《组合数学》测试题含答案

合集下载

《组合数学》练习题一参考答案

《组合数学》练习题一参考答案

《组合数学》练习题一参考答案《组合数学》练习题一参考答案一、填空:1.!()!m n P n m m n m =- 2.2)1(-n n 3. 0. 4. 2675.),2,1,0(3)2(2321 =+-+=n c c c a n n n n .6.4207.78.()()!!11...!31!21!111n n n ??-++-+-9.22 10.267二、选择:1. 1—10 A B D D A D A B B C三、计算: 1. 解因为]250[=25, ]450[=12, ]850[=6, ]1650[=3, ]3250[=1, ]6450[=0, 所以, 所求的最高次幂是2(50!)=25+12+6+3+1=47.2. 解由我们最初观察的式子,有614,1124,634,144=??===, 再利用定理1,我们得到24!415,102)15(545,155==??=-?==, 3511642434435=+?=???+=, 5061141424425=+?=??+=. 所以,x x x x x x f 24503510)(23455+-+-=.3. 解:设所求为N ,令}2000,,2,1{ =S ,以A ,B ,C 分别表示S 中能被32?,52?,53?整除的整数所成之集,则53466663133200333 532200053220003532000522000322000 =+?-++=+-???????+???????+???????=+---++==C B A C B C A B A C B A CB A N 4. 解:记7个来宾为1A ,2A ,…,7A ,则7个来宾的取帽子方法可看成是由1A ,2A ,…,7A 作成的这样的全排列:如果i A (1≤i ≤7)拿了j A 的帽子,则把i A 排在第j 位,于是(1)没有一位来宾取回的是他自己的帽子的取法种数等于7元重排数7D ,即等于1854。

组合数学参考答案(卢开澄第四版)

组合数学参考答案(卢开澄第四版)
1.1 题 从{1,2,……50}中找两个数{a,b},使其满足 (1)|a-b|=5; (2)|a-b| 5; 解: (1) :由|a-b|=5 a-b=5 或者 a-b=-5, 由列举法得出,当 a-b=5 时,两数的序列为(6,1) (7,2)……(50,45) ,共有 45 对。 当 a-b=-5 时,两数的序列为(1,6) , (2,7)……(45,50)也有 45 对。 所以这样的序列有 90 对。 (2) :由题意知,|a-b| 5 |a-b|=1 或|a-b|=2 或|a-b|=3 或|a-b|=4 或|a-b|=5 或|a-b|=0; 由上题知当|a-b|=5 时 有 90 对序列。 当|a-b|=1 时两数的序列有(1,2) , (3,4) , (2,1) (1,2)…(49,50) , (50,49)这样的序列有 49*2=98 对。 当此类推当|a-b|=2,序列有 48*2=96 对,当|a-b|=3 时,序列有 47*2=94 对,当|a-b|=4 时,序列有 46*2=92 对, 当|a-b|=0 时有 50 对 所以总的序列数=90+98+96+94+92+50=520 1.2 题 5 个女生,7 个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排 列?(c) 两男生 A 和 B 之间正好有 3 个女生的排列是多少? 解: (a)可将 5 个女生看作一个单位,共八个单位进行全排列得到排列数为:8!× 5! , (b)用 x 表示男生,y 表示空缺,先将男生放置好,共有 8 个空缺, Y X Y X Y X Y X Y X Y X Y X Y 在其中任取 5 个得到女生两两不相邻的排列数: C(8,5)× 7!× 5! (c)先取两个男生和 3 个女生做排列,情况如下: 6. 若 A,B 之间存在 0 个男生, A,B 之间共有 3 个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若 A,B 之间存在 1 个男生, A,B 之间共有 4 个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若 A,B 之间存在 2 个男生,A,B 之间共有 5 个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若 A,B 之间存在 3 个男生,A,B 之间共有 6 个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若 A,B 之间存在 4 个男生,A,B 之间共有 7 个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若 A,B 之间存在 5 个男生,A,B 之间共有 8 个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2 所以总的排列数为上述 6 种情况之和。 1.3 题 m 个男生,n 个女生,排成一行,其中 m,n 都是正整数,若 (a)男生不相邻 (m n 1) ; (b)n 个女生形成一个整体; (c)男生 A 和女生 B 排在一起; 分别讨论有多少种方案。 解:(a) 可以考虑插空的方法。 n 个女生先排成一排,形成 n+1 个空。因为 m n 1 正好 m 个男生可以插在 n+1 个空中,形成不相邻的关系。 则男生不相邻的排列个数为

组合数学题目及答案

组合数学题目及答案

组合数学例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。

问共有多少种不同的安全状态?解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。

用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。

这种对应显然是一对一的。

因此,安全状态的总数等于这8个数的全排列总数8!=40320。

例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。

证明n 偶数。

证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。

根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。

例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。

证 设n +1个数是a 1, a 2, ···, an +1。

每个数去掉一切2的因子,直至剩下一个奇数为止。

组成序列r 1, r 2,, ···, rn +1。

这n +1个数仍在[1 , 2n ]中,且都是奇数。

而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。

若ai >aj ,则ai 是aj 的倍数。

例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k<l ≤m ,使得和ak+1+ ak +2+ ···+ al 是m 的倍数。

证 设Sh = , Sh ≡rh mod m, 0≤rh ≤m -1,h = 1 , 2 , ···, m . 若存在l , Sl ≡0 mod m 则命题成立.否则,1≤rh ≤m -1.但h = 1 , 2 , ···,m .由 鸽巢原理,故存在rk= rl , 即Sk ≡Sl mod m ,不妨设l >k .则Sl -Sk= ak+1+ ak+2+…+ al ≡0 mod m例6 设a 1, a 2, a3是任意三个整数,b1 b2 b3为a1, a2, a3的任一排列,则a1-b1, a2-b2 ,a3-b3中至少有一个是偶数.证 由鸽巢原理:a1, a2, a3至少有两个奇偶性相同.则这3个数被2除的余数至少有两个是相同的,不妨设为x; 同样b1, b2, b3中被2除的余数也至少有2个x .这样a1-b1, a2-b2 , a3-b3被2除的余数至少有一个为0.例7 设a 1, a 2,…, a100是由数字1和2组成的序列, 已知从其任一数开始的顺序10个数的和不超过16.即ai+ ai+1+…+ ai+9≤16,1≤i ≤91。

小学二年级下册数学奥数题《组合》练习题及答案_题型归纳

小学二年级下册数学奥数题《组合》练习题及答案_题型归纳

小学二年级下册数学奥数题《组合》练习题及答案_题型归纳
【组合】
1、难度:★★★★
在一个口袋中有5个黑球、3个白球.问:从中取三个球个球,有几种取法?
2、难度:★★★★★
袋子中有2个红球,3个白球,4个黑球,任意拿3个球,会有哪几种结果?
答案下一页翻看
【组合】
1、难度:★★★★
在一个口袋中有5个黑球、3个白球.问:从中取三个球个球,有几种取法?【答案】
一种黑、黑、黑,二种黑、黑、白,三种黑、白、白,四种白、白、白.共有四种取法。

2、难度:★★★★★
袋子中有2个红球,3个白球,4个黑球,任意拿3个球,会有哪几种结果?
【答案】
任意拿三个可能性有九种:一、可能是1个红球,1个白球和1个黑球;二、可能两个红球和一个白球;三、可能两个红球和一个黑球;四、可能两个白球和一个红球;五、可能两个白球和一个黑球:六、可能两个黑球和一个红球;七、可能两个黑球和一个红球;八、可能三个都是白球;九、可能三个都是黑球.。

高中数学组合综合测试题(有答案)

高中数学组合综合测试题(有答案)

高中数学组合综合测试题(有答案)选修2-3 1.2.2.2 组合2一、选择题1.某年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为()A.C26C24C22 B.A26A24A22C.C26C24C22C33 D.A26C24C22A33[答案] A2.从单词“equation”中取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排法共有() A.120种 B.480种C.720种 D.840种[答案] B[解析] 先选后排,从除qu外的6个字母中任选3个字母有C36种排法,再将qu看成一个整体(相当于一个元素)与选出的3个字母进行全排列有A44种排法,由分步乘法计数原理得不同排法共有C36A44=480(种).3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有()A.24种 B.18种C.12种 D.96种[答案] B[解析] 先选后排C23A33=18,故选B.4.把0、1、2、3、4、5这六个数,每次取三个不同的数字,把其中最大的数放在百位上排成三位数,这样的三位数有() A.40个 B.120个C.360个 D.720个[答案] A[解析] 先选取3个不同的数有C36种方法,然后把其中最大的数放在百位上,另两个不同的数放在十位和个位上,有A22种排法,故共有C36A22=40个三位数.5.(2019湖南理,7)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11C.12 D.15[答案] B[解析] 与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6(个)第二类:与信息0110只有一个对应位置上的数字相同有C14=4(个)第三类:与信息0110没有一个对应位置上的数字相同有C04=1(个)与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个)6.北京《财富》全球论坛开幕期间,某高校有14名志愿者参加接待工作.若每天排早,中,晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为() A.C414C412C48 B.C1214C412C48C.C1214C412C48A33 D.C1214C412C48A33[答案] B[解析] 解法1:由题意知不同的排班种数为:C414C410C46=141312114!109874!652!=C1214C412C48.故选B.解法2:也可先选出12人再排班为:C1214C412C48C44,即选B.7.(2009湖南理5)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56C.49 D.28[答案] C[解析] 考查有限制条件的组合问题.(1)从甲、乙两人中选1人,有2种选法,从除甲、乙、丙外的7人中选2人,有C27种选法,由分步乘法计数原理知,共有2C27=42种.(2)甲、乙两人全选,再从除丙外的其余7人中选1人共7种选法.由分类计数原理知共有不同选法42+7=49种.8.以一个正三棱柱的顶点为顶点的四面体共有()A.6个 B.12个C.18个 D.30个[答案] B[解析] C46-3=12个,故选B.9.(2009辽宁理,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种 B.80种C.100种 D.140种[答案] A[解析] 考查排列组合有关知识.解:可分两类,男医生2名,女医生1名或男医生1名,女医生2名,共有C25C14+C15C24=70,选A.10.设集合Ⅰ={1,2,3,4,5}.选择Ⅰ的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种 B.49种C.48种 D.47种[答案] B[解析] 主要考查集合、排列、组合的基础知识.考查分类讨论的思想方法.因为集合A中的最大元素小于集合B中的最小元素,A中元素从1、2、3、4中取,B中元素从2、3、4、5中取,由于A、B非空,故至少要有一个元素.1 当A={1}时,选B的方案共有24-1=15种,当A={2}时,选B的方案共有23-1=7种,当A={3}时,选B的方案共有22-1=3种,当A={4}时,选B的方案共有21-1=1种.故A是单元素集时,B有15+7+3+1=26种.2 A为二元素集时,A中最大元素是2,有1种,选B的方案有23-1=7种.A中最大元素是3,有C12种,选B的方案有22-1=3种.故共有23=6种.A中最大元素是4,有C13种.选B的方案有21-1=1种,故共有31=3种.故A中有两个元素时共有7+6+3=16种.3 A为三元素集时,A中最大元素是3,有1种,选B的方案有22-1=3种.A中最大元素是4,有C23=3种,选B的方案有1种,共有31=3种.A为三元素时共有3+3=6种.4 A为四元素时,只能是A={1、2、3、4},故B只能是{5},只有一种.共有26+16+6+1=49种.二、填空题11.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有______种不同送法.[答案] 10[解析] 每校先各得一台,再将剩余6台分成3份,用插板法解,共有C25=10种.12.一排7个座位分给3人坐,要求任何两人都不得相邻,所有不同排法的总数有________种.[答案] 60[解析] 对于任一种坐法,可视4个空位为0,3个人为1,2,3则所有不同坐法的种数可看作4个0和1,2,3的一种编码,要求1,2,3不得相邻故从4个0形成的5个空档中选3个插入1,2,3即可.不同排法有A35=60种.13.(09海南宁夏理15)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).[答案] 140[解析] 本题主要考查排列组合知识.由题意知,若每天安排3人,则不同的安排方案有C37C34=140种.14.2019年上海世博会期间,将5名志愿者分配到3个不同国家的场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数是________种.[答案] 150[解析] 先分组共有C35+C25C232种,然后进行排列,有A33种,所以共有(C35+C25C232)A33=150种方案.三、解答题15.解方程Cx2+3x+216=C5x+516.[解析] 因为Cx2+3x+216=C5x+516,所以x2+3x+2=5x+5或(x2+3x+2)+(5x+5)=16,即x2-2x-3=0或x2+8x-9=0,所以x=-1或x=3或x=-9或x=1.经检验x=3和x=-9不符合题意,舍去,故原方程的解为x1=-1,x2=1.16.在MON的边OM上有5个异于O点的点,边ON上有4个异于O点的点,以这10个点(含O点)为顶点,可以得到多少个三角形?[解析] 解法1:(直接法)分几种情况考虑:O为顶点的三角形中,必须另外两个顶点分别在OM、ON上,所以有C15C14个,O不为顶点的三角形中,两个顶点在OM上,一个顶点在ON上有C25C14个,一个顶点在OM上,两个顶点在ON上有C15C24个.因为这是分类问题,所以用分类加法计数原理,共有C15C14+C25C14+C15C24=54+104+56=90(个).解法2:(间接法)先不考虑共线点的问题,从10个不同元素中任取三点的组合数是C310,但其中OM上的6个点(含O点)中任取三点不能得到三角形,ON上的5个点(含O点)中任取3点也不能得到三角形,所以共可以得到C310-C36-C35个,即C310-C36-C35=1098123-654123-5412=120-20-10=90(个).解法3:也可以这样考虑,把O点看成是OM边上的点,先从OM上的6个点(含O点)中取2点,ON上的4点(不含O点)中取一点,可得C26C14个三角形,再从OM上的5点(不含O 点)中取一点,从ON上的4点(不含O点)中取两点,可得C15C24个三角形,所以共有C26C14+C15C24=154+56=90(个).17.某次足球比赛共12支球队参加,分三个阶段进行.(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净剩球数取前两名;(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;(3)决赛:两个胜队参加决赛一场,决出胜负.问全程赛程共需比赛多少场?[解析] (1)小组赛中每组6队进行单循环比赛,就是6支球队的任两支球队都要比赛一次,所需比赛的场次即为从6个元素中任取2个元素的组合数,所以小组赛共要比赛2C26=30(场).(2)半决赛中甲组第一名与乙组第二名(或乙组第一名与甲组第二名)主客场各赛一场,所需比赛的场次即为从2个元素中任取2个元素的排列数,所以半决赛共要比赛2A22=4(场).(3)决赛只需比赛1场,即可决出胜负.所以全部赛程共需比赛30+4+1=35(场).18.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本;(3)甲、乙、丙各得3本.[分析] 由题目可获取以下主要信息:①9本不同的课外书分给甲、乙丙三名同学;②题目中的3个问题的条件不同.解答本题先判断是否与顺序有关,然后利用相关的知识去解答.[解析] (1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C49种方法;第二步:从余下的5本书中,任取3本给乙,有C35种方法;第三步:把剩下的书给丙有C22种方法,共有不同的分法有C49C35C22=1260(种).(2)分两步完成:第一步:将4本、3本、2本分成三组有C49C35C22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A33种方法,共有C49C35C22A33=7560(种).(3)用与(1)相同的方法求解,得C39C36C33=1680(种).。

组合数学参考答案(卢开澄第四版) - 修改版

组合数学参考答案(卢开澄第四版) - 修改版

1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下: 6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

大学数学组合数学试题与答案(修正版)4

大学数学组合数学试题与答案(修正版)4

组合数学期末考查卷一、选择题。

(每小题3分,共24分)1.在组合数学的恒等式中n k ⎛⎫= ⎪⎝⎭A 11(1)1n n n k k k --⎛⎫⎛⎫+>≥ ⎪ ⎪-⎝⎭⎝⎭B 1(1)1n n n k k k -⎛⎫⎛⎫+>≥ ⎪ ⎪-⎝⎭⎝⎭C 1(1)11n n n k k k -⎛⎫⎛⎫+>≥ ⎪ ⎪--⎝⎭⎝⎭D (1)1n n n k k k ⎛⎫⎛⎫+>≥ ⎪ ⎪-⎝⎭⎝⎭2、14321=++x x x 的非负整数解个数为( )。

A.120B.100C.85D.503、()()=94P 。

A. 5B. 8C. 10D. 64、递推关系12432(2)n n n n a a a n --=-+≥的特解形式是(a 为待定系数)()A 、2n anB 、2n aC 、32n anD 、22nan 5、错排方式数n D =()A 1(1)n n nD ++-B (1)(1)n n n D ++-C -1(1)n n nD +- D 1(1)(1)n n n D +++-6、将n 个不同的球放入m 个不同的盒子且每盒非空的方式数为( )。

A(nm ) B (),P n m C m!S2(n,m) D(nm )m!7、有100只小鸟飞进6个笼子,则必有一个笼子至少有( )只小鸟。

A 15B 16C 17D 188、若颁发26份奖品给4个人,每人至少有3份,有( )种分法A 55B 40C 50D 39二、填空。

(每小题4分,共20分)1、现有7本不同的书,要分给6个同学,且每位同学都要有书,有__________________种不同的分法2、设q 1, q 2,…… ,q n 是n 个正整数,如果将q 1+ q 2+…+q n -n ﹢1件东西放入n 个盒子里,则必存在一个盒子j 0,1≤j 0≤n ,使得第0j 个盒子里至少装有0j q 件东西,我们把该定理称为__________________。

组合数学题库答案

组合数学题库答案

填空题1.将5封信投入3个邮筒,有_____243 _种不同的投法.2.5个男孩和4个女孩站成一排。

如果没有两个女孩相邻,有 43200 方法.3.22件产品中有2件次品,任取3件,恰有一件次品方式数为__ 380 ______. 4.6()x y +所有项的系数和是_64_ _.答案:64 5.不定方程1232++=x x x 的非负整数解的个数为_ 6 ___.6.由初始条件f f (0)1,(1)1==及递推关系)()1()2(n f n f n f ++=+确定的数列f n n {()}(0)≥叫做Fibonacci 数列7.(3x-2y )20 的展开式中x 10y 10的系数是10101020)2(3-c.8.求6的4拆分数P 4(6)= 2 .9.已知在Fibonacci 数列中,已知f f f (3)3,(4)5,(5)8===,试求Fibonacci 数f (20)=1094610.计算P 4(12)=k k P P P P P P 4412341(12)(12)(8)(8)(8)(8)===+++∑k k k k P P P P 341211(8)(8)(5)(4)145515===+++=+++=∑∑11.P 4(9)=( D )A .5 B. 8 C. 10 D. 612.选择题 1.集合A a a a 1210{,,,}=的非空真子集的个数为( A )A.1022 B.1023 C. 1024 D.10212.把某英语兴趣班分为两个小组,甲组有2名男同学,5名女同学;乙组有3名男同学,6名女同学,从甲乙两组均选出3名同学来比赛,则选出的6人中恰有1名男同学的方式数是( D )A .800 B. 780 C. 900 D. 8503.设x y (,)满足条件x y 10+≤,则有序正整数对x y (,)的个数为( D ) A. 100 B.81 C. 50 D.454.求60123(32)+++x x x x 中x x x 23012项的系数是( C ) A.1450 B. 60 C.3240 D.34605.多项式40123(24)x x x x +++中项22012x x x ⋅⋅的系数是( C ) A .78 B. 104 C. 96 D. 486.有4个相同的红球,5个相同的白球,那么这9个球有( B )种不同的排列方式 A. 63 B. 126 C. 252 D.3787.递推关系f n f n f n ()4(1)4(2)=---的特种方程有重根2,则(B )是它的一般解 A .n n c c 11222-+ B. n c c n 12()2+ C. nc n (1)2+ D. n n c c 1222+8.用数字1,2,3,4(数字可重复使用)可组成多少个含奇数个1、偶数个2且至少含有一个3的n n (1)>位数( )运用指数生产定理A.n n n43(1)4-+- B. n n 4314-+ C.n n4213-+ D. n n n 43(1)3-+-9.不定方程()12n x x x r r n +++=≥正整数的解的个数为多少?( A / C )不确定A.1r r n -⎛⎫⎪-⎝⎭ B.r r n ⎛⎫ ⎪-⎝⎭ C.1n r r +-⎛⎫ ⎪⎝⎭ D.1n r r n +-⎛⎫⎪-⎝⎭10.x x x 12314++=的非负整数解个数为( A )A.120B.100C.85D. 5011.从1至1000的整数中,有多少个整数能被5整除但不能被6整除?( A ) A.167 B.200 C.166 D.3312.期末考试有六科要复习,若每天至少复习完一科(复习完的科目不再复习),5天里 把全部科目复习完,则有多少种不同的安排?( D )A. 9B. 16C.90D.180013.某年级的课外学科小组分为数学、语文二个小组,参加数学小组的有23人,参加语文小组的有27人;同时参加数学、语文两个小组的有7人。

组合数学练习题_带答案

组合数学练习题_带答案

组合数学练习题第一章排列组合1, 在1到10000之间,有多少个每位上数字全不相同而且由偶数构成的整数?本题分为四种情况:1位整数有4个: 2, 4, 6, 82位整数有4*4种方案, 有16个3位整数有4*4*3种方案, 有48个4位整数有4*4*3*2种方案, 有96个总共有4+16+48+96=164个这样的整数.2, 一教室有两排,每排9个坐位,今有14名学生,问按下列不同的方式入座,各有多少种坐法?(1) 规定某5人总坐在前排,某4人总在后排,但每人具体坐位不指定;(2) 要求前排至少坐5人,后排至少坐4人。

(1)本问中, 第一排和第二排各有5名和4名同学被确定, 那么14名同学中还有5名同学没有固定在哪一排, 所以可以根据这5名同学的不同排列来计算, 分5种情况考虑; 1)从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学进行全排列、另外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5名同学中选出3名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名同学中选出1名同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐法安排数全部加起来就是结果.C(5,4)*P(9,9)*P(9,5)+C(5,3)*P(9,8)*P(9,6)+C(5,2)*P(9,7)*P(9,7)+C(5,1)*P(9,6)*P(9,8)+P(9,5)*P(9,9)(2)本问中, 第一排和第二排所坐的同学的数量被确定, 分别是5名和4名, 那么要从14名同学中把省下的5名同学选出来, 然后再按照坐在不同排的情况进行计算, 同样分5种情况考虑; 1) 从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学进行全排列、另外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5名同学中选出3名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名同学中选出1名同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐法安排数全部加起来再乘以从14名同学中任选出5名同学方法的数就是结果.C(14,5)*[P(9,9)*P(9,5)+P(9,8)*P(9,6)+P(9,7)*P(9,7)+P(9,6)*P(9,8)+ P(9,5)*P(9,9)] 3, n对夫妇,要求排成一男女相间的队伍,试问有多少种不同的方案?若围成一圆桌坐下,又有多少种不同的方案?围一圆桌而坐且要求每对夫妇坐在一起,又有多少种方案?(1)本问中, 男女各有n名, 分别进行全排列各有n!种方案, 将他们交叉排列就有(n!)2种方案, 同时男在女前或女在男前又是不同的方案, 所以要乘以2, 所以方案数为--- 2 (n!)2(2)本问较第一问要去掉变为圆周排列后的重复度, 总的人数为2n, 用第一问的方案数除以2n, 所以方案数为--- (n!)2/n(3)本问中, 每对夫妇交换位置坐的方案数为2n, 再把每对夫妇看成单个元素进行圆周全排列, 方案为n!/n, 最后把两种方案数相乘, 所以方案数为--- 2n n!/n4, 有16名选手,其中6名只能打后卫,8名只能打前锋,2名能打前锋或后卫,今欲选出11人组成一支球队,而且需要7人打前锋,4人打后卫,试问有多少种选法?根据2名既能打前锋也能打后卫选手的不同情况来计算方案(1) 方法一, 分成6种情况: 1) 这2名选手全部打前锋; 2) 这2名选手全部打后卫; 3) 从2名选手中选出1名打前锋, 另一名不上场; 4) 从2名选手中选出1名打后卫, 另一名不上场; 5) 2名选手全部上场, 分别打前锋和后卫; 6) 2名选手全部不上场; 把这些方案加起来就是全部选法.C(8,5)*C(6,4)+C(8,7)*C(6,2)+2C(8,6)*C(6,4)+2C(8,7)*C(6,3)+C(8,6)*C(6,3)+C(8,7)*C(6,4) = 2800(2) 方法二, 分成3种情况: 1) 把这2名选手全部加入前锋后选组进行组合; 2) 把这2名选手合部加入后卫后选组进行组合; 但这两种方案中这2名选手全部不上场的方案是重复的, 所以要减掉一个2名选全部不上场的方案数; 3) 上面的方案中也包括了2名选手中只有1名上场的情况, 所以省下只考虑2名选手都上场, 但分别打前锋和后位的方案; 把这些方案加起来就是全部选法.C(6,4)*C(10,7)+C(8,4)*C(8,7) -C(8,7)*C(6,4)+ C(6,3) *C(8,6) = 28005, 从1到10这10个正整数中每次取出一个并登记,然后放回,连续取5次,得到一个由5个数字组成的数列。

组合练习题及答案

组合练习题及答案

组合练习题及答案练习题一:组合的基本运算1. 给定集合A={1, 2, 3, 4},求A的所有子集。

2. 集合B={a, b, c},求B的所有真子集。

3. 若集合C={1, 2, 3},求C的幂集。

4. 集合D={x | x是小于10的正整数},求D的元素个数。

答案一:1. 集合A的子集有:∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}。

2. 集合B的真子集有:∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}。

3. 集合C的幂集为:∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}。

4. 集合D的元素个数为9,因为D={1, 2, 3, 4, 5, 6, 7, 8, 9}。

练习题二:组合的应用问题1. 从5个不同的球中选出3个球,有多少种不同的选法?2. 有6个人参加一个会议,需要选出3个人组成委员会,有多少种不同的组合方式?3. 一个班级有30个学生,需要选出5个学生代表,有多少种不同的组合方式?4. 一个团队有10名成员,需要选出队长和副队长各一名,有多少种不同的选择方式?答案二:1. 从5个不同的球中选出3个球的选法为C(5, 3) = 5! / (3! * (5-3)!) = 10种。

2. 从6个人中选出3个人组成委员会的组合方式为C(6, 3) = 6! / (3! * (6-3)!) = 20种。

3. 从30个学生中选出5个学生代表的组合方式为C(30, 5) = 30! / (5! * (30-5)!)。

4. 从10名成员中选出队长和副队长的组合方式为C(10, 1) * C(9, 1) = 10 * 9 = 90种。

组合数学习题答案.

组合数学习题答案.

第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。

8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。

组合数学题目及标准答案

组合数学题目及标准答案

组合数学题目及标准答案————————————————————————————————作者:————————————————————————————————日期:组合数学例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。

问共有多少种不同的安全状态?解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。

用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。

这种对应显然是一对一的。

因此,安全状态的总数等于这8个数的全排列总数8!=40320。

例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。

证明n 偶数。

证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。

根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。

例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。

证 设n +1个数是a 1, a 2, ···, an +1。

每个数去掉一切2的因子,直至剩下一个奇数为止。

组成序列r 1, r 2,, ···, rn +1。

这n +1个数仍在[1 , 2n ]中,且都是奇数。

而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。

若ai >aj ,则ai 是aj 的倍数。

例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k<l ≤m ,使得和ak+1+ ak +2+ ···+ al 是m 的倍数。

证 设Sh = , Sh ≡rh mod m, 0≤rh ≤m -1,h = 1 , 2 , ···, m . 若存在l , Sl ≡0 mod m 则命题成立.否则,1≤rh ≤m -1.但h = 1 , 2 , ···,m .由 鸽巢原理,故存在rk= rl , 即Sk ≡Sl mod m ,不妨设l >k .则Sl -Sk= ak+1+ ak+2+…+ al ≡0 mod m例6 设a 1, a 2, a3是任意三个整数,b1 b2 b3为a1, a2, a3的任一排列,则a1-b1, a2-b2 ,a3-b3中至少有一个是偶数.证 由鸽巢原理:a1, a2, a3至少有两个奇偶性相同.则这3个数被2除的余数至少有两个是相同的,不妨设为x; 同样b1, b2, b3中被2除的余数也至少有2个x .这样a1-b1, a2-b2 , a3-b3被2除的余数至少有一个为0.例7 设a 1, a 2,…, a100是由数字1和2组成的序列, 已知从其任一数开始的顺序10个数的和不超过16.即ai+ ai+1+…+ ai+9≤16,1≤i ≤91。

组合数学题目及答案

组合数学题目及答案

组合数学例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。

问共有多少种不同的安全状态?解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。

用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。

这种对应显然是一对一的。

因此,安全状态的总数等于这8个数的全排列总数8!=40320。

例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。

证明n 偶数。

证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。

根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。

例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。

证 设n +1个数是a 1, a 2, ···, an +1。

每个数去掉一切2的因子,直至剩下一个奇数为止。

组成序列r 1, r 2,, ···, rn +1。

这n +1个数仍在[1 , 2n ]中,且都是奇数。

而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。

若ai >aj ,则ai 是aj 的倍数。

例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k<l ≤m ,使得和ak+1+ ak +2+ ···+ al 是m 的倍数。

证 设Sh = , Sh ≡rh mod m, 0≤rh ≤m -1,h = 1 , 2 , ···, m . 若存在l , Sl ≡0 mod m 则命题成立.否则,1≤rh ≤m -1.但h = 1 , 2 , ···,m .由 鸽巢原理,故存在rk= rl , 即Sk ≡Sl mod m ,不妨设l >k .则Sl -Sk= ak+1+ ak+2+…+ al ≡0 mod m例6 设a 1, a 2, a3是任意三个整数,b1 b2 b3为a1, a2, a3的任一排列,则a1-b1, a2-b2 ,a3-b3中至少有一个是偶数.证 由鸽巢原理:a1, a2, a3至少有两个奇偶性相同.则这3个数被2除的余数至少有两个是相同的,不妨设为x; 同样b1, b2, b3中被2除的余数也至少有2个x .这样a1-b1, a2-b2 , a3-b3被2除的余数至少有一个为0.例7 设a 1, a 2,…, a100是由数字1和2组成的序列, 已知从其任一数开始的顺序10个数的和不超过16.即ai+ ai+1+…+ ai+9≤16,1≤i ≤91。

.《组合数学》测试题含答案2

.《组合数学》测试题含答案2

测 试 题——组合数学一、选择题1. 把101本书分给10名学生,那么以下说法正确的选项是〔〕A.有一名学生分得11本书B.至少有一名学生分得11本书C.至多有一名学生分得11本书D.有一名学生分得至少11本书2. 8人排队上车,其中A ,B 两人之间恰好有4人,那么不同的排列方法是〔〕A.!63⨯B.!64⨯C. !66⨯D. !68⨯3. 10名嘉宾和4名领导站成一排参加剪彩,其中领导不能相邻,那么站位方法总数为〔〕A.()4,11!10P ⨯B. ()4,9!10P ⨯C. ()4,10!10P ⨯D. !3!14-4. 把10个人分成两组,每组5人,共有多少种方法〔〕A.⎪⎪⎭⎫ ⎝⎛510B.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛510510 C.⎪⎪⎭⎫ ⎝⎛49 D.⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛4949 5. 设x,y 均为正整数且20≤+y x ,那么这样的有序数对()y x ,共有〔〕个6. 仅由数字1,2,3组成的七位数中,相邻数字均不相同的七位数的个数是〔〕A.128 B7. 百位数字不是1且各位数字互异的三位数的个数为〔〕8. 设n 为正整数,那么∑=⎪⎪⎭⎫ ⎝⎛nk k n 02等于〔〕A.n 2B. 12-nC. n n 2⋅D. 12-⋅n n9. 设n 为正整数,那么()k k n k k n 310⎪⎪⎭⎫ ⎝⎛-∑=的值是〔〕A.n 2B. n 2-C. ()n2- 10. 设n 为正整数,那么当2≥n 时,∑=⎪⎪⎭⎫ ⎝⎛-nk k k 22=()A.⎪⎪⎭⎫⎝⎛3n B. ⎪⎪⎭⎫ ⎝⎛+21n C. ⎪⎪⎭⎫ ⎝⎛+31n D. 22+⎪⎪⎭⎫ ⎝⎛n 11. ()632132x x x +-中23231x x x 的系数是〔〕12. 在1和610之间只由数字1,2或3构成的整数个数为〔〕 A.2136- B. 2336- C. 2137- D. 2337- 13. 在1和300之间的整数中能被3或5整除的整数共有〔〕个14. (){}o n n f ≥是Fibonacci 数列且()()348,217==f f ,那么()=10f 〔〕15. 递推关系3143---=n n n a a a 的特征方程是〔〕A.0432=+-x xB. 0432=-+x xC. 04323=+-x xD. 04323=-+x x16. ()⋯⋯=⨯+=,2,1,0232n a n n ,那么当2≥n 时,=n a 〔〕A.2123--+n n a aB. 2123---n n a aC.2123--+-n n a aD. 2123----n n a a17. 递推关系()⎩⎨⎧=≥+=-312201a n a a n n n 的解为〔〕 A.32+⨯=n n n a B. ()221+⨯+=n n n aC. ()122+⨯+=n n n aD. ()n n n a 23⨯+=18. 设()⋯⋯=⨯=,2,1,025n a n n ,那么数列{}0≥n n a 的常生成函数是〔〕A.x 215-B. ()2215x - C.()x 215- D. ()2215x -19. 把15个相同的足球分给4个人,使得每人至少分得3个足球,不同的分法共有〔〕种20. 多重集{}b a S ⋅⋅=4,2的5-排列数为〔〕21. 局部数为3且没有等于1的局部的15-分拆的个数为〔〕22. 设n,k 都是正整数,以()n P k 表示局部数为k 的n-分拆的个数,那么()116P 的值是〔〕23. 设A ,B ,C 是实数且对任意正整数n 都有⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=1233n C n B n A n ,那么B 的值是〔〕24. 不定方程1722321=++x x x 的正整数解的个数是〔〕A.26B.2825. 数列{}0≥n n a 的指数生成函数是()()t t e e t E 521⋅-=,那么该数列的通项公式是〔〕A.n n n n a 567++=B. n n n n a 567+-=C. n n n n a 5627+⨯+=D. n n n n a 5627+⨯-= 二、填空题1. 在1和2000之间能被6整除但不能被15整除的正整数共有_________个2. 用红、黄、蓝、黑4种颜色去图n ⨯1棋盘,每个方格涂一种颜色,那么使得被涂成红色的方格数是奇数的涂色方法共有_______种3. 递归推关系()31243321≥-+=---n a a a a n n n n 的一个特征根为2,那么其通解为___________4. 把()3≥n n 个人分到3个不同的房间,每个房间至少1人的分法数为__________5. 棋盘⨯⨯⨯⨯⨯⨯⨯的车多项式为___________ 6. 由5个字母a,b,c,d,e 作成的6次齐次式最多可以有_________个不同类的项。

.《组合数学》测试题含答案2

.《组合数学》测试题含答案2

测 试 题——组合数学一、选择题1. 把101本书分给10名学生,那么以下说法正确的选项是〔〕A.有一名学生分得11本书B.至少有一名学生分得11本书C.至多有一名学生分得11本书D.有一名学生分得至少11本书2. 8人排队上车,其中A ,B 两人之间恰好有4人,那么不同的排列方法是〔〕A.!63⨯B.!64⨯C. !66⨯D. !68⨯3. 10名嘉宾和4名领导站成一排参加剪彩,其中领导不能相邻,那么站位方法总数为〔〕A.()4,11!10P ⨯B. ()4,9!10P ⨯C. ()4,10!10P ⨯D. !3!14-4. 把10个人分成两组,每组5人,共有多少种方法〔〕A.⎪⎪⎭⎫ ⎝⎛510B.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛510510 C.⎪⎪⎭⎫ ⎝⎛49 D.⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛4949 5. 设x,y 均为正整数且20≤+y x ,那么这样的有序数对()y x ,共有〔〕个6. 仅由数字1,2,3组成的七位数中,相邻数字均不相同的七位数的个数是〔〕A.128 B7. 百位数字不是1且各位数字互异的三位数的个数为〔〕8. 设n 为正整数,那么∑=⎪⎪⎭⎫ ⎝⎛nk k n 02等于〔〕A.n 2B. 12-nC. n n 2⋅D. 12-⋅n n9. 设n 为正整数,那么()k k n k k n 310⎪⎪⎭⎫ ⎝⎛-∑=的值是〔〕A.n 2B. n 2-C. ()n2- 10. 设n 为正整数,那么当2≥n 时,∑=⎪⎪⎭⎫ ⎝⎛-nk k k 22=()A.⎪⎪⎭⎫⎝⎛3n B. ⎪⎪⎭⎫ ⎝⎛+21n C. ⎪⎪⎭⎫ ⎝⎛+31n D. 22+⎪⎪⎭⎫ ⎝⎛n 11. ()632132x x x +-中23231x x x 的系数是〔〕12. 在1和610之间只由数字1,2或3构成的整数个数为〔〕 A.2136- B. 2336- C. 2137- D. 2337- 13. 在1和300之间的整数中能被3或5整除的整数共有〔〕个14. (){}o n n f ≥是Fibonacci 数列且()()348,217==f f ,那么()=10f 〔〕15. 递推关系3143---=n n n a a a 的特征方程是〔〕A.0432=+-x xB. 0432=-+x xC. 04323=+-x xD. 04323=-+x x16. ()⋯⋯=⨯+=,2,1,0232n a n n ,那么当2≥n 时,=n a 〔〕A.2123--+n n a aB. 2123---n n a aC.2123--+-n n a aD. 2123----n n a a17. 递推关系()⎩⎨⎧=≥+=-312201a n a a n n n 的解为〔〕 A.32+⨯=n n n a B. ()221+⨯+=n n n aC. ()122+⨯+=n n n aD. ()n n n a 23⨯+=18. 设()⋯⋯=⨯=,2,1,025n a n n ,那么数列{}0≥n n a 的常生成函数是〔〕A.x 215-B. ()2215x - C.()x 215- D. ()2215x -19. 把15个相同的足球分给4个人,使得每人至少分得3个足球,不同的分法共有〔〕种20. 多重集{}b a S ⋅⋅=4,2的5-排列数为〔〕21. 局部数为3且没有等于1的局部的15-分拆的个数为〔〕22. 设n,k 都是正整数,以()n P k 表示局部数为k 的n-分拆的个数,那么()116P 的值是〔〕23. 设A ,B ,C 是实数且对任意正整数n 都有⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=1233n C n B n A n ,那么B 的值是〔〕24. 不定方程1722321=++x x x 的正整数解的个数是〔〕A.26B.2825. 数列{}0≥n n a 的指数生成函数是()()t t e e t E 521⋅-=,那么该数列的通项公式是〔〕A.n n n n a 567++=B. n n n n a 567+-=C. n n n n a 5627+⨯+=D. n n n n a 5627+⨯-= 二、填空题1. 在1和2000之间能被6整除但不能被15整除的正整数共有_________个2. 用红、黄、蓝、黑4种颜色去图n ⨯1棋盘,每个方格涂一种颜色,那么使得被涂成红色的方格数是奇数的涂色方法共有_______种3. 递归推关系()31243321≥-+=---n a a a a n n n n 的一个特征根为2,那么其通解为___________4. 把()3≥n n 个人分到3个不同的房间,每个房间至少1人的分法数为__________5. 棋盘⨯⨯⨯⨯⨯⨯⨯的车多项式为___________ 6. 由5个字母a,b,c,d,e 作成的6次齐次式最多可以有_________个不同类的项。

《组合数学》测试题含答案

《组合数学》测试题含答案

测 试 题——组合数学一、选择题1. 把101本书分给10名学生,则下列说法正确的是()A.有一名学生分得11本书B.至少有一名学生分得11本书C.至多有一名学生分得11本书D.有一名学生分得至少11本书 2. 8人排队上车,其中A ,B 两人之间恰好有4人,则不同的排列方法是()A.!63⨯B.!64⨯C. !66⨯D. !68⨯3. 10名嘉宾和4名领导站成一排参加剪彩,其中领导不能相邻,则站位方法总数为()A.()4,11!10P ⨯B. ()4,9!10P ⨯C. ()4,10!10P ⨯D. !3!14-4. 把10个人分成两组,每组5人,共有多少种方法()A.⎪⎪⎭⎫ ⎝⎛510B.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛510510C.⎪⎪⎭⎫ ⎝⎛49D.⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛4949 5. 设x,y 均为正整数且20≤+y x ,则这样的有序数对()y x ,共有()个6. 仅由数字1,2,3组成的七位数中,相邻数字均不相同的七位数的个数是()7. 百位数字不是1且各位数字互异的三位数的个数为()8. 设n 为正整数,则∑=⎪⎪⎭⎫ ⎝⎛nk k n 02等于() A.n 2 B. 12-n C. n n 2⋅ D. 12-⋅n n9. 设n 为正整数,则()k k n k k n 310⎪⎪⎭⎫ ⎝⎛-∑=的值是()A.n 2B. n 2-C. ()n 2-10. 设n 为正整数,则当2≥n 时,∑=⎪⎪⎭⎫⎝⎛-n k k k 22=() A.⎪⎪⎭⎫ ⎝⎛3n B. ⎪⎪⎭⎫ ⎝⎛+21n C. ⎪⎪⎭⎫ ⎝⎛+31n D. 22+⎪⎪⎭⎫ ⎝⎛n11. ()632132x x x +-中23231x x x 的系数是()12. 在1和610之间只由数字1,2或3构成的整数个数为() A.2136- B. 2336- C. 2137- D. 2337-13. 在1和300之间的整数中能被3或5整除的整数共有()个14. 已知(){}o n n f ≥是Fibonacci 数列且()()348,217==f f ,则()=10f ()15. 递推关系3143---=n n n a a a 的特征方程是()A.0432=+-x xB. 0432=-+x xC. 04323=+-x xD. 04323=-+x x16. 已知()⋯⋯=⨯+=,2,1,0232n a n n ,则当2≥n 时,=n a ()A.2123--+n n a aB. 2123---n n a aC.2123--+-n n a aD. 2123----n n a a17. 递推关系()⎩⎨⎧=≥+=-312201a n a a n n n 的解为()A.32+⨯=n n n aB. ()221+⨯+=n n n aC. ()122+⨯+=n n n aD. ()n n n a 23⨯+=18. 设()⋯⋯=⨯=,2,1,025n a n n ,则数列{}0≥n n a 的常生成函数是() A.x 215- B. ()2215x - C.()x 215- D. ()2215x -19. 把15个相同的足球分给4个人,使得每人至少分得3个足球,不同的分法共有()种20. 多重集{}b a S ⋅⋅=4,2的5-排列数为()21. 部分数为3且没有等于1的部分的15-分拆的个数为()22. 设n,k 都是正整数,以()n P k 表示部分数为k 的n-分拆的个数,则()116P 的值是()23. 设A ,B ,C 是实数且对任意正整数n 都有⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=1233n C n B n A n ,则B 的值是()24. 不定方程1722321=++x x x 的正整数解的个数是()25. 已知数列{}0≥n n a 的指数生成函数是()()t t e e t E 521⋅-=,则该数列的通项公式是()A.n n n n a 567++=B. n n n n a 567+-=C. n n n n a 5627+⨯+=D. n n n n a 5627+⨯-=二、填空题1. 在1和2000之间能被6整除但不能被15整除的正整数共有_________个2. 用红、黄、蓝、黑4种颜色去图n ⨯1棋盘,每个方格涂一种颜色,则使得被涂成红色的方格数是奇数的涂色方法共有_______种3. 已知递归推关系()31243321≥-+=---n a a a a n n n n 的一个特征根为2,则其通解为___________4. 把()3≥n n 个人分到3个不同的房间,每个房间至少1人的分法数为__________5. 棋盘⨯⨯⨯⨯⨯⨯⨯的车多项式为___________ 6. 由5个字母a,b,c,d,e 作成的6次齐次式最多可以有_________个不同类的项。

高中试卷-6.2.2 组合及组合数(精练)(含答案)

高中试卷-6.2.2 组合及组合数(精练)(含答案)

6.2.2 组合及组合数(精练)【题组一 组合的概念】1.下列问题不是组合问题的是 ( )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C .集合{a 1,a 2,a 3,…,a n }的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?【答案】 D【解析】 组合问题与次序无关,排列问题与次序有关,D 项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D.2.给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法?(2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法?(3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场?(4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种?(6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种?在上述问题中,哪些是组合问题?哪些是排列问题?【答案】见解析【解析】(1)2名学生完成的是同一件工作,没有顺序,是组合问题.(2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.(4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的元素,没有顺序,是组合问题.(6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题.【题组二 组合数】1.(2020·山东菏泽·高二期末)已知4m ≥,3441m m m C C C +-+=( )A .1B .m C .1m +D .0【答案】D【解析】3443444411110m m m m m m m m C C C C C C C C ++++=--++-==.故选:D 2.(2020·山东莱州一中高二期末)下列等式中,错误的是( )A .11(1)m m n n n A A +++=B .!(2)!(1)n n n n =--C .!m m nnA C n =D .11m mn nA A n m+=-【答案】C【解析】通过计算得到选项A,B,D 的左右两边都是相等的.对于选项C,!m m nnA C m =,所以选项C 是错误的.故答案为C.3.444444456789C C C C C C +++++=( ).A .410C B .510C C .610C D .410A 【答案】B【解析】因为111C C C mm m n nn ++++=,所以44444454444454444567895567896678C C C C C C C C C C C C C C C C +++++=+++++=+++45444544545977898899910C C C C C C C C C C C +=+++=++=+=.故选:B4.(2020·广东佛山·高二期末)若3221364n n n A A C +-=,则n =( )A .5B .8C .7D .6【答案】A【解析】∵3221364n n n A A C +-=,∴()()()()13126142n n n n n n n +----=⨯,即()()()3126122n n n n ----=+,求得5n =,或23n =(舍去),故选:A.5.(多选)(2020·江苏连云港·高二期末)关于排列组合数,下列结论正确的是( )A .C C mn mn n-=B .11C C C m m m n nn -+=+C .11A A m m n n m --=D .11A A A mm m n nn m -++=【答案】ABD【解析】根据组合数的性质或组合数的计算公式!()!!m n n C n m m =-,可知A ,B 选项正确;!()!m n n A n m =-,而()111!()!m n m n mA n m ---=-,故C 选项错误;()()111!1!!!!()!(1)!(1)!(1)!(1)!m m mnnn n m n n n m n m n A mAA n m n m n m n m n m -+-+×+××+=+=+==--+-+-++-,故D 选项正确;故选:ABD .6.(2020·苏州市第四中学校高二期中)计算()2973100100101CC A +¸的值为__________.(用数字作答)【答案】16【解析】由组合数的基本性质可得()()297323333100100101100100101101101101!98!13!98!101!6C C A C C A C A +¸=+¸=¸=⨯=⨯.故答案为:16.7.求值:(1)333364530C C C C +++×××+;(2)12330303030302330C C C C +++×××+.【答案】(1)31464;(2)29302×.【解析】(1)333343333456304456301C C C C C C C C C +++×××+=++++×××+-4311C =-31464=(2)()12330012293030303029292929233030C C C C C C C C +++×××+=+++×××+29302=×【题组三 组合应用 】1.(2020·北京高二期末)若从1,2,3,…,9这9个整数中同时取3个不同的数,其和为奇数,则不同的取法共有( )A .36种B .40种C .44种D .48种【答案】B【解析】根据题意,将9个数分为2组,一组为奇数:1、3、5、7、9,一组为偶数:2、4、6、8,若取出的3个数和为奇数,分2种情况讨论:①取出的3个数全部为奇数,有3510C =种情况,②取出的3个数有1个奇数,2个偶数,有1254C C 30=种情况,则和为奇数的情况有103040+=种.故选:B .2.(2020·北京朝阳·高二期末)从3名男生和4名女生中各选2人组成一队参加数学建模比赛,则不同的选法种数是( )A .12B .18C .35D .36【答案】B【解析】先从3名男生中选出2人有233C =种,再从4名女生中选出2人有246C =种,所以共有1863=⨯种,故选:B3.(2020·新疆乌鲁木齐市第70中高二期中(理))已知集合{1,2,3,4,5}A =,则集合A 各子集中元素之和为( )A .320B .240C .160D .8【答案】B【解析】当集合A 的子集为空集时,各元素之和为0;当集合A 的子集含有1个元素时,共有155C =个集合,1、2、3、4、5各出现1次;当集合A 的子集含有2个元素时,共有2510C =个集合,1、2、3、4、5各出现4次;当集合A 的子集含有3个元素时,共有3510C =个集合,1、2、3、4、5各出现6次;当集合A 的子集含有4个元素时,共有455C =个集合,1、2、3、4、5各出现4次;当集合A 的子集含有5个元素时,共有551C =个集合,1、2、3、4、5各出现1次;所以集合A 各子集中,1、2、3、4、5各出现了1464116++++=次,所以集合A 各子集中元素之和为()1234516240++++⨯=.故选:B.4.(2020·湖北高二月考)2020年春节期间,因新冠肺炎疫情防控工作需要,M 、N 两社区需要招募义务宣传员,现有A 、B 、C 、D 、E 、F 六位大学生和甲、乙、丙三位党员教师志愿参加,现将他们分成两个小组分别派往M 、N 两社区开展疫情防控宣传工作,要求每个社区都至少安排1位党员教师及2位大学生,且B 由于工作原因只能派往M 社区,则不同的选派方案种数为( )A .120B .90C .60D .30【答案】C【解析】由于B 只能派往M 社区,所以分组时不用考虑B .按照要求分步将大学生和党员教师分为两组,再分别派往两个社区.第一步:按题意将剩余的5位大学生分成一组2人,一组3人,有2510C=种,第二步:按题意将3位大学生分成一组1人,一组2人,有133C=种,再分别派往两个社区的不同选派种数:103260⨯⨯=种,故选:C。

组合数练习题

组合数练习题

组合数练习题组合数是高中数学中一个重要的概念,它在数学、概率和组合数学等领域中有着广泛的应用。

本文将为大家提供一些组合数的练习题,帮助大家更好地理解和掌握组合数的概念和计算方法。

1. 问题描述:有10个小球,从中选择3个小球,一共有多少种选择方式?解析:根据组合数的定义,选择3个小球的方式可以表示为C(10, 3)。

计算方法如下:C(10, 3) = 10! / (3! * (10-3)!) = 10! / (3! * 7!) = (10 * 9 * 8) / (3 * 2 * 1) = 120因此,选择3个小球的方式共有120种。

2. 问题描述:有7个人排成一排,从中选择3个人,一共有多少种选择方式?解析:同样地,选择3个人的方式可以表示为C(7, 3)。

计算方法如下:C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5) / (3 * 2 * 1) = 35因此,选择3个人的方式共有35种。

3. 问题描述:某公司有10名员工,其中2名员工要参加一个会议,请问参加会议的员工可能的选择方式有多少种?解析:选择2名员工参加会议的方式可以表示为C(10, 2)。

计算方法如下:C(10, 2) = 10! / (2! * (10-2)!) = 10! / (2! * 8!) = (10 * 9) / (2 * 1) = 45因此,参加会议的员工选择方式共有45种。

4. 问题描述:从数字1、2、3、4、5中选取3个数字,不放回地选择,请问一共有多少种选择方式?解析:这个问题可以看作是不计顺序地从5个数字中选择3个数字的问题,可以表示为C(5, 3)。

计算方法如下:C(5, 3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = (5 * 4) / (2 * 1) = 10因此,从数字1、2、3、4、5中选取3个数字的选择方式共有10种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测 试 题——组合数学一、选择题1. 把101本书分给10名学生,则下列说法正确的是()A.有一名学生分得11本书B.至少有一名学生分得11本书C.至多有一名学生分得11本书D.有一名学生分得至少11本书2. 8人排队上车,其中A ,B 两人之间恰好有4人,则不同的排列方法是()A.!63⨯B.!64⨯C. !66⨯D. !68⨯3. 10名嘉宾和4名领导站成一排参加剪彩,其中领导不能相邻,则站位方法总数为()A.()4,11!10P ⨯B. ()4,9!10P ⨯C. ()4,10!10P ⨯D. !3!14-4. 把10个人分成两组,每组5人,共有多少种方法()A.⎪⎪⎭⎫ ⎝⎛510B.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛510510 C.⎪⎪⎭⎫ ⎝⎛49 D.⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛4949 5. 设x,y 均为正整数且20≤+y x ,则这样的有序数对()y x ,共有()个A.190B.200C.210D.2206. 仅由数字1,2,3组成的七位数中,相邻数字均不相同的七位数的个数是()A.128B.252C.343D.1927. 百位数字不是1且各位数字互异的三位数的个数为()A.576B.504C.720D.3368. 设n 为正整数,则∑=⎪⎪⎭⎫ ⎝⎛nk k n 02等于()A.n 2B. 12-nC. n n 2⋅D. 12-⋅n n9. 设n 为正整数,则()k k n k k n 310⎪⎪⎭⎫ ⎝⎛-∑=的值是()A.n 2B. n 2-C. ()n2- D.0 10. 设n 为正整数,则当2≥n 时,∑=⎪⎪⎭⎫ ⎝⎛-nk k k 22=()A.⎪⎪⎭⎫⎝⎛3n B. ⎪⎪⎭⎫ ⎝⎛+21n C. ⎪⎪⎭⎫ ⎝⎛+31n D. 22+⎪⎪⎭⎫ ⎝⎛n 11. ()632132x x x +-中23231x x x 的系数是()A.1440B.-1440C.0D.112. 在1和610之间只由数字1,2或3构成的整数个数为() A.2136- B. 2336- C. 2137- D. 2337- 13. 在1和300之间的整数中能被3或5整除的整数共有()个A.100B.120C.140D.16014. 已知(){}o n n f ≥是Fibonacci 数列且()()348,217==f f ,则()=10f ()A.89B.110C.144D.28815. 递推关系3143---=n n n a a a 的特征方程是()A.0432=+-x xB. 0432=-+x xC. 04323=+-x xD. 04323=-+x x16. 已知()⋯⋯=⨯+=,2,1,0232n a n n ,则当2≥n 时,=n a ()A.2123--+n n a aB. 2123---n n a aC.2123--+-n n a aD. 2123----n n a a17. 递推关系()⎩⎨⎧=≥+=-312201a n a a n n n 的解为() A.32+⨯=n n n a B. ()221+⨯+=n n n aC. ()122+⨯+=n n n aD. ()n n n a 23⨯+=18. 设()⋯⋯=⨯=,2,1,025n a n n ,则数列{}0≥n n a 的常生成函数是()A.x 215-B. ()2215x - C.()x 215- D. ()2215x -19. 把15个相同的足球分给4个人,使得每人至少分得3个足球,不同的分法共有()种A.45B.36C.28D.2020. 多重集{}b a S ⋅⋅=4,2的5-排列数为()A.5B.10C.15D.2021. 部分数为3且没有等于1的部分的15-分拆的个数为()A.10B.11C.12D.1322. 设n,k 都是正整数,以()n P k 表示部分数为k 的n-分拆的个数,则()116P 的值是()A.6B.7C.8D.923. 设A ,B ,C 是实数且对任意正整数n 都有⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=1233n C n B n A n ,则B 的值是()A.9B.8C.7D.624. 不定方程1722321=++x x x 的正整数解的个数是()A.26B.28C.30D.3225. 已知数列{}0≥n n a 的指数生成函数是()()t t e e t E 521⋅-=,则该数列的通项公式是()A.n n n n a 567++=B. n n n n a 567+-=C. n n n n a 5627+⨯+=D. n n n n a 5627+⨯-= 二、填空题1. 在1和2000之间能被6整除但不能被15整除的正整数共有_________个2. 用红、黄、蓝、黑4种颜色去图n ⨯1棋盘,每个方格涂一种颜色,则使得被涂成红色的方格数是奇数的涂色方法共有_______种3. 已知递归推关系()31243321≥-+=---n a a a a n n n n 的一个特征根为2,则其通解为___________4. 把()3≥n n 个人分到3个不同的房间,每个房间至少1人的分法数为__________5. 棋盘⨯⨯⨯⨯⨯⨯⨯的车多项式为___________ 6. 由5个字母a,b,c,d,e 作成的6次齐次式最多可以有_________个不同类的项。

7. ()⎪⎪⎭⎫ ⎝⎛-∑=k n k kn k 201=_____________________8. 求由2个0,3个1和3个2作成的八位数的个数______________9.含3个变元x, y, z 的一个对称多项式包含9个项,其中4项包含x,2项包含xyz ,1项是常数项,则包含xy 的项数为____________10.已知()n f 是n 的3次多项式且()10=f ,()11=f ,()32=f ,()193=f ,则()=f____________n11. 已()k n g,表示把n元集划分成k个元素个数均不小于2的子集的不同方法数,则()2,n g=___________12.部分数为3且没有等于k的部分的n-分拆数________________13. 把24颗糖分成5堆,每堆至少有3颗糖,则有___________种分法三、计算题1.在1000至9999之间有多少个数字不同的奇数?2、以3种不同的长度,8种不同的颜色和4种不同的直径生产粉笔,试问总共有多少种不同种类的粉笔?3、至多使用4位数字可以写成多少个2进制数!(2进制数只能用符号0或1)4、由字母表L={a,b,c,d,e}中字母组成的不同字母且长度为4的字符串有多少个?如果允许字母重复出现,则由L中字母组成的长度为3的字符串有多少个?5、从{1,2,3……9}中选取不同的数字且使5和6不相邻的7位数有多少?6、已知平面上任3点不共线的25个点,它们能确定多少条直线?能确定多少个三角形?7、计算数字为1,2,3,4,5且满足以下两个性质的4位数的个数:(a)数字全不相同;(b)数为偶数8、正整数7715785有多少个不同的正因子(1除外)?9、50!中有多少个0在结尾处?10、比5400大并且只有下列性质的数有多少?(a)数字全不相同;(b)不出现数字2和711. 将m=3761写成阶乘和的形式。

12. 根据序数生成的排列(p)=(3214),其序号是多少?13. 如果用序数法对5个文字排列编号,则序号为117的排列是多少?14. 设中介数序列为(120),向它所对应的4个文字的全排列是什么?15. 按字典序给出所有3个文字的全排列。

16. 按递归生成算法,依次写出所有的4个文字的全排列。

17. 根据邻位互换生成算法,4个文字的排列4231的下一个排列是什不同的方案?18. 有5件不同的工作任务,由4个人去完成它们,每件工作只能由一个人完成,问有多少种方式完成所有这5件工作?19. 有纪念章4枚,纪念册6本,分送给十位同学,问有多少种分法?如限制每人得一件物品,则又有多少种分法?20.写出按次序产生的所有从1,2,3,4,5,6中任取2个的组合。

21.给定一个n边形,能画出多少个三角形使得三角形的顶点为n边形的顶点,三角形的边为n边形的对角线(不是边)?22.试问(x+y+z)的6次方中有多少不同的项?23. 如果没有两个相邻的数在同一个集合里,由{1,2,…20}中的数可形成3个数的集合有多少?24. 试列出重集{2·a,1·b,3·c}的所有3组合和4组合。

25. 设{Fn}为fibonna序列,求出使Fn = n的所有的n。

26. 试求从1到1000中,不能被4,5或6整除的个数?27. 计算12+22+……+n228. 设某地的街道把城市分割成矩形方格,每个方格叫它块,某甲从家里出发上班,向东要走过7块,向北要走过5块,问某甲上班的路经有多少条?29.设n=253273114,试求能除尽数n 的正整数的数目。

30.求(1+x 4+x 8)10 中x 20项的系数。

31.试给出3个文字的对称群S 3中的所有元素,并说出各个元素的格式。

32.有一BIBD ,已知b=14,k=3,λ=2,求v 和r 。

33.将39写成∑a i i!(0≤a i ≤i)的形式。

34.8个人围坐一圈,问有多少种不同的坐法?35.求()()()()10,10103,1032,1021,10C C C C +⋯⋯+++36.试给出两个正交的7阶拉丁方。

37.在3n+1个球中,有n 个相同,求从这3n+1个球中选取n 个的方案数。

38.用红、黄两种颜色为一个等边三角形的三个顶点着色,问有多少种实质不同的着色方案?39.在r,s,t,u,v,w,x,y,z 的排列中,求y 居x 和z 中间的排列数。

40.求1040和2030的公因数数目。

41.求1到1000中不被5和7整除,但被3整除的数的数目。

42.求4444321n +⋯⋯+++的和。

43.用母函数法求递推关系08621=+---n n n a a a 的解,已知a 0=0,a 1=1。

44.试求由a,b,c 这3个文字组成的n 位符号串中不出现aa 图像的符号串的数目。

45.26个英文小写字母进行排列,要求x 和y 之间有5个字母的排列数。

46.8个盒子排成一列,5个有标志的球放到盒子里,每个盒子最多放一个球,要求空盒不相邻,问有多少种排列方案?47.有红、黄、蓝、白球各两个,绿、紫、黑球各3个,从中取出6个球,试问有多少种不同的取法。

48.用b 、r 、g 这三种颜色的5颗珠子镶成的圆环,共有几种不同的方案?49.n 个完全一样的球放到r (n ≥r )个有标志的盒中,无一空盒,试问有多少种方案?50.假设某个凸n 边形的任意三条对角线不共点,试求这凸n 边形的对角线交于多少个点?51.求()()21432321+++⋯⋯+⨯⨯+⨯⨯=n n n S n 从k 个不同文字中取n 个文字作允许重复的排列,但不允许一个文字连续出现3次,求这样的排列的数目。

相关文档
最新文档