【精品】小学奥数训练专题 等差数列的认识与公式运用.学生版.doc
等差数列(小数数学 五年级奥数)
等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。
例题1:求等差数列3,8,13,18......的第38项和第69项。
练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。
问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。
第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。
(完整版)小学奥数--等差数列
等差数列专题解析典型例题例1、求等差数列3,8,13,18,…的第38项和第69项。
例2、36个小学生排成一排玩报数游戏,后一个同学报的数部比前一个同学多报8,已知最后一个同学报的数是286,则第一个同学报的数是几?像(1)1,2,3,4,5,…(2)10,20,30,40,50,… (3)4111432141,,,,,…这种从第二项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列.这个常数叫做等差数列的公差,通常用字母d 表示。
在等差数列1a ,n a a a ...,32,它的公差是d ,那么d a a 12d a d d a d a a 2)(1123da d d a d a a 3)2(1234…由此可见,等差数列从第二项起,每一项等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,所以:d n a a n )1(1。
这个公式我们称它为等差数列的通项公式,利用它可以求出等差数列中的任何一项。
例3、等差数列4,12,20,…中,580是第几项?例4,一批货箱,上面标的号是按等差数列排列的,第一项是 3.6,第五项是12,求它的第二项.例5、游戏园的智慧梯最高一级宽60厘米,最低一级宽150厘米,中间还有13级,各级的宽度成等差数列,求正中一级的宽。
随堂巩固1、求3+10+17+24+31+…+94的和2、求100至200之间被7除余2的所有三位数的和是多少?3、一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少?4、有12个数组成等差数列,第六项与第七项的和是12,求这12个数的和。
5、在19和91之间插入5个数,使这7个数构成一个等差数列。
写出插入的五个数.6、从广州到北京的某次快车中途要依靠8个大站,铁路局要为这次快车准备多少种不同的车票?这些车票中有多少种不同的票价?7、学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛?8、7个小队共种树100棵,各小队种的棵数都不相同,其中种树最多的小队种了18棵树,种树最少的小队至少种了多少棵树?。
五年级奥数:等差数列的性质
五年级奥数:等差数列的性质等差数列是数学中常见且重要的概念之一,在奥数竞赛中经常涉及。
本文将介绍五年级奥数中关于等差数列的性质,帮助孩子们更好地理解和应用这一概念。
等差数列的定义等差数列是指一个数列,其中每个数字与前一个数字的差都相等。
差值称为公差,通常用字母"d"表示。
用数学符号表示为:a, a + d, a + 2d, a + 3d, ...其中,a是数列的首项,d是公差,每一项等于前一项加上公差。
等差数列的性质1. 公差的性质:在等差数列中,任意两项之间的差值都相等,所以公差是数列的重要特征。
公差可以为正、负或零。
2. 前n项和的性质:等差数列的前n项和可以用如下公式表示:S_n = (n/2)(2a + (n-1)d)其中,S_n表示前n项和,a表示首项,n表示项数,d表示公差。
3. 通项的性质:等差数列中的每一项都可以用通项公式表示:a_n = a + (n-1)d其中,a_n表示第n项,a表示首项,n表示项数,d表示公差。
4. 等差数列的对称性:等差数列中,如果将首项与末项对调位置,公差的正负也会相应改变,但数列仍然保持等差。
5. 等差数列的中项:如果一个等差数列的项数n为奇数,那么数列中的第n/2 + 1项就是它的中项。
等差数列的应用在奥数竞赛中,等差数列经常用于解决数学问题,如找出某一项的值、计算前n项和等。
掌握了等差数列的性质和应用,可以帮助孩子们更好地解答相关题目。
例如,给定一个等差数列的首项为3,公差为2,求这个数列的前10项和。
可以利用前n项和的公式计算得出:S_10 = (10/2)(2*3 + (10-1)*2) = 55通过研究等差数列的性质和运用相关公式,孩子们可以更快速、准确地解答类似的问题。
总结等差数列是数学中的重要概念之一,在五年级奥数竞赛中经常出现。
掌握等差数列的性质和应用,可以帮助孩子们更好地理解和解决相关问题。
通过研究等差数列的定义、公式和特性,孩子们能够提高数学思维和解题能力。
小学奥数等差数列公式
小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。
小学奥数等差数列精讲
第二章等差数列1. 等差数列的认识(★)(1)知识点速记:若从第二项起,每一项和前一项的差是固定的数,那么该数列就是等差数列。
如:1、5、9、14.......数列的第一项叫首项,数列的最后一项叫末项,数列的个数叫项数,数列后一项和前一项的差叫公差。
2. 等差数列公式(★★)(1)知识点速记:若一个数列是等差数列,那么:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1总和=(首项+末项)×项数÷2(2)例二:数列4、7、10、13、16、19........求数列第100项是多少?求数列前100项的和是多少?(3)课堂练习:①已知数列6、14、22、30......求数列第50项是多少?求数列前50项的和是多少?②已知数列16、21、26、31.......、101、106求该数列一共有几个数,该数列的总和是多少3.等差数列应用题(★★)(1)例三:丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。
丽丽在这些天中共学会了多少个单词?例四:有10个朋友聚会,见面时如果每人都要和其余的人握一次手,那么共握了多少次手?(2)课堂练习:①有一家电影院,共有30排座位,后一排都比前一排多两个位置,已知第一排有28个座位,那么这家电影院共可以容纳多少名观众②一个家具厂生产书桌,从第二个月起,每个月增加10件,一年共生产了1920件,那么这一年的12月份共生产了多少书桌?家庭作业:1、6+7+8+9+……+74+75=()2、2+6+10+14+……+122+126=()3、已知数列2、5、8、11、14……,47应该是其中的第几项4、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少5、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。
6、在等差数列6、13、20、27……中,第几个数是1994?7、一个剧场设置了22排座位,第一排有36个座位,往后没排都比前一排多2个座位,这个剧场共有多少个座位?8、省工人体育馆的12区共有20排座位,呈梯形,第1排有10个座位,第2排有11个座位,第3排有12个座位……这个体育馆的12区共有多少个座位?。
小学奥数 等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)
本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
小学奥数-等差数列
=125000
求 公 差 :
在19和91之间插入5个数,使这7个数构成一个
等差数列。写出插入的5个数。
(91-19) ÷(7-1)=12 依次为31、43、55、67、79
• 下面这组数是按一定规律排列的,你能求 出这组数列的第48个数是几吗? • 54、58、62、66、70、74、78、82、 86…
=(1+99)×99÷2
= 9900÷2
= 4950
求下列方阵中所有各数的和:
1、2、3、4、……49、50; 2、3、4、5、……50、51; 3、4、5、6、……51、52; ……
解:
每一横行数列之和: 第一行:(1+50) ×50 ÷ 2=1275 第二行:(2+51) × 50 ÷ 2=1325 第三行:(3+51) × 50 ÷ 2=1375
), 16, 19, … ),13,…
(3) 1, 3, 5, 7, 9, (
等差数列:一个数列,从第
个2数开始,依次与前一个
数的差相同,这样的数列叫 等差数列
一套书有5本,每隔5年出版一本,第三本是1998年 出版的。其他几本书分别是哪年出版的?
1986 1992 1998 2004 2010
这个数列有几个数
……
第四十九行:(49+98) × 50 ÷ 2=36
第五十行:(50+99) × 50 ÷ 2=3725 方阵所有数之和: 1275+1325+1375+……+3675+3725 =(1275+3725) × 50 ÷ 2
49、50、51、52、……97、98; 50、51、52、53、……98、99。
(小学奥数)等差数列的认识与公式运用
本講知識點屬於計算板塊的部分,難度較三年級學到的該內容稍大,最突出一點就是把公式用字母表示。
要求學生熟記等差數列三個公式,並在公式中找出對應的各個量進行計算。
一、等差數列的定義 ⑴ 先介紹一下一些定義和表示方法定義:從第二項起,每一項都比前一項大(或小)一個常數(固定不變的數),這樣的數列我們稱它為等差數列.譬如:2、5、8、11、14、17、20、 從第二項起,每一項比前一項大3 ,遞增數列100、95、90、85、80、 從第二項起,每一項比前一項小5 ,遞減數列⑵ 首項:一個數列的第一項,通常用1a 表示末項:一個數列的最後一項,通常用n a 表示,它也可表示數列的第n 項。
項數:一個數列全部項的個數,通常用n 來表示;公差:等差數列每兩項之間固定不變的差,通常用d 來表示;和 :一個數列的前n 項的和,常用n S 來表示 .二、等差數列的相關公式知識點撥教學目標等差數列的認識與公式運用(1)三個重要的公式① 通項公式:遞增數列:末項=首項+(項數1-)⨯公差,11n a a n d =+-⨯()遞減數列:末項=首項-(項數1-)⨯公差,11n a a n d =--⨯()回憶講解這個公式的時候可以結合具體數列或者原來學的植樹問題的思想,讓學生明白 末項其實就是首項加上(末項與首項的)間隔個公差個數,或者從找規律的情況入手.同時還可延伸出來這樣一個有用的公式:n m a a n m d -=-⨯(),n m >()② 項數公式:項數=(末項-首項)÷公差+1由通項公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找項數還有一種配組的方法,其中運用的思想我們是常常用到的.譬如:找找下麵數列的項數:4、7、10、13、、40、43、46 ,分析:配組:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那麼每組有3個數,我們數列中的數都在每組的第1位,所以46應在最後一組第1位,4到48有484145-+=項,每組3個數,所以共45315÷=組,原數列有15組. 當然還可以有其他的配組方法.③ 求和公式:和=(首項+末項)⨯項數÷2對於這個公式的得到可以從兩個方面入手:(思路1) 1239899100++++++ 11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)這道題目,還可以這樣理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即, 和 (1001)1002101505050=+⨯÷=⨯=有項的平均數,也等於首項與末項和的一半;或者換句話說,各項和等於中間項乘以項數.譬如:①48123236436922091800+++++=+⨯÷=⨯=(),題中的等差數列有9項,中間一項即第5項的值是20,而和恰等於209⨯;②65636153116533233331089(),++++++=+⨯÷=⨯=題中的等差數列有33項,中間一項即第17項的值是33,而和恰等於3333⨯.例題精講模組一、等差數列基本概念及公式的簡單應用等差數列的基本認識【例 1】下麵的數列中,哪些是等差數列?若是,請指明公差,若不是,則說明理由。
【小学精品奥数】等差数列的认识与公式运用.学生版
本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()知识点拨教学目标等差数列的认识与公式运用递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即, 和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
1-2-1-2 等差数列计算题.学生版
【巩固】⑴计算 4 6 8 10 34 36 ⑵以质数 71 做分母的最简真分数有 1 , 2 , 3 ......, 69 , 70 ; 求这列数的和 71 71 71 71 71 ⑶计算:1 5 3 6 5 7 7 8 9 9 1110 1311 13 13 13 13 13 13 13
【巩固】计算(2 4 6 1984 1986 1988)(1 3 5 1983 1985 1987 )
【巩固】计算: 2007 2006 2005 2004 2003 2002 5 4 3 2 1
【巩固】计算:⑴ (2 4 6 96 98 100)(1 3 5 95 97 99) ⑵ 1 3 4 6 7 9 10 12 13 66 67 69 70 ; ⑶ 1000 999 998 997 996 995 106 105 104 103 102 101 . ⑷ 61 692 6993 69994 699995 6999996
(1 100)(2 99)(3 98) (50 51) 101 50 5050
共50个101
(思路 2)这道题目,还可以这样理解:
和 =1 234 + 和 100 99 98 97
2倍和 101 101 101 101
98 99 100 3 2 1 101 101 101
即,和
(100 1) 100 2 101 50 5050 (2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首
项与末项和的一半;或者换句话说,各项和等于中间项乘以项数. 譬如:① 4 8 12 32 36 (4 36) 9 2 20 9 1800 , 题中的等差数列有 9 项,中间一项即第 5 项的值是 20,而和恰等于 20 9 ; ② 65 63 61 5 3 1 (1 65) 33 2 33 33 1089 , 题中的等差数列有 33 项,中间一项即第 17 项的值是 33,而和恰等于 33 33 .
小学奥数等差数列的通项公式
小学奥数等差数列的通项公式引言在小学奥数中,等差数列是一个重要的数学概念。
等差数列是指数列中相邻两项之间的差恒定的数列。
在解题过程中,我们经常需要求等差数列的通项公式,以便于计算和推导。
等差数列的定义等差数列可以用以下方式定义:给定一个数列,如果相邻两项之间的差为一个常数d,则称该数列为等差数列。
其中,d为公差。
等差数列的通项公式对于等差数列,我们需要求解其通项公式,即能够通过项数n 来表示该数列的第n项的公式。
设等差数列的首项为a₁,公差为d,第n项为aₙ。
根据等差数列的定义,我们可以得到以下关系:a₂ = a₁ + da₃ = a₂ + d = a₁ + 2da₄ = a₃ + d = a₁ + 3d...我们可以观察到,aₙ可以通过a₁和d来表示。
根据等差数列的性质,我们可以总结出等差数列的通项公式如下:aₙ = a₁ + (n-1)d示例下面给出一个例子来说明如何使用等差数列的通项公式。
假设我们有一个等差数列,首项a₁为2,公差d为3。
现在我们需要求该数列的第8项。
根据通项公式,我们可以计算出第8项的值如下:aₙ = a₁ + (m-1)da₈ = 2 + (8-1)×3a₈ = 2 + 7×3 = 2 + 21 = 23所以,该等差数列的第8项为23。
结论等差数列是小学奥数中的重要概念,掌握了等差数列的通项公式能够方便我们进行计算和推导。
通过计算例子可知,使用通项公式能够快速求得等差数列的任意项的值。
希望通过本文,读者们对小学奥数中等差数列的通项公式有一个清晰的了解。
(完整版)四年级奥数第五讲_等差数列(二)_学生版
A.I go to Canada by plane. B.I go to school by bike.
C.What about you ?
(
)4.
How
do
you
go
to
the
USA ?
A.I usually go to school by bus. B.I go to England by ship.
A.What ’ s your name ?
B.What ’ s she name ? C.What ’ s her name ?
小学四年级奥数 第 4 页 共 10页
唯思达教育 小学四年级奥数一对一讲义 学生版
(
)11.
? I like Chinese,math and English.
A.What classes do you like?
A.Thank you .
B.OK.
C.You ’ re welcome.
(
)14. How can I get to the museum?
A.Go straight.Then turn left.
B.Thank you .
C.It ’ s east of the cinema .
(
)15. Where is the post office ?
C.Thirty yuan.
(
)6.Do you have new teachers?
A.Yes,we do .
B.Yes,we don ’ t.
C.Yes,we have .
(
)7.Who
’
s
your
art
teacher ?
小学奥数等差数列基础知识(精编文档).doc
【最新整理,下载后即可编辑】等差数列基础知识等差数列是小升初奥数的重点考点1、数列定义:(1)1,2,3,4,5,6,7,8,…(等差)(2)2,4,6,8,10,12,14,16,…(等差)(3)1,4,9,16,25,36,49,…(非等差)若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项,第二个数叫做第二项以此类推,最后一个数叫做这个数列的末项,数列中数的个数称为项数,如:2,4,6,8, ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
3、计算等差数列的相关公式:(1)末项公式:第几项(末项)=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷2在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例:求等差数列3,5,7, 的第10项,第100项,并求出前100项的和。
解:我们观察这个一个等差数列,已知:首项=3,公差=2,所以由通项公式,得到第10项:第几项=首项+(项数-1)×公差第10项=3+(10-1)×2=21第100项:第几项=首项+(项数-1)×公差第100项=3+(100-1)×2=201前100项的和:总和=(首项+末项)×项数÷2前100项的和=3+5+7+ 201=(3+201)⨯100÷2=10200.练习1:1、6+7+8+9+……+74+75=(2835)2、2+6+10+14+……+122+126=(2112)3、已知数列2、5、8、11、14……,47应该是其中的第几项?(16)项数=(末项-首项)÷公差+116=(47-2)÷3+14、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少?(20400)第几项(末项)=首项+(项数-1)×公差总和=(首项+末项)×项数÷25、在等差数列1、5、9、13、17……401中,401是第几项(101)?第50项是多少?(197)项数=(末项-首项)÷公差+1第几项(末项)=首项+(项数-1)×公差6、1+2+3+4+……+2007+2008=总和=(首项+末项)×项数÷2(1+2008)×2008÷2=20170367、(2+4+6+……+2000)-(1+3+5+……+1999)=总和=(首项+末项)×项数÷2【(2+2000)×1000÷2】-【(1+1999)×1000÷2】=1001000-1000000=1000方法二:(2-1)+(4-3)+……+(2000-1999)=10008、1+2-3+4+5-6+7+8-9+……+58+59-60=总和=(首项+末项)×项数÷2(1+2+……+60)-(3+6+……+60)=5709、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。
小学奥数培优等差数列含答案
第四讲等差数列(一)解题方法若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引例】:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷2注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例题1 有一个数列:4、7、10、13、…、25,这个数列共有多少项解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
引申 1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
答:这个数列共有27项2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?答: 这个数列共有19项3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?答:这个等差数列共有29项。
例题2 有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少解:由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得,第100项=2+(1OO-1)×5=497,所以这个等差数列的第100项是497。
引申 1、求1,5,9,13,…,这个等差数列的第3O项。
答案:第30项是117。
2、求等差数列2,5,8,11,…的第100项。
答案: 第100项是299。
3、一等差数列,首项=7,公差=3,项数=15,它的末项是多少?答案:末项是49。
例题3 计算2+4+6+8+…+1990的和。
三年级奥数.计算综合.等差数列的计算(ABC级).学生版
一、等差数列的定义(1) 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(3) 三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有知识结构等差数列的基本概念及公式484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(4) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数. 譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.(1) 找出题目中首项、末项、公差、项数。
(完整版)二年级奥数复习认识简单等差数列
一、等差数列(Arithmetic Progression)等差数列(别名算数列)是数列的一种。
在等差数列中,任何相两的差相等。
差称公差。
比如数列{ 3, 5, 7, 9, 11, 13}就是一个等差数列。
在个数列中,从第二起,每与其前一之差都等于2,即公差 2。
1、一个院有 22 排座位,第一排有26 个座位,后一排比前一排多 2 个座位,院一共有几个座位?2、一个影院的第一排有 15 个座位,以后每一排都比前一排多 2 个座位,最后一排有 73 个座位,影院一共几个座位?3、一个 Office Building 共有 24 ,梯从一楼开始上,此梯里有 5 人,从2 楼开始每上 2 人,可是每一个乘客最多坐 4 就要下梯,当梯抵达楼( 24 )的候,梯里最多会有多少个乘客?4、Yorkmills 高中的一些同学要参加数学,假如参加的同学号:1、2、3、4、5⋯⋯ ..,当全部号的和不超 1050 ,那么 Yorkmills 高中最多能有多少个孩子参加数学?5、以下数字组成等差数列,依据已知的数字填写节余的数字,并算全部数字的和是多少。
____ ____ ____ ____ ____ 29 ____ ____ 20 ____ ____ ____6、将1,2,3,4,5⋯⋯⋯.1997的整数(Integra)分红A、B、C三,此中:A:1,6,7,12,13,18,19⋯.. B:2,5,8,11,14,17,20⋯⋯C:3,4,9,10,15,16,21⋯⋯那么, B 中一共有 _______整数; A 中第 600 个数字是 ________;1000 是______里的第 ______个数字?7、向来青蛙从距离起跑线(Start Line)10厘米的地方开始往前跳,每一次青蛙能跳 4 厘米,青蛙跳到第100 次的时候,距离起跑线有多远?8、将9个连续的正整数从小到大摆列,最小的4个数的和是58,那么这个数列里最大的 4 个数字的和是多少?。
等差数列(小数数学 五年级奥数)
等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。
例题1:求等差数列3,8,13,18......的第38项和第69项。
练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。
问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。
第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、 从第二项起,每一项比前一项小5 ,递减数列 ⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1 由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即, 和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.知识点拨教学目标等差数列的认识与公式运用|初一·数学·基础-提高-精英·学生版| 第1讲第页2譬如:①48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;②65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
①6,10,14,18,22, (98)②1,2,1,2,3,4,5,6;③ 1,2,4,8,16,32,64;④ 9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;【例 2】小朋友们,你知道每一行数列各有多少个数字吗?(1)3、4、5、6、……、76、77、78(2)2、4、6、8、……、96、98、100(3)1、3、5、7、……、87、89、91(4)4、7、10、13、……、40、43、46【巩固】1,3,5,7,……是从1开始的奇数,其中第2005个奇数是________。
【例 3】312+、610+、128+、246+、484+、……是按一定规律排列的一串算式,其中第六个算式的计算结果是。
【例 4】把比100大的奇数从小到大排成一列,其中第21个是多少?【巩固】2,5,8,11,14……是按照规律排列的一串数,第21项是多少?例题精讲【例 5】已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【巩固】一个数列共有13项,每一项都比它的前一项多7,并且末项为125,求首项是多少?【巩固】在下面12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中10、16已经填好,这12个数的和为。
16 10 【例 6】从1开始的奇数:1,3,5,7,……其中第100个奇数是_____。
【例 7】观察右面的五个数:19、37、55、a、91排列的规律,推知a =________ 。
等差数列公式的简单运用【例 8】2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【巩固】1、3、5、7、9、11、是个奇数列,如果其中8个连续奇数的和是256,那么这8个奇数中最大的数是多少?【巩固】1、4、7、10、13、…这个数列中,有6个连续数字的和是159,那么这6个数中最小的是几?【例 9】在等差数列6,13,20,27,…中,从左向右数,第_______个数是1994.|初一·数学·基础-提高-精英·学生版| 第1讲第页4【巩固】5、8、11、14、17、20、,这个数列有多少项?它的第201项是多少?65是其中的第几项?【巩固】对于数列4、7、10、13、16、19……,第10项是多少?49是这个数列的第几项?第100项与第50项的差是多少?【巩固】已知数列0、4、8、12、16、20、…… ,它的第43项是多少?【巩固】聪明的小朋友们,PK一下吧.⑴3、5、7、9、11、13、15、…… ,这个数列有多少项?它的第102项是多少?⑵0、4、8、12、16、20、…… ,它的第43项是多少?⑶已知等差数列2、5、8、11、14…… ,问47是其中第几项?⑷已知等差数列9、13、17、21、25、…… ,问93是其中第几项?【例 10】⑴如果一个等差数列的第4项为21,第6项为33,求它的第8项.⑵如果一个等差数列的第3项为16,第11项为72,求它的第6项.【巩固】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是多少?【巩固】如果一等差数列的第4项为21,第10项为57,求它的第16项.等差数列的求和【例 11】一个等差数列2,4,6,8,10,12,14,这个数列各项的和是多少?【巩固】有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数相加,和是多少?【巩固】求首项是13,公差是5的等差数列的前30项的和.【例 12】15个连续奇数的和是1995,其中最大的奇数是多少?【巩固】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 13】小马虎计算1到2006这2006个连续整数的平均数。
在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1。
小马虎求和时漏掉的数是。
模块二、等差数列的运用(提高篇)【例 14】已知数列:2,1,4,3,6,5,8,7,,问2009是这个数列的第多少项?【巩固】已知数列2、3、4、6、6、9、8、12、,问:这个数列中第2000个数是多少?第2003个数是多少?【例 15】已知有一个数列:1、1、2、2、2、2、3、3、3、3、3、3、4、,试问:⑴ 15是这样的数列中的第几个到第几个数?⑵这个数列中第100个数是几?⑶这个数列前100个数的和是多少?|初一·数学·基础-提高-精英·学生版| 第1讲第页6【例 16】有一列数:l,2,4,7,1l,16,22,29,37,,问这列数第1001个数是多少?【例 17】已知等差数列15,19,23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?【巩固】求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
【例 18】100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?【巩固】有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数相加,和是多少?【例 19】把248分成8个连续偶数的和,其中最大的那个数是多少?【巩固】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 20】在1~100这一百个自然数中,所有能被9整除的数的和是多少?【巩固】在1~100这一百个自然数中,所有不能被9整除的数的和是多少?【巩固】在1~200这二百个自然数中,所有能被4整除或能被11整除的数的和是多少?【巩固】在11~45这35个数中,所有不被3整除的数的和是多少?【例 21】求100以内除以3余2的所有数的和.【巩固】从401到1000的所有整数中,被8除余数为1的数有_____个?【例 22】从正整数1~N中去掉一个数,剩下的(N一1)个数的平均值是15.9,去掉的数是_____。
等差数列找规律找规律计算【例 23】1只青蛙1张嘴,2只眼睛4条腿;2只青蛙2张嘴,4只眼睛8条腿;……只青蛙张嘴,32只眼睛条腿。
【例 24】如图2,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,按这种方式摆下去,当N=5时,共需要火柴棍根。
【例 25】观察下面的序号和等式,填括号.序号等式1 1236++=3 35715++=5 581124++=7 7111533++=()()()++=()7983|初一·数学·基础-提高-精英·学生版| 第1讲第页8【巩固】有许多等式:2461353++=+++;8101214791113+++=++++;161820222415171921++++=+++++;⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅那么第10个等式的和是_______【巩固】观察下列算式:2+4=6=2×3,2+4+6=12=3×42+4+6+8=20=4×5……然后计算:2+4+6+……+100=。