混凝土搅拌站储罐扩大基础设计及承载力检算

合集下载

搅拌站基础承载力及罐仓抗风计算书

搅拌站基础承载力及罐仓抗风计算书

XX 铁路XX 标第X 搅拌站罐仓基础承载力及罐仓抗风计算书计算:复核:中铁X 局集团XX 铁路项目经理部2010 年12 月、工程概况中铁X局XX铁路六标第X搅拌站,配备HZS90搅拌机、HZS120 搅拌机各一台,每台搅拌机设有6个100吨级储料罐仓。

根据厂家提供的拌和站安装施工图,确定罐仓基础呈扇型布置,尺寸如下:21.5m根据现场地质情况,基础浇筑厚度为 1.5m,混凝土强度等级为C30。

二、基础承载力检算1、相关计算公式根据《建筑地基基础设计规范》GB50007-2002 ,fa=fak+ n Y b-3)+ n d f n(d-0.5)式中fa--修正后的地基承载力特征值fak--地基承载力特征值n、M--基础宽度和埋深的地基承载力修正系数Y-基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m) ,当基宽小于3m 按3m 取值,大于6m 按6m 取值;Y m--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m) 。

2、承载力检算不考虑摩擦力的影响,罐仓与基础自重P1=1100kN*6+ 基础自身重量,基础自身重量=95m 3*24kN/m 3=2280kN则P1=1100kN*6+95 m 3*24kN/ m 3=6600+2280=8880kN 最大应力f K=8880/64=139Kpa修正后地基承载力特征值:fa=120+0*(6-3)+2280/64=155KPa( 根据现场地质情况地基承载力特征值fak取120 Kpa)计算结果f K=139KPa v fa=155KPa 承载力满足要求三、罐仓抗风检算1 、相关计算公式根据《建筑结构荷载规范》GB50009-2001 ,风荷载强度:W=K1K2K3W0= K1K2K3V2/1.6W —风荷载强度PaW o —基本风压值PaK i、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V —风速m/s,本次按照XX地区最大风速20.7m/s检算抗倾覆计算:K c =M i / M 2=[(P i *0.5*基础宽)/(14*P 2*受风面)]K c >1.5即满足抗倾覆要求M i — 抵抗弯距kN?mM 2—抵抗弯距kN?mP i —储蓄罐与基础自重kNP 2—风荷载kN2、抗倾覆检算W 二K1K2K3W0二K1K2K3V 2/1.6=0.8*1.13*1.0*20.7 2/1.6=242.1paP2=W/1000=0.2421kN罐仓顶至地表面距离为15米,罐身长12m,6个罐基本并排竖立, 受风面210m2,整体受风力抵抗风载,在最不利风力下计算基础的 抗倾覆性。

200吨水泥罐基础承载力计算

200吨水泥罐基础承载力计算

200吨水泥罐基础承载力计算摘要:1.引言2.200 吨水泥罐概述3.基础承载力计算原理4.基础承载力计算方法5.结论正文:【引言】在工程项目中,水泥罐是一种常见的储存设施,用于存储散装水泥或粉煤灰等固体粉状拌合剂。

随着工程规模的不断扩大,水泥罐的容量也在逐渐增加,目前市场上常见的有50 吨、100 吨、200 吨等不同规格的水泥罐。

本文将对200 吨水泥罐的基础承载力进行计算,以确保其在使用过程中的稳定性和安全性。

【200 吨水泥罐概述】200 吨水泥罐是一种圆柱形封闭式仓储罐,通常用于混凝土搅拌站中。

除了用于存储水泥外,还可以存储其他粉末性物料。

金隆水泥仓(罐)安装有水除尘或电除尘装置,可以对一些悬浮的颗粒进行过滤或吸附,有效减少水泥仓(罐)中的原料的悬浮颗粒溢出仓体外,减轻对周围环境的污染,保障工作人员的身体健康。

【基础承载力计算原理】在水泥罐工程中,基础承载力是一个非常重要的参数。

它直接影响到水泥罐在使用过程中的稳定性和安全性。

基础承载力计算的原理是根据水泥罐的重量、尺寸、材质等因素,计算出其对基础的压力,然后根据基础的抗压强度和面积,计算出基础的承载力。

【基础承载力计算方法】首先,需要准确获取水泥罐的重量。

以200 吨为例,水泥罐的自重约为7.5 吨。

接下来,根据水泥罐的尺寸(如直径、高度等)计算出其底面积。

底面积的大小决定了水泥罐对基础的压力分布。

最后,根据基础的抗压强度和面积,计算出基础的承载力。

如果基础的承载力大于水泥罐的重量,则说明基础可以承受水泥罐的压力,反之则需要重新设计基础。

【结论】通过对200 吨水泥罐基础承载力的计算,可以确保其在使用过程中的稳定性和安全性。

搅拌站地基承载力计算书

搅拌站地基承载力计算书

地基承载力计算书1、拌合站配置情况拌和站配备2台中联-CIFA JS2000拌和机,共配置8个水泥罐,单个罐自重10吨,在装满材料时材料重按照2个150吨,2个100吨计算。

2、拌和站储料罐基础设计根据罐体基础扩大后尺寸为16.8×3.2-3.6×1.5m,由于实际需要基础扇型布置,其扇型底面积为50m2。

按照此尺寸面积检算地基承载力。

图2-1 拌和站基础平面图3、抗倾覆计算1.本次计算按空罐在10级风作用下的倾覆稳定性验算每个储料罐空壳及支起架重为10t,设计储料罐容装水泥重150t (2个)、100t(2个),水泥罐直径2.97m(2个);3.4m(2个),罐身长14.3m(按15m长计算风力弯矩),4个罐基本并排竖立,受风面积182.18m2,整体受风力抵抗风载,在最不利风力、空罐情况下计算基础的抗倾覆性,示意图中A点为抗倾覆点。

C30钢筋混凝土比重2.5t/m3,体积75m3。

风级风速换算参考《桥梁工程师手册》1-2-6表风力、等级的划分,见表3-1。

表3-1 风级风速换算表风级风速m/s 风级风速m/s10 24.5-28.4 11 28.5-32.6图3-2 抗倾覆计算示意图2.计算公式(1)风荷载强度公式 : 0k z s z w w βμμ=k w —风荷载强度(Pa );0w —基本风压值(Pa ),根据《建筑结构荷载规范》附录E ,蚌埠地区重现期R=50年的基本风压值为300Pa ;z β—高度Z 处的风振系数,本次计算取1;s μ—风荷载体型系数,对圆形截面取0.8; z μ—风压高度变化系数; 本次计算取1.18;k w =0.8×1.18×1×300=283.2Pa 。

(2)基础抗倾覆计算/c k f k M M ==G 1×1/2×基础宽/k w ×受风面×(14.3/2+4)≥1.5即满足要求k M —抵抗弯矩 (KN •M ) f M —风荷载弯矩(KN •M )G 1—储蓄空罐+基础自重(KN)k w —风荷载强度(Pa )(3)基础抗滑稳定性验算 K 0= G 1×f/ F 风≥1.3 即满足要求 G 1—储蓄罐与基础自重(KN) F 风—风荷载(KN)f —基底摩擦系数,查表得0.25;罐与基础自重计算求得:G 1=4×10×10+75×2.5×10=2275KN ;k w =283.2Pa ;受风面积:2×14.3×(3.4+2.97)=182.18m 2;/c k f k M M = G 1×1/2×基础宽/k w ×受风面积×(14.3/2+4)=(2275×3.6/2)/(283.2×182.18×11.15/1000)=7.1>1.5,满足抗倾覆要求。

混凝土搅拌站储罐桩基础设计及承载力检算

混凝土搅拌站储罐桩基础设计及承载力检算

承载力检算混凝土搅拌站最不利受力主要发生在储罐基础位置,本站设11个储罐,其中HZS180砼搅拌机配6个,HZS60砼搅拌机配5个(见图示),储罐自重按20吨考虑,基础工程拟采用桩基础。

地质资料:填土:填粉质黏土,软塑,厚5~6米,场地整平(可视作松铺未压实);原地面:农田软塑土,厚1~1.5米,σ0=100kPa;下层:1.5~2米范围,σ0=200kPa;次下层:2.0~2.5米,σ0=300kPa;一、搅拌机储罐基础设计(临近支腿间距小于0.8米)临近支腿间距小于0.8米的搅拌机储罐基础采用9.5米φ1.5米挖孔桩(入原地面σ0=300kPa土层≥1.5米),位于储罐四个支腿下,挖孔桩按摩擦桩设计;挖孔桩竖向承载力特征值R=3.14×1.5×(7.5×10+0.5×40+1.5×50)+3.14×0.75×0.75×300=1331KN。

单个支腿承载力F=(G水泥+G罐)/4+=(1000+200)/4=300KN,Nmax=2×F+G桩=1019.5KN<R=1331KN。

基础承载力满足要求。

二、搅拌机储罐基础设计(临近支腿间距大于0.8米)1、搅拌机储罐基础采用8米φ1.25米挖孔桩(入原地面σ=200kPa土层≥0.5米),位于储罐四个支腿下,挖孔桩按摩擦桩设计;0挖孔桩竖向承载力特征值R=3.14×1.25×(7.5×10+0.5×40)+3.14×0.625×0.625×300=741KN。

单个支腿承载力Fmax=(G水泥+G罐)/4=(1000+200)/4=300KNNmax=Fmax+G桩=545.3KN<R=741KN。

基础承载力满足要求。

2、搅拌机储罐基础采用9米φ1.8米挖孔桩(入原地面σ0=200kPa土层≥2.0米),位于储罐四个支腿下,挖孔桩按摩擦桩设计;挖孔桩竖向承载力特征值R=3.14×1.8×(7.5×10+0.5×40+1×50)+3.14×0.9×0.9×300=1583KN。

拌合站基础承载力计算

拌合站基础承载力计算

1#拌合站基础承载力计算1计算依据1)《铁路桥涵设计基本规范》(TB10002D1-2005)2)《建筑地基基础设计规范》(GB50007-2011)3)铁路工程设计技术手册《桥梁地基和基础》(修订版)2计算荷载2.1恒载1)装满材料的储存罐:自重=(100+5)t;2)主机:单腿承受静载3t;3)混凝土基础自重:2.5t/m32.2活载风荷载,风速按17m/s。

3计算公式3.1地基承载力P/A=σ≤σP—各竖向力 kNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ—土基容许的应力 MPa3.2风荷载强度W=K1K2K3W= K1K2K31/1.6v2W —风荷载强度 PaW—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取0.8、1.3、1.0v—风速 m/s,取17m/s σ—土基受到的压应力 MPaσ—土基容许的应力 MPa 3.3基础抗倾覆计算K c =M1/ M2≥1.5 即满足要求M1—竖向力产生的弯距 kN.mM2—水平力产生的弯距 kN.mP1—地基所承受的竖向力kNP2—风荷载 kN4储存罐基础验算4.1储料存罐地基开挖及浇筑每个罐体的4个支腿坐在同一基础底板,埋深度为0.5m,基础底板面积2.74m ×2.74m=7.51㎡(示意图如下):4.2计算方案计算时考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1050kN,单个水泥罐基础受力面积为2.74m×2.74m,承载力计算示意见下图:根据历年气象资料,考虑最大风速为17m/s ,储蓄罐顶至地表面距离为19m ,罐身长14m,受风面25.9m 2,整体受风力抵抗风载,在最不利风力下计算基础的4.3储存罐基础验算过程 4.3.1地基承载力已知满仓储料罐1050KN ,基础自重7.51×0.5×25=93.845KN ;计算面积A=7.51m 2,P/A= 1143.845KN/7.51m 2=0.152MPa 4.3.2基础抗倾覆储料罐空罐时,倾覆可能性为最危险状态,此时 Kc=M 1/ M 2=P 1×1/2×基础宽/ P 2×受风面×(7+6.77)=(50+2.74×2.74×0.5×25)×1.4/(187.85×25.9×13.5/1000)=3.1≥1.5满足抗倾覆要求其中 W=K1K2K3W0= K1K2K31/1.6v2=0.8×1.3×1.0×1/1.6×172=187.85Pa<0.5kpa5 拌和机基础验算5.1 拌和机地基开挖及浇筑平面示意图如下:主机条形基础预埋钢板主机基础为条形基础,边长2.9m×0.8m,高0.5m。

搅拌站水泥罐基础检算

搅拌站水泥罐基础检算

搅拌站水泥罐基础检算粉罐处地基承载力f=444kp,地基基础长16m,宽4m,高1m,每个基础立5各粉罐,粉罐自重为11t,可装水泥150t,资阳地区历史最大风速为18.3m/s。

地面1、验算地基承载力,按5各粉罐装满水泥验算,123(462 2.41151505)10009.890179600G G G G N =++=⨯⨯⨯+⨯+⨯⨯⨯=1G -基础混凝土自重,2G —粉罐自重,3G -水泥重量。

21375748/37646G G f N m kp A ====⨯<444kp ,安全。

2、验算抗倾覆,当空罐是最可能倾覆:垂直于建筑物表面上的风荷载标准值,应按下式计算:1230w k k k w =式中 w -—---风荷载标准值,kN/m2;2k ----z 高度处的风振系数; 1k --—-风荷载体型系数;3k ——--风压高度变化系数;w --—基本风压值,kN/m2。

基本风压系以当地比较空旷平坦地面上离地 10m 高统计所得到 30 年一遇 10min 平均最大风速 υ0(m/s )为标准,按 0w =υ02/1。

6确定的风压值。

υ0=18。

3m/s1k =0。

82k =1。

0322t 391631[]2400.025*******d R l=2.4102096132Nmm 2k F MP MP A F ττππμ===〈=⨯⨯⨯⨯⨯⨯=⨯⨯=握=0。

922012300.8 1.00.9150.7/1.6v w k k k w N m ==⨯⨯⨯= 155150.716.5 3.1539163F wA N ==⨯⨯⨯=22140.5 3.5462 2.410009.851110009.822222 4.216.53916313.5(21.50.3)2f G G b G K F ⨯+⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯===⨯⨯-+4.2>1.5,安全。

3、验算预埋件抗剪力和抗拔力粉罐预埋件示意图,钢筋采用25的螺纹钢筋2391631[]2400.025*******F MP MP A ττπ===〈=⨯⨯⨯⨯⨯⨯钢筋握裹里的计算:t dR l=2.4102096132N 2F πμ=⨯⨯=握t R 为握裹应力,μ为钢筋周长,l 为钢筋长度,t R 查表得2.4N/2mm 设每根钢筋在风力作用下受到拉力为f, 4×2×5×3f=13.5F,f=4405N <F 握,安全。

拌合楼水泥仓基础承载力计算书

拌合楼水泥仓基础承载力计算书

混凝土拌合站水泥仓基础计算书编制:审核:目录1 基本概况 (3)2 计算公式 (3)2.1 计算依据 (3)2.2 地基承载力 (3)2.3 风荷载强度 (4)2.4 基础抗倾覆计算 (4)2.5 基础承载力 (4)3 拌合站基础验算 (4)3.1 储料罐基地开挖及浇筑 (4)3.2 计算方案 (5)3.3 储料罐扩大式基础验算 (6)3.3.1 满仓时地基承载力 (6)3.3.2 空仓时基础抗倾覆 (7)3.3.3 储蓄罐支腿处混凝土承压 (7)3.4 水泥仓桩基础验算 (8)3.4.1 桩基承载力验算 (8)3.4.2 桩基稳定性验算 (9)3.4.3 承台验算 (9)3.5 桩基配筋计算 (11)拌合站水泥仓基础承载力计算书1 基本概况本项目拌合站位于武穴大桥项目部驻地处,主要服务于主桥的混凝土供应需求。

拌合站配备两台拌合机,每台拌合机设有4个200t的储料罐,储料罐筒高20m,罐筒为圆形截面,直径为3m。

储料罐基础采用扩大基础和钢管桩基础两种方式验算,通过计算分析选择更为安全合理的钢管桩基础。

2 混凝土扩大基础2.1 计算依据《建筑地基基础设计规范》(GB 50007-2011)《混凝土结构设计规范》(GB 50010-2010)《建筑抗震设计规范》(GB 50011-2010)《建筑结构荷载规范》(GB 50009-2012)《建筑桩基技术规范》(JGJ 94-2008)《钢筋混凝土承台设计规程》(CECS 88-97)2.2 地基承载力P/A=Ơ≤ƠP——储料罐重量,kNA——基础作用于地基上的有效面积,mm2Ơ——地基所受到的压应力,MPaƠ0——地基容许的应力,MPa通过地质勘测并经计算得土体的容许应力为Ơ=120kPa2.3 风荷载强度W=K1K2K3W=K1K2K3×1/1.6V2W——风荷载强度,Pa W——基本分压值,PaK 1、K2、K3——风荷载系数,查表分别取0.8、1.3、1.0V——风速,m/s,取30m/s 2.4 基础抗倾覆计算K c =M1/M2=P1×0.5×基础宽度/P2×受风面×h≥1.5 即满足要求M1——抗倾覆矩,KN·MM2——倾覆矩,KN·MP1——储料罐及基础自重,KNP2——风荷载,KNh——基础底距受风面的距离2.5 基础承载力P/A=Ơ≤ƠP——储料罐单腿重量,KNA——储料罐单腿作用于基础上的有效面积,mm2Ơ——基础所受到的压应力,MPaƠ0——基础混凝土容许应力,MPa3 拌合站基础验算3.1 储料罐基地开挖及浇筑根据厂家提供的拌合站安装及施工图纸,现场平面尺寸图如下:图2-1拌合站平面布置图3.2 计算方案开挖深度少于3m,根据规范不考虑摩擦力的影响,计算只考虑单个储料罐通过基础作用于地基上,单个储料罐满仓按220t计算,空仓时灌重20t,基础尺寸为3850mm×3850mm×1200mm,承载力计算示意图如下:基础P=2400KN图2-2地基承载力计算示意图根据武穴市历年气象资料,考虑最大风速30m/s ,储料罐筒仓高20m ,直径3.05m ,迎风面积为(20-2)×3.05=54.9m 2,,在最不利风速下计算基础的抗倾覆性,计算示意图如下:储料罐及基础自重P 1风荷载P 2抗倾覆点储料罐基础图2-3基础抗倾覆计算示意图基础采用混凝土C25,储料罐支腿受力最为集中,受力面积为600mm ×600mm 。

搅拌站水泥罐基础承载力检算

搅拌站水泥罐基础承载力检算

拌合站水泥罐基础承载力检算一、地基基础现场情况地质报告表明反映持力层地基承载力为65 Kpa,回填土重度取15KN/m3。

二、水泥罐基础尺寸根据罐体确定为22×5.5×1.5m,由于实际需要基础扇型布置。

按照此尺寸检算地基承载力。

1、竖向荷载计算(外力)作用在基础顶面的荷载有竖向力、水平剪力、弯矩,统一按照中心受压基础检算。

荷载计算:FK=G罐+G水泥=20t+600t=620t=6200KNG罐——罐体重量G水泥——罐储存水泥重量最大应力:6200/121=51.24KPaGK=基础自重+回填土重量=453.75+60.5t =514.25t=5142.5KN最大应力:5142.5/121=42.5Kpa应力合计5 1.24Kpa+42.5Kpa=93.7 Kpa修正后地基承载力特征值fa=65+0*(5.5-3)+5142.5/121=107.5KPa 计算结果fK=93.7KPa≤fa=107.5KPa 承载力满足要求2、抗台风计算本地台风多,罐体必须考虑风力影响,罐体纵、横向受风力影响很大,假设罐体高19米,圆形直径按照平面4.5米宽度计算,风力系数1.12考虑。

则罐体板基础风力W风=1.5×1×1.12=1.68KN 罐体板基础弯矩M=1.68KN×(1.5/2)=1.26 KN·M罐体风力W风=19×4.5×1.12=95.76KN罐体弯矩M=95.76KN×(3/2)=63.84 KN·M合计风力p=1.68KN+95.76KN=97.44KN合计弯矩M=1.26 +63.84 =65.1 KN·M搅拌站基础受静止荷载,无冲击荷载影响,只考虑风力产生的滑移影响,基础风力(按照台风力)产生的荷载97.44KN。

采取基础增加人工挖孔桩埋置设置,相当于罐体基础增加缆风绳加固。

根据基础地质情况,挖孔桩直径Φ1.5m设计,深度5m,C30混凝土浇注。

搅拌站水泥罐基础检算

搅拌站水泥罐基础检算

搅拌站水泥罐基础检算粉罐处地基承载力f=444kp,地基基础长16m,宽4m,高1m,每个基础立5各粉罐,粉罐自重为11t,可装水泥150t,资阳地区历史最大风速为18.3m/s。

地面1、验算地基承载力,按5各粉罐装满水泥验算,G G1 G2 G3(462 2.41151505)10009.890179600NG1-基础混凝土自重,G2-粉罐自重,G3 f1-水泥重量。

375748N/m 376k p<444kp,安全。

A 462、验算抗倾覆,当空罐是最可能倾覆:垂直于建筑物表面上的风荷载标准值,应按下式计算:w k1k2k3w0式中-----风荷载标准值,kN/m2;k2----z 高度处的风振系数;k1----风荷载体型系数;k3----风压高度变化系数;w0---基本风压值,kN/m2。

基本风压系以当地比较空旷平坦地面上离地10m 高统计所得到30年一遇10min 平均最大风速υ0(m/s)为标准,按=υ02/1.6确定的风压值。

υ0=18.3m/sk1=0.8k k 23=1.01MP []240MP=0.9 544A 0.0254F握R t l=2.4102096132Nmm2w k1k2k3w 0 0.8 1.00.9150.7N /m1.62G G2wwF391632544d22vF 5wA 1 5150.7 16.5 3.15 39163NK fG 1 0.5 3.5 4 62 2.4 1000 9.8 5111000 9.8 2 2 2 2 2 16.5 39163 13.52 4.2 4.2>1.5,安全。

3、验算预埋件抗剪力和抗拔力粉罐预埋件示意图,钢筋采用 25 的螺纹钢筋 5 44A 39163 0.025421MP []240MP钢筋握裹里的计算: F 握 R t l=2.4 d2 1020 96132N R t 为握裹应力, 为钢筋周长,l 为钢筋长度, R t 查表得 2.4N/ mm2 b G G 4 2 2F (21.5 0.3) F 5 44设每根钢筋在风力作用下受到拉力为f,4×2×5×3f=13.5F,f=4405N<F握,安全。

搅拌站基础承载力及罐仓抗风计算书

搅拌站基础承载力及罐仓抗风计算书

XX铁路XX标第X搅拌站罐仓基础承载力及罐仓抗风计算书计算:复核:中铁X局集团XX铁路项目经理部2010年12月一、工程概况中铁X局XX铁路六标第X搅拌站,配备HZS90搅拌机、HZS120搅拌机各一台,每台搅拌机设有6个100吨级储料罐仓。

根据厂家提供的拌和站安装施工图,确定罐仓基础呈扇型布置,尺寸如下:根据现场地质情况,基础浇筑厚度为1.5m,混凝土强度等级为C30。

二、基础承载力检算1、相关计算公式根据《建筑地基基础设计规范》GB50007-2002,fa=fak+ηbγ(b-3)+ηdγm(d-0.5)式中fa--修正后的地基承载力特征值fak--地基承载力特征值ηb、ηd--基础宽度和埋深的地基承载力修正系数γ--基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m 按6m取值;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m)。

2、承载力检算不考虑摩擦力的影响,罐仓与基础自重P1=1100kN*6+基础自身重量,基础自身重量=95m3*24kN/m3=2280kN则P1=1100kN*6+95m3*24kN/m3=6600+2280=8880kN最大应力f K=8880/64=139Kpa修正后地基承载力特征值:fa=120+0*(6-3)+2280/64=155KPa(根据现场地质情况地基承载力特征值fak取120 Kpa)计算结果f K=139KPa<fa=155KPa 承载力满足要求三、罐仓抗风检算1、相关计算公式根据《建筑结构荷载规范》GB50009-2001,风荷载强度:W=K1K2K3W0= K1K2K3V2/1.6W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V—风速m/s,本次按照XX地区最大风速20.7m/s检算抗倾覆计算:K c=M1/ M2=[(P1*0.5*基础宽)/(14*P2*受风面)]K c≥1.5 即满足抗倾覆要求M1—抵抗弯距kN•mM2—抵抗弯距kN•mP1—储蓄罐与基础自重kNP2—风荷载kN2、抗倾覆检算W=K1K2K3W0=K1K2K3V²/1.6=0.8*1.13*1.0*20.7²/1.6=242.1paP2=W/1000=0.2421kN罐仓顶至地表面距离为15米,罐身长12m,6个罐基本并排竖立,受风面210m²,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。

3搅拌站水泥罐基础承载力检算

3搅拌站水泥罐基础承载力检算

3#搅拌站水泥罐基础承载力检算一、地基基础现场情况根据现场地质报告表明,土层为细砂,现场通过打木桩使其挤密,桩侧摩阻力取为50 Kpa。

二、水泥罐基础尺寸根据罐体确定为22.46×4×1.6m,由于实际需要基础扇型布置。

基础下面采用φ820×8mm,长度为4m,每个罐子下面4根,总根数为24根。

按照此尺寸检算地基承载力与单桩。

1、竖向荷载计算(外力)作用在基础顶面的荷载有竖向力、水平剪力、弯矩,统一按照中心受压基础检算。

荷载计算:FK=6×(G 罐+G 水泥)=6(11t+150t)=966t=9660KNG 罐——罐体重量G 水泥——罐储存水泥重量GK=基础自重+回填土重量=107.81×1.6×25/10+60.5t =491.7t=4917KNG=FK+GK=14577KN最大应力:14577/(1.2×22.46×4)=135Kpa计算结果fK=135KPa≤fa=190KPa 承载力满足要求2、单桩承载力计算(外力)平均一个桩基的单桩承载力为:P=G/24=607.4KN桩打入桩最大容许承载力:〔ρ〕=1/k(U∑f1L1+AR)式中〔ρ〕--桩的容许承载力KNU-----桩身横截面周长mf1----桩身穿过各地层与桩身之间的极限摩阻力KPa ;查《路桥施工计算手册》和设计院地质勘探成果,取f1=50kpa.L1----各土层厚度m L1=3.5A-----桩底支撑面积m2R-----桩尖极限磨阻力Kpa, R=0K----安全系数,本设计采用2。

桩基采用φ820mm钢管桩,壁厚δ=8mm,管内填砂密实,采用打桩振动锤击下沉。

不计桩尖承载力,仅计算钢管桩侧摩阻。

单桩承载力为〔ρ〕=813.3KN,大于钢管桩承受荷载Pmax=607.4KN。

满足要求。

三、抗台风计算罐体总长度21m,支腿长度8m,罐体直径:3.5m,自重:11t,满载时载重150t+11t。

搅拌站粉灌地基承载力检算

搅拌站粉灌地基承载力检算

粉罐基础施工方案1、粉罐基础布置图粉罐基础受到如图1-1所示的竖向作用力。

图1-1 粉罐基础平面图2、验算地基承载力(1)上部荷载总和为=350×8+500×8=6800KNF(2)筏形基础自重G=118×1×2.5×10=2950KN(3)地基反力平均值p =+F G A∑=68002950118+=82.627kPa (4)粉罐基础做换填处理基础下面填筑1.5m 厚的大块片石,片石基础平面周围轮廓尺寸比粉罐基础大1m ,起到扩散应力的作用。

片石基础顶面能承受的荷载应为片石基础基地的应力与片石基础周围摩擦力的总和。

片石基础受到基地最大的反作用力为: F max =172×100+84.375×25=19309.375kN 粉罐基础能承受的最大地基反力为:max σ=maxF A=163.64 kPa 注:粉灌基础所处持力层为粉质粘土层,地基承载力容许值0σ=100 kPa ,土体摩阻力标准值i τ=25 kPa 。

P =82.627 kPa <max σ=163.64kPa (满足)(5)根据粉罐基础顶面所受作用力特征,基础对地基的最大作用力出现在x 轴以上的基础上边缘。

图2-1 基础形心轴x 平面位置图a 、基础平面的形心x x A A=∑∑ x A ∑=110834219152110095219152711288234744159932347443108341915231009519152⎡⨯+⎤⎡⨯+⎤⎛⎫⎛⎫⨯⨯-⨯+⨯-⨯ ⎪ ⎪⎢⎥⎢⎥++⎝⎭⎝⎭⎣⎦⎣⎦172142100951690770188422116332964058631009572143⎡⨯+⎤⎛⎫⎡⎤+⨯-⨯+⨯+⨯ ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦ 149712108341208959881497764264460234971108343⎡⨯+⎤⎛⎫⎡⎤-⨯⨯-⨯+⨯ ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦ =5.46291×1011mm 3A ∑=()5993238869077012116332+++71128823-20895988-1497764=117691492mm 2x =4641.72mm因此通过基础平面形心的x 轴是将x 轴向上平移4641.72mm ,为图中显示的x ‘。

拌合楼水泥仓基础承载力计算书

拌合楼水泥仓基础承载力计算书

混凝土拌合站水泥仓基础计算书编制:审核:目录1 基本概况 (3)2 计算公式 (3)2.1 计算依据 (3)2.2 地基承载力 (3)2.3 风荷载强度 (3)2.4 基础抗倾覆计算 (4)2.5 基础承载力 (4)3 拌合站基础验算 (4)3.1 储料罐基地开挖及浇筑 (4)3.2 计算方案 (5)3.3 储料罐扩大式基础验算 (6)3.3.1 满仓时地基承载力 (6)3.3.2 空仓时基础抗倾覆 (7)3.3.3 储蓄罐支腿处混凝土承压 (7)3.4 水泥仓桩基础验算 (8)3.4.1 桩基承载力验算 (8)3.4.2 桩基稳定性验算 (9)3.4.3 承台验算 (9)3.5 桩基配筋计算 (11)拌合站水泥仓基础承载力计算书1 基本概况本项目拌合站位于武穴大桥项目部驻地处,主要服务于主桥的混凝土供应需求。

拌合站配备两台拌合机,每台拌合机设有4个200t的储料罐,储料罐筒高20m,罐筒为圆形截面,直径为3m。

储料罐基础采用扩大基础和钢管桩基础两种方式验算,通过计算分析选择更为安全合理的钢管桩基础。

2 混凝土扩大基础2.1 计算依据《建筑地基基础设计规范》(GB 50007-2011)《混凝土结构设计规范》(GB 50010-2010)《建筑抗震设计规范》(GB 50011-2010)《建筑结构荷载规范》(GB 50009-2012)《建筑桩基技术规范》(JGJ 94-2008)《钢筋混凝土承台设计规程》(CECS 88-97)2.2 地基承载力P/A=Ơ≤Ơ0P——储料罐重量,kNA——基础作用于地基上的有效面积,mm2Ơ——地基所受到的压应力,MPaƠ0——地基容许的应力,MPa通过地质勘测并经计算得土体的容许应力为Ơ0=120kPa2.3 风荷载强度W=K1K2K3W0=K1K2K3×1/1.6V2W——风荷载强度,PaW0——基本分压值,PaK1、K2、K3——风荷载系数,查表分别取0.8、1.3、1.0V——风速,m/s,取30m/s2.4 基础抗倾覆计算K c=M1/M2=P1×0.5×基础宽度/P2×受风面×h≥1.5 即满足要求M1——抗倾覆矩,KN·MM2——倾覆矩,KN·MP1——储料罐及基础自重,KNP2——风荷载,KNh——基础底距受风面的距离2.5 基础承载力P/A=Ơ≤Ơ0P——储料罐单腿重量,KNA——储料罐单腿作用于基础上的有效面积,mm2Ơ——基础所受到的压应力,MPaƠ0——基础混凝土容许应力,MPa3 拌合站基础验算3.1 储料罐基地开挖及浇筑根据厂家提供的拌合站安装及施工图纸,现场平面尺寸图如下:图2-1拌合站平面布置图3.2 计算方案开挖深度少于3m,根据规范不考虑摩擦力的影响,计算只考虑单个储料罐通过基础作用于地基上,单个储料罐满仓按220t计算,空仓时灌重20t,基础尺寸为3850mm×3850mm×1200mm,承载力计算示意图如下:图2-2地基承载力计算示意图根据武穴市历年气象资料,考虑最大风速30m/s,储料罐筒仓高20m,直径3.05m,迎风面积为(20-2)×3.05=54.9m2,,在最不利风速下计算基础的抗倾覆性,计算示意图如下:图2-3基础抗倾覆计算示意图基础采用混凝土C25,储料罐支腿受力最为集中,受力面积为600mm×600mm。

拌合站水泥罐基础地基承载力计算书

拌合站水泥罐基础地基承载力计算书

银百高速(G69)甜永段TYSY3合同段01混凝土拌合站地基承载力计算书路港集团有限公司银百高速(G69)甜永段TYSY3项目经理部二0一七年五月01混凝土拌和站地基承载力计算书1编制说明本方案编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥贮藏量,保证工程顺利进行,本工程采用双HLS90Q拌和站,计划投入8座100T水泥罐。

2编制范围路港集团有限公司银百高速(G69)甜永段TYSY3合同段项目经理部1#混凝土拌和站。

3编制依据1、施工现场总平面布置图;2、水泥罐总示意图及基础图参数3、银百高速(G69)甜永段TYSY3合同段施工图。

4、《建筑结构荷载规范》GB50009-2012。

4水泥罐基础设计1、本水泥罐基础根据现场实际地质情况,采用扩大基础,每个水泥罐基础为4000×4000×1000mm;根据现场需要,采用双HLS90Q拌和站,每台拌合机配置4座100T水泥罐,故4座水泥罐扩大基础连成一个环形基础。

基础采用C25钢筋砼,钢筋为双层配筋,钢筋为φ12。

2、每个水泥罐下设计四个支座,支座设计为C25砼,800×800×500mm立方体。

每个支座对应水泥罐罐脚处预埋4根φ20钢筋,以加强承台和基础的连接;3、水泥罐预埋板采用δ20mm Q235钢板,再焊接9根φ25锚固钢筋,锚固筋穿过支座与扩大基础钢筋网相焊接。

预埋板安装时每个预埋板四个角高程误差在1mm内,每个水泥罐4个预埋板高程误差在2mm以内。

预埋时采用水准仪实时量测;5水泥罐基础计算根据实际地基承载力试验,本基础位置地基持力层的承载力:P地=190KPa。

F=G+V+N=50+1000+400=1450KN S=4×4=16㎡P罐=(G+V+N)/S=(1450)/16=90.625Kpa<190KPa 所以,地基承载力满足要求。

试中F--压力,G—水泥罐自重KN,V—水泥罐满载后水泥重量KN,N—基础混凝土自重KN, S—水泥罐基础面积㎡,P罐—水泥罐满载后产生的压应力KPa,P地—地基承载力KPa。

混凝土搅拌站水泥罐基础设计

混凝土搅拌站水泥罐基础设计

100t水泥罐基础设计计算书一、工程概况某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径2.7m,顶面高度20m。

水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为4.2m×0.5m+3.2m×1.0m。

基础立面图二、设计依据:1、《建筑结构荷载规范(2006版)》(GB50009-2001)2、《混凝土结构设计规范》(GB50010-2010)3、《建筑地基基础设计规范》(GB50007-2011)4、《钢结构设计规范》(GB50017-2003)。

三、荷载计算1、水泥罐自重:8t;满仓时水泥重量为100t。

2、风荷载计算:宜昌市50年一遇基本风压:ω0=0.3kN/㎡,风荷载标准值: ωk=βzμsμz ω0其中:βz=1.05,μz=1.25,μs=0.8,则:ωk=βzμsμz ω0=1.05×0.8×1.25×0.3=0.315 kN/㎡四、水泥罐基础计算1、地基承载力验算考虑水泥罐满仓时自重荷载和风荷载作用。

水泥罐满仓时自重荷载:G k =1000+80=1080kN混凝土基础自重荷载:G ck=(3.2×3.2×1.0+4.2×3.2×0.5)×24=407kN风荷载:风荷载作用点高度离地面12.5m,罐身高度15m,直径2.7m。

F wk=0.315×15×2.7=12.8kN风荷载对基底产生弯矩:M wk=12.8×(12.5+2)=185.6kN·m基础底面最大应力:p k,max= G ck+G kbh+M wkW=407+10804.2×3.2+185.69.408=130.6kPa。

2、基础配筋验算(1) 基础配筋验算混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁验算。

混凝土基础承受弯矩:M max=1.2×(18×207×3.2×1.912)=362kN 按照单筋梁验算:αs= M maxf c bh02=362×10611.9×3200×8502= 0.013ξ=1-1-2αs=1-1-2×0.013 =0.013<ξb=0.55A s=f c bξh0f y=11.9×3200×0.013×850300=1403mm2在基础顶部及底部均配筋13Φ16,A s实=13×201=2613mm2 >A s=1403mm2,基础配筋满足要求。

拌和站基础地基承载力计算

拌和站基础地基承载力计算

一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质现场勘探并经过计算得出土基容许的应力σ0=110Kpa。

5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑由于搅拌站粉料罐间距过近,无法设置独立基础,现场基础设置为条形基础,基础平面图及具体结构尺寸入下图所示。

水泥罐高23m,罐身长13m,直径为5.1m。

粉煤灰罐高23m,罐身长13m,直径为5.1m。

2.计算方案按照4*300t粉料罐和4*300+2*200粉料罐分别进行验算,储蓄罐重量通过条形基础作用于土层上,水泥罐体重量15t,最大水泥重量300t。

4个储蓄罐重量整体通过基础作用于土层上,水泥罐体重量4*15t,最大水泥重量4*300t,混凝土重量402.5t,集中力P=16625KN,水泥罐条形基础受力面积A=(9.63+6.96+6.87+4.34+2.98+3.73+3.64+7.97)*7/2=161.42 m²。

按最不利承载力计算示意见下图。

粉煤灰罐体重量12t,最大水泥重量200t,整体集中力P=3150*4+2120*2+5752.5=22592.5KN,储料罐条形基础受力面积A=(9.63+6.96+6.87+6.76+9.02+7.58+3.84+3.73+3.64+7.97)*7/2=231m ²。

按最不利承载力计算示意见下图。

3.储料罐基础验算过程3.1 地基承载力根据上面的1力学公式,已知4个水泥罐P=16625KN,计算面积A=161m²,P/A=16625KN/ 161.42m²=103 KPa ≤σ0=110KPa 4个水泥罐地基承载力满足承载要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承载力检算
混凝土搅拌站最不利受力主要发生在储罐基础位置,本站设11个储罐,其中HZS180砼搅拌机配6个,HZS60砼搅拌机配5个(见图示),储罐自重按20吨考虑,基础工程拟采用钢筋混凝土扩大基础。

一、HZS180砼搅拌机储罐基础(高1.5米)设计
HZS180砼搅拌机储罐高1.5米的储罐基础的有效受力面积如下(平面投影,标注单位为厘米):
投影面积S=133.857m3。

G罐= 6×20t =120 t (空罐自重)
G水泥=6×100=600 t
共计约:720 t
储罐基础下地面压应力σ=720×10/133.857+25×1.5=91KPa。

二、HZS60砼搅拌机储罐基础(高1.5米)设计
HZS60砼搅拌机储罐高1.5米的储罐基础的有效受力面积如下(平面投影,标注单位为厘米):
投影面积S=120.827m3,
G罐=5×20t =100 t (空罐自重)
G水泥=5×100=500 t
共计约:600t
储罐基础下地面压应力σ=600×10/120.827+25×1.5=87KPa。

三、建议(高1.5米基础)
1、为方便施工,基础边线进行修整,修整的基础平面投影边线应在计算采用的储罐基础有效受力面积平面投影边线以外。

2、现场应测试原地面(基坑底)的承载力,在确认大于150KPa后再进行施工(安全系数n=150/91=1.65>1.5 安全)。

3、在基础底面布置钢筋网片,采用φ16mm螺纹钢筋,横纵间距采用20cm,四周和底面保护层厚度为5cm。

四、HZS180砼搅拌机储罐基础(高1.0米)设计
HZS180砼搅拌机储罐高1.0米的储罐基础的有效受力面积如下(平面投影,标注单位为厘米):
投影面积S=88.428m3。

G罐= 6*20t =120 t (空罐自重)
G水泥=6*100=600 t
共计约:720 t
储罐基础下地面压应力σ=720×10/88.428+25×1.0=106KPa。

五、HZS60砼搅拌机储罐基础(高1.0米)设计
HZS60砼搅拌机储罐高1.0米的储罐基础的有效受力面积如下(平面投影,标注单位为厘米):
投影面积S=76.434m3,
G罐=5*20t =100 t (空罐自重)
G水泥=5*100=500 t
共计约:600t
储罐基础下地面压应力σ=600×10/76.434+25×1.0=103KPa。

六、建议(高1.0米基础)
1、为方便施工,基础边线进行修整,修整的基础平面投影边线应在计算采用的储罐基础有效受力面积平面投影边线以外。

2、现场应测试原地面(基坑底)的承载力,在确认大于180KPa后再进行施工。

(安全系数n=180/106=1.7>1.5 安全)
3、在基础底面布置钢筋网片,采用φ16mm螺纹钢筋,横纵间
距采用20cm,四周和底面保护层厚度为5cm。

相关文档
最新文档