3.1.3 过不在同一直线上的三点作圆

合集下载

《过不共线三点做圆》word优秀获奖教案 (市优)

《过不共线三点做圆》word优秀获奖教案 (市优)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

3.1.3过不在同一直线上的三点作圆教学目标:1.(了解)(1)知道不在同一条直线上的三点确定一个圆.(2)三角形的外心.2.(掌握)(1)会用尺规作过不在同一直线上的三个点的圆;(2)掌握三角形的外接圆、圆的内接三角形的概念.重、难点:过不共线的三点圆的圆心的确定.学具:圆规、直尺等.教学过程:一、 复习引入1. 怎样作线段的垂直平分线?2. 三角形两边垂直平分线的交点到三角形三个顶点的距离是否相等?3. 位置和大小确定一个圆.决定圆的大小的是圆的 ,决定圆的位置的是 .4. 几点可以确定一条直线?既然一条直线可以由 点来确定,那么一个圆需用几点来确定呢?今天这节课就来研究这个问题.二、 讲授新课1. 阅读课文,然后分两组画图:(1)组:经过一个已知点A画圆; (2)组:经过两个已知点A、B画圆. 注意引导:画圆要确定圆心和半径,但要画的圆经过已知点,圆心确定以后,半径也随之确定,因此,关键是确定圆心.(学生在底下画图时,可让两生上黑板画)教师作简单小结,并在投影上展示出来.过一个点的圆有无数多个 过两个点的圆有无数多个接下下来我们来学习过三个已知点画圆.(板书课题)2. 例:作圆,使它经过不在同一直线上的三个已知点.已知:不在同一直线上的三点A、B、C(如图)求作:⊙O,使它经过点A、B、C.分析:以前我们学过三角形两边垂直平分线的交点到三角形三个顶点的距离相等,若把三个已知点看作是三角形的三个顶点构造三角形,那么,两边垂直平分线的交点就是我们要找的圆心.师生共同完成作图过程.(板书过程)(结合以上的作法与证明,请学生回答下列问题,引出定理)①、经过不在同一条直线上的三点A、B、C的圆是否承在?(承在)②、是否还有其他符合条件的圆?(没有)③根据是什么?(线段AB、BC的垂直平分线有且只有一个交点)这说明所作的圆心是唯一的,从而半径也是唯一的,则所作的圆是唯一的.3.定理:不在同一直线上的三个点确定一个圆.强调:(1)过同一直线上三点不行.(2)“确定”一词应理解成“有且只有”.4. 介绍“三角形的外接圆”和“圆的内接三角形”以及“外心”的概念.5. 过同一直线上的三个点能不能作圆呢?(引导学生思考与尝试)学生得出:过同一直线上的三个点不能作圆三、巩固练习1. 按图填空:(1)△ABC是⊙O的三角形;(2)⊙O是△ABC的圆2. 判断:(1)经过三个点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心到三角形各顶点的距离都相等.()(5)三角形的外心是三角形三边的垂直平分线的交点. ()四、思考题经过4个(或4个以上的)点是不是一定能作圆?五、小结过一点作圆过二点作圆会用尺规作三角形的外接圆[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

过三点的圆数学教案

过三点的圆数学教案

过三点的圆数学教案
主题:过三点的圆
一、教学目标:
1. 理解并掌握如何通过三个不在同一直线上的点作圆。

2. 能够运用所学知识解决实际问题。

3. 培养学生的观察力、思考能力和解决问题的能力。

二、教学重点与难点:
1. 重点:过三点作圆的方法。

2. 难点:理解为什么必须是三个不在同一直线上的点才能确定一个圆。

三、教学过程:
1. 引入新课:
教师可以通过展示一些关于圆形的实物或图片,引导学生讨论并思考,引出“如何确定一个圆”的问题。

2. 讲授新知:
(1)定义:不在同一条直线上的三个点确定一个圆。

(2)过三点作圆的方法:
a. 找到任意两点连线的中垂线;
b. 第三个点到这条中垂线的距离就是圆的半径;
c. 以中垂线的交点为圆心,以半径画圆。

3. 演示与实践:
教师在黑板上演示过三点作圆的过程,然后让学生自己动手尝试。

4. 练习与应用:
设计一些相关的练习题,让学生巩固所学的知识,并能运用到实际问题中。

5. 小结:
总结本节课的主要内容,强调重点和难点。

6. 作业布置:
布置一些相关习题,要求学生回家完成。

四、教学评价:
通过课堂观察、作业批改和测验等方式,对学生的学习情况进行评估。

3.1.2 确定圆的条件(教案)

3.1.2 确定圆的条件(教案)

浙教版数学九年级上册3.1.2确定圆的条件教学设计课题确定圆的条件单元 3 学科数学年级九学习目标情感态度和价值观目标形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神能力目标经历不在同一直线上得三个点确定一个圆的探索过程,培养学生的探索能力,进一步体会解决数学问题的方法知识目标了解不在同一条直线上得三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念。

重点掌握不在同一直线上的三个点确定一个圆这个结论,并能过不在同一直线上的三个点作圆的方法。

理解三角形外心的性质难点过不在同一直线上的三个点作圆的方法学法自主探究,合作交流教法多媒体,问题引领教学过程教学环节教师活动学生活动设计意图导入新课问题:你有什么方法使得“破镜重圆”呢?学生:积极思考带着问题参与新课. 通过看似意外的实际情境,让学生感受数学来源于生活,数学知识与生活实践密切相关,增加学生的学习、探索兴趣,便于学生以高昂情绪参与本课的探索过程讲授新课类比确定直线的条件:经过一点可以作无数条直线;1.学生动手画过一点的直线,可以画无数条这样的直线。

“学生原有的知识和经验是教学活经过两点只能作一条直线.想一想经过一点可以作几个圆?经过两点,三点,…,呢?探索经过两个已知点A、B能确定一个圆吗?经过两个已知点A、B能作无数个圆问题:经过两个已知点A、B所作的圆的圆心在怎2.学生动手画过一点的直线:学生动手画过一点的圆,并小组讨论交流。

得出结论:经过一个已知点能作无数个圆。

(圆心、半径均不确定)学生动手画过两个点的圆,并小组讨论交流得出结论:经过两个已知点能作无数个圆。

(圆心在两点所连线段的垂直平分线上,半径不确定)动的起点”通过复习确定直线的方法,启发学生用类比的方法探索确定圆的条件。

让学生动手实践,充分交流,通过探究、讨论、交流得到过一个已知点可以作无数多个圆重视学生的课堂参与。

《过不在同一直线上的三点作圆》教案-02

《过不在同一直线上的三点作圆》教案-02

《过不在同一直线上的三点作圆》教案【知识与技能】1.理解确定圆的条件及外接圆外心的定义。

2.掌握三角形外接圆的画法。

【过程与方法】经历过不在一直线上的三点确定一个圆的探索过程,让学生会用尺规作过不在同一直线上的三点的圆。

【情感态度与价值观】在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力。

教学重点和难点【重点】(1)确定圆的条件和外心的定义。

(2)三角形外接圆的画法。

【难点】过不共线的三点的圆的圆心的确定。

教学过程一 创设情境,导入新课1.几点确定一条直线?既然一条直线可以由两点确定,那么一个圆需要几点才能确定呢?2.如图一考古学家在马王堆汉墓挖掘时,发现一圆形瓷器碎片,为了便于进行研究,这位考古学家想画出这个碎片所在的圆,你能帮助他解决这个问题吗?为了解决上面问题我来学习:3.1.3过不在同一直线上的三点作圆二合作交流,探究新知 1探究确定圆的条件(1)如何过点A 作圆,可以作多少个圆?(学生独立完成) 教师归纳:任意取点O 作圆心,OA 为半径作圆。

(2)如何过两点作圆?过两点可以作多少个圆?已知点,圆心确定以后,半径也随之确定,因此,关键是确定圆心. ①过A 、B 两点的圆的圆心在哪儿?由于A 、B 两点在圆上,所以OA=OB,因此点O 在AB 的垂直平分线上。

② 如何过A 、B 两点作圆?以线段AB 垂直平分线上任意一点O 为圆心,OA 长为半径作圆。

③ 过A 、B 两点可以作多少个圆?由于AB 垂直平分线上任意一点都可以作为圆心,因此可以作无数个圆。

学生完成作图(3)如何过不在同一直线上的三点作圆? 已知:不在同一直线上的三点A、B、C(如图) 求作:⊙O,使它经过点A、B、C.分析:由于圆O 经过点A 、B 、C ,因此点OA=OB=OC,于是点O 在线段AB 的垂直平分线上,也在BC 的垂直平分线上。

作法:① 连接AB ,作AB 的垂直平分线EF , ② 连接BC ,作BC 的垂直平分线MN 交EF 于O.③ 以O 为圆心,OA 为半径作圆,则圆O 就是要作的圆。

2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)

2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)

第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE 是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF 是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。

九年级数学下册《过不共线三点作圆》优秀教学案例

九年级数学下册《过不共线三点作圆》优秀教学案例
4.通过对几何美的感悟,培养学生的审美情趣,提高他们对数学美的鉴赏能力。
在本章节的教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,使学生在掌握基本几何知识的同时,提高自身的综合素质,为未来的学习和发展奠定坚实的基础。
三、教学策略
(一)情景创设
1.创设生活化的教学情境,以学生熟悉的事物或场景作为引入,如校园里的圆形花坛、篮球场的圆形边界等,让学生感受到圆就在我们的身边,激发他们的学习兴趣。
4.通过对几何性质的学习和证明,使学生掌握几何学的基本研究方法和思维方式,提高学生的几何素养。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,培养他们主动探究、勇于创新的科学精神。
2.培养学生严谨、细心的学习态度,使他们认识到几何学习的严密性和逻辑性,从而提高学习的自觉性和自律性。
3.引导学生关注数学与生活的联系,体会数学在现实生活中的广泛应用,增强数学学习的实用性和价值感。
3.教师巡回指导,关注每个小组的讨论情况,给予适当的提示和引导,确保讨论的有效性。
(四)总结归纳
1.邀请各小组代表汇报讨论成果,让学生在倾听他人观点的过程中,加深对知识点的理解。
2.教师针对学生的讨论成果进行点评,总结“过不共线三点作圆”的基本原理、尺规作图方法以及几何证明过程。
3.强调本节课的重点和难点,指导学生掌握几何学习的思维方法和技巧。
4.能够运用所学的知识,解决一些与圆相关的实际问题,如测量圆形场地、设计圆形图案等。
(二)过程与方法
1.通过小组合作和自主探究,培养学生的团队合作意识和解决问题的能力,让学生在实践中学会如何观察、分析和解决问题。
2.引导学生运用尺规作图、直观演示等方法,提高学生的动手操作能力和空间想象能力。

32点和圆的位置关系教案

32点和圆的位置关系教案

点和圆的位置关系一、教学目标(一)知识与技能:1.掌握点和圆的三种位置关系的判别;2.了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.(二)过程与方法:1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力;2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.(三)情感态度与价值观:1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神;2.学会与人合作,并能与他人交流思维的过程和结果.二、教学重点、难点重点:1.能从点和圆的位置关系,判断点和圆心的距离与半径的大小关系;2.学会用已知点到圆心的距离与半径的大小关系,判断点与圆的位置关系;3.认识三角形的外接圆,三角形的外心的概念,会画三角形的外接圆.难点:经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.三、教学过程问题我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.右图是射击靶的示意图,它是由许多同心圆(圆心相同、半径不等的圆)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?我们知道,圆上所有的点到圆心的距离都等于半径.如图,设⊙O的半径为r,点A在圆内,点B在圆上,点C在圆外.容易看出:OA<r,OB=r,OC>r.反过来,如果OA<r,OB=r,OC>r,则可以得到点A在_____,点B在_____,点C在_____.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.符号⇔读作“等价于”,它表示从符号⇔的左端可以得到右端,从右端也可以得到左端.射击靶图上,有一组以靶心为圆心的大小不同的圆,它们把靶图由内到外分成几个区域,这些区域用由高到低的环数来表示,射击成绩用弹着点位置对应的环数表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击成绩就起好.练习巩固已知⊙O的半径为8cm,点P到圆心O的距离为d,则:(1)当d=5cm时,点P在⊙O____;(2)当d=8cm时,点P在⊙O____;(3)当d=10cm时,点P在⊙O____.探究我们知道,已知圆心和半径,可以作一个圆.经过一个已知点A能不能作圆,这样的圆你能作出多少个?经过两个已知点A,B能不能作圆?如果能,圆心分布有什以特点?可以作无数个圆. 可以作无数个圆,圆心在线段AB的垂直平分线上.思考经过不在同一条直线上的三个点A,B,C能不能作圆?如果能,如何确定所作圆的圆心?如图,分别作出线段AB的垂直平分线l1和线段BC的垂直平分线l2,设它们的交点为O,则OA=OB=OC.于是以点O为圆心,OA(或OB、OC)为半径,便可作出经过A、B、C三点的圆.因为过A、B、C三点的圆的圆心只能是点O,半径等于OA,所以这样的圆只有一个,即不在同一直线上的三个点确定一个圆.由右图可以看出,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.⊙O是△ABC的外接圆,点O是△ABC的外心.反过来,△ABC是⊙O的内接三角形.思考三角形的外心一定在三角形的内部吗?分别作出下面三个三角形的外接圆,看看它们的外心的位置有什么特点?锐角三角形的外心在三角形内部,直角三角形的外心在斜边的中点上,钝角三角形的外心在三角形的外部.思考经过同一直线上的三个点能作出一个圆吗?如图,假设经过同一直线l上的A、B、C三点可以作一个圆.设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l,这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,经过同一直线上的三点不能作圆.上面证明“经过同一直线上的三个点不能作圆”的方法与我们以前学过的证明不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设经过同一直线上的三个点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种方法叫做反证法.用反证法证明平行线的性质“两直线平行,同位角相等”.如图,我们要证明:如果AB∥CD,那么∠1=∠2.假设∠1≠∠2,过点O作直线A′B′,使∠EOB′=∠2.根据“同位角相等,两直线平行”,可得A′B′∥CD.这样,过点O就有两条直线AB、A′B′都平行于CD,这与平行公理“过直线外一点有且仅有一条直线与已知直线平行”矛盾.这说明假设∠1≠∠2不正确,从而∠1=∠2.练习1.画出由所有到已知点O的距离大于或等于2cm并且小于或等于3cm的点组成的图形. 解:如图,阴影部分及边界为所求的图形.2.体育课上,小明和小丽的铅球成绩分别是6.4m和5.1m,他们投出的铅球分别落在图中哪个区域内?3.如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心?课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调三角形的外接圆的圆心到三角形三个顶点的距离相离,它是三角形三边垂直平分线的交点. 在圆中充分利用这一点可解决相关的计算问题.。

过不在同一直线上的三点作圆

过不在同一直线上的三点作圆

结束
由于两点A,B与 圆心的距离相等,因 此圆心在线段AB的垂 直平分线上.
O1
A
B
OO32
(2)如何过两点A,B作圆?
以线段AB的垂直平分 线上任意一点为圆心,以 这点和点A的距离为半径画 圆就可以了.
O1
A
B
2
(3)过两点A,B可以作多少个圆?
过两点A,B可以作 无数个圆,如图.
O1
A
B
OO32
它们有交点吗?由此可知,过同一直 线上的三点A,B,C能作一个圆吗?
不能做同一个圆. EF不没∥能有M交N.点
EM
A
CB
FN
说一说
经过△ABC的三个顶点可以作一个圆吗? 可以作几个圆?为什么?
由于△ABC的三个顶点 不在同一直线上,因此过这 三个顶点可以作一个圆,并 且只可以作一个圆.
练习
1. 画一个三角形,作这个三角形 的外接圆.
本课节内容 3.1

——3.1.3 过不在同一直线 上的三点作圆
探究
1. 如何过一点A作一个圆?过点A可以 作多少个圆?
只要以点A以外 的任意一点为圆心, 以这个点和点A的距 离为半径画圆就可以 了,如图3-17.
O1
A
O2
O3
图3-17
2. 如何过两点作一个圆? 过两点可以作多少个圆?
(1)过两点A,B的圆的圆心在哪儿?
那么这个圆的位置关系是
(C )
A.内切 B.相交 C.外离 D.外切
解析 因为圆心距=8>3+4=7, 所以两圆外离. 故应选择C.
中考 试题
例2
已知相切两圆的半径分别为3cm和2cm, 则两圆的圆心距是 1cm或5cm .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过三点作圆
教学反思:
三角形的外心 三角形的外接圆 圆的内接三角形
会用尺规作 三角形的外 接圆
2
授课时间: 课 题

茶陵县云阳中学九年级数学(上)学案 日 班级 姓名 组长批改 主备人 审核人
3.1.3 过不共线三点作圆
1. 了解不共线三点确定一个圆的方法,三角形的外接圆及外心等概念; 学习目标 2. 经历不共线三个点确定一个圆的探索过程,培养学生的探索能力. 重点难点 重点:掌握过不共线三点作圆的方法,了解三角形的外接圆及外心等概念. 难点:怎么样去确定过不在同一条直线上的三点的圆的圆心. B
B· 2.求边长为 a 的等边三角形的外接圆的半径.(用含有 a 的式子表示)
A
·C
五、达标检测:
A
O B D C
1. 按图填空: (1)△ABC 是⊙O的 三角形; O (2)⊙O是△ABC 的 圆. B 2. 判断: C (1)经过三个点一定可以作圆; ( ) (2)任意一个三角形一定有一个外接圆,并且只有一个外接圆; ( ) (3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ( ) (4)三角形的外心到三角形各顶点的距离都相等.( ) (5)三角形的外心是三角形三边的垂直平分线的交点. ( ) 六、总结提升:
A
学习过程: 一、课前抽测: A 1.怎样作线段的垂直平分线? 已知线段 AB,求作:线段 AB 的垂直平分线 L 2.三角形两边垂直平分线的交点到三角形三个顶点的距离是否相等? 若在△ABC 中,边 AB 与边 BC 的垂直平分线交于点 P, 则 PA= = ,为什么? 3.位置和大小确定一个圆.决定圆的大小的是圆的 , B 决定圆的位置的是 . 二、自主学习:阅读教材 P66-67,回答下列问题 1. (1)经过一个已知点A画圆; 想一想:经过已知点 A 可以画多少个圆? (2)经过两个已知点 C、B 画圆. 想一想:①经过两个已知点可以画多少个圆? C· ②圆心在哪儿?半径怎么确定? 2.设三点 A,B,C 不在同一直线上. ⑴过三点 A,B,C 的圆的圆心在哪儿?怎么确定? A·
1
3.三角形的外接圆: 圆的内接三角形: 外心: 三、合作探究:
. . .
例 1:作出下列三角形的外接圆(只要作图痕迹,不要求作法)
归纳:锐角三角形的外心在三角形的
直角三角形的外心是三角形 钝角三角形的外心在三角形的 四、展示质疑: 1.如图,A、B、C 表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求 供水站的位置(用点 P 表示,保留作图痕迹) 。 A·
P
C
·A
· B
ห้องสมุดไป่ตู้
·B
C· ⑵过不在同一直线上的三点 A,B,C 如何作圆? 已知:不在同一直线上的三点 A,B,C,求作:圆 O,使它经过点 A,B,C. 作法: ①连结 AB,作线段 AB 的 ; ②连结 BC,作线段 BC 的 ; ③以 和 的交点 O 为圆心,以 为半径作圆,则圆 O 就是所求作的圆. ⑶过不在同一直线上的三点 A,B,C 能作多少个圆?为什么? ⑷过同一直线上的三点 A,B,C 能作一个圆吗?为什么? 定理:不在同一直线上的三个点 强调: (1)过同一直线上三点不行; . (2) “确定”一词应理解成“有且只有”.
相关文档
最新文档