+∠DBA=45°时,若CD=12,取CD中点F,求EF的长.40.如图,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,使角的两边分别交AB、AC边于M、N两点,连接MN.①当MN∥BC时,求证:MN=BM+CN;②当MN与BC不平行时,则①中的结论还成立吗?为什么?③若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图③中画出图形,并说明理由.答案与解析一.选择题(共4小题)1.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【分析】根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,Rt△ABC中根据勾股定理求得AB=5,再根据三角形的面积可求得B′F的长.【解答】解:∵Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,∴B′D=BC﹣CD=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=∴B′F==.故选:B.【点评】此题主要考查了翻折变换,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键.2.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.10【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE 的值;【解答】解:将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,∴MA+MD+ME的最小值为4+3.故选:B.【点评】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.3.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4【分析】作点E关于直线CD的对称点E′,连接AE′交CD于点F,再根据△CE′F∽△BE′A即可求出CF的长,进而得出DF的长.【解答】解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=2,∴DF=CD﹣CF=6﹣2=4.故选:D.【点评】本题考查的是轴对称﹣最短路线问题及相似三角形的判定与性质,根据题意作出E点关于直线CD的对称点,再根据轴对称的性质求出CE′的长,利用相似三角形的对应边成比例即可得出结论.4.如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点P,过点P作MN∥BC交AB 于点M,交AC于点N,那么下列结论:①BP=CP;②MN=BM+CN;③△BMP和△CNP都是等腰三角形;④△AMN的周长等于AB与AC的和,其中正确的有()A.②③④B.①②③④C.②③D.③【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵∠ABC、∠ACB的平分线相交于点P,∴∠MBP=∠PBC,∠PCN=∠PCB,∵MN∥BC,∴∠PBC=∠MPB,∠NPC=∠PCB,∴∠MBP=∠MPB,∠NPC=∠PCN,∴BM=MP,PN=CN,∴MN=MP+PN=BM+CN(②正确),∴△BMP和△CNP都是等腰三角形(③正确).∵△AMN的周长=AM+AN+MN,MN=BM+CN,∴△AMN的周长等于AB与AC的和(④正确).故选:A.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.二.填空题(共9小题)5.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.【分析】将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.【解答】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∴∠B=∠ACB=45°,∠BAC=90°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NAF,在△MAN和△F AN中∴△MAN≌△F AN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠FCN=90°,∵CF=BM=1,CN=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.【点评】本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.6.如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是5+.【分析】连接CD,由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE =DF.所以△DFE是等腰直角三角形;当E、F分别为AC、BC中点时,EF取最小值,根据三角形的中位线的性质得到EF,于是得到结论.【解答】解:连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE与△CFD中,,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形,∵∠C=90°,AC=BC=5,∴AB=5,∴当△CEF周长的最小时,EF取最小值,∴E、F分别为AC、BC中点时,EF的值最小,∴EF=AB=,∴△CEF周长的最小值=CE+CF+EF=AE+CE+EF=AC+EF=5+;故答案为:5+.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形、直角三角形性质等知识,找到EF∥BC时取最小值是解题关键.7.如图所示,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【分析】作AD′⊥AD,AD′=AD,连接CD′,DD′,易证∠BAD=∠CAD′,即可证明△BAD≌△CAD′,可得BD=CD′,∠DAD′=90°,根据勾股定理可求得DD'的值,再根据勾股定理可求得CD'的值,即可解题.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′==3,∠D′DA+∠ADC=90°,由勾股定理得CD′==,∴BD=CD′=.故答案为:.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了直角三角形中勾股定理运用,本题中求证△BAD≌△CAD′是解题的关键.8.若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为﹣6.【分析】将点(1,3)和点(﹣1,2)代入解析式可求k,b的值,即可求k2﹣b2的值.【解答】解:根据题意得:解得:∴k2﹣b2=﹣=﹣6故答案为:﹣6【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足图象解析式是本题的关键.9.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为n≥2.【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.10.在平面直角坐标系中,点A坐标为(﹣3,m+2),点B坐标为(1,m﹣2),若点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,则n1﹣n2=﹣3.【分析】先求出直线AB的解析式,把点C,点D坐标代入可求解.【解答】解:设直线AB解析式为:y=kx+b解得:k=﹣1,b=m﹣1∴直线AB解析式为:y=﹣x+m﹣1∵点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,∴n1=﹣t﹣1+m﹣1,n2=﹣t+2+m﹣1,∴n1﹣n2=﹣3故答案为:﹣3【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式是本题的关键.11.已知点A(2m﹣1,4m+2015)、B(﹣n+,﹣n+2020)在直线y=kx+b上,则k+b 值为2019.【分析】把点A(2m﹣1,4m+2015)和点B(﹣,﹣n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.【解答】解:把点A(2m﹣1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m﹣1)+b①,把点B(﹣,﹣n+2020)代入直线y=kx+b得:﹣n+2020=k(﹣+)+b②,①﹣②得:4m+n﹣5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m﹣1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.12.在平面直角坐标系中,点P是一次函数y=x+b图象上的一个动点,O是坐标原点,连接OP,若OP的最小值为4.8,则b=±8.【分析】线段OP的最小值,就是原点到已知直线的距离,可以根据所构建的三角形面积一样来求OP;【解答】解:如图:∵y=x+b,①当b>0时;∴它与x的交点坐标是A(,0),与y轴的交点坐标是B(0,b)∴OA=;OB=b,根据勾股定理:AB==∵S△AOB=,OP=4.8,∴解得b=8;②当b<0时;∴它与x的交点坐标是A'(,0),与y轴的交点坐标是B'(0,b)∴OA'=﹣;OB'=﹣b,根据勾股定理:A'B'==﹣∵OP=4.8,∴解得b=﹣8;故答案填:±8.【点评】本题考查一次函数的综合运用,熟练运用两点之间的距离公式以及面积法是解决本题的关键.13.如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B (﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离P A之和最小时,则点E的坐标是(﹣,).【分析】作点A关于x轴的对称点A',过A'作A'D⊥l,与x轴交于点P,则A'D即为所求最小值;求出直线BC和直线A'E的解析式,联立方程组,即可求出E点坐标;【解答】解:作点A关于x轴的对称点A',过A'作A'D⊥l,与x轴交于点P,则A'D即为所求最小值;∵A的坐标为(3,1),∴A'(3,﹣1),∵B(﹣3,0),C(0,3),直线BC所在的直线解析式y=x+3,∴A'E所在直线解析式y=﹣x+2,∴,∴,∴E(﹣,),故答案为(﹣,);【点评】本题考查一次函数图象及性质,轴对称求最短距离;将所求距离通过轴对称转化为A'E,借助方程组求解是关键.三.解答题(共27小题)14.如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB 运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.【分析】(1)把A(﹣6,0)代入y=﹣x+b得到b=﹣2,于是得到B(0,﹣2),AO =6,OB=2,AB==,根据等腰三角形的性质列方程即可得到结论;(2)①由点Q在直线y=﹣x+b上,设Q(a,﹣a﹣2),作QH⊥x轴于H,得到QH=a+2,AH=6+a,根据勾股定理得到AQ==(a+2),列方程即可得到结论;②由题意得到AQ=t,AP=kt,根据等腰三角形的性质列方程即可得到结论.【解答】解:(1)把A(﹣6,0)代入y=﹣x+b得,b=﹣2,∴B(0,﹣2),AO=6,OB=2,AB===2,∵△P AB为等腰三角形,∴当AP=AB时,AP=2,∴P(2﹣6,0);当BP=BA时,OP=OA=6,∴P(6,0);当P A=PB时,设OP=x,则P A=PB=6﹣x,在Rt△OPB中,∵OP2+OB2=PB2,∴x2+22=(6﹣x)2,解得:x=,∴P(﹣,0);综上所述,当△P AB为等腰三角形时点P的坐标为(2﹣6,0)或(6,0)或(﹣,0);(2)①∵点Q在直线y=﹣x+b上,∴设Q(a,﹣a﹣2),作QH⊥x轴于H,则QH=a+2,AH=6+a,∴AQ==(a+2),∵AQ=t,∴t=a+2,∴a=3t﹣6,∴Q(3t﹣6,﹣t);②由题意得,AQ=t,AP=kt,∵△APQ为等腰三角形,∴当AP=AQ时,t=kt,∴k=,当AQ=PQ时,即AH=AP,∴3t=kt,∴k=6;当P A=PQ时,在Rt△PQH中,∵HP2+HQ2=PQ2,∴(3t﹣kt)2+t2=(kt)2,∴k=,综上所述,当△APQ为等腰三角形时k的值为或6或.【点评】本题考查了待定系数法求函数的解析式,勾股定理,等腰三角形的性质,正确的理解题意是解题的关键.15.如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.(1)试判断线段AE、CD的数量关系,并说明理由;(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.【分析】(1)由正方形OABC,可得BC=BA,∠ABC=90°,由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,再根据∠CBD=∠ABE,即可得到△CBD≌△ABE,进而得出CD=AE;(2)过点E作PQ∥OD,分别交直线AB,AF于点P,Q,判定△ADB≌△PBE,可得AD=PB,AB=PE,判定△ADF≌△QEF,可得AD=QE,依据AP=QP,可得∠AQP=45°,依据PQ∥OD,可得∠OAG=∠Q=45°,进而得到△AOG是等腰直角三角形,进而得到G(0,2),即点G的位置不会发生变化.【解答】解:(1)AE=CD.理由:由正方形OABC,可得BC=BA,∠ABC=90°,由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,∴∠ABC+∠ABD=∠DBE+∠ABD,即∠CBD=∠ABE,∴△CBD≌△ABE,∴CD=AE;(2)点G的位置不会发生变化.理由:如图,过点E作PQ∥OD,分别交直线AB,AF于点P,Q,∵∠DAB=∠P=∠DBE=90°,∴∠ADB+∠ABD=∠PBE+∠ABD=90°,∴∠ADB=∠PBE,又∵DB=BE,∴△ADB≌△PBE,∴AD=PB,AB=PE,∵F是DE的中点,∴DF=EF,∵AD∥EQ,∴∠DAF=∠Q,又∵∠AFD=∠QFE,∴△ADF≌△QEF,∴AD=QE,∴AB+BP=PE+EQ,即AP=QP,∴∠AQP=45°,又∵PQ∥OD,∴∠OAG=∠Q=45°,∴△AOG是等腰直角三角形,∴GO=AO=2,∴G(0,2),即点G的位置不会发生变化.【点评】本题主要考查全等三角形的判定和性质、等边三角形的性质、坐标与几何图形的关系、正方形的性质等知识点,解题的难点在于作辅助线构造全等三角形,运用全等三角形的对应边相等得出△APG是等腰直角三角形.16.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y 轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.(1)求P点坐标;(2)作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?若存在,请直接写出这个最小值;若不存在请说明理由;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.【分析】(1)由AC与OA的长,利用勾股定理求出OC的长,确定出C坐标,利用待定系数法求出直线MN解析式,与y=x联立求出交点P坐标即可;(2)作出相应的图形,如图1所示,作出A关于射线OQ的对称点A′,可得OA′=OA=8,过A′作A′F⊥OA,交射线OQ于点E,角射线OA于点F,此时A′E+EF=AE+EF存在最小值,求出即可;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,分三种情况考虑:①GC=GB,此时G为线段BC垂直平分线与直线MN的交点;②GC=BC=8;③GB=BC=8,分别求出G坐标即可.【解答】解:(1)∵AC=10,OA=8,∴OC===6,∴C(0,6);设直线MN的解析式是y=kx+b(k≠0),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6,∵P为y=﹣x+6与直线y=x的交点.∴﹣x+6=x,解得:x=,∴p的坐标为(,);(2)如图1所示:作出A关于射线OQ的对称点A′,可得OA′=OA=8,过A′作A′F⊥OA,交射线OQ于点E,角射线OA于点F,此时A′E+EF=AE+EF存在最小值,在Rt△A′OF中,∠A′OF=45°,设A′F=OF=x,根据勾股定理得:x2+x2=82,解得:x=4,则最小值为4;(3)如图2所示:∵A(8,0),C(0,6),∴根据题意得:B(8,6),∵G在直线MN:y=﹣x+6上,∴设G(a,﹣a+6),在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,分三种情况考虑:①当GC=GB时,G点为BC垂直平分线与MN交点,此时G1(4,3);②当GC=BC=8时,根据两点间的距离公式得:a2+(﹣a+6﹣6)2=64,解得:a=±,此时G2(﹣,),G3(,);③当GB=BC=8时,根据两点间的距离公式得:(a﹣8)2+(﹣a+6﹣6)2=64,解得:a=,可得﹣a+6=﹣,此时G4(,﹣),则符合条件的点G有:G1(4,3),G2(﹣,),G3(,),G4(,﹣).【点评】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,两点间的距离公式,待定系数法确定一次函数解析式,等腰三角形的性质,利用了分类讨论的思想,熟练掌握公式及法则是解本题的关键.17.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:BE=CD;(2)模型应用:①已知直线l1:y=﹣x﹣4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(﹣8,6),A、C分别在坐标轴上,P是线段BC上动点,点D是直线y=﹣2x﹣4上的一点,若△APD是不以点A为直角顶点的等腰Rt△,请求出点D的坐标.【分析】(1)先根据△ABC为等腰直角三角形得出CB=CA,再由AAS定理可知△ACD ≌△CBE;(2)①如图2中,设直线l1交x轴于B,作BP⊥AC于P,作PE⊥OB于E,PF⊥y轴于F.首先证明四边形PEOF是正方形,求出点P的坐标,利用待定系数法即可解决问题.(3)当点D为直角顶点,分点D在直线P A的上方或下方两种情况;点P为直角顶点,显然此时点D位于直线AP的上方,由此可得出结论.【解答】(1)证明:如图1中,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,。
2021-2022学年苏科版八年级数学上册《第1章全等三角形》期末复习训练(附答案)
2021-2022学年苏科版八年级数学上册《第1章全等三角形》期末复习训练(附答案)1.如图,在四边形ABCD与四边形A'B'C'D'中,AB=A'B',∠B=∠B',BC=B'C'.下列条件中:①∠A=∠A',AD=A'D';②∠A=∠A',CD=C'D';③∠A=∠A',∠D=∠D';④AD=A'D',CD=C'D'.添加上述条件中的其中一个,可使四边形ABCD≌四边形A'B'C'D'.上述条件中符合要求的有()A.①②③B.①③④C.①④D.①②③④2.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.面积相等的两个图形是全等图形C.图形全等,只与形状、大小有关,而与它们的位置无关D.全等三角形的对应边相等,对应角相等3.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形4.如图,△ABC≌△A'B'C',其中∠A=37°,∠C'=23°,则∠B=()A.60°B.100°C.120°D.135°5.已知△ABC≌△DEF,∠A=70°,∠E=40°,则∠F的度数为()A.30°B.40°C.70°D.110°6.如图,两个三角形是全等三角形,则∠α的度数是()A.50°B.58°C.60°D.72°7.如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是()A.AB=DE B.BC=EF C.∠B=∠E D.∠ACB=∠DFE 8.如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC 9.下列条件中,能判断两个三角形全等的是()A.两边和它们的夹角分别相等B.两边及其中一边所对的角分别相等C.三个角分别相等D.两个三角形面积相等10.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D、C,BD、AC都经过点E,则图中全等的三角形共有多少对()A.3B.4C.5D.611.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是()A.SSS B.SAS C.ASA D.HL12.下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等B.有一个锐角和一条边相等C.有一条斜边相等D.有一直角边和斜边上的高分别相等13.如图,BF=CE,AE⊥BC,DF⊥BC,根据‘HL’证明Rt△ABE≌Rt△DCF,则还要添加()A.∠A=∠D B.AB=DC C.∠B=∠C D.AE=BF14.如图,AC=BD,∠A=∠B=90°,要根据“HL”证明Rt△ACE≌Rt△BDF,则还需要添加一个条件是()A.AF=BE B.AE=BF C.∠C=∠D D.CE=DF15.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSS16.在测量一个小口圆形容器的壁厚时,小明用“x型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=7厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.5厘米D.7厘米17.如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度为,说明理由.18.如图②,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=1.5m,点A到地面的距离AE=1.5m,当他从A处摆动到A'处时,若A'B⊥AB,求A'到BD的距离.19.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠E=∠D.20.如图,AB=AC,直线l经过点A,BM⊥l,CN⊥l,垂足分别为M、N,BM=AN.(1)求证:MN=BM+CN;(2)求证:∠BAC=90°.21.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC 于点E,连接BE,∠A=∠ABE.(1)求证:ED平分∠AEB;(2)若AB=AC,∠A=40°,求∠F的度数.22.如图,已知AB∥CD,AB=CD,AF=CE,求证:DF=EB.23.如图,已知△ABC和△ADE,AB=AD,∠BAD=∠CAE,∠B=∠D,AD与BC交于点P,点C在DE上.(1)求证:BC=DE;(2)若∠B=30°,∠APC=70°.①求∠E的度数;②求证:CP=CE.24.如图,在△ABC中,AB=AC,AD⊥BC于点F,∠ABC的平分线BE交AD于点E,CD⊥AC,连接BD.(1)DB⊥AB吗?请说明理由;(2)试说明:∠DBE与∠AEB互补.25.如图,在△ABC中,∠ACB=60°,D为△ABC边AC上一点,BC=CD,点M在BC 的延长线上,CE平分∠ACM,且AC=CE.连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.(1)△ABC≌△EDC吗?为什么?(2)求∠DHF的度数;(3)若EB平分∠DEC,则BE平分∠ABC吗?请说明理由.26.已知,在△ABC中,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,且AD=CE.(1)求证:∠ACB=90°;(2)点O为AB的中点,连接OD,OE.请判断△ODE的形状?并说明理由.参考答案1.解:符合要求的条件是①③④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∠ACB=∠A′C′B′,∵∠BAD=∠B′A′D′,∴∠BAD﹣∠DAC=∠B′A′D′﹣∠D′A′C′,∴∠DAC=∠D′A′C′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D′,∠ACD=∠A′C′D′,CD=C′D′,∴∠BCD=∠B′C′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.同理根据③④的条件证得四边形ABCD≌四边形A′B′C′D′.故选:B.2.解:A、如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B、面积相等的两个图形是全等图形,错误,符合题意;C、图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;D、全等三角形的对应边相等,对应角相等,正确,不合题意;故选:B.3.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.4.解:∵△ABC≌△A'B'C',∠C'=23°,∴∠C=∠C′=23°,∵∠A=37°,∴∠B=180°﹣∠A﹣∠C=180°﹣37°﹣23°=120°,故选:C.5.解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=70°,∴∠C=180°﹣70°﹣40°=70°,∴∠F=70°,故选:C.6.解:∵△ABC≌△DEF,∴∠α=∠A,∵∠A=50°,∴∠α=50°,故选:A.7.解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A.AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;B.BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC ≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:B.8.解:A.∠A=∠A,AB=AC,∠B=∠C,符合全等三角形的判定定理ASA,能推出△ABE≌△ACD,故本选项不符合题意;B.AD=AE,∠A=∠A,AB=AC,符合全等三角形的判定定理SAS,能推出△ABE≌△ACD,故本选项不符合题意;C.AB=AC,BE=CD,∠A=∠A,不符合全等三角形的判定定理,不能推出△ABE≌△ACD,故本选项符合题意;D.∠A=∠A,∠AEB=∠ADC,AB=AC,符合全等三角形的判定定理AAS,能推出△ABE≌△ACD,故本选项不符合题意;故选:C.9.解:A、根据SAS定理可判定两个三角形全等,故此选项符合题意;B、SSA不能证明两个三角形全等,故此选项不符合题意;C、AAA不能证明两个三角形全等,故此选项不符合题意;D、两个三角形面积相等不能证明两个三角形全等,故此选项不符合题意;故选:A.10.解:∵OE是∠AOB的平分线,BD⊥OA,AC⊥OB,∴ED=EC,在Rt△OED和Rt△OEC中,,∴Rt△OED≌Rt△OEC(HL);∴OD=OC,在△AED和△BEC中,,∴△AED≌△BEC(ASA);∴AD=BC,∴OD+AD=OC+BC,即OA=OB,在△OAE和△OBE中,,∴△OAE≌△OBE(SAS),在△OAC和△OBD中,,∴△OAC≌△OBD(SAS).故选:B.11.解:由图得:遮挡住的三角形中露出两个角及其夹边.∴根据三角形的判定方法ASA可解决此题.故选:C.12.解:A、两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B、一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C、有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D、有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故选:D.13.解:∵BF=CE,∴BF﹣EF=CE﹣EF,即BE=CF,根据‘HL’证明Rt△ABE≌Rt△DCF,需要添加AB=CD,故选:B.14.解:条件是CE=DF,理由是:在Rt△ACE和Rt△BDF中,,∴Rt△ACE≌Rt△BDF(HL),故选:D.15.解:根据三角形全等的判定方法,根据角边角可确定一个全等三角形,只有第三块玻璃包括了两角和它们的夹边,只有带③去才能配一块完全一样的玻璃,是符合题意的.故选:A.16.解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD=5厘米,∵EF=7厘米,∴圆柱形容器的壁厚是×(7﹣5)=1(厘米),故选:A.17.解:∵O是AB和CD的中点,∴AO=BO,CO=DO,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC,∵AD=30cm,∴CB=30cm,故答案为:30cm.18.解:如图2,作A'F⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BF A'中,,∴△ACB≌△BF A'(AAS);∴A'F=BC∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.5;∴BC=BD﹣CD=2.5﹣1.5=1(m),∴A'F=1(m),即A'到BD的距离是1m.19.证明:∵C是AB的中点,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠E=∠D.20.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL),∴BM=AN,CN=AM,∴MN=AM+AN=BM+CN;(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.21.(1)证明:∵∠A=∠ABE,∴EA=EB,∵AD=DB,∴ED平分∠AEB;(2)解:∵∠A=40°,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠ACB=70°,∵EA=EB,AD=DB,∴ED⊥AB,∴∠FDB=90°,∴∠F=90°﹣∠ABC=20°.22.证明:∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,∵AB∥CD,∴∠A=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF(SAS),∴DF=EB.23.(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(ASA),∴BC=DE;(2)①解:∵∠B=30°,∠APC=70°,∴∠BAP=∠APC﹣∠B=70°﹣30°=40°,∴∠CAE=40°,∵△BAC≌△DAE,∴AC=AE,∴∠ACE=∠E===70°;②证明:∵△BAC≌△DAE,∴∠ACB=∠E=70°,∴∠ACB=∠ACE,∠APC=∠E,在△ACP和△ACE中,,∴△ACP≌△ACE(AAS),∴CP=CE.24.解:(1)DB⊥AB.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠ABD=∠ACD,∵CD⊥AC,∴∠ACD=90°,∴∠ABD=90°,∴DB⊥AB;(2)∵AD⊥BC,∴∠AFB=90°,∵∠BAF+∠ABF=90°,∠DBF+∠ABF=90°,∴∠BAF=∠DBF,∵BE平分∠ABC,∴∠ABE=∠FBE,∴∠BEF=∠BAE+∠ABE=∠DBF+∠FBE=∠DBE,∵∠AEB+∠BEF=180°,∴∠DBE+∠AEB=180°,即∠DBE与∠AEB互补.25.解:(1)△ABC≌△EDC.理由:∵CA平分∠BCE,∴∠ACB=∠ACE,∵AC=CE,BC=CD,∴△ABC≌△EDC(SAS);(2)在△CDG和△CBF中,,∴△CDG≌△CBF(SAS),∴∠CBF=∠CDG,∵∠DFH=∠BFC,∴∠DHF=∠BCF=60°;(3)BE平分∠ABC.理由:由(1)得△ABC≌△EDC,∴∠ABC=∠EDC,∵∠ACB=∠DCE=60°,∴∠BEC+∠CBE=60°,又∵∠DFH=∠A+∠ABE=∠BEC+∠FCG,∵∠A=∠DEC=2∠DEB=2∠BEC,∴2∠DEB+∠ABE=∠BEC+60°,∴∠DEB+∠ABE=60°,∴∠ABE=∠CBE,即BE平分∠ABC.26.(1)证明:∵AD⊥CE,BE⊥CE,∴∠D=∠E=90°,在Rt△ACD和Rt△CBE中,,∴Rt△ACD≌Rt△CBE(HL),∴∠DCA=∠EBC,∵∠E=90°,∴∠EBC+∠ECB=90°,∴∠DCA+∠ECB=90°,∴∠ACB=180°﹣90°=90°;(2)解:△ODE等腰直角三角形,理由如下:如图2,连接OC,∵AC=BC,∠ACB=90°,点O是AB中点,∴AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,∴∠AOC=∠BOC=∠ADC=∠BEC=90°,∵∠BOC+∠BEC+∠ECO+∠EBO=360°,∴∠EBO+∠ECO=180°,且∠DCO+∠ECO=180°,∴∠DCO=∠EBO,由(1)知,Rt△ACD≌Rt△CBE,∴DC=BE,在△DCO和△EBO中,,∴△DCO≌△EBO(SAS),∴EO=DO,∠EOB=∠DOC,∵∠COE+∠EOB=90°,∴∠DOC+∠COE=90°,∴∠DOE=90°,且DO=EO,∴△ODE是等腰直角三角形.。
2022-2023学年苏科版八年级数学上册期末阶段复习综合训练题(附答案)
2022-2023学年苏科版八年级数学上册期末阶段复习综合训练题(附答案)一、选择题(每题3分,共24分)1.9的算术平方根是()A.3B.81C.±3D.±812.下列各数中,无理数是()A.B.C.πD.3.若点P(a,﹣b)在第三象限,则M(ab,﹣a)应在()A.第一象限B.第二象限C.第三象限D.第四象限4.平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b值为()A.33B.﹣33C.﹣7D.75.如图所示的数轴上,点C与点B关于点A对称,A、B两点对应的实数分别是1和,则点C对应的实数是()A.1﹣B.﹣2C.﹣D.2﹣6.若点A(﹣5,y1)和点B(﹣2,y2)都在y=﹣x+b的图象上,那么y1与y2的大小关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y27.在平面直角坐标系xOy中,已知点A(﹣1,2),B(3,2),若一次函数y=﹣x+b的图象与线段AB有交点,则b的取值范围是()A.b≤﹣1或b≥3B.﹣1≤b≤3C.b≤1或b≥5D.1≤b≤58.“龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后,决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程)下列说法中正确的有()个①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.A.1B.2C.3D.4二、填空题(本大题共8小题,共32分)9.的平方根是.10.一次函数y=(m﹣2)x+m2﹣4的图象经过原点,则m=.11.已知点P(2m﹣5,m﹣1),则当m为时,点P在第一、三象限的角平分线上.12.已知x,y是实数,且+(y﹣3)2=0,则xy的立方根是.13.将直线y=kx+b向上平移3个单位长度与直线y=2x﹣1重合,则直线y=kx+b的解析为.14.已知线段MN=4,MN∥y轴,若点M坐标为(﹣1,2),则N点坐标为.15.请写出符合以下两个条件的一个函数解析式①过点(﹣2,1),②在第二象限内,y随x增大而增大.16.如图,已知直线AB与x轴交于点A(4,0)、与y轴交于点B(0,3),直线BD与x 轴交于点D,将直线AB沿直线BD翻折,点A恰好落在y轴上的C点,则直线BD对应的函数关系式为.三、解答题(本大题共10题,共64分)17.求下列各式中x的值.(1)(x﹣3)3=4;(2)9(x+2)2=16.18.计算:(1);(2)+(π﹣3)0﹣|1﹣|.19.已知y=y1+y2,y1与x2在正比例关系,y2与x成反比例函数关系,且x=1时,y=3,x =﹣1时,y=1.(1)求y与x的关系式.(2)求当x=﹣2时,y的值.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣2,5),B(﹣4,3),C(﹣1,1).(1)作出△ABC向右平移5个单位后所得到的△A1B1C1;(2)作出△ABC关于x轴对称的△A2B2C2,并写出点C2的坐标.21.如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,求鸡场的长y(m)与宽x(m)的函数关系式,并求自变量的取值范围.22.已知a,b,c满足|a﹣|++(c﹣)2=0.(1)求a,b,c的值;并求出以a,b,c为三边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由.23.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,连云港地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式.(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?24.已知A、B两地之间有一条公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车的速度为千米/时,a的值为.(2)求乙车出发后,y与x之间的函数关系式.25.在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A 型口罩的进货量且不超过它的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式,并求出自变量x的取值范围;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?26.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.(1)甲从B地返回A地的过程中,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?(3)在(2)的条件下,甲与乙同时出发后,直接写出经过多长时间他们相距20千米?参考答案一、选择题(每题3分,共24分)1.解:∵32=9,∴9算术平方根为3.故选:A.2.解:A、是分数,是有理数,选项错误;B、=3,是整数,是有理数,选项错误;C、是无理数,选项正确;D、=2,是整数,是有理数,选项错误.故选:C.3.解:∵第三象限的点的横坐标小于0,纵坐标小于0,∴a<0,﹣b<0即b>0,∴ab<0,﹣a>0,∴点M(ab,﹣a)在第二象限.故选:B.4.解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.5.解:∵A、B两点对应的实数分别是1和,∴AB=﹣1,又∵点C与点B关于点A对称,∴AC=AB,设点C所表示的数为c,则AC=1﹣c,∴1﹣c=﹣1,∴c=2﹣,故选:D.6.解:∵点A(﹣5,y1)和点B(﹣2,y2)都在y=﹣x+b的图象上,∴,1+b=y2,∴>0,∴y1>y2,故选:D.7.解:∵A(﹣1,2),B(3,2),∴若过A点,则2=1+b,解得b=1,若过B点,则2=﹣3+b,解得b=5,∴1≤b≤5.故选:D.8.解:由图可得,“龟兔再次赛跑”的路程为1000米,故①正确,乌龟先出发,兔子在乌龟出发40分钟时出发,故②错误,乌龟在途中休息了:40﹣30=10(分钟),故③正确,设兔子在途中S米处追上乌龟,,解得,S=750,故④正确,故选:C.二、填空题(本大题共8小题,共32分)9.解:=12,±,故答案为:.10.解:∵此函数是一次函数,∴m﹣2≠0,解得m≠2.∵一次函数y=(m﹣2)x+m2﹣4的图象经过原点,∴x=0时,y=0,∴m2﹣4=0,解得m=﹣2或m=2(舍去).故答案为:﹣2.11.解:根据题意可知,点在一、三象限上的横纵坐标相等,故有2m﹣5=m﹣1;解得,m=4.故答案填:4.12.解:∵+(y﹣3)2=0,∴3x+4=0,y﹣3=0,解得x=﹣,y=3,∴xy=﹣4,∴xy的立方根是,故答案为:.13.解:将直线y=kx+b向上平移3个单位长度后得到直线y=kx+b+3=2x﹣1,即k=2,b=﹣4,∴直线y=kx+b的解析为y=2x﹣4,故答案为:y=2x﹣4.14.解:由题意设点N(﹣1,y),∵已知线段MN=4,M坐标为(﹣1,2),∴y﹣2=4,或y﹣2=﹣4,解得y=6或y=﹣2,即点N坐标(﹣1,﹣2),(﹣1,6).故答案为:(﹣1,﹣2),(﹣1,6).15.解:符合条件的函数可以是一次函数、反比例函数、二次函数,如y=﹣,y=x+3,y=﹣x2+5等.16.解:∵点A(4,0)、点B(0,3),∴OA=4,OB=3,∴AB===5,∴BC=AB=5,∴OC=5﹣3=2,设D(m,0),则OD=m,CD=AD=4﹣m,∵CD2=OD2+OC2,∴(4﹣m)2=22+m2,解得m=,∴D(,0),设直线BD的解析式为y=kx+3,代入D的坐标得,k+3=0,解得k=﹣2,∴直线BD的解析式为y=﹣2x+3,故答案为:y=﹣2x+3.三、解答题(本大题共10题,共64分)17.解:(1)∵(x﹣3)3=4,∴(x﹣3)3=8,∴x﹣3=2,∴x=5;(2)∵9(x+2)2=16,∴,∴x+2=,解得x=或x=﹣.18.解:(1)原式=4+1﹣2﹣2=1;(2)原式=﹣1+1﹣(﹣1)=﹣1+1﹣+1=﹣+1.19.解:(1)∵y1与x2在正比例关系,∴设y1=kx2,∵y2与x成反比例函数关系,∴设y2=,∵y=y1+y2,∴y=kx2+,把x=1,y=3,x=﹣1,y=1,代入y=kx2+,得,解得k=2,m=1,∴y=2x2+,∴y与x的关系式:y=2x2+;(2)把x=﹣2代入y=2x2+,得y=2×4﹣=,∴y的值是.20.解:(1)如图所示;(2)如图所示:点C2的坐标是(﹣1,﹣1).21.解:根据题意得:鸡场的长y(m)与宽x(m)有y+2x=35,即y=﹣2x+35;∵18≥y>0,∴﹣2x+35≤18,∴x≥8.5,又y>0,∴﹣2x+35>0,解得x<,则自变量的取值范围为8.5≤x<,∴鸡场的长y(m)与宽x(m)的函数关系式为y=﹣2x+35,自变量的取值范围为8.5≤x<.22.解:(1)∵|a﹣|++(c﹣)2=0.∴a﹣=0,b﹣5=0,c﹣=0,∴a=2,b=5,c=3,∴以a,b,c为三边的三角形周长=2=5+5;(2)不能构成直角三角形,∵a2+c2=8+18=26,b2=25,∴a2+c2≠b2,∴不能构成直角三角形.23.解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x≥0);(2)∵600米=0.6千米,∴当x=0.6时,y=20﹣6×0.6=16.4,答:这时山顶的温度大约是16.4℃;(3)当y=﹣34℃时,﹣34=20﹣6x,解得x=9.答:飞机离地面的高度为9千米.24.解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设乙车出发后y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴乙车出发后y与x之间的函数关系式为y=100x﹣120.25.解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)①根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;根据题意得,,解得500≤x≤1000,∴y=﹣0.05x+400(500≤x≤1000);②∵y=﹣0.05x+400,k=﹣0.05<0;∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大.26.解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x=时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.答:乙从A地到B地用了135分钟.(3)根据题意得:90x﹣40x=20或60(x﹣1.5)+40x=90﹣20或60(x﹣1.5)+40x=90+20,解得x=或x=或x=2,答:经过时或时或2时,他们相距20千米.。
(完整版)八年级上册数学数与代数专题期末复习讲义
期末复习复习(二)—代数学生/课程年级学科授课教师日期时段核心内容整式的乘除,分式课型教学目标1.会运用法则、乘法公式进行整式的乘除运算.2.通过对提公因式法和公式法的教学,让学生灵活地解决因式分解的题目/.3.掌握分式的基本运算,熟练解决分式的应用。
重、难点整式的乘法运算;因式分解;分式知识导图导学一整式的乘除知识点讲解 1:幂的运算例 1. 下列算式中:① (a3)3=a6;②[(x2)2]3=x12;③y·(y2)2=y5;④[(-x)3]4=-x12,其中正确的有.例 2. 计算:(1)-ab2(3a2b-abc-1) (2)(-5ab2x)·(-a2bx3y)例 3. 已知3x+5y=8,求8x·32y的值.我爱展示1. 计算:(1)(2)2. 已知一个多项式与单项式的积为,求这个多项式。
3. 当时,= .4. 已知,则的值为.5. 阅读材料:求1+2+22+23+24+…+22015的值.解:设S=1+2+22+23+24+…+22012+22015,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22016将下式减去上式得2S﹣S=22016﹣1即S=22016﹣1即1+2+22+23+24+…+22015=22016﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).知识点讲解 2:乘法公式例 1. [单选题] 下列计算正确的是()A. B.C. D.例 2. 计算:(1) (2)(3) (4)例 3. 化简求值:,其中.我爱展示1. [单选题] 计算的结果正确的是()A. B. C. D.2. [单选题] 若,,则的值为()A. B. C.1 D.23. [单选题] 有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的长方形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.a+2b D.3a+b4. ,则.5. [单选题] 已知(m-n)2=8,(m+n)2=2,则m2+n2= ( )A.10B.6C.5D.36. 已知,则= .7. 先化简,再求值:(1)其中.(2) ,其中.知识点讲解 3:因式分解例 1. [单选题] 下列因式分解正确的是()A. B.C. D.例 2. [单选题] 把多项式分解因式的结果是()A. B. C. D.例 3. 已知长方形的周长为20,相邻两边长分别为(均为整数),且满足,求的值.我爱展示1.若,,则代数式的值是.2.分解因式:(1)(2)(3) 3. 先化简,然后对式子中a、b分别选择一个自己最喜欢的数代入求值.4. [单选题] 下列等式从左到右的变形,属于因式分解的是 ( )A.a(x-y)=ax-ayB.x2-1=(x+1)(x-1)C.(x+1)(x+3)=x2+4x+3D.x2+2x+1=x(x+2)+15. [单选题] 可利用x2+(p+q)x+pq=(x+p)(x+q)分解因式的是 ( )A.x2-3x+2B.3x2-2x+1C.x2+x+1D.3x2+5x+7导学二分式知识点讲解 1:分式的基本概念例 1. [单选题] 分式的值等于0时,x的值为()A.±2B.2 C.-2 D.我爱展示1.[单选题] 要使的值为0,则m的值为()A.3 B.-3 C.±3D.不存在2.当时,分式有意义.3. [单选题] 下列式子:,,,,,b,其中是分式的个数有() A. 2个 B. 3个 C. 4个 D. 5个知识点讲解 2:分式的运算例 1. [单选题] 下列运算正确的是()A. B. C. D.例 2. 计算:(1)(2)例 3. 计算:(1)我爱展示1. [单选题] 如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变2. 先化简,再求值:(1-)÷-,其中x满足x2-x-1=0.3.先化简:÷(- ),再从-2<x<3的范围内选取一个你喜欢的x值代入求值.4.先化简,在求值:,其中.5.[单选题] 已知为实数,且,设,则M、N的大小关系是().A.M=NB.M>NC.M<ND.不确定知识点讲解 3:分式方程的解及解法例 1. [单选题] 把方程去分母正确的是( )A. B.C. D.例 2. [单选题] 解分式方程分以下四步,其中错误的一步是( )A. 方程两边分式的最简公分母是B. 方程两边都乘以,得整式方程C. 解这个整式方程,得D. 原方程的解为例 3. [单选题] 若关于x的分式方程-1=无解,则m的值为()A.-B.1 C.-或2 D.-或-例 4. 已知关于x的分式方程=1的解为负数,求a的取值范围.我爱展示1.[单选题] 关于x的方程的解为,则a的值为()A.1B.3C.-1D.-32.[单选题] 若关于x的分式方程=2-的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,33.已知关于x的分式方程-=0无解,求a的值.4.若有增根,则增根是,k= .5.若分式无意义,当时,则m= .知识点讲解 4:分式方程的实际应用例 1. 某文化用品商店用2000元购进一批小学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果第二批用了2600元.若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?例 2. 王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?我爱展示1.[单选题] 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x满足的方程是()A. B. C. D.2.某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件? (2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?3.[单选题] 完成某项工作,甲独做需a小时,乙独做需b小时,则两人合作完成这项工作的80%,所需要的时间是( ).A. 小时B. 小时C. 小时D. 小时4.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v千米/时,则它以最大航速顺流航行s 千米所需的时间是.5.甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.导学三专题培优知识点讲解 1:乘法公式的灵活运用例 1. 用简便方法计算:1002-992+982-972+962-952+…+22-1.例 2. 如果a+b+c=0,a2+b2+c2=1,求ab+bc+ca的值.例 3. 已知(m-53)(m-47)=24,求(m-53)2+(m-47)2的值例 4. 对于任意一个正整数n,整式A=(4n+1)(4n-1)-(n+1)(n-1)能被15整除吗?请说明理由.我爱展示1. 计算:(1)(a+b)3 (2)(x-y-m+n)(x-y+m-n)2. 已知(x+y)2=25,(x-y)2=16,求xy的值.3.已知求的值.4.如果一个正整数能表示为两个连续偶数的和与差的乘积,那么我们就称这个正整数为“和谐数”,如4=(2+0)(2-0),12=(4+2)(4-2),20=(6+4)(6-4),因此4,12,20这三个数都是“和谐数”.(1)当28=(m+n)(m-n)时,m+n= ;(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?知识点讲解 2:因式分解的应用例 1. [单选题] 计算:.例 2. △ABC的三边长分别为,且,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.例 3. 如果是整数,且,求的值.我爱展示1.已知可因式分解成,其中均为整数,求的值.2.不解方程组,求的值.3.已知为△ABC的三角边的长,试判断代数式的值的符号,并说明理由4.如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)观察图2,请你写出式子(m+n) 2,(m-n) 2,mn之间的等量关系:; (3)若x+y=-6,xy=2.75,则x-y=; (4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式:.5.某商业大楼共有四层,第一层有商品种,第二层有商品种,第三层有商品种,第四层有商品种,若,则这座商业大楼共有商品多少种?知识点讲解 3:分式的条件求值例 1. 已知+=3,求的值.【学有所获】归一代入法:将条件式和所求分式作适当的恒等变形,然后整体代入,使分子、分母化归为同一个只含相同字母积的分式,便可约分求值.例 2. 已知a2-a+1=2,求+a-a2的值.【学有所获】整体代入法:将条件式和所求分式作适当的恒等变形,然后整体代入求值.例 3. 已知==,求的值.【学有所获】设辅助元代入法:在已知条件中有连比或等比时,一般可设参数k,往往立即可解.例 4. 已知m2+=4,求m+和m-的值.【学有所获】构造互倒式代入法:构造x2+=(x± )2∓2迅速求解,收到事半功倍之效.例 5. 已知3x-4y-z=0,2x+y-8z=0,求的值.【学有所获】主元法:若两个方程有三个未知数,故将其中两个看作未知数,剩下的第三个看作常数,联立解方程组,思路清晰、解法简洁.例 6. 已知x+=3,求的值.【学有所获】倒数法:已知条件和待求式同时取倒数后,再逆用分式加减法法则对分式进行拆分,然后将三个已知式相加,这样解非常简捷.我爱展示1.已知-=5,求的值.2. 已知a+b+c=0,求c( + )+b( + )+a( + )的值.3. 已知==≠0,则的值为.4. 已知三个数x、y、z满足=-2,=,=- .求的值.5. 若4x-3y-6z=0,x+2y-7z=0(xyz≠0),求代数式的值.6. 已知,求式子的值.6.已知,求的值.限时考场模拟______ 分钟完成1. [单选题] 若9x2-kxy+4y2是一个完全平方式,则k的值()A.6 B.±6C.12 D.±122.在横线填上“+”或“-”,使等式成立:(1)(y-x)2= (x-y)2; (2)(1-x)(2-x)= (x-1)(x-2)3.[单选题] 下列关于x的方程中,是分式方程的是( )A. B. C. D.3x-2y=14. 已知关于x的分式方程的解为负数,则k的取值范围是.5.[单选题] 每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为() A.元B.元C.元D.元6.已知a、b、c是△ABC的三边,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状,并说明理由。
2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)
2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)一.选择题1.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,15 2.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3B.4C.5D.±53.一直角三角形的两边长分别为3和4.则第三边的长为()A.5B.C.D.5或4.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)5.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距()A.35海里B.40海里C.45海里D.50海里6.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE 的长是()A.3B.4C.5D.67.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.28.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤139.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6二.填空题11.在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.13.如图,已知在Rt△ABC中,∠ACB=90°,AB=8,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.15.如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是.16.某小区楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为20元,楼梯宽为2m,则购买这种地毯至少需要元.17.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.三.解答题18.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16km,CB=11km,现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?19.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?20.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为500米,与公路上另一停靠站B的距离为1200米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.22.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.23.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上(墙与地面垂直),这时梯子下端B与墙角C距离为1.5米.(1)求梯子顶端A与地面的距离AC的长;(2)若梯子滑动后停在DE位置上,如图(2)所示,测得BD=0.5米,求梯子顶端A 下滑了多少米?24.如图,正方形网格中有△ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:(1)判断△ABC的形状,并说明理由;(2)求△ABC中BC边上的高.25.我国大部分东部地区属于亚热带季风气候,夏季炎热多雨.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?参考答案一.选择题1.解:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选:B.2.解:∵点P(3,4),∴点P到原点的距离是=5.故选:C.3.解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.4.解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.5.解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了20×2=40海里,15×2=30海里,根据勾股定理得:=50(海里).故选:D.6.解:根据翻折的性质得,AE=CE,设BE=x,∵长方形ABCD的长为8,∴AE=CE=8﹣x,在Rt△ABE中,根据勾股定理,AE2=AB2+BE2,即(8﹣x)2=42+x2,解得x=3,所以,BE的长为3.故选:A.7.解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.8.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.9.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选:B.10.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.二.填空题11.解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.12.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.13.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=8π.故答案为:8π.14.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.15.解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.16.解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×20=280(元).17.解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三.解答题18.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得x2+162=112+(25﹣x)2,解得x=9.8,∴E站应建在离A站9.8 km处.19.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.20.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=1200米,AC=500米,所以,根据勾股定理有AB==1300(米).因为S△ABC=AB•CD=BC•AC所以CD===(米).由于400米<米,故没有危险,因此AB段公路不需要暂时封锁.22.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.23.解:(1)在Rt△ABC中,∠C=90°根据勾股定理,得:AC===2(米)∴梯子顶端A与地面的距离AC为2米;(2)依题意,得:CD=BC+BD=1.5+0.5=2(米)在Rt△CDE中,∠C=90°,根据勾股定理,得:∴AE=AC﹣CE=2﹣1.5=0.5(米)∴梯子顶端A下滑了0.5米.24.解:(1)∵由勾股定理得:AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC是直角三角形;(2)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB=,AC=2,BC=5,设△ABC的边BC上的高为h,则AB×AC=×h,∴×2=5h,h=2,即△ABC中BC边上的高是2.25.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,G,使AD=AG=200千米,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,∴CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120(千米),则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).。
苏科版八年级数学上册1-3探索三角形全等的条件 同步知识点分类练习题(含答案)-doc
苏科版八年级数学上册1.3探索三角形全等的条件同步知识点分类练习题一.三角形的稳定性1.王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根2.如图所示的自行车架设计成三角形,这样做的依据是三角形具有 .3.小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为 .4.有一个人用四根木条钉了一个四边形的模具,两根木条连接处钉一颗钉子,但他发现这个模具老是走形,为什么?如果他想把这个模具固定,再给一根木条给你,你怎么把它固定下来,画出示意图,并说出理由.二.全等三角形的判定5.根据下列条件,不能画出唯一确定的△ABC的是( )A.AB=3,BC=4,AC=6B.AB=4,∠B=45°,∠A=60°C.AB=4,BC=3,∠A=30°D.∠C=90°,AB=8,AC=46.如图,点D在AB上,点E在AC上,AB=AC,添加一个条件 ,使△ABE≌△ACD(填一个即可).7.如图,AB=AD,∠1=∠2,DA平分∠BDE.求证:△ABC≌△ADE.8.如图,AD,BC相交于点O,∠OAB=∠OBA,∠C=∠D=90°.求证:△AOC≌△BOD.9.如图,在△ABC中,∠ACB=90°,AC=8cm,BC=10cm.点C在直线l上,动点P 从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为 秒时,△PMC与△QNC全等.10.证明命题“全等三角形的面积相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图, 求证: .请你补全已知和求证,并写出证明过程.11.如图,点B,E,C,F在同一条直线上,AB=DE,BE=CF,∠B=∠DEF.求证:△ABC≌△DEF.12.如图,在矩形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD﹣DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD﹣DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为t秒.(1)在运动过程中当M、N两点相遇时,求t的值.(2)在整个运动过程中,求DM的长.(用含t的代数式表示)(3)当△DEM与△DFN全等时,请直接写出所有满足条件的DN的长.13.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.14.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.15.八年级数学社团活动课上,《致远组》同学讨论了这样一道题目:如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明:∠ADC=∠AEB.其中一个同学的解法是这样的:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA”说明三角形全等.请你给出正确的解法.三.全等三角形的判定与性质16.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=44°,AB交EF于点D,连接EB.下列结论:①∠FAC=44°;②AF=AC;③∠EFB=44°;④AD=AC,正确的个数为( )A.4个B.3个C.2个D.1个17.如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是( )A.6B.7C.8D.918.如图,AC⊥BC,BD⊥BC,AB=CD,AC=5,则BD的大小为 .19.如图,△ABC和△ADE的顶点交于一点A,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.20.已知:如图,在△ABC中,BE、CD分别是AC、AB边上的高,且BE=CD.求证:AB=AC.21.如图,已知△ABC,作射线AP∥BC,E、F分别为BC、AP上的点,且AF=CE.连接EF交AC于点D,连接BD并延长,交AP于点M.(1)求证:△ADF≌△CDE;(2)求证:AM=BC.22.如图,在△ABC中,AC=BC,点D在AB上,点E在BC上,连接CD、DE,AD=BE,∠CDE=∠A.(1)求证:DC=ED;(2)如图2,当∠ACB=90°时,作CH⊥AB于H,请直接写出图2中的所有等腰三角形.(△ABC除外)23.如图,△ABC中,∠ABC=45°,∠ACB=75°,D是BC上一点,且∠ADC=60°,CF⊥AD于F,AE⊥BC于E,AE交CF于G.(1)求证:△AFG≌△CFD;(2)若FD=1,AF=,求线段EG的长.24.如图,在△ABC和△A'B'C'中,∠B=∠B',∠C=∠C',AD平分∠BAC交BC于点D.(1)在△A'B'C'中,作出∠B'A'C'的角平分线A'D'交B'C'于点D';(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A'D',求证:BD=B'D'.25.如图所示,在△ABC中,AD为中线,过C作CE⊥AD于E.(1)如图1,若∠B=30°,∠A=90°,AC=BD,AE=1,求BC的长.(2)如图2,延长DA至F,连接FC.若∠F=∠BAD,求证:AF=2DE.26.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK =DG+KG.27.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是 ;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案一.三角形的稳定性1.解:如图所示:要使这个木架不变形,利用三角形的稳定性,他至少还要再钉上1个木条,故选:B.2.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.3.解:用三角形稳固它们是因为三角形具有稳定性,故答案为:三角形具有稳定性.4.解:∵多边形ABCD是四边形,四边形具有不稳定性,∴这个模具老是走形,如图所示;在B、D处钉一颗钉子,把BD连接,可以把把它固定下来,理由是三角形具有稳定性.二.全等三角形的判定5.解:A:三边确定,符合全等三角形判定定理SSS,能画出唯一的△ABC,故不符合题意,B:已知两个角及其公共边,符合全等三角形判定定理ASA,能画出唯一的△ABC,故不符合题意,C:已知两边及其中一边的对角,属于“SSA”的情况,不符合全等三角形判定定理,故不能画出唯一的三角形,故本选项符合题意,D:已知一个直角和一条直角边以及斜边长,符合全等三角形判定定理HL,能画出唯一的△ABC,故不符合题意.故选:C.6.解:∵AB=AC,∠BAE=∠CAD,∴当添加AE=AD(或CE=BD)时,可根据“SAS”判断△ABE≌△ACD;当添加∠B=∠C时,可根据“ASA”判断△ABE≌△ACD;当添加∠AEB=∠ADC时,可根据“AAS”判断△ABE≌△ACD.故答案为:AE=AD(或CE=BD或∠AEB=∠ADC).7.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵AB=AD,∴∠ADB=∠B,∵DA平分∠BDE.∴∠ADE=∠ADB,∴∠ADE=∠B,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA).8.证明:∵∠OAB=∠OBA,∴OA=OB,在△AOC和△BOD中,,∴△AOC≌△BOD(AAS).9.解:设运动时间为t秒时,△PMC≌△CNQ,∴斜边CP=CQ,分两种情况:①如图1,点P在AC上,点Q在BC上,∵AP=t,BQ=2t,∴CP=AC﹣AP=8﹣t,CQ=BC﹣BQ=10﹣2t,∵CP=CQ,∴8﹣t=10﹣2t,∴t=2;②如图2,点P、Q都在AC上,此时点P、Q重合,∵CP=AC﹣AP=8﹣t,CQ=2t﹣10,∴8﹣t=2t﹣10,∴t=6;综上所述,点P运动时间为2或6秒时,△PMC与△QNC全等,故答案为:2或6.10.解:如下图作AD⊥BC,作A'D⊥BC',垂足分别为D,D',∵△ABC≌△A'B'C'(已知),∴AB=A'B',BC=B'C'(全等三角形的对应边相等),∠B=∠B(全等三角形的对应角相等),在△ABD和△A'B'D'中,∵,∴ABD≌△A'B'D'(AAS),∴AD=A'D'(全等三角形的对应边相等),∴S△ABC=S△A'B'C'.11.证明:∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).12.解:(1)根据题意得t+3t=3+5,解得t=2,即t的值为2;(2)当0≤t≤3时,DM=3﹣t;当3<t≤8时,DM=t﹣3;(3)∵ME⊥PQ,NF⊥PQ,∴∠DEM=∠DFN=90°,∵∠MDN=90°,∴∠DME=∠NDF,∴当DM=DN时,△DEM与△DFN全等,当0≤t≤时,3﹣t=5﹣3t,解得t=1,此时DN的长为2;当<t≤3时,3﹣t=3t﹣5,解得t=2,此时DN的长为1,当3<t≤时,3t﹣5=t﹣3,解得t=1,不合题意舍去;<t<8时,3=t﹣3,解得t=6,此时DN的长为3.综上所述,DN的长为1或2或3.13.解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,,∴△ABC≌△EDF(SAS).14.解:(1)当t=3时,点P走过的路程为:2×3=6,∵AB=4,∴点P运动到线段BC上,∴BP=6﹣4=2,故答案为:2;(2)∵矩形ABCD的面积=4×6=24,∴三角形ABP的面积=×24=8,∵AB=4,∴△ABP的高为:8×2÷4=4,如图,当点P在BC上时,BP=4,∴t=(4+4)÷2=4,当点P在AD上时,AP=4,∴t=(4+6+4+2)÷2=8,∴当t=4 s或8 s时,△ABP的面积为长方形面积的三分之一;(3)根据题意,如图,连接CQ,则AB=CD=4,∠A=∠B=∠C=∠D=90o,DQ=5,∴要使一个三角形与△DCQ全等,则另一条直角边必须等于DQ,①当点P运动到P1时,CP1=DQ=5,此时△DCQ≌△CDP1,∴点P的路程为:AB+BP1=4+1=5,∴t=5÷2=2.5,②当点P运动到P2时,BP2=DQ=5,此时△CDQ≌△ABP2,∴点P的路程为:AB+BP2=4+5=9,∴t=9÷2=4.5,③当点P运动到P3时,AP3=DQ=5,此时△CDQ≌△ABP3,∴点P的路程为:AB+BC+CD+DP3=4+6+4+1=15,∴t=15÷2=7.5,④当点P运动到P4时,即P与Q重合时,DP4=DQ=5,此时△CDQ≌△CDP4,∴点P的路程为:AB+BC+CD+DP4=4+6+4+5=19,∴t=19÷2=9.5,综上所述,时间的值可以是:t=2.5,4.5,7.5或9.5,故答案为:2.5或4.5或7.5或9.5.15.证明:因为∠BAC是钝角,故过B、C两点分别作CA、BA的垂线,垂足分别为F,G,在△ABF与△ACG中,∴△ABF≌△ACG(AAS),∴BF=CG,在Rt△BEF和Rt△CDG中,∴Rt△BEF≌Rt△CDG(HL),∴∠ADC=∠AEB.三.全等三角形的判定与性质16.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正确,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠FAC=44°,故①正确,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=44°,故③正确,无法证明AD=AC,故④错误,综上,①②③正确,故选:B.17.解:在AC上截取AE=AB=5,连接PE,∵AC=9,∴CE=AC﹣AE=9﹣5=4,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,,∴△APE≌△APB(SAS),∴PE=PB=3,∵4﹣3<PC<4+3,解得1<PC<7,∴PC取6,故选:A.18.解:∵AC⊥BC,BD⊥BC,∴∠ABC=∠DBC=90°,在Rt△ACB和Rt△DBC中,,∴Rt△ACB和Rt△DBC(HL),∴BD=AC=5,故答案为:5.19.证明:∵∠BAD=∠CAE,∴∠BAD﹣∠DAC=∠CAE﹣∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴∠B=∠D.20.证明:∵BE⊥AC,CD⊥AB,∴∠AEB=∠ADC=90°,在△AEB和△ADC中,,∴△AEB≌△ADC(AAS),∴AB=AC.21.证明:(1)∵AP∥BC,∴∠AFD=∠CED,∠FAD=∠ECD,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA);(2)由(1)知,△ADF≌△CDE,∠FAD=∠ECD,∴AD=CD,在△ADM和△CDB中,,∴△ADM≌△CDB(ASA),∴AM=BC.22.(1)证明:∵AC=BC,∴∠A=∠B,∵∠CDB=∠A+∠ACD,∴∠CDE+∠BDE=∠A+∠ACD,∵∠CDE=∠A,∴∠BDE=∠ACD,在△ACD和△BDE中,,∴△ACD≌△BDE(AAS),∴DC=ED.(2)解:图2中的所有等腰三角形有△ACH,△BCH,△BCD,△DCE.理由:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CH⊥AB,∴∠ACH=∠BCH=45°,∴△ACH和△BCH都是等腰三角形,由(1)可知△DCE是等腰三角形,∵∠CDE=∠A=45°,∴∠DCE=∠DEC=67.5°,∵∠B=45°,∴∠CDB=67.5°,∴∠DCB=∠CDB,∴△BCD是等腰三角形.23.(1)证明:∵∠ABC=45°,∠ACB=75°,∴∠BAC=60°,∵∠ADC=60°,∴∠ADB=120°,又∵∠BAC=60°,∴∠DAC=45°,又∵CF⊥AD,∴∠AFC=∠CFD=90°,∠ACF=∠DAC=45°,∴AF=CF,∵CF⊥AD,AE⊥BC,∴∠CDF+∠DCF=∠CGE+∠DCF=90°,∴∠CDF=∠CGE,∵∠CGE=∠AGF,∴∠AGF=∠CDF,∵在△AFG和△CFD中,,∴△AFG≌△CFD(AAS);(2)解:在Rt△CFD中,∠CFD=90°,∠FCD=30°,∴CD=2DF=2,∵△AFG≌△CFD,∴FG=DF=1,∴CF=AF=,∴CG=CF﹣FG=﹣1,在Rt△CGE中,∠AEC=90°,∠FCD=30°,∴EG=CG=.24.(1)解:如图所示:(2)证明:∵∠B=∠B',∠C=∠C',∴∠A=∠A',∵AD平分∠BAC,∠B'A'C'的角平分线A'D',∴∠BAD=∠B'A'D',∵AD=A'D',∴△BAD≌△B'A'D'(AAS),∴BD=B'D'.25.解:(1)∵∠BAC=90°,AD为中线,∴BD=CD=AD=BC,∵∠B=30°,∴∠BAD=30°,∴∠DAC=60°,∵CE⊥AD,∴∠ACE=30°,∴AC=2AE=2,在Rt△ABC中,BC=2AC=4;(2)延长ED到G,使DG=DE,则EG=2DE,连接GB,如图:∵AD为中线,∴BD=CD,在△BDG和△CDE中,,∴△BDG≌△CDE(SAS),∴BG=CE,∠G=∠CED=90°=∠CEF,在△ABG和△FCE中,,∴△ABG≌△FCE(AAS),∴AG=EF,∴AG﹣AE=EF﹣AE,即EG=AF,∵EG=2DE,∴AF=2DE.26.证明:(1)在Rt△ACB和Rt△DEB中,,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,,∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,,∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.27.解:(1)DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)△DEF是等边三角形,理由如下,∵α=120°,AF平分∠BAC,∴∠BAF=∠CAF=60°,∵AB=AF=AC,∴△ABF和△ACF是等边三角形,∴FA=FC,∠FCA=∠FAB=∠AFC=60°,同(2)理得,△BDA≌△EAC,∴∠BAD=∠ACE,AD=CE,∴∠FAD=∠FCE,∴△FAD≌△FCE(SAS),∴DF=EF,∠DFA=∠EFC,∴∠DFE=∠DFA+∠AFE=∠EFC+∠AFE=∠AFC=60°,∴△DEF是等边三角形.28.解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。
苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(三)
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(三)1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.2.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD 相交于点F.求证:(1)BF=AC;(2)CE=BF.3.已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC 的长.4.阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,∵EB=EC,∠ABE=∠ACE,AE=AE,∴△AEB≌△AEC…第一步∴∠BAE=∠CAE…第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.5.在△ABC中,AB=AC,点D是BC的中点,点E和点F是AC上的两点,AB=BF,连接ED 交BF于点H.(1)如图1,连接BE,若∠BEC=90°,BC=10,CE=6,求AB的长;(2)如图2,G为ED延长线上一点,且BD=BG,∠ABF=∠CBG,求证:AE=EF.6.如图,点O为线段AB上的任意一点(不于A、B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC交于点P,AD交CO于点M,BC交DO于点N.(1)试说明:CB=AD;(2)若∠COD=70°,求∠APB的度数.7.已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC 是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.8.已知,如图1,在△ABC中,∠A是锐角,AB=AC,点D,E分别在AC,AB上,BD与CE 相交于点O,且∠DBC=∠ECB=∠A.(1)写出图1中与∠A相等的角,并加以证明:(2)判断BE与CD之间的数量关系,并说明理由.小刚通过观察度量,找到了∠A相等的角,并利用三角形外角的性质证明了结论的正确性;他又利用全等三角形的知识,得到了BE=CD.小刚继续思考,提出新问题:如果AB≠AC,其他条件不变,那么上述结论是否仍然成立?小刚画出图2,通过分析得到猜想:当AB≠AC时,上述结论仍然成立,小组同学又通过讨论,形成了证明第(2)问结论的几种想法:想法1:在OE上取一点F,使得OF=OD,故△OBF≌△OCD,欲证BE=CD,即证BE=BF.想法2:在OD的延长线上取一点M,使得OM=OE,故△OBE≌△OCM,欲证BE=CD,即证CD=CM.想法3:分别过点B,C作OE和OD的垂线段BP,CQ,可得△OBP≌△OCQ,欲证BE=CD,即证△BEP≌△CDQ.……请你参考上面的材料,解决下列问题:(1)直接写出图2中与∠A相等的一个角;(2)请你在图2中,帮助小刚证明BE=CD.(一种方法即可)9.如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.10.如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.参考答案1.证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD =BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.2.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.3.(1)证明:在△ABE中,∠ABE=180°﹣∠BAE﹣∠AEB,在△ABC中,∠C=180°﹣∠BAC﹣∠ABC,∵∠AEB=∠ABC,∠BAE=∠BAC,∴∠ABE=∠C;(2)解:∵FD∥BC,∴∠ADF=∠C,又∠ABE=∠C,∴∠ABE=∠ADF,∵AF平分∠BAE,∴∠BAF=∠DAF,在△ABF和△ADF中,,∴△ABF≌△ADF(AAS),∴AB=AD,∵AB=8,AC=10,∴DC=AC﹣AD=AC﹣AB=10﹣8=2.4.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.5.解:(1)如图1,连接AD,∵AB=AC,点D是BC的中点,∴AD⊥BC∵∠BEC=90°,BC=10,CE=6,∴BE===8设AB=x,则AE=x﹣6∵AE2+BE2=AB2,即(x﹣6)2+82=x2,解得:x=,∴AB=,(2)证明:如图2,连接BE,∵BD=BG∴∠BDG=∠BGD∵AB=BF,∴∠A=∠AFB∵∠ABF=∠CBG,∴∠BDG=∠A∴∠EDC=∠BDG=∠A∵∠A+∠ABC+∠C=∠EDC+∠CED+∠C=180°∴∠CED=∠ABC∵AB=AC∴∠C=∠ABC∴∠C=∠CED∴DE=DC∵点D是BC的中点,∴BD=DC∴DE=DC=BD∴∠BED=∠EBD∵∠BED+∠EBD+∠C+∠CED=180°,即2∠BED+2∠CED=180°∴∠BED+∠CED=90°∴BE⊥AF∵BA=BF∴AE=EF6.证明:(1)∵∠AOC=∠BOD,∴∠AOD=∠BOC,又∵OA=OC,OB=OD,∴△AOD≌△COB(SAS),∴CB=AD;(2)∵∠COD=70°,∴∠AOC=∠BOD=55°,∴∠AOD=∠COD+∠BOD=125°=∠BOC,∵△AOD≌△COB,∴∠BCO=∠DAO,∴∠DAO+∠CBO=∠BCO+∠CBO,∴180°﹣∠APB=180°﹣∠BOC,∴∠APB=125°7.解:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAF=60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF,在△ABD和△ACF中AB=AC,∠BAD=∠CAF,AD=AF,∴△ABD≌△ACF,∴∠ADB=∠AFC,②结论:∠AFC=∠ACB+∠DAC成立.(2)结论∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB﹣∠DAC.证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF.在△ABD和△ACF中AB=AC,∠BAD=∠CAF,AD=AF,∴△ABD≌△ACF.∴∠ADB=∠AFC.又∵∠ACB=∠ADC+∠DAC,∴∠AFC=∠ACB﹣∠DAC.(3)补全图形如下图:∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB﹣∠DAC (或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).8.解:(1)与∠A相等是∠BOE或∠COD;(2)如图2,在OE上取一点F,使得OF=OD,∵∠DBC=∠ECB=∠A,∴OB=OC,∵∠BOE=∠COD,∴△OBF≌△OCD(SAS).∴BF=CD,∠OBF=∠OCD.∵∠BFE=∠ECB+∠CBF=∠ECB+∠DBC+∠OBF=∠A+∠A+∠OBF=∠A+∠OBF,∵∠BEC=∠A+∠OCD,=∠A+∠OBF,∴∠BFE=∠BEC.∴BE=BF.∴BE=CD.9.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.10.(1)解:△AED≌△DFC.证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°.又∵AE⊥DG,CF∥AE,∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,∴∠EAD=∠FDC.∴△AED≌△DFC(AAS).(2)证明:∵△AED≌△DFC,∴AE=DF,ED=FC.∵DF=DE+EF,∴AE=FC+EF.。
苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)1.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC 和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.2.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE 为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.3.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD 为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.4.如图,在Rt△ABC和Rt△ABD中,∠C=∠BAD=90°,BD、AC交于点F,且AF=AD,作DE⊥AC于点E.(1)求证:∠CBF=∠ABF;(2)若AB﹣BC=4,AC=8,求BC的长;(3)求证:AE=CF.5.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E.求证:BC=2AE.小明探究发现,可以通过构造全等三角形来解决,在BC上截取BF=AE,连接AF,可证△ABF≌△BAE(如图2),从而使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是(填“SSS”“SAS”“ASA”“AAS”或“HL”中的一个);参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC是等边三角形,点P在BQ上,且∠APB=120°,CP=CQ,探究线段AP,BQ的数量关系,并证明你的结论.6.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.请补充完整证明“BE=DC,且BE⊥DC”的推理过程;证明:∵△ABD和△ACE都是等腰直角三角形(已知)∴AB=AD,AE=AC(等腰直角三角形定义)又∵∠BAD=∠CAE=90°(已知)∴∠BAD+∠BAC=(等式性质)即:∴△ABE≌△ADC()∴BE=DC(全等三角形的对应边相等)∠ABE=∠ADC(全等三角形的对应角相等)又∵∠BFO=∠DFA()∠ADF+∠DFA=90°(直角三角形的两个锐角互余)∴∠ABE+∠BFO=90°(等量代换)∴即BE⊥DC(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD 相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?7.如图,在△ABC中,AB=AC,射线BD上有一点P,且∠BPC=∠BAC.(1)求证:∠APC=∠APD;(2)求证:AB+AC>PB+PC.8.已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.9.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.10.阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1.(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,∴AC=BC,∠ACP=∠BCP.又∵CP=CP,∴△ACP≌△BCP.∴∠CAP=∠CBP,即∠CAE=∠CBF.(2)证明:∵在△ACE与△BCF中,,∴△ACE≌△BCF(ASA).∴AE=BF.(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,∴S△ABC =S△ABG.∴AE=AC.①当∠ACB为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;②当∠ACB为锐角时,∠CAH=90°﹣∠ACB,而∠CAE<∠CAH,要使AE=AC,只需使∠ACB=∠CEA,此时,∠CAE=180°﹣2∠ACB,只须180°﹣2∠ACB<90°﹣∠ACB,解得:60°<∠ACB<90°.2.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.3.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;4.(1)证明:∵AF=AD,∴∠ADF=∠AFD,∵∠AFD=∠BFC,∴∠ADF=∠BFC,在Rt△CBF和Rt△ABD中,∴Rt△CBF~Rt△ABD,∴∠CBF=∠ABF.(2)解:设BC=x,∵AB﹣BC=4,∴AB=x+4,在Rt△ABC中,∵AC=8,∴(x+4)2﹣x2=64,整理,可得8x+16=64,解得x=6,∴BC的长是6.(3)证明:如图1,作FG⊥AB于点G,,∵∠CBF=∠ABF,∴FG=CF,∵∠FAG+∠DAE=90°,∠ADE+∠DAE=90°,∴∠FAG=∠ADE,∵∠AFG=90°﹣∠FAG,∠DAE=90°﹣∠ADE,∴∠AFG=∠DAE,在Rt△AFG和Rt△DAE中,∴Rt△AFG≌Rt△DAE,∴AE=FG,∵FG=CF,∴AE=CF.5.解:(1)在BC上截取BF=AE,连接AF,如图2所示:∵∠DAB=∠ABD,∴∠BAE=∠ABF,在△ABF和△BAE中,,∴△ABF≌△BAE(SAS),故答案为:SAS;(2)BQ=2AP,理由如下:在BP上截取点M,使BM=AP,连接CM,在QB上取点N,使QN=PM,连接CN,如图3所示:∵∠APB=120°,∴∠APQ=180°﹣120°=60°,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC,∴∠APQ=∠ABC,即∠ABP+∠BAP=∠ABP+∠CBM,∴∠BAP=∠CBM,在△ABP和△BCM中,,∴△ABP≌△BCM(SAS),∴BP=CM,∠APB=∠BMC=120°,∴∠CMN=180°﹣120°=60°,∵CP=CQ,∴∠CPM=∠Q,在△PCM和△QCN中,,∴△PCM≌△QCN(SAS),∴CM=CN,∴△CMN是等边三角形∴CM=MN,∵BQ=BP+PM+MN+QN,∴BQ=2BM=2AP.6.(1)解:∠CAE+∠BAC,∠DAC=∠BAE,SAS,对顶角相等,∠BOF=∠DAF=90°;(2)证明:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴CD=BE,∠BEA=∠ACD,∴∠BOC=∠ECO+∠OEC=∠DCA+∠ACE+∠OEC=∠BEA+∠ACE+∠OEC=∠ACE+∠AEC=60°+60°=120°.∴∠BOC=60°.7.解:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠BPC=∠BAC,∴A、P、B、C四点共圆,∴∠APC=∠ABC,∠APB+∠ACB=180°∴∠APC=∠ACB,∵∠APB+∠APD=180°∴∠ACB=∠APD(2)证明:如图,在射线PD上截取PE=PC,连接AE,在△PAE和△PAC中∴△PAE≌△PAC(SAS)∴AE=AC∵在△ABE中,AB+AE>BE∴AB+AC>PB+PC.8.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.9.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.10.解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,∵,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF.。
苏科版数学八年级上册期末专项复习: 一次函数之两条直线平行或相交问题(二)
苏科版八年级上册期末专项复习:一次函数之两条直线平行或相交问题(二)1.直线y=kx﹣2与y=﹣5x+1平行,则k=.2.已知直线l平行于直线y=2x,且在y轴上的截距为5,那么直线l的表达式是.3.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.4.若直线y=x﹣2与y=﹣x+2m的交点在第四象限,则m的取值范围为.5.一次函数y=2x﹣3与y=﹣x+1的图象的交点坐标为.6.若函数y=﹣x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.7.已知函数y=|x+1|+|x﹣5|和一次函数y=kx+5k+1的图象有公共点,则k的取值范围是.8.已知直线l1:y=x+4与y轴交于点B,直线l2:y=kx+4与x轴交于点A,且直线l1与直线l2相交所形成的角中,其中一个角的度数是75°,则线段AB长为.9.若直线y=kx+b平行直线y=5x+3,且过点(2,﹣1),则b=.10.若直线y=kx+b经过点(2,0),且与直线y=﹣2x相交于点(1,a),则两直线与y轴所围成的三角形面积是.11.作图判断直线y=3x+4与y=3x﹣4的位置关系是.12.如图,直线y=x+3与x轴交于点A,与y轴交于点D,将线段AD沿x轴向右平移4个单位长度得到线段BC,若直线y=kx﹣4与四边形ABCD有两个交点,则k的取值范围是.13.如果直线y=kx+b经过点A(2,0),且与直线y=﹣4x平行,则实数b=.14.一次函数y=2x﹣3与y=x+1的图象的交点坐标为.15.如图,正比例函数y=2x的图象与一次函数y=﹣3x+k的图象相交于点P(1,m),则两条直线与x轴围成的三角形的面积为.16.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b <0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论有.(只填序号)17.直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,求m的取值范围.18.一条直线过点(﹣2,5),且平行于直线y=3x,则此函数的解析式为.19.若直线y=mx+1与直线y=2x﹣1的交点在x轴上,则m=.20.如果一次函数y=mx+3与y=nx﹣6的图象相交于x轴上一点,那么m:n=.参考答案1.解:∵直线y=kx﹣2与直线y=﹣5x+1平行,∴k=﹣5.故答案为:﹣5.2.解:∵直线l与直线y=2x平行,∴设直线l的解析式为:y=2x+b,∵在y轴上的截距是5,∴b=5,∴y=2x+5,∴直线l的表达式为:y=2x+5.故答案为:y=2x+5.3.解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).4.解:联立,解得,所以,交点坐标为(m+1,m﹣1),∵交点在第四象限,∴,解得﹣1<m<1,所以,m的取值范围是﹣1<m<1.故选:﹣1<m<1.5.解:联立两个一次函数的解析式有:,解得;所以两个函数图象的交点坐标是(,﹣),故答案为(,﹣).6.解:∵y=﹣x+3与x轴的交点是(3,0),y=2x+b与x轴的交点是(﹣,0),∴﹣=3解得:b=﹣6.故答案为:﹣67.解:根据函数的表达式得到函数的图象如下:利用一次函数和分段函数图象的特点,x>﹣5时,直线表达式中的k为为;x≤﹣5时,直线的k值为﹣3,故k的取值范围是k≥或k<﹣3.故答案为k≥或k<﹣3.8.解:令直线y=x+4与x轴交于点C,令y=x+4中x=0,则y=4,∴B(0,4);令y=x+4中y=0,则x=﹣4,∴C(﹣4,0),∴∠BCO=45°,当∠ABC=75°时,如图1所示.∵∠BCO+∠BAO+∠ABC=75°,∴∠BAO=60°,∴AB=;当∠ABC的邻补角为75°时,如图2所示,∵∠BCO+∠BAO=75°,∴∠BAO=30°,∴AB=2OB=8,故答案为:8或.9.解:若直线y=kx+b平行于直线y=5x+3,则k=5,且过点(2,﹣1),当x=2时y=﹣1,将其代入y=5x+b 解得:b=﹣11.故答案为:﹣11.10.解:把(1,a)代入y=﹣2x中,得a=﹣2,把点(1,﹣2),B(2,0)代入y=kx+b中得,解得,∴一次函数的解析式是y=2x﹣4;∴直线y=kx+b与y轴的交点为(0,﹣4)∴两直线与y轴所围成的三角形面积是:=2,故答案为2.11.解:∵直线y=3x+4与直线y=3x﹣4的斜率相同,∴y=3x+4与y=3x﹣4的位置关系是平行.12.解:直线y=x+3与x轴交于点A,与y轴交于点D,令x=0,则y=3,令y=0,则x=﹣2,∴D(0,3),A(﹣2,0),将直线AD向右平移4个单位长度,点A平移后的对应点为点B为(2,0);把A(﹣2,0)代入y=kx﹣4中得﹣2k﹣4=0,∴k=﹣2,把B(2,0)代入y=kx﹣4中得2k﹣4=0,∴k=2,把C(4,3)代入y=kx﹣4中得4k﹣4=3,∴k=,∴k>或k<﹣2,故答案为k>或k<﹣2.13.解:∵直线y=kx+b与直线y=﹣4x平行,∴a=﹣4.∴直线y=kx+b的解析式为y=﹣4x+b.将A(2,0)代入得:﹣4×2+b=0.解得:b=8.故答案为:8.14.解:联立两个一次函数的解析式有:,解得;所以两个函数图象的交点坐标是(4,5),故答案为(4,5).15.解:∵正比例函数y=2x的图象与一次函数y=﹣3x+k的图象相交于点P(1,m),∴m=2×1=2,m=﹣3+k∴k=5,∴一次函数解析式为y=﹣3x+5,∴一次函数y=﹣3x+5的图象与x轴的交点坐标为(,0)∴两条直线与x轴围成的三角形的面积=×2×=16.解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y1=x+b,与y轴的交点在正半轴上,∴b>0,故②错误;③两函数图象的交点横坐标为3,∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故答案为:①③④.17.解:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,解不等式②得,m<1,所以,m的取值范围是﹣1<m<1.故答案为:﹣1<m<1.18.解:∵直线y=kx+b与直线y=3x平行,∴k=3,∵直线过点(﹣2,5),∴3×(﹣2)+b=5,解得b=11.故一次函数的解析式为y=3x+11.故答案为:y=3x+11.19.解:设两直线交于点(a,0),且a≠0∴把(a,0)代入y=2x﹣1中,∴2a﹣1=0,解得a=,∴把(,0)代入y=mx+1中,得∴m=﹣2,故答案为:﹣2.20.解:因为两一次函数的图象都为直线且交点在x轴上,分别令y=0,由y=mx+3得x=﹣,由y=nx﹣6得x=,即﹣=,可得m:n=﹣1:2.故答案为:﹣1:2.。
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习全等三角形全章复习与巩固(基础)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1. 证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2. 证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3. 证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4. 辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△A BE和△ADG中,,∴△ABE≌△A DG(SAS),∴A E=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC ,∴∠EAB =∠DAC =90°∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x 的取值范围是( ) A.1 <x < 6 B.5 <x < 7 C.2 <x < 12 D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB +∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ),∴∠PAE=∠PCB ,∵∠BAP +∠PAE=180°,∴∠PCB +∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB -MC <AB -AC .【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.【答案与解析】证明:∵AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。
专题1.1全等图形-2022-2023学年八年级数学上册尖子生同步培优题典(原卷版)【苏科版】
2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题1.1全等图形【名师点睛】(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.【典例剖析】【知识点1】全等图形的识别【例1】(2021·江苏·淮安市洪泽实验中学八年级期中)下列各组的两个图形属于全等图形的是()A.B.C.D.【变式1.1】(2021·江苏连云港·八年级阶段练习)下列各组两个图形属于全等图形的是()A.B.C.D.【变式1.2】(2021·江苏盐城·八年级期中)下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形【知识点2】利用全等图形求角度【例2】(2021·江苏·南京市第十二初级中学八年级期中)如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是______.【变式2.1】(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.【变式2.2】(2021·江苏·沭阳县怀文中学八年级阶段练习)如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4=________.【知识点3】分割成几个全等图形【例3】(2020·江苏苏州·七年级期末)如图,用三种不同的方法沿网格线把正方形分割成4个全等的图形(三种方法得到的图形相互间不全等).【变式3.1】(2018·江苏·洪泽新区中学八年级阶段练习)如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.【满分训练】一.选择题(共10小题)1.(2021秋•靖西市期末)下列各组图形中,属于全等图形的是( )A.B.C.D.2.(2021秋•宿豫区期中)下列两个图形是全等图形的是( )A.两张同底版的照片B.周长相等的两个长方形C.面积相等的两个正方形D.面积相等的两个三角形3.(2021春•淮阳区期末)全等形是指两个图形( )A.大小相等B.可以完全重合C.形状相同D.以上都不对4.(2021春•姑苏区期末)下列说法正确的是( )A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形5.(2021春•商水县期末)下列说法不正确的是( )A.如果两个图形全等,那么它们的形状和大小一定相同B.面积相等的两个图形是全等图形C.图形全等,只与形状、大小有关,而与它们的位置无关D.全等三角形的对应边相等,对应角相等6.(2020春•天桥区期末)如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( )A .45°B .60°C .90°D .100°7.(2019秋•临西县期末)下列图形中,和所给图全等的图形是( )A .B .C .D .8.(2020秋•涿鹿县期中)下列图形中与如图图形全等的是( )A .B .C .D .9.(2019秋•迁安市期末)小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是( )A .1B .2C .3D .410.(2018春•太原期末)下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是( )A .( 1 )( 3)( 4 )B .( 2)( 3 )( 4 )C .( 1 )( 2 )( 3 )D .( 1 )( 2)( 3 )( 4 )11.(2021秋•雨花区期末)如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是 .12.(2020春•石狮市期末)如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是 .13.(2021秋•常州期中)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14.(2019秋•越城区期末)下列图形中全等图形是 (填标号).15.(2019秋•东台市月考)如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是 .16.(2019秋•常州期中)下列4个图形中,属于全等的2个图形是 .(填序号)17.观察图中图形,它们是不是全等形?为什么?18.找出图中的全等图形.19.(2019秋•孝义市校级月考)如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).20.沿着图中的虚线,请把如图的图形划分为4个全等图形,把你的方案画在图中.21.图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.22.(2018秋•洪泽区校级月考)如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.。
苏教版八年级数学全册知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(二)
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(二)1.如图,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,点D为AB的中点.若点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?2.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB =α,求∠BFE的大小.(用含α的代数式表示).3.如图,在等边△ABC中,点D是边AB上一点,E是BC延长线上一点,CE=DA,连接DE 交AC于点F,过点D作DG⊥AC于点G,过点D作DH∥BC交AC于点H.(1)求证:AG=AD;(2)求证:DF=EF;=2,求△DGF的面积.(3)若CF=CE,S△ADG4.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.5.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.6.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C 重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.7.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.8.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.9.已知四边形ABCD中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN 绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.10.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.参考答案1.解:(1)全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.∵∠B=∠C,∴△BPD≌△CPQ;(2)∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间为:t=2秒,∴v Q=1.5cm/s;2.解:(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=180°﹣α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.3.(1)证明:∵△ABC是等边三角形,∴∠A=60°,∵DG⊥AC,∴∠AGD=90°,∠ADG=30°,∴AG=AD;(2)解:∵DH∥BC,∴∠ADH=∠B,∠AHD=∠ACB,∠FDH=∠E,∵△ABC是等边三角形,∴∠B=∠ACB=∠A=60°,∴∠A=∠ADH=∠AHD=60°,∴△ADH是等边三角形,∴DH=AD,∵AD=CE,∴DH=CE,在△DHF和△ECF中,,∴△DHF≌△ECF(AAS),∴DF=EF;(3)∵△ABC是等边三角形,DG⊥AC,AD=DH,∴AG=GH,∵△DHF≌△ECF,∴HF=CF,∵CF=CE,DH=CE,∴HF=AH,∴GF=3AG,∵△DGF和△ADG等高,∴S△DGF =3S△ADG=6.4.解:(1)AB=FA+BD.证明:如图1,∵BE⊥CD即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.在△FAB和△DAC中,.∴△FAB≌△DAC(ASA).∴FA=DA.∴AB=AD+BD=FA+BD.(2)(1)中的结论不成立.点D在AB的延长线上时,AB=AF﹣BD;点D在AB的反向延长线上时,AB=BD﹣AF.理由如下:①当点D在AB的延长线上时,如图2.同理可得:FA=DA.则AB=AD﹣BD=AF﹣BD.②点D在AB的反向延长线上时,如图3.同理可得:FA=DA.则AB=BD﹣AD=BD﹣AF.5.(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.6.解:(1)∵AB=AC,∴∠C=∠B=36°,∵∠ADE=36°,∠BDA=128°,∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°,故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=36°,∴∠DEC+∠EDC=144°,∵∠ADE=36°,∴∠ADB+∠EDC=144°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=72°,∴∠BDA=∠DAE+∠C=72°+36°=108°;②当AD=AE时,∠AED=∠ADE=36°,∴∠DAE=108°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=36°,∴∠BDA=∠EAD+∠C=36°+36°=72°;综上所述,当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.7.解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.8.证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.9.解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.10.(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵∠AED=∠AFD=90°,AD=AD,DE=DF,∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∵AC=20,CF=BE=4,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.。
苏科版八年级数学上册第1章全等三角形 知识点分类练习题(解析版)-doc
D.3 个
10.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点 A 在△ECD 的斜边 DE 上.下 列结论:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD 是直角三 角形.其中正确的有( )
A.1 个
B.2 个
C.3 个
D.4 个
11.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就画出了一个与原来完全
32.如图,在△ABC 中,∠ABC=60°,AD、CE 分别平分∠BAC、∠ACB,求证:AC= AE+CD.
33.如图所示,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,点 E 是 BC 的中点,EF⊥ AB,垂足为 F,且 AB=DE. (1)求证:△BCD 是等腰直角三角形; (2)若 BD=8 厘米,求 AC 的长.
38.如图,△ABC 中,AB=AC,∠A=∠E=90°,BD 平分∠ABC,CE⊥BD 于点 E.求证: BD=2CE.
六.全等三角形的应用
39.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完
全一样的玻璃,正确的办法是带来第
块去配,其依据是根据定理
(可以
用字母简写)
若 BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③
AD⊥BC;④AC=3BF,其中正确的结论是
.
29.在 Rt△ABC 中,∠ACB=90°,BC=2cm,CD⊥AB,在 AC 上取一点 E,使 EC=2cm,
过点 E 作 EF⊥AC 交 CD 的延长线于点 F.若 AE=3cm,则 EF=
A.4
B.3
C.2
D.1
苏科版八上第三章小结
多做练习
通过多做练习题,可以 加深对知识点的理解和 记忆,提高解题能力和 应试技巧。在做题过程 中,要注意总结解题方 法和思路,以及常见题
型的解题技巧。
建立知识体系
将所学知识进行归纳总 结,建立知识体系。可 以通过制作思维导图、 整理笔记等方式,将知 识点串联起来,形成完
整的知识框架。
积极参与课堂讨论
速度是矢量,有大小和方向; 速率是标量,只有大小。
加速度与速度
加速度表示速度变化的快慢, 速度表示位置变化的快慢。
动能与势能
动能是由于物体运动而具有的 能量,势能是由于物体位置而 具有的能量。
解题技巧总结
01
02
03
建立数学模型
根据题意建立数学模型, 将实际问题转化为数学问 题,便于求解。
灵活运用公式
题目
解析
若关于$x$的分式方程 $frac{x}{x - 2} - 2 = frac{k}{x 2}$有增根,则其增根是____, $k$的值为____.
分式方程的最简公分母为$x 2$,所以增根是$x = 2$。将$x = 2$代入原方程,得到$- 2 = frac{k}{0}$,解得$k = 0$。
如果一个三角形有一个角是直角,则这个三角形是直角三角形。
三角形的边与角的关系定理
03
在三角形中,大边对大角,小边对小角。
02
典型例题解析
基础题目解析
01
02
03
04
题目
若$x = 3$是关于$x$的方程 $2x - a = 5$的解,则$a$的值 为____.
解析
将$x = 3$代入方程$2x - a = 5$中,得到$2 times 3 - a = 5$,解得$a = 1$。
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。
要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。
要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。
要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。
要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。
XXX∠FAE。
又∠EAG+∠XXX∠BAG=180°。
AEF≌△AGF(AAS)。
XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。
又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。
AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。
BAD=∠CAD。
又∠ABD=∠ACD。
ABD≌△ACD(AAS)。
BD=CD。
又∠BDA=∠CDA。
BDA≌△CDA(SAS)。
B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。
证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。
八年级数学重点知识点(全)
文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八上期末复习数学知识点姓名______________ 【第一章全等三角形】一、全等三角形1、定义:能够_______________________的两个三角形叫做全等三角形。
理解:①全等三角形________与_______完全相等,与______无关;②一个三角形经过_______、________、________可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应_____相等、对应_____相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长_____、面积_____。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别_____。
3、全等三角形的判定_____对应相等的两个三角形全等(可简写成边边边或“SSS”)两边和它们的_____对应相等两个三角形全等(可简写成边角边或“SAS”)两角和它们的_____对应相等的两个三角形全等(可简写成角边角或“ASA”)两角和其中一角的_____对应相等的两个三角形全等(可简写成角角边或“AAS”)_____和一条_____对应相等的两个直角三角形全等(可简写成斜边.直角边或“HL”)二、角的平分线:从一个角的顶点引出一条射线把这个角分成两个_____的角,称这条射线为这个角的平分线。
1、性质:角的平分线上的点到角的两边的距离_____.2、判定:角的内部到角的两边的距离_____的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”(5)截长补短法证三角形全等。
【第二章轴对称图形】一、轴对称图形1、把一个图形沿着__________折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的_____。
这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着__________折叠,如果它能与__________完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做_____。
3、轴对称与轴对称图形的性质①关于某直线对称的两个图形是__________。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的__________。
③轴对称图形的对称轴,是任何一对对应点所连线段的__________。
④如果两个图形的对应点连线被同条直线__________,那么这两个图形关于这条直线对称。
⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在_____上。
二、线段、角的轴对称性①线段是_____图形,对称轴有两条;一条是另一条是这条线段的_______________。
②线段的垂直平分线上的点到线段两端的距离_____。
③到线段两端距离_____结论:线段的垂直平分线是到线段两端距离_____2、角的轴对称性:①角是_____图形,对称轴是____________________。
②角平分线上的点到角的两边距离_____。
③到角的两边距离_____的点,在这个角的平分线上。
结论:角的平分线是到角的两边距离_____的点的集合。
三、等腰三角形的轴对称性1、等腰三角形的性质:①等腰三角形是_____图形,____________________是它的对称轴;②等腰三角形的两个_____角相等;(简称“等边对等角”)③等腰三角形的顶角_____线、底边上的_____线、底边上的_____互相重合。
(简称“三线合一”)2、等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也_____;(简称“等角对等边”) ②直角三角形斜边上的中线等于斜边上的_____。
3、等边三角形:① 等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。
② 等边三角形的性质:等边三角形是_____图形,并且有_____条对称轴;等边三角形的每个角都等于_____0。
③等边三角形的判定:_____个角相等的三角形是等边三角形;有两个角等于_____0的三角形是等边三角形;有一个角等于_____0的等腰三角形是等边三角形。
4、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的_____。
5、三角形的分类:_____三角形:三边都不相等的三角形。
三角形 只有两边相等的三角形。
_____三角形_____三角形【第三章勾股定理】 1、勾股定理:直角三角形两直角边的平方和等于_____的平方。
数学式子: ∠C=900⇒_______________2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足__________,那么这个三角形是直角三角形.数学式子:__________⇒∠C=900满足a 2+b 2=c 2三个_________数a 、b 、c 叫做勾股数。
【第四章实数】1、一般的,如果一个数的_____等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
一个正数的平方根有_____个,他们互为_____数。
0只有_____个平方根,它是0本身。
_____数没有平方根。
一般的,如果一个数的_____等于a ,那么这个数就叫做a 的立方根,也称为三次方根。
正数的立方根是_____数,负数的立方根是_____数,0的立方根是_____._______________小数称为无理数。
有理数和无理数统称为__________。
常见的无理数有:⑴ 无限不循环小数:如0.010010001……⑵⑶ 圆周率π:如π-3.14、3π等。
2、近似数的认识:实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。
在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。
取一个数的近似值有多种方法,_________是最常用的一种方法。
用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。
例如,圆周率π=3.1415926…取π≈3,就是精确到个位(或精确到1)取π≈3.1,就是精确到十分位(或精确到0.1)取π≈3.14,就是精确到百分位(或精确到0.01)取π≈3.142,就是精确到千分位(或精确到0.001)【第五章平面直角坐标系】1、数量的变化:⑴生活中处处有变化的数量关系,并且这些变化的数量之间往往有一定的联系;感受用变化的观点分析数字信息的重要意义。
A a⑵实际问题中的数量常常会发生变化,表示这种变化通常有3种各具特色的表达方式——表格、图形、式子,可根据实际情况灵活选用。
2、位置的变化:现实生活中,人们既关心事物的数量变化,也关心事物的位置变化,如行驶中的车辆、飞行中的火箭、航行中的船只、移动中的台风等位置的变化。
3、平面直角坐标系:⑴有关概念:平面上有公共_____且互相_____的2条数轴构成平面直角坐标系,简称直角坐标系。
_____方向的数轴称为x轴或横轴;_____方向的数轴称为y轴或纵轴。
它们统称坐标轴。
公共原点O称为坐标_____点。
⑵确定点的位置(点坐标)①若平面内有一点P(如图),我们应该如何确定它的位置?(过点P分别作x、y轴的垂线,将垂足对应的数组合起来形成一对有序实数,这样的有序实数对叫做点的坐标,可表示为P(a,b)②若已知点Q的坐标为(m,n),该如何确定点Q的位置?(分别过x、y轴上表示m、n的点作x、y轴的垂线,两线的交点即为点Q)4、点坐标的特征:⑴四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按____时针顺序分别记作第一、二、三、四象限。
⑵数轴上点坐标的特征:x轴上的点的纵坐标为_____,可表示为(a,_____);y轴上的点的横坐标为_____,可表示为(_____,b)。
⑶象限角平分线上点坐标的特征:第一、三象限角平分线上点的横、纵坐标_____,可表示为(a,_____);第二、四象限角平分线上点的横、纵坐标__________,可表示为(a,_____)。
⑷对称点坐标的特征:P(a,b)关于x轴对称的点的坐标为(_____,_____);P(a,b)关于y轴对称的点的坐标为(_____,_____);P(a,b)关于原点对称的点的坐标为(_____,_____)。
⑸点到坐标轴的距离:P(a,b)到x轴的距离为_______,到y轴的距离为_______,到原点的距离为_______。
【第六章一次函数】一、常量、变量:在一个变化过程中,数值发生变化的量叫做_____;数值始终不变的量叫做_____。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个_____量x与y,并且对于x的每一个确定的值,y都有__________的值与其对应,那么我们就说x是_____量,y是x的_____.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是______________________。
(2)用分式表示的函数,自变量的取值范围是_______________________。
(3)用奇次根式表示的函数,自变量的取值范围是____________________。
用偶次根式表示的函数,自变量的取值范围是____________________。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的_____、_____坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤:1、_____(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、_____(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、_____(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)_____法(2)_____法(3)_____法七、正比例函数与一次函数的概念:一般地,形如__________ (k为常数,且k_____0)的函数叫做正比例函数。