2007年高考理科数学试题及参考答案(四川卷)

合集下载

2007年高考理科数学试题及参考答案(四川卷)

2007年高考理科数学试题及参考答案(四川卷)

2007年普通高等学校招生全国统一考试数学(四川卷)数 学 (理工农医类)第 Ⅰ 卷本试卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求的。

参考公式: 如果事件A 、B 互斥,那么球的表面积公式)()(B P A P B A P +=+)(2R π4=S如果事件A 、B 相互独立,那么其中R 表示球的半径()()P A B P A P B ⋅=⋅()球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34πR 3V =n 次独立重复试验恰有k 次发生的概率为: 其中R 表示球的半径()(1)k kn k n n P k C p p -=-一、选择题 1.复数211i ii +-+的值是 A .0B .1C .-1D .12.函数f (x )=1+log 2x 与g (x )=2-x +1在同一直角坐标系下的图象大致是3.=----121lim211x x x x A .0B .1C .21D .32 4.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60°5.如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是A .364 B .362 C .62 D .326.设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是A .67πB .45πC .34πD .23π 7.设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为A .354=-b aB .345=-b aC .1454=+b aD .1445=+b a8.已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于A .3B .4C .23D .249.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为 A .36万元 B .31.2万元C .30.4万元D .24万元10.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有A .288个B .240个C .144个D .126个11.如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是A .32B .364 C .4173 D .3212 12.已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是A .121B .607 C .256 D .255 第 Ⅱ 卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上. 13.若函数f (x )=e -(m -u )2(c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .14.如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .15.已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ’所引的切线长相等,则动点P 的轨迹方程是 . 16.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π, (1)求α2tan 的值. (2)求β.18.(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;(2)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.19.(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.(1)求证:平面PAC ⊥平面ABC ;(2)求二面角B AC M --的大小; (3)求三棱锥MAC P -的体积.20.(本小题满分12分)设1F 、2F 分别是椭圆224x y +=1的左、右焦点. (1)若P 是该椭圆上的一个动点,求12PF PF 的最大值和最小值;(2)设过定点M (O ,2)的直线l 与椭圆交于不同的两点A 、B ,且A O B ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.21.(本小题满分12分)已知函数2()4f x x =-,设曲线()y f x =在点(,())n n x f x 处的切线与x 轴的交点为1(,0)()x n x n N +∈,其中1x 为实数.(1) 用n x 表示1n x +;(2)求证:对于一切正整数n ,1n n x x +≤的充要条件是12x ≥; (3)若124,lg 2n n n x x a x +==-记,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式.22.(本小题满分14分)设函数1()(1)(,1,)nf x n N n x R n=+∈>∈且.(1)当6x =时,求1(1)nn+的展开式中二项式系数最大的项; (2)对任意的实数x ,证明(2)(2)'()('()()2f x f f x f x f x +>是的导函数); (3)是否存在a N ∈,使得11(1)(1)nk k an a k -<+<+∑恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.数学(理工农医类)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. 1.A 2.C 3.D4.D5.A6.C7.A8.C9.B 10.B11.D12.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.l 14.6π15.32x = 16.①④三、解答题17.本题考查三角恒等变形的主要基本公式、三角函数值的符号、已知三角函数值求角以及计算能力.解:(1)由1cos ,0,sin 727πααα=<<===得sin 7tan cos 71ααα∴===于是22tan tan 21tan ααα===-(2)由0,0.22ππβααβ<<<<-<得又13cos(),14αβ-=sin()β∴∂-===由(),βααβ=--得cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317147142=⨯+= 所以3πβ=18.本题考查相互独立事件、互斥事件等的概率计算,考查随机变量的分布列,数学期望等,考查运用所学知识与方法解决实际问题的能力.解:(1)记“厂家任取4件产品检验,其中至少有l 件是合格品”为事件A .用对立事件A 来算,有 4P(A)1P(A)1(0.2)0.9984.=-=-=(2)ξ可能的取值为0,1,2.2172203111722023220C 136P(0);C 190C C 51P(1);C 190C 3P(2).C 190ξξξ========E 012.19019019019010ξ=⨯+⨯+⨯== 记“商家任取2件产品检验,都合格”为事件B .则商家拒收这批产品的概率13627P=1-P(B)=1-.19095= 所以商家拒收这批产品的概率为2795。

2007年高考理科数学试题及参考答案(四川卷)

2007年高考理科数学试题及参考答案(四川卷)

宣左线洋河滨河南路LL标
一、完成情况
(一)路基工程
共 19.64 Km,完成 12.4Km, 占完成工程 63 % 。

(起止桩号K0+000—K19+641,完成K2+560—K6+621、K0+000—K0+600、K10+200—K12+200、K13+910—K19+641.102)
(一)路基工程
1土石方
①挖方总计1476474m3完成 921123 m3占完成工程 62.4 %
②填方总计2169595m3完成1306029 m3占完成工程 60.2 % 2小桥涵工程
①通道总计 2道完成 2道占完成工程 100 % (桩号:K4+327、K19+373)
②涵洞总计 46道完成 33道占完成工程 71.7 %
③小桥总计 2座完成 2座占完成工程 100 % (K17+870和一个线外小桥)
(二)桥梁工程
1柳川河总长 100m 完成 100m 占完成工程 100 %
2泡沙河总长完成占完成工程 %
3丹拉高速总长完成占完成工程 % 4泄洪大桥总长完成占完成工程 % (三)路面工程
1总长 19.64KM 完成 0 占完成工程 0 % 2底层总长 19.64KM 完成 4.542KM 占完成工程 23.1 % 3基层上总长 19.64KM 完成 0 占完成工程 0 %
4油面总长 19.64KM 完成 0 占完成工程 0 %。

2007年高考真题试卷(四川卷)数学(理科)参考答案

2007年高考真题试卷(四川卷)数学(理科)参考答案

2007年普通高等学校招生全国统一考试(四川卷)理科数学(含详细解析)一、选择题:本大题共12小题,每小题5分,共60分.1、复数311i i i++-的值是( ) (A )0(B )1 (C )1- (D )i 解析:选A .23331(1)201(1)(1)2i i i i i i i i i i i +++=+=+=-=--+.本题考查复数的代数运算. 2、函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:选C .注意 1(1)()22x x g x -+--==的图象是由2xy -=的图象右移1而得.本题考查函数图象的平移法则. 3、2211lim 21x x x x →-=--( ) (A )0 (B )1 (C )12 (D )23解析:选D .本题考查00型的极限.原式11(1)(1)12lim lim (1)(21)213x x x x x x x x →→+-+===-++或原式122lim 413x x x →==-. 4、如图,1111ABCD A BC D -为正方体,下面结论错误..的是( ) (A )//BD 平面11CB D(B )1AC BD ⊥(C )1AC ⊥平面11CB D(D )异面直线AD 与1CB 所成的角为60︒解析:选D .显然异面直线AD 与1CB 所成的角为45︒.5、如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )(A (B (C ) (D )解析:选A .由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线右准线的距离是3,双曲线的右准线方程是3x =,故点P 到y 轴的距离是3.6、设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B OA C --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是( ) (A )76π (B )54π (C )43π (D )32π 解析:选C .42323d AB BC CA ππππ=++=++=.本题考查球面距离. 7、设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b += 解析:选A .由OA 与OB 在OC 方向上的投影相同,可得:OA OC OB OC ⋅=⋅ 即 4585a b +=+,453a b -=.8、已知抛物线23y x =-+上存在关于直线0x y +=对称的相异两点A 、B ,则AB 等于( )(A )3 (B )4 (C ) (D )解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB =位置关系.自本题起运算量增大.9、某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元解析:选B .对甲项目投资24万元,对乙项目投资36万元,可获最大利润31.2万元.因为对乙项目投资获利较大,故在投资规划要求内(对项目甲的投资不小于对项目乙投资的32倍)尽可能多地安排资金投资于乙项目,即对项目甲的投资等于对项目乙投资的32倍时可获最大利润.这是最优解法.也可用线性规划的通法求解.注意线性规划在高考中以应用题型的形式出现.10、用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A )288个 (B )240个 (C )144个 (D )126个解析:选B .对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位-中间三位”分步计数:①个位是0并且比20000大的五位偶数有341496A ⨯⨯=个;②个位不是0并且比20000大的五位偶数有3423144A ⨯⨯=个;故共有96144240+=个.本题考查两个基本原理,是典型的源于教材的题目.11、如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC 的边长是( )(A ) (B )364(C (D )3解析:选D .过点C作2l 的垂线4l ,以2l 、4l 为x 轴、y 轴建立平面直角坐标系.设(,1)A a 、(,0)B b 、(0,2)C -,由A B B C ==知2222()149a b b a -+=+=+=边长,检验A :222()14912a b b a -+=+=+=,无解;检验B :22232()1493a b b a -+=+=+=,无解;检验D :22228()1493a b b a -+=+=+=,正确.本题是把关题.在基础中考能力,在综合中考能力,在应用中考能力,在新型题中考能力全占全了.是一道精彩的好题.可惜区分度太小.12、已知一组抛物线2112y ax bx =++,其中a 为2、4、6、8中任取的一个数,b 为1、3、5、7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是( )(A )112 (B )760 (C )625(D )516 解析:选B .这一组抛物线共4416⨯=条,从中任意抽取两条,共有216120C =种不同的方法.它们在与直线1x =交点处的切线的斜率1'|x k y a b ===+.若5a b +=,有两种情形,从中取出两条,有22C 种取法;若7a b +=,有三种情形,从中取出两条,有23C 种取法;若9a b +=,有四种情形,从中取出两条,有24C 种取法;若11a b +=,有三种情形,从中取出两条,有23C 种取法;若13a b +=,有两种情形,从中取出两条,有22C 种取法.由分类计数原理知任取两条切线平行的情形共有222222343214C C C C C ++++=种,故所求概率为760.本题是把关题.二、填空题:本大题共4小题,每小题4分,共16分;把答案填在题中的横线上.13、若函数2()()x f x e μ--=(e 是自然对数的底数)的最大值是m ,且()f x 是偶函数,则m μ+=________.解析:1m =,0n =,∴1m μ+=.14、在正三棱柱111ABC A B C -1,则1BC 与侧面11ACC A 所成的角是____________解析:1BC =B 到平面11ACC A 的距离为2,∴1sin 2θ=,30θ=︒. 15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则动点P 的轨迹方程是__________________解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r =.设(,)P x y ,由切线长相等得222x y +-=22810x y x +-+,32x =. 16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π.②终边在y 轴上的角的集合是{|,}2k k Z παα=∈. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点.④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象. ⑤函数sin()2y x π=-在[0,]π上是减函数.其中,真命题的编号是___________(写出所有真命题的编号)解析:①4422sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④.。

2007年普通高等学校招生全国统一考试数学理科(四川卷)(无附答案)

2007年普通高等学校招生全国统一考试数学理科(四川卷)(无附答案)

2007年普通高等学校招生全国统一考试数学理科(四川卷)(无附答案)一、选择题(1)复数211i i i +-+的值是(A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)=----121lim 211x x x x(A )0 (B)1 (C)21 (D)32(4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是(A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1(D )异面直线AD 与CB 1角为60°(5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A )364(B )362(C )62(D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A )67π(B )45π(C )34π(D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a(C)1454=+b a(D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于 (A )3 (B )4 (C )23 (D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元(10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 (A )288个 (B )240个 (C )144个 (D )126个(11)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是(A )32 (B )364 (C )4173(D )3212(12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上.(13)若函数f (x )=e -(m -u )2(c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ’所引的切线长相等,则动点P 的轨迹方程是 . (16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π.②终边在y 轴上的角的集合是{a |a =Zk k ∈π,2|.③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点.④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.(Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分) 设1F 、2F 分别是椭圆1422=+y x 的左、右焦点.(Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(Ⅰ)用表示 (Ⅱ)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫ ⎝⎛+11的展开式中二项式系数最大的项; (Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫ ⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.。

2007年普通高等学校招生全国统一考试理科综合试卷及答案-四川卷

2007年普通高等学校招生全国统一考试理科综合试卷及答案-四川卷

四川省2007年普通高等学校招生考试试题理科综合能力测试第Ⅰ卷本卷共21小题,每小题6分,共126分。

可能用到的相对原子质量(原子量):H 1 C 12 N 14 0 16 Fe 56 Cu 64 一、选择题(本题包括13小题。

每小题只有一个....选项符合题意)1.下列关于人和高等动物机体代谢及调节的相关叙述,正确的是A.多余的糖可以转化为非必需氨基酸,而多余的氨基酸可以贮存B.脂肪和蛋白质的分解代谢强度受糖类分解代谢强度的制约C.肾上腺素的分泌受下丘脑直接控制,与血糖浓度无关D.胰高血糖素促进肝脏和肌肉细胞的糖原分解为葡萄糖2.下列关于生物膜的叙述,不正确的是A.细胞完成分化以后,其细胞膜的通透性稳定不变B.膜的流动性是细胞生物膜相互转化的基础C.特异性免疫系统通过细胞膜表面的分子识别“自己”和“非己”D.分泌蛋白合成越旺盛的细胞,其高尔基体膜成分的更新速度越快3.在社会主义新农村建设中,四川某地通过新建沼气池和植树造林,构建了新型农业生态系统(如图所示)。

下列有关叙述不正确...的是A.该生态系统中,处于第二营养级的生物有人和家禽家畜B.该生态系统中,人的作用非常关键,植物是主要成分C.该生态系统的建立,提高了各营养级间的能量传递效率D.沼气池的建造和植树造林,提高了该生态系统的稳定性4.水稻是我国主要的粮食作物之一。

下列有关水稻生命活动的叙述,正确的是A.对水稻进行根瘤菌拌种,有利于水稻对N2的利用B.水稻叶片的维管束鞘细胞中含有叶绿体,能固定二氧化碳并形成淀粉C.硅元素能在水稻体内大量积累,该事实说明硅是水稻必需的大量元素D.尽管水稻生长在水生环境中,其吸水的主要动力仍是蒸腾拉力5.在细菌的连续培养过程中,要以一定速度不断添加新的培养基,同时以同样速度放出老的培养基。

右下图表示培养基的稀释率(培养基的更新速率)与培养容器中营养物质浓度、细菌代时(细菌数目增加一倍所需的时间)、细菌密度的关系。

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB .C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞,,D .(2)(1)-∞-+∞,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( )A B C D 8.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D .129.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( )A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )A B CD 12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 . 15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题 13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥. 又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A =,所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角AE BCFSDH G Mtan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.3cos 3MD EA MD EA MD EA<>==,. 所以二面角A EF D --的大小为arccos3. 20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即 2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得222(2)x x y -+=+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩, 由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=,所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32nn a a a -<.即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

2007年高考试题——数学理(四川卷)

2007年高考试题——数学理(四川卷)

2007年普通高等学校招生全国统一考试(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π (15)32x =(16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。

解:(Ⅰ)由1cos ,072παα=<<,得sin 7α==∴sin 7tan co s 71ααα===(22tan tan 21tan 471ααα===---(Ⅱ)由02παβ<<<,得02παβ<-<又∵()13co s 14αβ-=,∴()sin 14αβ-===由()βααβ=--得:()co s co s βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-11317147142=⨯+=所以3πβ=(18)本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力。

解:(Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2()2172201360190C P C ξ===,()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=所以商家拒收这批产品的概率为2795(19)本题主要考察异面直线所成的角、平面与平面垂直、二面角、三棱锥体积等有关知识,考察思维能力和空间想象能力、应用向量知识解决数学问题的能力、化归转化能力和推理运算能力。

2007年高考理科数学试题及参考答案(四川卷)

2007年高考理科数学试题及参考答案(四川卷)

2007年“专转本”计算机应用基础统一考试试题(考试时间90分钟,满分100分)一、单项选择题1.逻辑与运算:11001010∧00001001的运算结果是_____。

A.00001000 B.00001001 C.11000001 D.110010112.在某进制的运算中4*5=14,则根据这一运算规则,5*7=______。

A. 3A B. 35 C. 29 D. 233.长度为1个字节的二进制整数,若采用补码表示,且由五个“1”和3个“0”组成,则可表示的最小十进制整数为_______。

A .-120 B.-113 C.-15 D.-84.根据摩尔(Moore)定律,单块集成电路的集成度平均每______翻一番。

A.8-14 个月 B.18-24个月 C.28-34个月 D.38-44个月5.中央处理器(CPU)是计算机的核心部件,一台计算机中最多包含_____中央处理器。

A.一个 B.两个 C.三个 D.四个6.计算机在执行U盘上的程序时,首先把U盘上的程序和数据读入到_______,然后才能被计算机运行。

A.硬盘 B.软盘C.内存 D.缓存7.某处理器具有32GB的寻址能力,则该处理器的地址线有_______。

A. 36根 B. 35根 C. 32根 D.24根8.扫描仪是常用的输入设备,在扫描仪的性能指标中不包括______A.扫描仪的分辨率B.扫描仪的色彩位数C.扫描仪的扫描幅面D.扫描仪的结构9.彩色显示器的色彩是由三基色合成而得到的。

某显示器的三基色R、G、B分别用4位二进制数表示,则它可以表示______种不同的颜色。

A.65536 B.4096 C.256 D.1210.某CD—ROM驱动器的速率标称为40X,表示其数据的传输速率为_______。

A.2000KB/s B. 4000KB/s C.6000KB/s D.8000KB/s11.在计算机系统中,对计算机各类资源进行统一管理和调度的软件是_______.A.语言处理程序 B.应用软件C.操作系统 D.数据库管理系统12.虚拟存储技术是将上的一部分作为内存来使用。

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)求值sin210°=()A.B.﹣C.D.﹣2.(5分)函数y=|sinx|的一个单调增区间是()A.B.C.D.3.(5分)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i4.(5分)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln25.(5分)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣6.(5分)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)7.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.8.(5分)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.9.(5分)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣310.(5分)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种11.(5分)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.12.(5分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1+2x2)(x﹣)8的展开式中常数项为.14.(5分)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.15.(5分)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.16.(5分)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y (1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.18.(12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).19.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.20.(12分)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.21.(12分)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;,其中n为正整数.(2)设,求证b n<b n+122.(12分)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅱ)求值sin210°=()A.B.﹣C.D.﹣【分析】通过诱导公式得sin 210°=﹣sin(210°﹣180°)=﹣sin30°得出答案.【解答】解:∵sin 210°=﹣sin(210°﹣180°)=﹣sin30°=﹣故答案为D2.(5分)(2007•全国卷Ⅱ)函数y=|sinx|的一个单调增区间是()A.B.C.D.【分析】画出y=|sinx|的图象即可得到答案.【解答】解:根据y=|sinx|的图象,如图,函数y=|sinx|的一个单调增区间是,故选C.3.(5分)(2007•全国卷Ⅱ)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i【分析】将复数z设a+bi,(a,b∈R),代入复数方程,利用复数相等的条件解出复数z.【解答】解:设复数z=a+bi,(a,b∈R)满足=i,∴1+2i=ai﹣b,,∴z=2﹣i,故选C.4.(5分)(2007•全国卷Ⅱ)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln2【分析】根据lnx是以e>1为底的单调递增的对数函数,且e>2,可知0<ln2<1,ln(ln2)<0,故可得答案.【解答】解:∵0<ln2<1,∴ln(ln2)<0,(ln2)2<ln2,而ln=ln2<ln2,∴最大的数是ln2,故选D.5.(5分)(2007•全国卷Ⅱ)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣【分析】本题要求字母系数,办法是把表示出来,表示时所用的基底要和题目中所给的一致,即用和表示,画图观察,从要求向量的起点出发,沿着三角形的边走到终点,把求出的结果和给的条件比较,写出λ.【解答】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.6.(5分)(2007•全国卷Ⅱ)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【分析】首先不等式的分母可化为(x+2)(x﹣2),不等式的分子和分母共由3个一次因式构成.要使得原不等式大于0,可等同于3个因式的乘积大于0,再可根据串线法直接求解.【解答】解:依题意,原不等式可化为等同于(x+2)(x﹣1)(x﹣2)>0,可根据串线法直接解得﹣2<x<1或x>2,故答案应选B.7.(5分)(2007•全国卷Ⅱ)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【分析】根据正三棱柱及线面角的定义知,取A1C1的中点D1,∠B1AD1是所求的角,再由已知求出正弦值.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.8.(5分)(2007•全国卷Ⅱ)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.【分析】根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.【解答】解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.9.(5分)(2007•全国卷Ⅱ)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣3【分析】平移向量=(h,k)就是将函数的图象向右平移h个单位,再向上平移k个单位.【解答】解:把函数y=e x的图象按向量=(2,3)平移,即向右平移2个单位,再向上平移3个单位,平移后得到y=f(x)的图象,∴f(x)=e x﹣2+3,故选C.10.(5分)(2009•湖北)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【分析】分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,首先从5人中抽出两人在星期五参加活动,有C52种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有A32种情况,则由分步计数原理,可得不同的选派方法共有C52A32=60种,故选B.11.(5分)(2007•全国卷Ⅱ)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.【分析】由题设条件设|AF2|=1,|AF1|=3,双曲线中2a=|AF1|﹣|AF2|=2,,由此可以求出双曲线的离心率.【解答】解:设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,设|AF2|=t,|AF1|=3t,(t>0)双曲线中2a=|AF1|﹣|AF2|=2t,t,∴离心率,故选B.12.(5分)(2007•全国卷Ⅱ)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9【分析】先设A(x1,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,再依据=0,判断点F是△ABC重心,进而可求x1+x2+x3的值.最后根据抛物线的定义求得答案.【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1∵=,∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅱ)(1+2x2)(x﹣)8的展开式中常数项为﹣42.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4214.(5分)(2007•全国卷Ⅱ)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.【分析】根据ξ服从正态分布N(1,),得到正态分布图象的对称轴为x=1,根据在(0,1)内取值的概率为0.4,根据根据随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,得到随机变量ξ在(0,2)内取值的概率.【解答】解:∵测量结果ξ服从正态分布N(1,),∴正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,∴随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,∴随机变量ξ在(0,2)内取值的概率为0.8.故答案为:0.815.(5分)(2007•全国卷Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为2+4cm2.【分析】本题考查的知识点是棱柱的体积与表面积计算,由一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,我们根据球的直径等于棱柱的对角线长,我们可以求出棱柱的各棱的长度,进而得到其表面积.【解答】解:由一个正四棱柱的各个顶点在一个直径为2cm的球面上.正四棱柱的对角线的长为球的直径,现正四棱柱底面边长为1cm,设正四棱柱的高为h,∴2R=2=,解得h=,那么该棱柱的表面积为2+4cm2.故答案为:2+416.(5分)(2007•全国卷Ⅱ)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.【分析】由通项公式知该数列是等差数列,先求出首项和公差,然后求出其前n 项和,由此能得到的值.【解答】解:∵数列的通项a n=﹣5n+2,∴a1=﹣3,a2=﹣8,d=﹣5.∴其前n项和为S n,则=﹣.故答案为:﹣.三、解答题(共6小题,满分70分)17.(10分)(2007•全国卷Ⅱ)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y(1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.【分析】(1)由内角A=,边BC=2,设内角B=x,周长为y,我们结合三角形的性质,△ABC的内角和A+B+C=π,△ABC的周长y=AB+BC+AC,我们可以结合正弦定理求出函数的解析式,及自变量的取值范围.(2)要求三角函数的最值,我们要利用辅助角公式,将函数的解析式,化为正弦型函数的形式,再根据正弦型函数的最值的求法进行求解.【解答】解:(1)△ABC的内角和A+B+C=π,由得.应用正弦定理,知,.因为y=AB+BC+AC,所以,(2)∵=,所以,当,即时,y取得最大值.18.(12分)(2007•全国卷Ⅱ)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).【分析】(1)有放回地抽取产品二次,每次随机抽取1件,取出的2件产品中至多有1件是二等品包括无二等品和恰有一件是二等品两种情况,设出概率,列出等式,解出结果.(2)由上面可以知道其中二等品有100×0.2=20件取出的2件产品中至少有一件二等品的对立事件是没有二等品,用组合数列出结果.【解答】解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”.则A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)=P(A0)+P(A1)=(1﹣p)2+C21p(1﹣p)=1﹣p2于是0.96=1﹣p2.解得p1=0.2,p2=﹣0.2(舍去).(2)记B0表示事件“取出的2件产品中无二等品”,则.若该批产品共100件,由(1)知其中二等品有100×0.2=20件,故.19.(12分)(2007•全国卷Ⅱ)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.【分析】法一:(1)作FG∥DC交SD于点G,则G为SD的中点.要证EF∥平面SAD,只需证明EF平行平面SAD内的直线AG即可.(2)取AG中点H,连接DH,说明∠DMH为二面角A﹣EF﹣D的平面角,解三角形求二面角A﹣EF﹣D的大小.法二:建立空间直角坐标系,平面SAD即可证明(1);(2)求出向量和,利用,即可解答本题.【解答】解:法一:(1)作FG∥DC交SD于点G,则G为SD的中点.连接,又,故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD.所以EF∥平面SAD.(2)不妨设DC=2,则SD=4,DG=2,△ADG为等腰直角三角形.取AG中点H,连接DH,则DH⊥AG.又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A,所以DH⊥面AEF.取EF中点M,连接MH,则HM⊥EF.连接DM,则DM⊥EF.故∠DMH为二面角A﹣EF﹣D的平面角.所以二面角A﹣EF﹣D的大小为.法二:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.20.(12分)(2007•全国卷Ⅱ)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.【分析】首先分析到题目(1)中圆是圆心在原点的标准方程,由切线可直接求得半径,即得到圆的方程.对于(2)根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围.【解答】解:(1)依题设,圆O的半径r等于原点O到直线的距离,即.得圆O的方程为x2+y2=4.(2)不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(﹣2,0),B(2,0).设P(x,y),由|PA|,|PO|,|PB|成等比数列,得,两边平方,可得(x2+y2+4)2﹣16x2=(x2+y2)2,化简整理可得,x2﹣y2=2.=x2﹣4+y2=2(y2﹣1).由于点P在圆O内,故由此得y2<1.所以的取值范围为[﹣2,0).21.(12分)(2007•全国卷Ⅱ)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;(2)设,求证b n<b n+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故b n>0.那么,b n+12﹣bn2=an+12(3﹣2a n+1)﹣a n2(3﹣2a n)=由此可知b n<b n+1,n为正整数.方法二:由题设条件知,所以.由此可知b n<b n+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故b n>0.那么,b n+12﹣bn2=a n+12(3﹣2a n+1)﹣a n2(3﹣2a n)==又由(1)知a n>0且a n≠1,故b n+12﹣bn2>0,因此b n<b n+1,n为正整数.方法二:由(1)可知,因为,所以.由a n≠1可得,即两边开平方得.即b n<b n+1,n为正整数.22.(12分)(2007•全国卷Ⅱ)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)【分析】(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可;(2)设切线过点(a,b),则存在t使b=(3t2﹣1)a﹣2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证.【解答】解:(1)求函数f(x)的导函数;f'(x)=3x2﹣1.曲线y=f(x)在点M(t,f(t))处的切线方程为:y﹣f(t)=f'(t)(x﹣t),即y=(3t2﹣1)x﹣2t3;(2)如果有一条切线过点(a,b),则存在t,使b=(3t2﹣1)a﹣2t3.于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,则g'(t)=6t2﹣6at=6t(t﹣a).当t变化时,g(t),g'(t)变化情况如下表:)由g(t)的单调性,当极大值a+b<0或极小值b﹣f(a)>0时,方程g(t)=0最多有一个实数根;当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根;当b﹣f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根.综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则即﹣a<b<f(a).。

【历年经典高考】2007年理科数学试卷及答案-四川卷

【历年经典高考】2007年理科数学试卷及答案-四川卷

2007年普通高等学校招生全国统一·考试·(四川卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3到10页.·考试·结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、·考试·科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题: (1)复数211i ii +-+的值是 (A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)2211lim 21x x x x --=-- (A )0 (B)1 (C)21 (D)32(4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1 (D )异面直线AD 与CB 1角为60°(5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A )364 (B )362 (C )62 (D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A )67π (B )45π (C )34π (D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a (C)1454=+b a(D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于(A )3(B )4(C )23(D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(A )288个 (B )240个 (C )144个 (D )126个 (11)如图,l1、l2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1,l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是(A )32(B )364 (C )4173 (D )3212 (12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上. (13)若函数f (x )=e -(m -u )2 (c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ’所引的切线长相等,则动点P 的轨迹方程是 .(16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.(Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(21)(本小题满分12分)已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数 (Ⅰ)用表示 (Ⅱ)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.2007年普通高等学校招生全国统一·考试·(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π (15)32x = (16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.解:(Ⅰ)由1cos ,072παα=<<,得sin α=∴sin 7tan cos 1ααα===22tan tan 21tan 1ααα===--(Ⅱ)由02παβ<<<,得02παβ<-<又∵()13cos 14αβ-=,∴()sin αβ-==由()βααβ=--得:()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-11317142=⨯= 所以3πβ=(18)本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力. 解:(Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2()2172201360190C P C ξ===,()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯= 记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-= 所以商家拒收这批产品的概率为2795(19)本题主要考察异面直线所成的角、平面与平面垂直、二面角、三棱锥体积等有关知识,考察思维能力和空间想象能力、应用向量知识解决数学问题的能力、化归转化能力和推理运算能力. 解法一:(Ⅰ)∵,,PC AB PC BC ABBC B ⊥⊥=∴PC ABC ⊥平面, 又∵PC PAC ⊂平面 ∴PAC ABC ⊥平面平面(Ⅱ)取BC 的中点N ,则1CN =,连结,AN MN ,∵//PMCN =,∴//MN PC =,从而MN ABC ⊥平面 作NH AC ⊥,交AC 的延长线于H ,连结MH ,则由三垂线定理知,AC NH ⊥,从而MHN ∠为二面角M AC B --的平面角 直线AM 与直线PC 所成的角为060 ∴060AMN ∠=在ACN ∆中,由余弦定理得AN 在AMN ∆中,cot 1MN AN AMN =⋅∠== 在CNH ∆中,sin 1NH CN NCH =⋅∠==在MNH ∆中,tan MN MN MHN NH =∠===故二面角M AC B --的平面角大小为(Ⅲ)由(Ⅱ)知,PCMN 为正方形∴011sin12032P MAC A PCM A MNC M ACN V V V V AC CN MN ----====⨯⋅⋅⋅=解法二:(Ⅰ)同解法一(Ⅱ)在平面ABC 内,过C 作CD CB ⊥,建立空间直角坐标系C xyz -(如图)由题意有1,02A ⎫-⎪⎪⎝⎭,设()()000,0,0P z z >, 则()()000310,1,,,,,0,0,2M z AM z CP z ⎛⎫=-= ⎪⎪⎝⎭由直线AM 与直线PC 所成的解为060,得0cos60AM CP AM CP ⋅=⋅⋅,即200z z =,解得01z =∴()310,0,1,,02CM CA ⎛⎫==- ⎪⎪⎝⎭,设平面MAC 的一个法向量为{}111,,n x y z =,则11110102yz y z +=⎧-=,取11x =,得{1,3,n = 平面ABC 的法向量取为()0,0,1m = 设m 与n 所成的角为θ,则3cos 7m n m nθ⋅-==⋅显然,二面角M AC B --的平面角为锐角, 故二面角M AC B --的平面角大小为 (Ⅲ)取平面P C M 的法向量取为()11,0,0n =,则点A 到平面P C M 的距离113CA n h n ⋅==∵1,1PC PM ==,∴11111326212P MAC A PCM V V PC PM h --===⨯⋅⋅=⨯⨯⨯=(20)本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力.解:(Ⅰ)解法一:易知2,1,a bc ==所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1解法二:易知2,1,ab c ===())12,F F ,设(),P x y ,则22212121212121212cos 2PF PF F F PF PF PF PF F PF PF PF PF PF +-⋅=⋅⋅∠=⋅⋅⋅((22222211232x y x y x y ⎡⎤=++++-=+-⎢⎥⎣⎦(以下同解法一)(Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,1144k x x x x k k +=-⋅=++由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:k <或k > 又00090cos 000A B A B OA OB <∠<⇔∠>⇔⋅>∴12120OA OB x x y y ⋅=+>又()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+∵2223101144k k k -++>++,即24k < ∴22k -<<故由①、②得22k -<<-或22k <<(21)本题综合考察数列、函数、不等式、导数应用等知识,以及推理论证、计算及解决问题的能力.解:(Ⅰ)由题可得()'2fx x =所以过曲线上点()()00,x f x 的切线方程为()()()'n n n y f x f x x x -=-,即()()42n n n y x x x x --=-令0y =,得()()2142n n n n x x x x +--=-,即2142n n n x x x ++=显然0n x ≠ ∴122n n nx x x +=+ (Ⅱ)证明:(必要性)若对一切正整数1,n n n x x +≤,则21x x ≤,即11122x x x +≤,而10x >,∴214x ≥,即有12x ≥ (充分性)若120x ≥>,由122n n nx x x +=+ 用数学归纳法易得0n x >,从而()12212n n n x x n x +=+≥=≥,即()22n x n ≥≥ 又12x ≥ ∴()22n x n ≥≥于是214222n n n n n n n x x x x x x x +--=+-=()()2202n n nx x x -+=≤,即1n n x x +≤对一切正整数n 成立(Ⅲ)由122n n nx x x +=+,知()21222n n n x x x +++=,同理,()21222n n n x x x +--=故2112222n n n n x x x x ++⎛⎫++= ⎪--⎝⎭从而1122lg2lg 22n nn n x x x x ++++=--,即12n n a a += 所以,数列{}n a 成等比数列,故111111222lg2lg32n n n n x a a x ---+===-, 即12lg2lg32n n n x x -+=-,从而21232n n n x x -+=- 所以()212123131n n n x --+=-(22)本题考察函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法.考查综合推理论证与分析解决问题的能力及创新意识.(Ⅰ)解:展开式中二项式系数最大的项是第4项,这项是335631201C n n ⎛⎫= ⎪⎝⎭(Ⅱ)证法一:因()()22112211n f x f n n ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭≥11211nn n ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭121nn ⎛⎫>+ ⎪⎝⎭1121ln 12nn ⎛⎫⎛⎫>++ ⎪ ⎪⎝⎭⎝⎭()'1121ln 12nf x n n ⎛⎫⎛⎫≥++= ⎪ ⎪⎝⎭⎝⎭证法二:因()()22112211nf x f n n ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭≥11211nn n ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭而()'11221ln 1nf x n n ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭故只需对11n ⎛⎫+⎪⎝⎭和1ln 1n ⎛⎫+ ⎪⎝⎭进行比较.令()()ln 1g x x x x =-≥,有()'111x g x x x-=-= 由10x x-=,得1x = 因为当01x <<时,()'0g x <,()g x 单调递减;当1x <<+∞时,()'0g x >,()g x 单调递增,所以在1x =处()g x 有极小值1 故当1x >时,()()11g x g >=,从而有ln 1x x ->,亦即ln 1ln x x x >+> 故有111ln 1n n ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭恒成立. 所以()()()'222f x f f x +≥,原不等式成立.(Ⅲ)对m N ∈,且1m >有2012111111mkmk m m m m mmC C C C C m m m m m ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()2111121111112!!!k mm m m m m k m m m k m m m ---+-⋅⎛⎫⎛⎫⎛⎫=+++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112111121111112!!!k m m k m m m m m m --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-++---++-- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111122!3!!!k m <++++++ ()()11112213211k k m m <++++++⨯⨯--11111112122311k k m m ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-++-++- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭133m=-< 又因()102,3,4,,kk mC k m m ⎛⎫>= ⎪⎝⎭,故1213mm ⎛⎫<+< ⎪⎝⎭∵1213mm ⎛⎫<+< ⎪⎝⎭,从而有11213knk n n k =⎛⎫<+< ⎪⎝⎭∑成立,即存在2a =,使得11213knk n n k =⎛⎫<+< ⎪⎝⎭∑恒成立.笔记卡。

2007年四川省高考数学试题和答案(文理科word版)

2007年四川省高考数学试题和答案(文理科word版)

2007年普通高等学校招生全国统一考试数学(四川文科)一、选择题(1)设集合M =|4,5,6,8|,集合N =|3,5,7,8|,那么M ∪N =(A)|3,4,5,6,7,8| (B)|5,8| (C)|3,5,7,8| (D)|4,5,6,8|(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是(A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克(4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1(B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1(D)异面直线AD 与CB 所成的角为60°(5)如果双曲线{ EMBED Equation.3 |2422y x =1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A) (B) (C) (D)(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A到B 、C 两点的球面距离都是,且二面角B-OA-C 的大小是,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A) (B)(C) (D)(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n =(A)9 (B)10 (C)11(D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12(9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有A.48个B.36个C.24个D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.3D.4(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l1、l2、l3是同一平面内的三条平行直线,l1与l2与l3同的距离是2,正三角形ABC 的三顶点分别在l1、l2、l3上,则△ABC的边长是A.2B.C. D.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).(x-)2的展开式中的第5项为常数项,那么正整数a的值是.(14).如图,在正三棱柱ABC-A1B1C1中,侧棱长为,底面三角形的边长为1,则BC1与侧面ACC1A2所成的角是.(15).已知⊙O的方程是z2+y2-2=0, ⊙O′的方程是x2+y2=8x+10=0.由动点P内⊙O和⊙O′所引的切线长相等,则动点P的轨迹方程是.(16).下面有五个命题:①函数y=sin2x-cos2x,的最小正周期是π.②终边在y轴上的角的集合是|a|α=,k∈Z|.③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点.④把函数y=3sin(2x+)的图象向右平移得到y=3 sin2x的图象.⑤角θ为第一象限角的充要条件是sinθ>0.其中,真命题的编号是(写出所有真命题的编号).三、解答题:本大题共6小题。

2007年高考数学卷(四川.理)含详解

2007年高考数学卷(四川.理)含详解

2007年普通高等学校招生全国统一考试(四川卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题: (1)复数211i ii +-+的值是 (A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)2211lim 21x x x x →-=-- (A )0 (B)1 (C)21 (D)32 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1 (D )异面直线AD 与CB 1角为60° (5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A )364 (B )362 (C )62 (D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A )67π (B )45π (C )34π (D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于(A )3 (B )4 (C )23 (D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(A )288个 (B )240个 (C )144个 (D )126个 (11)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上, 则△ABC 的边长是(A )32(B )364 (C )4173 (D )3212 (12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上.(13)若函数f (x )=e -(m -u )2 (c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1, 则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和 ⊙O ’所引的切线长相等,则动点P 的轨迹方程是 . (16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值.(Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(21)(本小题满分12分)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫ ⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.2007年普通高等学校招生全国统一考试(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π(15)32x = (16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。

2007年四川高考理科数学试卷及答案解析版

2007年四川高考理科数学试卷及答案解析版

普通高等学校招生全国统一考试(四川卷)理全解全析一、选择题:本大题共12小题,每小题5分,共60分. 1、复数311i i i++-的值是( ) (A )0(B )1(C )1-(D )i解析:选A .23331(1)201(1)(1)2i i ii i i i i i i i +++=+=+=-=--+.本题考查复数的代数运算.2、函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:选C .注意 1(1)()22x x g x -+--==的图象是由2x y -=的图象右移1而得.本题考查函数图象的平移法则.3、2211lim 21x x x x →-=--( ) (A )0 (B )1 (C )12 (D )23解析:选D .本题考查00型的极限.原式11(1)(1)12lim lim (1)(21)213x x x x x x x x →→+-+===-++或原式122lim 413x x x →==-.4、如图,1111ABCD A BC D -为正方体,下面结论错误..的是( )(A )//BD 平面11CB D (B )1AC BD ⊥ (C )1AC ⊥平面11CB D(D )异面直线AD 与1CB 所成的角为60︒解析:选D .显然异面直线AD 与1CB 所成的角为45︒.5、如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )(A )3 (B )3(C ) (D )解析:选A .由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P ,双曲线的右准线方程是x =P 到y .6、设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B OAC --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是( )(A )76π(B )54π (C )43π (D )32π 解析:选C .42323d AB BC CA ππππ=++=++=.本题考查球面距离.7、设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b +=解析:选A .由OA 与OB 在OC 方向上的投影相同,可得:OA OC OB OC ⋅=⋅即 4585a b +=+,453a b -=.8、已知抛物线23y x =-+上存在关于直线0x y +=对称的相异两点A 、B ,则AB 等于( )(A )3 (B )4 (C ) (D )解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB ==关系.自本题起运算量增大.9、某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元解析:选B .对甲项目投资24万元,对乙项目投资36万元,可获最大利润31.2万元.因为对乙项目投资获利较大,故在投资规划要求内(对项目甲的投资不小于对项目乙投资的32倍)尽可能多地安排资金投资于乙项目,即对项目甲的投资等于对项目乙投资的32倍时可获最大利润.这是最优解法.也可用线性规划的通法求解.注意线性规划在高考中以应用题型的形式出现.10、用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A )288个 (B )240个 (C )144个 (D )126个解析:选B .对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位-中间三位”分步计数:①个位是0并且比20000大的五位偶数有341496A ⨯⨯=个;②个位不是0并且比20000大的五位偶数有3423144A ⨯⨯=个;故共有96144240+=个.本题考查两个基本原理,是典型的源于教材的题目.11、如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC 的边长是( )(A ) (B )364(C (D )3 解析:选D .过点C作2l 的垂线4l ,以2l 、4l 为x 轴、y 轴建立平面直角坐标系.设(,1)A a 、(,0)B b 、(0,2)C -,由A B B C==知2222()149a b b a -+=+=+=边长,检验A :222()14912a b b a -+=+=+=,无解;检验B :22232()1493a b b a -+=+=+=,无解;检验D :22228()1493a b b a -+=+=+=,正确.本题是把关题.在基础中考能力,在综合中考能力,在应用中考能力,在新型题中考能力全占全了.是一道精彩的好题.可惜区分度太小.12、已知一组抛物线2112y ax bx =++,其中a 为2、4、6、8中任取的一个数,b 为1、3、5、7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是( )(A )112 (B )760 (C )625 (D )516解析:选B .这一组抛物线共4416⨯=条,从中任意抽取两条,共有216120C =种不同的方法.它们在与直线1x =交点处的切线的斜率1'|x k y a b ===+.若5a b +=,有两种情形,从中取出两条,有22C 种取法;若7a b +=,有三种情形,从中取出两条,有23C 种取法;若9a b +=,有四种情形,从中取出两条,有24C 种取法;若11a b +=,有三种情形,从中取出两条,有23C 种取法;若13a b +=,有两种情形,从中取出两条,有22C 种取法.由分类计数原理知任取两条切线平行的情形共有222222343214C C C C C ++++=种,故所求概率为760.本题是把关题. 二、填空题:本大题共4小题,每小题4分,共16分;把答案填在题中的横线上.13、若函数2()()x f x e μ--=(e 是自然对数的底数)的最大值是m ,且()f x 是偶函数,则m μ+=________. 解析:1m =,0n =,∴1m μ+=.14、在正三棱柱111ABC A B C -1,则1BC 与侧面11ACC A 所成的角是____________解析:1BC =B 到平面11ACC A ,∴1sin 2θ=,30θ=︒.15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则动点P 的轨迹方程是__________________解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r =(,)P x y ,由切线长相等得222x y +-=22810x y x +-+,32x =. 16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π.②终边在y 轴上的角的集合是{|,}2k k Z παα=∈.③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点.④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象.⑤函数sin()2y x π=-在[0,]π上是减函数.其中,真命题的编号是___________(写出所有真命题的编号)解析:①4422sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④.三.解答题: (17)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值.(Ⅱ)求β. 本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。

2007年高考理科数学试题及参考答案(四川卷)

2007年高考理科数学试题及参考答案(四川卷)
“便宜”一下子打动了我的心。于是,第二天,我们就见到了李西, 一名厨师的妻子,但不曾想到就是这位既固执又寡言的老婆子后来竟成了我家不可或缺的一员。
那是一个闷热的十月天,但李西依然全副武装:一条棉布裤,裤脚还露出半截的贴身棉毛裤;条纹贴身内衣外穿着长袖衬衫;衬衫外叠着一件古老、磨损的运动衫,外头又罩着一件破旧的灰色毛衣,纽扣一直扣到脖子;脚蹬一双泛黄帆布解放鞋,象是经历了二万五千里长征的洗礼。
气候变化
旅游造成气候变化,也受气候变化的影响。气候变化可能增加暴风雨的严重程度和发生频率,在受灾地区对旅游业产生破坏性影响。全球变暖造成的世界性危险还有干旱、疾病和酷暑。
疟疾,世界上最大的流行病杀手,在西班牙又一爆发,据预测到本世纪20年代天气变化会使这个国家的部分地区成为携带疟疾病原蚊子的适合栖居地。
“那么她会烧饭吗?”
“还不会,我来教。”
我开始怀疑这个迟钝的灵魂是否还能作出任何反应。但当我正想得体地结束面试的当儿,她突然动了起来。我那宝贝儿子马修不知什么时候挪到了门口,眼看就要溜到危险的大街,只见李西一下子飞了过去,一把抓住抱在胸口,硬是给揣回了房间,她的脸也一下子涨的通红。接下来,李西又坐回椅子,皱上眉头,又开始扯捏起磨损的衣袖口。
帮助别人的人理应得到别人的帮助…
毛主席曾经说过,“妇女能顶半边天,”我认为还没说到位。中国妇女,尽管受缺乏教育的束缚,但撑起的远远大于半边天。
Unit9: 半边天 ----雇第二奖)
女人就象袋泡茶,只有放在热水里才显示出她的能量。
------------南希--里根
李西尽心尽力地在努力融入我家。她开始学习普通话,又自学起我至今仍云里舞里的汉字,甚至还学做起中西餐。通过观察,她学会了如何做比萨、三明治和汉堡,又学会了炸薯条和炖爱尔兰煲。就连来我家的中国客人也纷纷索要她的食谱。

2007年全国统一高考数学试卷(理科)(全国卷一)及答案

2007年全国统一高考数学试卷(理科)(全国卷一)及答案

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b 的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x ﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A 的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x ≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax 相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k 时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。

2007年高考理科综合试题及参考答案(四川卷)

2007年高考理科综合试题及参考答案(四川卷)

高中数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}======|lg|lg(,)|lgA x y xB y y xC x y y x A B C如:集合,,,、、中元素各表示什么?∅2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

“非”().⌝p q p q∧若为真,当且仅当、均为真∨p q p q若为真,当且仅当、至少有一个为真⌝p p若为真,当且仅当为假6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)xx -<⎩⎪0 ()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a[][]∴====---ff a f b a f f b f a b 111()()()(),14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?[](,,则(外层)(内层)y f u u x y f x ===()()()ϕϕA. 0B. 1C. 2D. 3(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x a x a≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔求 (),x xx 24101+∈⎩⎪⎪ 17. 你熟悉周期函数的定义吗?()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()() 函数,T 是一个周期。

2007年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2007年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题目(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1B.﹣1C.2D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B 与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3B.4C.5D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题目(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题目(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1B.﹣1C.2D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g (x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3B.4C.5D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A (3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题目(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x 轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.参与本试卷答题和审题的老师有:wsj1012;qiss;wkqd;danbo7801;豫汝王世崇;minqi5;wdlxh;wdnah;涨停;zhwsd;yhx01248;sllwyn;zlzhan (排名不分先后)菁优网2017年2月4日祝福语祝你马到成功,万事顺意!。

2007年数学高考四川卷_理_第22_题别解的纠正

2007年数学高考四川卷_理_第22_题别解的纠正

教学参考2007年数学高考四川卷(理)第22()题别解的纠正(福建南安国光中学362321) 黄耿跃(福建师范大学数计学院350007) 陈清华文[1]提供了了2007年高考四川卷(理)第22题的别解如下:1题目:设函数f(x)=(1+)x(n N,n(1+1nrT=C r+1)n展开式的通项r1An=r=rnr!n且n>1,x R)(!)当x=6时,求(1+1)x的展开式中二n项式系数最大的项;f(2x)+f(2)(∀)对任意的实数x,证明>2f#(x)(f#(x)是f(x)的导函数);1&n(n-1)∋(n-r+1)r=n)(1-2n)∋(1-r-1)nArr=r!(n+1)r=(n+1)r!1(1-1r!n(1+1n+1展开式的通项)n+1展开式的通项n+1T#r+1=Crn()是否存在a N,使得a n<∃k=1(1+1(1-1)∋(1-r-1)(1-2)r!n+1n+1n+1 1)k<(a+1)n恒成立?若存在,试证明你的结论k并求出a的值;若不存在,请说明理由.由展开式的通项可以求出,T r+1<T#r+1.所以(1+1n))n<(1+1n<(1+1n+1n+1,解:(!)(∀)略;所以a n+1>a n.关于第()小题的别解:先证:2%(1+1)n<3,n设a n=(1+1n,则a n+1=(1+1))n+1,n n+1即{a n}是一个递增数列,由于lima n=e,n()a1=2,所以2%a n<e< 3.因此存在a=2,使不等式个特殊角之间的特殊关系适时地再将学生引向提等发生了变化,不大愿意主动回答问题;还有是问炼模型、想像创造的空间∗∗∗直线l存在的情形.题本身让他无所适从,再有数学本身是抽象的,能虽然似乎前后思维+战线,拉得较长,但始终离不否对一些抽象的现象实现+软着落,,让学生的思开主旋律∗∗∗重视数学双基、发展思维能力,也维更有着落点?本节课,学生有点兴奋,可能与适许这叫形散而神不散.+这样的直线l有几条,曾时地抛出话题,进行可以操作的实验或合作实验, 经多次出现在高考题中,教者理应重视,如何把他思考摆在面前的空间问题有关.自然引出,引得好?笔者这次采用同座合作,以实 2.3 对习题课的思考验想像做支撑,从课堂效果来看,这一内容得到较如何有效地利用课本习题,充分发掘其积极好地理解与吸收.的功能?笔者一直在反复思考着、积极探索着.循2.2 对课堂反映的思考环与发散地处理有关联的习题,提炼有价值的问笔者一直实施互动的课堂教学模式,需要学题,既有效地巩固了双基又必要地拓展了思维的生的思考与配合,但不少老师发现,高中生似乎在广度与深度.这个方面缺乏主动,一方面由于学生的生理、心理38教学参考n a n<∃k=1(1+1k)k<(a+1)n.k<(a+1)n.所以(56))6<(n6<(nn+1,n+1上述解法表面上看比标准答案来得简捷、明了,推证过程也似乎合情合理,但却是错误解法,所以(1+1n)n<(1+1n<(1+1n)n+1<(6n+1<(65)6<3.6< 3.所以2%a n< 3.为什么呢?问题出在哪里呢?因为n N,且n>1,所以2<a n< 3.我们先回顾一下高等数学中的两个常用的知识点:(1)极限存在定理:若{a n}单调增加且有上界(即a1%a2%∋且存在实数M使得一切a n%M),则a n必收敛.(2)证明lim1(1+)n存在可分两步−说明nn()因此存在a=2,使不等式n(1+1a n<∃)k<(a+1)n.kk=1法2:运用伯努利不等式证明因为(1+x)n>1+nx(其中x>-1,x0,且n为不小于2的自然数)−数列{(1+1)n n}单调递增,.说明数列{(1+令x=-12代入(1)式中,则有2代入(1)式中,则有n1 n )n}有界.(1-1n>1-12)n nlim(1+1nn())n=e是因为先有数列{(1+1n=e是因为先有数列{(1+1n)n}(1+1n)n(1-1n(1-1n)n>(1-1n>(1-1n),的有界即a n=(1+1n )n<3,才使得它成立.而上所以当n>1时,(1+1n)n>(1-1n>(1-1n)1-n=述解法却把结论拿来当已知条件用,把已知条件当成结论,犯了循环论证的错误!通过对上述错误解法的认识后,可以发现本(n)n-1=(1+1))n-1,n-1n-1所以数列{(1+1)nn}单调递增.题的第()小题若要运用不同的方法求解,只能来源于对2%a n<3的不同证法,下面给出两种令x=-16n+1代入(1)式中,则有简便解法:法1:运用均值不等式证明x1+x2+∋+x nn因为x1x2∋x n%(其中nx1,x2,∋,x n为正数,等号成立当且仅当x1=x 2(1-1n>1-n)(1-1n>1-n6n+16n+1所以(6n+1n<6n+1)6n5n+1<65.由于数列{(1+1n)n}单调递增=5n+16n+1,=∋=x n)n+1所以(1+1n)n&1%n(1+1)+1nn+1=(6)5所以(1+1n6< 3.))6n<n<(1+16n=(6n+1))6n6nn+2 n+1=1+1,n+1n<(1+1))n+1 )}单调递增.n所以(1+1n{(1+1n n+1,从而数列所以2%a n< 3.因为n N,且n>1,所以2<a n<3.因此存在a=2,使不等式n1a n<∃k<(a+1)n.(1+)kk=1又因为当n/6时有n+1(56)6&1n-5<6&1n-5<参考文献6(56)+(n-5)&1n+1=n,n+12007年高考题(省市卷):别解与感悟(续).本刊试题研究组.中学数学教学参考,2007(11)39。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学生就业保障讲稿老师、同学们:大家下午好!我们小组选择的的课题是观《当幸福来敲门》谈谈大学生就业保障的问题。

随着中国高校教育的发展,大学生的数量急剧增加,大学生就业问题也日益凸显,大学生就业难问题已成为社会热点之一。

本文从当代大学生就业问题的现状入手,分析当今大学生就业存在的问题与原因,从而在国家、学校教育、社会与个人四个方面提出相关解决问题的对策与措施。

关键词:大学生;就业;对策1 当前大学生的就业形势分析据人力资源和社会保障部公布的数据,2009年我国将有2400万劳动力需要安排就业,其中将有超过700万大学毕业生需要解决就业问题。

数据显示,2009年高校毕业生规模达到611万,比2008年增长52万;而据预测,2011年这一数字将达到峰值758万。

与此同时,国际金融危机的影响进一步显现,可以预见,在未来相当长时期内大学生就业压力不会减弱。

如何帮助大学生走出就业难的困境将成为政府与社会长期而艰臣的任务。

大学生就业难是一个现实问题,更是一个社会问题。

总体来说,大学毕业生具有较高的人力资本水平,是劳动力市场上的优势群体。

但随着全球化的发展与知识经济的冲击,青年初次与持续就业所需的能力门坎逐年提高,大学生必须具备能够满足新经济要求的核心就业能力才能成功发展,但现有教育培训体系缺乏必要的就业市场需求导向,缺乏对创业行为的深入研究,高等教育培养出来的大学生在知识和技能结构上与人才市场的需求存在脱节,大学生就业的结构性矛盾日益突出。

2 当前大学生就业形势的成因分析2.1 高校扩招。

高校的扩招对大学生的就业有多大的影响呢?我们可以从下表看出来,自从2000年以来,毕业生的人数每年都在增加,2009年毕业生的人数是2000年的5倍多。

随着毕业生人数的增加,找工作的竞争也越来越激烈,就业也就越来越难了。

高校的扩招对大学生就业增加了难度,但从国家长远的利益看,高校的扩招也是迫不得已的一个选择。

高校的扩招对大学生就业有影响,但原因是多方面的,也不是主要的影响。

2.2大学生的就业流向。

大学生就业的流向主要有5个方面,从这些流向我们可以看出大学生就业难的具体体现:70%左右毕业生就业出路主要是到各类企业和城乡基层社会服务岗位就业或自主创业、灵活就业。

但是70%并不是指到城乡基层社会服务岗位就业,而是包括了去各类企业(私营企业跨国公司、世界500强企业等等)以及灵活创业的比例。

其中自主创业的的比例之占0.3%,愿意到城乡基层服务岗位的人数就不多了。

可见,大学生虽然多,大学生不愿到基层去工作,有业不就也是造成大学生就业问题突出的一个原因。

2.3大学生就业的空间分布。

大学生就业大多数集中到发达地区、高薪部门就业,愿意到欠发达地区工作的较少。

其中广州、上海、北京应届大学生毕业生的首选,很少人愿意到西部地区就业。

有一项对3000余名本科毕业生的调查表明,首选到北京工作的高达74.8%,首选去中西部地区的仅有2%。

这些毕业生的收入渴望值是每月2000至4000元,低于月薪2000元坚决不干。

这样就造成了重东部,轻西部;重高层,轻基层的不合理分布。

如果大学生就业空间分布合理的话,就业问题就不会如此严峻或者不存在就业难的问题。

把就业问题转向西部是我们解决就业难问题的关键,也有利于实现社会发展水平的均衡,国家的共同富裕,大学生就业问题在某种程度是相对的过剩,这与大学生的观念选择就业造成空间布局不合理密切相关。

2.4教育机制的弊端。

我们的教育机制本身就存在很多的问题。

有的专业过热,出现了扎堆的现象,有的专业则无人问津,人才过缺。

很多的大学生在大学白白地浪费了宝贵的青春,没有提高自己的能力。

这与大学教育的机制有关系,很多教育活动只是走走秀,搞搞形式,表面是完成了教育的任务,没有深入激发学生的潜能。

有的大学生反应,他们的学习水平和创新能力比高中时候下降了很多,而且为数不少。

3 针对当前大学生严峻就业形势的对策针对现在大学生的就业所面临的种种问题,要使问题得以缓解,就要采取各种有效的措施。

需要国家,企业,大学生自身,教育机构各个方面做出努力。

3.1 国家方面。

3.1.1 针对大学生当前的就业问题制定积极的就业政策,例如对刚步入社会的大学生选择自主创业时,给于资金支持或是优惠政策。

帮助其自主创业。

同时引导毕业生到非公有制单位、农村及基层单位就业。

3.1.2 稳定的就业环境。

制定法规保护大学生就业的切身利益。

例如规定最低薪酬,并且针对金融风暴的影响,更要创造稳定的就业环境。

而且要平衡中小城市与珠三角的人才竞争政府积极为毕业生到农村等基层单位工作创造条件,例如:开辟常年性、规范化的渠道,并加强宣传引导工作;为到基层单位工作的毕业生提供一些优惠政策;要切实关心这些毕业生的发展,使他们真正感觉到在基层大有作为。

3.1.3 创造公平的就业机会。

保证刚步入社会的大学生与社会上有经验的工作者都能够平等的进入劳动力市场。

同时建立健全有关法律法规,规范毕业生就业市场。

尽快建立健全法律法规,如大学生就业法、人才保护法、毕业生就业市场管理条例等,逐步把毕业生就业工作纳人规范化、法制化的轨道,切实保证毕业生和用人单位在双向选择中的权益。

3.1.4 加快调整人才培养结构。

要进一步加大社会急需专业的招生数量,控制长线专业的发展规模,对教学质量不高,专业设臵不合理而导致高校毕业生就业率过低的院校和专业,要减少招生数量。

3.1.5 拓宽高校毕业生到基层就业的渠道。

鼓励高校毕业生大基层,到中小公司,到艰苦的地方去工作。

3.1.6切实解决私营公司聘用高校毕业生的有关问题。

到私营企业就业的高校毕业生,公安机关正在积极放宽建立集体户口的审批条件,鼓励和支持高校毕业生自主创业,工商和税收部门要简化审批手续,积极予以支持。

3.1.7 加强对高校毕业生的就业指导。

加强对大学生进行正确的世界观,人生观,价值观和择业观的教育,使他们是树立自主择业,勤奋创业,终身学习的观念,树立根据社会需要就业,到基层建功立业的思想,主动到祖国需要的地方干一番事业。

政府有关部门要切实做好高校毕业生就业工作,以提高就业率为中心,加强就业指导,全面提高服务水平。

3.2 教育机构方面学校应不断加强软、硬件设施建设和师资队伍建设,深化教学内容的改革,拓宽学生知识面,增加应用性、操作性、技能型的课程,切实培养具备各种综合技能能够适应社会需求的综合型人才。

社会的发展离不开创新,大学生要在工作中得到实现自身价值也离不开创新,学校只有注重培养学生的创新能力,使大学生有能力进行自主创业,才能在工作中有出色的表现,给自己创造就业机会。

3.3 社会方面公平对待大学生,降低大学生就业的门槛。

创造没有歧视的就业环境。

使得员工对企业有归属感,更好的为企业付出。

从而带来可观的经济收益。

这不仅仅是企业给员工制造机会,同时也是企业谋求发展必不可少的一种投资。

另外,企业应与时俱进培训员工。

因为大学生刚进入企业,对于业务都缺乏专业的能力,再加上本身刚步入社会,经验不足,所以企业要培训他们。

当今时代,是一个瞬间万变的年代。

培训这一个名词已然成为了一个必要,是企业充实员工能力的重要装备。

大学生,是一个更加需要活的培训机会的一种群体,他们刚步入社会,很多东西来不及适应,很多东西需要学习,企业如果能够提供更多的培训机会给他们,让他们有更大的学习空间。

3.4 大学生自身方面。

3.4.1 提高自己的综合素质。

大学生要想在激烈的就业竞争中取得成功,实现自身价值,在校学习只能说是前期工程,要在提高综合素质上下功夫,打造属于自己的创新精神和实践能力,汲取书本以外的营养,以满足社会对所需人才所应具备的素质。

3.4.2 增强适应环境的能力。

毕业后大学生面临的不再是学校里的小社会环境,而是复杂多变的社会,里面有各种各样的人和事,充满着各种未知的因素。

为了让自己能够立足于社会,周旋于复杂的人事关系中,大学生除了要学习专业知识外,还要学习多种生活需要的,正所谓技多可防身。

3.4.3 要有创新能力。

面临严峻的就业压力,很多大学生对会选择自主创业,自主创业能够降低毕业生就业的压力,但是自主创业却有更高的要求,其中创新能力是必不可少的。

只有掌握好人脉,金脉,知脉这三脉,毕业生才能具备创业的天时地利人和的条件,才能在自主创业中站稳阵脚。

3.4.4培养责任意识。

毕业生在求职前一定要准确把握自己的定位,在工作中积极肩负自身的责任,以呼唤人才市场的责任感与诚信,为自己的求职打下一个良好的基础。

做事要坚持到底,不要轻易的跳槽。

要有责任意识,对企业负责,对自己负责。

3.4.5大学生一定要未雨绸缪,做好充分的准备。

凡事预则立,不预则废。

职业生涯规划是指导者通过对大学生的主客观条件进行测定、分析、总结的基础上,根据大学生的兴趣、爱好、能力、特长、职业倾向等,有针对性地帮助个体确定自己的奋斗目标,并明确实现目标的思路、途径,使大学生在成长成才的道路上尽可能地少走弯路的过程。

在校期间要做好职业生涯规划,在选择就业之前做好充分的分析,毕业生才能选择合适自己的职务,而不要乱投一通,以致浪费人才资源。

我们需要怎样的幸福?你想成为幸福的人吗?但愿你首先学会吃得了苦例子;三年支教落地生根海南援藏女大学生“嫁”给西藏从2003年8月7日进藏,一转眼,她就在西藏度过了3年的时光。

这3年里,她从一个涉世未深的女大学生,转变成了一个优秀的人民教师,同时也以婚姻的形式将自己“嫁”给了西藏。

她说:“来西藏3年从来没有后悔过。

我很感激学校给我这么一次机会,让我能体会到和以前完全不同的生活。

假如哪一天我不再从事教学工作了,我也会尽自己的力量,让更多的人来关注西藏的教育事业,关注藏区的经济、社会、文化的发展。

支援西部:大学毕业生的创业选择今年,又有成千上万的高校毕业生奔赴全国各地,在这一浩浩荡荡的就业大军中,有这么一批特殊人群,他们放弃大城市的各种优越条件,满怀理想和激情,打点行囊,义无反顾地投身到广袤神奇的西部热土。

我国西部地广人稀、资源丰富。

近些年,随着国家西部大开发政策的逐步完善和各种措施的逐步健全,西部经济社会发展迅速。

在那里,他们任劳任怨,不计名利,挥洒着青春和汗水……我们需要怎样的幸福?---- 真正的幸福只有当你真实认识到人生的价值时才能体会到。

选择职业即选择生活方式每一种工作都有自己的价值,每份职业都有社会地位。

在一生的漫长过程中发现和建构生活的意义,考虑自身肩负的多种角色,寻求内心的满足感,而不要简单地以高收入、社会声望等作为求职的唯一标准,盲从社会上流行的所谓“成功”。

通过我们所从事的职业角色,让我们可以发展个人的信念、价值观、能力、兴趣、人格特征以及对工作世界的认识。

从一定意义上说,职业生涯是一种生活模式。

当今社会需要什么样的幸福观追求幸福和成功是每个人的正当而天然的权利,但许多人却在追求幸福和成功的路上落入了陷阱,这是值得所有人警惕的我们倡导的科学的幸福观包括:个体对自身和环境的满意;重视亲密关系,这是幸福的重要源泉;乐于助人,帮助他人的人会收获更多的幸福;学会感恩。

相关文档
最新文档