【最新】高中数学-2018高考数学(理)大一轮复习习题:第一章 集合与常用逻辑用语 课时达标检测(三

合集下载

2018届高考数学(理)人教A版(全国)一轮复习必修一 §1.1 集合及其运算

2018届高考数学(理)人教A版(全国)一轮复习必修一  §1.1 集合及其运算

解析 集合A表示圆心在原点的单位圆,集合B表示直线y=x,
易知直线y=x和圆x2+y2=1相交,且有2个交点,
故A∩B中有2个元素.
1 2 3 4 5
解析答案
返回
题型分类 深度剖析
题型一
集合的含义
(1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个 B.3 C.5 D.9
{x|x≤2或x≥10} =_______________.
解析 ∵A∪B={x|2<x<10},
∴∁R(A∪B)={x|x≤2或x≥10}.
1 2 3 4 5
解析答案
5.已知集合A={(x,y)| x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y
=x},则A∩B的元素个数为___. 2
失误与防范
1.解题中要明确集合中元素的特征,关注集合的代表元素(集合是点集、
数集还是图形集).对可以化简的集合要先化简再研究其关系运算.
2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集
的讨论,防止漏解.
3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与
集合的包含关系.
(∁RP)∩Q等于( C )
A.[0,1) B.(0,2] C.(1,2) D.[1,2]
解析 ∵P={x|x≥2或x≤0},∁RP={x|0<x<2},
∴(∁RP)∩Q={x|1<x<2},故选C.
1 2 3 4 5
解析答案
4.(教材改编)已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)
解析 由题意知,∁UB={2,5,8}, 则A∩(∁UB)={2,5},选A.

高考数学一轮复习第一章 集合与常用逻辑用语、不等式答案

高考数学一轮复习第一章 集合与常用逻辑用语、不等式答案

第一章 集合与常用逻辑用语、不等式第1讲 集合及其运算链教材·夯基固本 激活思维 1. D 2. A 3.ABD【解析】 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2}.因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3},所以A∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2},(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.4.4【解析】因为集合A 必须含有元素5,元素1和3不确定,所以集合A 的本质是{1,3}的所有子集与元素5组成的集合,共4个.5.7【解析】A ={x∈Z |-1≤x ≤4}={-1,0,1,2,3,4},B ={x |1<x <e 2},所以A ∩B ={2,3,4},所以A ∩B 的真子集的个数为23-1=7.知识聚焦1. (1) 确定性 互异性 无序性2. 2n 2n -1 4. U A 研题型·融会贯通 分类解析【答案】 (1) D (2) B (3) A 【题组·高频强化】 1. C 2. C3. C【解析】 由题意知A ∩B 中的元素满足⎩⎪⎨⎪⎧y ≥x ,x +y =8,且x ,y ∈N *,所以满足条件的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选C.4.B【解析】由x 2-4≤0,得A ={x |-2≤x ≤2}.由2x +a ≤0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≤-a 2.因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.故选B.5. B【解析】 由图可知,阴影区域为∁U (A∪B ).由题知A ∪B ={1,3,5},U ={1,3,5,7},则由补集的概念知,∁U (A ∪B )={7}.故选B.(1) 【答案】 {1,-1} 【解析】若集合{x |x 2+2kx +1=0}中有且仅有一个元素,则方程x 2+2kx +1=0有且只有一个实数根,即Δ=(2k )2-4=0,解得k =±1,所以k 的取值集合是{1,-1}.(2) 【答案】 -1 【解析】因为A ∩B 中只有一个元素,又a ≠0且a ≠2.若a =1,则a 2-a =0,不满足题意;若a ≠1,显然a 2-a ≠0,故a 2-a =2或a 2-a =a ,解得a =-1.综上,a =-1.(3) 【答案】 [0,+∞) ∅ 【解析】由题知集合A 是函数y =x 2的定义域,即A =R ,集合B 是函数y =x 2的值域,即B =[0,+∞),所以A ∩B =[0,+∞),集合C 是函数y =x 2的图象上的点集,故A ∩C =∅.(1) 【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,14 【解析】 当k =0时,A ={-1},符合题意;当k ≠0时,若集合A 只有一个元素,由一元二次方程判别式Δ=1-4k =0,得k =14.综上,当k =0或k =14时,集合{x |kx 2+x +1=0}中有且只有一个元素.(2) 【答案】 -2或1 【解析】因为集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},所以⎩⎪⎨⎪⎧a +1=-1,a2-2=2或⎩⎪⎨⎪⎧a +1=2,a2-2=-1,解得a =-2或a =1.(1) 【答案】 D【解析】 当B =∅时,a =0,此时B ⊆A .当B ≠∅时,则a ≠0,所以B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =-1a . 又B ⊆A ,所以-1a∈A ,所以a =±1.综上可知,实数a 的所有可能取值的集合为{-1,0,1}. (2) 【答案】 [2,3]【解析】 由A ∩B =B 知,B ⊆A .(例3(2))又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3,则实数m 的取值范围为[2,3].【答案】 B【解析】 由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2). 因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3].【解答】 (1) 由题知⎩⎪⎨⎪⎧x<0,⎝ ⎛⎭⎪⎪⎫12x -3<1或⎩⎪⎨⎪⎧x ≥0,x<1,解得-2<x <0或0≤x <1, 所以A ={x |-2<x <1}. (2) 因为A ∪B =A ,所以B ⊆A .(ⅰ) 当B =∅时,2a >a +1,所以a >1满足题意;(ⅱ) 当B ≠∅时,⎩⎪⎨⎪⎧2a ≤a +1,2a>-2,a +1<1,解得-1<a <0.综上,a ∈(-1,0)∪(1,+∞). 课堂评价1. BCD 【解析】 对于选项A ,因为xy >0⇔⎩⎪⎨⎪⎧x>0,y>0或⎩⎪⎨⎪⎧x<0,y<0,所以集合{(x ,y )|xy >0}表示直角坐标平面内第一、三象限的点的集合,故A 正确;对于选项B ,方程|x -2|+|y +2|=0的解集为{(2,-2)},故B 错误; 对于选项C ,集合{(x ,y )|y =1-x }表示直线y =1-x 上的点, 集合{x |y =1-x }表示函数y =1-x 中x 的取值范围,故集合{(x ,y )|y =1-x }与{x |y =1-x }不相等,故C 错误;对于选项D ,A ={x ∈Z |-1≤x ≤1}={-1,0,1},所以-1.1∉A ,故D 错误. 2. ABC3. B 【解析】 由x 2-3x -4>0得x <-1或x >4, 所以集合A ={x |x <-1或x >4}.由x 2-3mx +2m 2<0(m >0)得m <x <2m , 所以集合B ={x |m <x <2m }. 又B ⊆A ,所以2m ≤-1(舍去)或m ≥4. 故实数m 的取值范围是[4,+∞). 4. [2 020,+∞)【解析】 由x 2-2 021x +2 020<0,解得1<x <2020,故A ={x |1<x <2 020}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 020.(第4题)5.(-∞,2]【解析】当a >1时,A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),当且仅当a -1≤1时,A ∪B =R ,故1<a ≤2;当a =1时,A =R ,B ={x |x ≥0},A ∪B =R ,满足题意;当a <1时,A =(-∞,a ]∪[1,+∞),B =[a -1,+∞),又因为a -1<a ,所以A ∪B =R ,故a <1满足题意.综上可知a ∈(-∞,2].第2讲 充分条件、必要条件、充要条件链教材·夯基固本 激活思维 1. A 2. B 3. BCD【解析】由x 2-x -2<0,解得-1<x <2,所以(-1,2)(-2,a ),所以a ≥2,所以实数a 的值可以是2,3,4.4. [-2,1] 【解析】 因为綈p :x ≤-1或x ≥3,綈q :x ≤m -2或x ≥m +5,且綈p 是綈q 的必要不充分条件,所以⎩⎪⎨⎪⎧m -2≤-1,m +5≥3,且等号不能同时取到,解得-2≤m ≤1.5. 充要 必要 【解析】 因为q ⇒s ⇒r ⇒q ,所以r 是q 的充要条件.又q ⇒s ⇒r ⇒p ,所以p 是q 的必要条件.知识聚焦1. (1) 充分 必要 非充分 非必要 (2) ①充分不必要 ②必要不充分 ③充要 ④既不充分也不必要研题型·融会贯通 分类解析(1) 【答案】 A【解析】 因为1x >1,所以x ∈(0,1).因为e x -1<1,所以x <1,所以“1x >1”是“e x -1<1”的充分不必要条件.(2) 【答案】 A 【解析】当a >0,b >0时,得4≥a +b ≥2ab ,即ab ≤4,充分性成立;当a =4,b =1时,满足ab ≤4,但a +b =5>4,不满足a +b ≤4,必要性不成立.故“a +b ≤4”是“ab ≤4”的充分不必要条件.【题组·高频强化】 1. A 【解析】 由a 2>a 得a >1或a <0,据此可知“a >1”是“a 2>a ”的充分不必要条件.故选A.2.B【解析】由2-x ≥0,得x ≤2;由|x -1|≤1,得-1≤x -1≤1,即0≤x ≤2.所以“2-x ≥0”是“|x -1|≤1”的必要不充分条件.故选B.3.C【解析】当存在k∈Z ,使得α=k π+(-1)k β时,若k 为偶数,则sin α=sin(k π+β)=sin β;若k 为奇数,则sin α=sin(k π-β)=sin[(k -1)π+π-β]=sin(π-β)=sin β.当sin α=sin β时,α=β+2m π或α+β=π+2m π,m ∈Z ,即α=k π+(-1)k β(k =2m )或α=k π+(-1)k β(k =2m +1),亦即存在k ∈Z ,使得α=k π+(-1)k β,所以“存在k∈Z ,使得α=k π+(-1)k β”是“sin α=sin β”的充要条件.故选C.4. B【解析】 依题意知m ,n ,l 是空间不过同一点的三条直线,当m ,n ,l 在同一平面内时,可能m ∥n∥l ,故不一定得出m ,n ,l 两两相交.当m ,n ,l 两两相交时,设m ∩n =A ,m ∩l =B ,n ∩l =C ,可知m ,n 确定一个平面α,而B ∈m ⊂α,C ∈n ⊂α,可知直线BC 即l ,l ⊂α,所以m ,n ,l 在同一平面内.综上所述,“m ,n ,l 在同一平面内”是“m ,n ,l 两两相交”的必要不充分条件.故选B.(1) 【答案】 (-∞,-2]∪[2,+∞) 【解析】由y =x +1x在⎝ ⎛⎭⎪⎪⎫12,1上单调递减,在(1,2)上单调递增,得2≤y <52,所以A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎪2≤y<52. 由x +m 2≥6,得x ≥6-m 2,所以B ={x |x ≥6-m 2}. 因为“x ∈A ”是“x ∈B ”的充分不必要条件, 所以A B ,所以6-m 2≤2,解得m ≥2或m ≤-2, 故实数m 的取值范围是(-∞,-2]∪[2,+∞). (2) 【答案】 (2,+∞)【解析】 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A , 所以A B ,所以m +1>3,即m >2.(1) 【答案】 (0,2]【解析】 由|2x +1|<m (m >0),得-m <2x +1<m ,所以-m +12<x <m -12,且-m +12<0.由x -12x -1>0,得x <12或x >1. 因为p 是q 的充分不必要条件, 所以m -12≤12,所以0<m ≤2.(2) 【答案】 (0,2]【解析】 由题可得p :x >3或x <-1,q :x 2-2x +1-a 2≥0,[x -(1-a )]·[x -(1+a )]≥0, 因为a >0,所以1-a <1+a ,解得x ≥1+a 或x ≤1-a . 因为q 是p 的必要不充分条件, 所以⎩⎪⎨⎪⎧1+a ≤3,1-a ≥-1,a>0,解得0<a ≤2.【解答】 因为mx 2-4x +4=0是一元二次方程,所以m ≠0. 又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都有实根, 所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1. 因为两方程的根都是整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m2-4m -5∈Z ,所以m 为4的约数.又因为m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1,所以m =-1或1. 当m =-1时,第一个方程x 2+4x -4=0的根不是整数;当m =1时,两方程的根均为整数.所以两方程的根均为整数的充要条件是m =1. 课堂评价 1. A 2. A【解析】 “∀x ∈[-1,1],|x |<a 恒成立”等价于“∀x ∈[-1,1],a >|x |max ”,所以a >1.故充要条件为a >1.3. A 【解析】 因为f (x )是偶函数,所以f (x )=f (|x |). 又y =f (x )在[0,+∞)上单调递增,若a >|b |,则f (a )>f (|b |)=f (b ),即充分性成立; 若f (a )>f (b ),则等价于f (|a |)>f (|b |),即|a |>|b |, 即a >|b |或a <-|b |,故必要性不成立.则“a >|b |”是“f (a )>f (b )”的充分不必要条件. 4. ABC【解析】 对于选项A ,由 A ∩B =A ,可得A ⊆B . 由 A ⊆B可得A ∩B =A ,故A 满足条件.对于选项B ,由∁S A ⊇∁S B 可得A ⊆B ,由A ⊆B 可得∁S A ⊇∁S B ,故∁S A ⊇∁S B 是A ⊆B 的充要条件,故B 满足条件.对于选项C ,由∁S B ∩A =∅,可得A ⊆B ,由A ⊆B 可得∁S B ∩A =∅,故∁S B ∩A =∅是A ⊆B 的充要条件,故C 满足条件.对于选项D ,由∁S A ∩B =∅,可得B ⊆A ,不能推出A ⊆B ,故∁S A ∩B =∅不是A ⊆B 的充要条件,故D 不满足条件.故选ABC.5.(-∞,0]【解析】由⎝ ⎛⎭⎪⎪⎫13x 2-x -6≤1,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.第3讲 全称量词和存在量词链教材·夯基固本 激活思维 1. C 2. B 3.(-∞,2)【解析】设f (x )=⎝ ⎛⎭⎪⎪⎫12x+1,x ∈[0,+∞),若p 为真命题,则a <f (x )max =f (0)=2.4. (-∞,2] 【解析】 若“∃x 0∈(0,+∞),λx >x 2+1”是假命题,则“∀x ∈(0,+∞),λx ≤x 2+1”是真命题,所以当x ∈(0,+∞)时,λ≤x +1x恒成立.又x +1x≥2x ·1x =2,当且仅当x =1时取“=”,所以实数λ的取值范围是(-∞,2]. 5.⎝ ⎛⎦⎥⎥⎤54,2【解析】当命题p 为真命题时,x 2+x +a >1恒成立,即x 2+x +a -1>0恒成立,所以Δ=1-4(a -1)<0,解得a >54.当命题q 为真命题时,2a ≤(2x 0)max ,x 0∈[-2,2],所以a ≤2.故54<a ≤2,所以实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤54,2. 知识聚焦1. 全体 全称量词 ∀x ∈M ,p (x )2. 部分 ∃ 存在量词 ∃x 0∈M ,p (x 0)3. ∃x ∈M ,綈p (x )4. 不是 不一定是 不都是 小于或等于 大于或等于 或 一个也没有 至多有n -1个 至少有两个 存在一个x 不成立研题型·融会贯通 分类解析【解答】 (1) 綈p :∃x ∈R ,x 2-x +14<0,假命题.(2) 綈q :至少存在一个正方形不是矩形,假命题. (3) 綈r :所有的实数都有平方根,假命题.(4) 綈s :存在一个末位数字是0或5的整数不能被5整除,假命题.(1) 【答案】 C(2) 【答案】 ∀x ∈R ,x 2-x +1≠0 (1) 【答案】 (-∞,-2] 【解析】由命题p 为真,得a ≤0.由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a≤-2.(2) 【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪⎪a ≤52【解析】 若命题p :∃x ∈[2,3],x 2-ax +1<0为假命题,则“∀x ∈[2,3],x 2-ax +1≥0,即a ≤x +1x ”为真命题.令g (x )=x +1x ,易知g (x )在[1,+∞)上单调递增,所以当x ∈[2,3]时,g (x )∈[g (2),g (3)].又∀x ∈[2,3],a ≤x +1x恒成立等价于∀x ∈[2,3],a ≤g (x )min ,而g (x )min =g (2)=52,所以“∀x ∈[2,3],x 2-ax +1≥0”为真命题时,a ≤52.(1) 【答案】 ⎝ ⎛⎭⎪⎪⎫56,+∞ 【解析】由“∀x∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方,故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎪⎫56,+∞. (2) 【答案】 (-2,-1]【解析】 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0为真命题,可得m ≤-1;由命题q :∀x ∈R ,x 2+mx +1>0恒成立为真命题,得Δ=m 2-4<0,可得-2<m <2.综上,m ∈(-2,-1].【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 ①当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,对任意x 1∈[0,3],存在x 2∈[1,2],使得f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)min ,即0≥14-m ,所以m ≥14.②当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )max =g (1)=12-m ,对任意x 1∈[0,3],任意x 2∈[1,2],有f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)max ,即0≥12-m ,所以m ≥12.【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 依题意知对x 1∈⎣⎢⎢⎡⎦⎥⎥⎤12,1,x 2∈[2,3],f (x 1)max ≤g (x 2)max . 因为f (x )=x +4x 在⎣⎢⎢⎡⎦⎥⎥⎤12,1上是减函数, 所以f (x )max =f ⎝ ⎛⎭⎪⎪⎫12=172.又g (x )=2x +a 在[2,3]上是增函数,所以g (x )max =8+a , 因此172≤8+a ,则a ≥12.课堂评价 1. ABC 2. D3. A 【解析】 因为命题“∃x ∈[1,2],x 2+ln x -a ≤0”为假命题,所以当x ∈[1,2]时,x 2+ln x >a 恒成立,只需a <(x 2+ln x )min ,x ∈[1,2].又函数y =x 2+ln x 在[1,2]上单调递增,所以当x =1时,y min =1,所以a <1.故选A.4. B 【解析】 由题可知,命题“∀x ∈R ,(k 2-1)x 2+4(1-k )x +3>0”是真命题. 当k 2-1=0,得k =1或k =-1.若k =1,则原不等式为3>0,恒成立,符合题意;若k =-1,则原不等式为8x +3>0,不恒成立,不符合题意. 当k 2-1≠0时,依题意得⎩⎪⎨⎪⎧k2-1>0,16(1-k )2-4(k 2-1)×3<0,即⎩⎨⎧(k +1)(k -1)>0,(k -1)(k -7)<0,解得1<k <7. 综上所述,实数k 的取值范围为{k |1≤k <7}. 5.(-3,+∞) 【解析】 假设∀x ∈[1,2],x 2+2ax +2-a ≤0.设f (x )=x 2+2ax +2-a ,则⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0,所以⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0,解得a ≤-3.因为假设成立,所以a >-3,所以实数a 的取值范围是(-3,+∞).第4讲 不等式的性质、一元二次不等式链教材·夯基固本 激活思维 1. AC 2.ACD【解析】由1a<1b<0,得a <0,b <0且a >b ,所以a +b <0,ab >0,A 正确;|a |<|b |,B 错误;a 3>b 3,C 正确;因为函数y =2x 在R 上单调递增,故D 正确.故选ACD.3. ABD4. -112 7125.(-∞,-2)∪(2,+∞)【解析】由x 2-2x +k 2-2>0,得k 2>-x 2+2x +2.设f (x )=-x 2+2x +2=-(x -1)2+3,当x ≥2时,f (x )max =2,则k 2>f (x )max =2,所以k >2或k <-2.知识聚焦2. {x |x <x 1或x >x 2} R {x |x 1<x <x 2} ∅ ∅ 研题型·融会贯通 分类解析(1) 【答案】 AC【解析】 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以B 错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln4>0,所以D 错误.因为1a <1b<0,所以a +b <0,但ab >0,所以1a +b <1ab ,A 正确;a -1a -⎝ ⎛⎭⎪⎪⎫b -1b =a -b -⎝ ⎛⎭⎪⎪⎫1a -1b =a -b -⎝ ⎛⎭⎪⎪⎫b -a ab =(a -b )⎝ ⎛⎭⎪⎪⎫1+1ab ,因为1a<1b <0,所以0>a >b ,所以a -b >0,1+1ab>0,所以a -1a-⎝ ⎛⎭⎪⎪⎫b -1b >0,所以a -1a >b -1b ,C 正确. (2) 【答案】 B 【解析】 p -q =b2a +a2b -a -b=b2-a2a +a2-b2b =(b 2-a 2)·⎝ ⎛⎭⎪⎪⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab , 因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-π,π8 【解析】 设2α-β=m (α+β)+n (α-β),则⎩⎪⎨⎪⎧m +n =2,m -n =-1,所以⎩⎪⎨⎪⎧m =12,n =32,即2α-β=12(α+β)+32(α-β).因为π<α+β<5π4,-π<α-β<-π3,所以π2<12(α+β)<5π8,-3π2<32(α-β)<-π2,所以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以2α-β的取值范围是⎝ ⎛⎭⎪⎪⎫-π,π8. 【题组·高频强化】 1.A【解析】 若a >b ,则a +c >b +c ,故B 错;设a =3,b =1,c =-1,d =-2,则ac <bd ,a c<bd,所以C ,D 错,故选A. 2.C【解析】因为a +b +c =0,且a <b <c ,所以a <0,c >0.因为b <c ,a <0,所以ab >ac ,所以B 不成立;因为a <b ,c >0,所以ac <bc ,所以C 成立;当b =0时,A ,D 都不成立.故选C.3. BD4. ABC 【解析】 取a =13,b =12,可知A ,B ,C 错误.因为0<a <b <1,所以b -a∈(0,1),所以lg(b -a )<0,故D 正确.故选ABC.5.(-4,2) (1,18)【解析】因为-1<x <4,2<y <3,所以-3<-y <-2,所以-4<x -y <2.因为-3<3x <12,4<2y <6,所以1<3x +2y <18.【解答】(1)原不等式转化为6x 2+5x -1>0,因为方程6x 2+5x -1=0的解为x 1=16,x 2=-1,所以根据二次函数y =6x 2+5x -1的图象可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<-1或x>16.(2) 若a =0,原不等式转化为-x +1<0,即x >1. 若a <0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)>0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1, 所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1.若a >0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)<0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1. 当1a=1,即a =1时,原不等式的解集为∅; 当1a >1,即0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当1a <1,即a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1. 综上所述,当a =0时,原不等式的解集为{x |x >1}; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1;当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当a =1时,原不等式的解集为∅; 当a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1.【解答】 (1) 由不等式x -3x >-2,可得x >2或x <1.由x>2,得x >4;由x<1,得x <1且x ≥0,即0≤x <1.所以不等式的解集为{x |x >4或0≤x <1}.(2)原不等式转化为(x -a )(x -a 2)<0.当a 2>a ,即a >1时,不等式的解集为{x |a <x <a 2};当a 2<a ,即0<a <1时,不等式的解集为{x |a 2<x <a };当a 2=a ,即a =1时,不等式的解集为∅.(1) 【答案】 [0,4] 【解析】当a =0时,原不等式变为1≥0,恒成立,符合题意;当a ≠0时,由ax 2-ax +1≥0恒成立,得⎩⎪⎨⎪⎧a>0,Δ=a2-4a ≤0,解得0<a ≤4.综上,实数a 的取值范围为[0,4].(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 方法一:当a =0时,原不等式可化为x <0,易知不合题意;当a ≠0时,令f (x )=ax 2-x +a ,要满足题意,需⎩⎪⎨⎪⎧a>0,12a ≤1,f (1)≥0或⎩⎪⎨⎪⎧a>0,12a>1,f ⎝ ⎛⎭⎪⎪⎫12a >0,解得a ≥12,所以a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫12,+∞. 方法二:ax 2-x +a >0⇔ax 2+a >x ⇔a >x x2+1,因为x ∈(1,+∞)时,x x2+1=1x +1x<12,所以a ≥12. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-1+72,1+32 【解析】已知不等式可化为(x 2-1)m +(1-2x )<0.设f (m )=(x 2-1)m +(1-2x ),这是一个关于m 的一次函数(或常数函数),从图象上看,要使f (m )<0在-2≤m ≤2时恒成立,其等价条件是⎩⎨⎧f (2)=2(x 2-1)+(1-2x )<0,f (-2)=-2(x 2-1)+(1-2x )<0,即⎩⎪⎨⎪⎧2x2-2x -1<0,2x2+2x -3>0,解得-1+72<x <1+32,所以实数x 的取值范围是⎝ ⎛⎭⎪⎪⎫-1+72,1+32. 【解答】 (1) 因为当x ∈R 时,x 2+ax +3-a ≥0恒成立, 所以Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,所以实数a 的取值范围是[-6,2].(2) 由题意,可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 则(x 2+ax +3-a )min ≥0(x ∈[-2,2]). 令g (x )=x 2+ax +3-a ,x ∈[-2,2], 函数图象的对称轴方程为x =-a2.当-a 2<-2,即a >4时,g (x )min =g (-2)=7-3a ≥0,解得a ≤73,舍去;当-2≤-a 2≤2,即-4≤a ≤4时,g (x )min =g⎝ ⎛⎭⎪⎪⎫-a 2=-a24-a +3≥0,解得-6≤a ≤2,所以-4≤a ≤2;当-a2>2,即a <-4时,g (x )min =g (2)=7+a ≥0,解得a ≥-7,所以-7≤a <-4.综上,满足条件的实数a 的取值范围是[-7,2]. (3) 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立, 只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x2+4x +3≥0,x2+6x +3≥0,解得x ≤-3-6或x ≥-3+6, 所以实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).课堂评价 1.C【解析】 (特值法)取a =-2,b =-1,n =0,逐个检验,可知A ,B ,D 项均不正确;C 项,|b||a|<|b|+1|a|+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,因为a <b <0,所以|b |<|a |成立,故选C. 2. C3. ABCD 【解析】 关于实数x 的一元二次不等式a (x -a )(x +1)>0,则a ≠0. 当a =-1时,原不等式的解集为∅,故A 正确;当a >0时,原不等式的解集为(-∞,-1)∪(a ,+∞),故D 正确; 当-1<a <0时,原不等式的解集为(-1,a ),故B 正确; 当a <-1时,原不等式的解集为(a ,-1),故C 正确. 4.BCD【解析】对于A ,因为2x 2-x -1=(2x +1)(x -1),所以由2x 2-x -1>0得(2x +1)(x -1)>0,解得x>1或x <-12,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x>1或x<-12,故A 错误;对于B ,因为-6x 2-x +2≤0,所以6x 2+x -2≥0, 所以(2x -1)(3x +2)≥0,所以x ≥12或x ≤-23,故B 正确;对于C ,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根,所以-7×(-1)=21a,所以a =3,经检验符合题意,故C 正确; 对于D ,依题意知q,1是方程x 2+px -2=0的两个根,则q +1=-p ,即p +q =-1,故D 正确.故选BCD.5.-3【解析】因为函数f (x )=-x 2+ax +b (a ,b∈R )的值域为(-∞,0],所以Δ=0,即a 2+4b =0,所以b =-14a 2.又关于x 的不等式f (x )>c -1的解集为(m -4,m ),所以方程f (x )=c -1的两根分别为m -4,m ,即方程-x 2+ax -14a 2=c -1的两根分别为m -4,m .又方程-x 2+ax -14a 2=c -1的根为x =a2±1-c ,所以两根之差为21-c =m -(m -4)=4,解得c =-3.第5讲 基本不等式链教材·夯基固本 激活思维1. C 【解析】 因为x >0,y >0,所以x +y 2≥xy ,即xy ≤⎝ ⎛⎭⎪⎪⎫x +y 22=81,当且仅当x =y =9时取等号,故(xy )max =81. 2. D【解析】 因为1x +3y =1,所以x +3y =(x +3y )⎝ ⎛⎭⎪⎪⎫1x +3y =10+3y x +3x y ≥10+23y x ·3x y =16,当且仅当3y x =3x y 且1x +3y=1,即x =y =4时取等号,故选D. 3.BD【解析】A 不正确,因为a ,b 不满足同号,故不能用基本不等式;B 正确,因为lg x 和lg y 一定是正实数,故可用基本不等式;C 不正确,因为x 和4x 不是正实数,故不能直接利用基本不等式;D 正确,因为 2x 和2-x 都是正实数,且2x ≠1,2-x ≠1,故2x +2-x >22x ·2-x =2成立,故D 正确.故选BD.4. 5 【解析】 令t =sin x ∈(0,1],由y =t +4t 在(0,1]上单调递减,得y min =1+41=5.5. 1【解析】 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时取等号,故f (x )=4x -2+14x -5的最大值为1.知识聚焦1. (1) a >0,b >02. (1) x =y 2p (2) x =yp24研题型·融会贯通 分类解析【解答】 (1) 当a =0时,xy =x +4y ,两边同除以xy 得1y+4x=1,则x +y =(x +y )⎝ ⎛⎭⎪⎪⎫1y +4x =x y +4y x +1+4≥2x y ·4y x +5=9,当且仅当xy=4y x,即x =6,y =3时取“=”,即当a =0时,x +y 的最小值为9.(2) 当a =5时,xy =x +4y +5≥24xy +5=4xy +5,即有(xy )2-4xy -5=(xy -5)(xy +1)≥0, 所以xy ≥5,即xy ≥25,当且仅当x =4y ,即x =10,y =52时取“=”,即当a =5时,xy 的最小值为25. 【题组·高频强化】 1.20【解析】 因为log 5x +log 5y =2,所以x 和y 均为正数,由指数和对数的关系可得xy =52=25,所以x +4y ≥2x ·4y=20,当且仅当x =4y ,即x =10且y =52时等号成立,所以x +4y 的最小值是20.2. 45 【解析】 因为5x 2y 2+y 4=1,所以y ≠0且x 2=1-y45y2,所以x 2+y 2=1-y45y2+y 2=15y2+4y25≥215y2·4y25=45,当且仅当15y2=4y25,即x 2=310,y 2=12时取等号,所以x 2+y 2的最小值为45.3. 5+26 【解析】 因为x +y =1,所以x +2xy =x +2(x +y )xy =3x +2y xy =2x +3y=⎝ ⎛⎭⎪⎪⎫2x +3y (x +y )=2y x +3x y +5≥5+26,当且仅当⎩⎪⎨⎪⎧2y x =3x y ,x +y =1,即⎩⎪⎨⎪⎧x =6-2,y =3-6时取等号.4. 6 【解析】 方法一(换元消元法): 由已知得x +3y =9-xy ,因为x >0,y >0, 所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎪⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号, 即(x +3y )2+12(x +3y )-108≥0, 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 方法二(代入消元法):由x +3y +xy =9,x >0,y >0,得x =9-3y1+y ,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y =9+3y21+y =3(1+y )2-6(1+y )+121+y =3(1+y )+121+y-6≥23(1+y )·121+y -6=12-6=6, 当且仅当3(1+y )=121+y,即y =1,x =3时取等号,所以x +3y 的最小值为6.5. 94 【解析】 1a +1+4b +1=⎝ ⎛⎭⎪⎪⎫1a +1+4b +1·(a +1)+(b +1)4 =14⎣⎢⎢⎡⎦⎥⎥⎤1+4+b +1a +1+4(a +1)b +1≥14⎣⎢⎢⎡⎦⎥⎥⎤5+2b +1a +1·4(a +1)b +1=94,当且仅当b +1a +1=4(a +1)b +1,即a =13,b =53时取等号,所以1a +1+4b +1的最小值为94.【答案】 ⎝ ⎛⎦⎥⎥⎤-∞,174 【解析】 对于正实数x ,y ,由x +y +4=2xy , 得x +y +4=2xy ≤(x +y )22,解得x +y ≥4.不等式x 2+2xy +y 2-ax -ay +1≥0可化为(x +y )2-a (x +y )+1≥0,令t =x +y (t ≥4),则该不等式可化为t 2-at +1≥0,即a ≤t +1t 对于任意的t ≥4恒成立.令u (t )=t +1t(t ≥4),则u ′(t )=1-1t2=t2-1t2>0对于任意的t ≥4恒成立,从而函数u (t )=t +1t(t ≥4)为单调增函数,所以u (t )min =u (4)=4+14=174,所以a ≤174.(1) 【答案】 4【解析】 原不等式变形为k (x -1)+4x -1+k ≥12, 则原问题转化成不等式k (x -1)+4x -1≥12-k 在(1,+∞)上恒成立,所以只需12-k ≤⎣⎢⎡⎦⎥⎤k (x -1)+4x -1min 即可.根据均值定理可知,k (x -1)+4x -1≥2k (x -1)·4x -1=4k ,当且仅当k (x -1)=4x -1时等号成立,所以只需12-k ≤4k 成立,即(k+6)(k -2)≥0,所以k ≥4,即k min =4.(2) 【答案】 (-∞,22]【解析】 因为x >y >0,且xy =1,所以由x 2+y 2≥a (x -y ), 得a ≤x2+y2x -y.又x2+y2x -y=(x -y )2+2xyx -y =x -y +2x -y≥2(x -y )·2x -y=22,所以a ≤22.【解答】 (1) 设休闲区的宽为a m ,则长为ax m , 由a 2x =4 000,得a =2010x.则S (x )=(a +8)(ax +20) =a 2x +(8x +20)a +160=4 000+(8x +20)·2010x+160=8010⎝ ⎛⎭⎪⎪⎫2x +5x +4 160(x >1). (2) 由(1)知, S (x )=8010⎝⎛⎭⎪⎪⎫2x +5x +4 160 ≥8010×22x ×5x +4 160=1 600+4 160=5 760, 当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100.所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100 m ,宽40 m.【解答】 (1) 设污水处理池的宽为x m ,则长为162x m ,总造价y =400×⎝ ⎛⎭⎪⎪⎫2x +2×162x +248×2x +80×162 =1 296x +1 296×100x +12 960=1 296⎝ ⎛⎭⎪⎪⎫x +100x +12 960 ≥1 296×2x ×100x+12 960=38 880(元),当且仅当x =100x(x >0),即x =10时取等号,所以当污水处理池的长为16.2 m ,宽为10 m 时总造价最低,最低为38 880元. (2) 由限制条件知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,所以818≤x ≤16.设g (x )=x +100x ⎝ ⎛⎭⎪⎪⎫818≤x ≤16,则g (x )在⎣⎢⎢⎡⎦⎥⎥⎤818,16上是增函数, 所以当x =818时,g (x )有最小值,即f (x )有最小值,即y min =1 296×⎝ ⎛⎭⎪⎪⎫818+80081+12 960=38 882(元). 所以当污水处理池的长为16 m ,宽为818 m 时总造价最低,最低为38 882元.课堂评价 1.BCD【解析】不等式a +b ≥2ab 恒成立的条件是a ≥0,b ≥0,故A 不正确;当a 为负数时,不等式a +1a≤2成立,故B 正确;由基本不等式可知C 正确;2x +1y =⎝ ⎛⎭⎪⎪⎫2x +1y (x +2y )=4+4y x +x y ≥4+24y x ·x y =8,当且仅当4y x =x y ,即x =12,y =14时取等号,故D 正确. 2. ABD 【解析】 若m ,n >0,m +n =2,则1m +2n =12(m +n )⎝ ⎛⎭⎪⎪⎫1m +2n =12⎝ ⎛⎭⎪⎪⎫3+n m +2m n ≥3+222,当且仅当n =2m =4-22时等号成立,A 正确.m +n =2≥2mn ,解得mn ≤1,所以mn 2≤12,(m+n )2=m +n +2mn ≤4,即m +n ≤2,B 正确,C 错误.m 2+n 2≥(m +n )22=2,当且仅当m =n =1时取等号,D 正确.故选ABD.3. (-1,4) 【解析】 由正实数x ,y 满足1x +4y =1,则x +y4=⎝ ⎛⎭⎪⎪⎫x +y 4⎝ ⎛⎭⎪⎪⎫1x +4y =2+4x y +y 4x≥2+24x y ·y4x=4,当且仅当y =4x =8时取等号,所以x +y 4的最小值为4.由x+y4>m2-3m恒成立,可得m2-3m<4,解得m∈(-1,4).4. 4 【解析】因为a>0,b>0,所以a+b>0,ab=1,所以12a+12b+8a+b=b2ab+a2ab+8a+b=a+b2+8a+b≥2a+b2·8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3或a=2+3,b=2-3时等号成立.5. 2105【解析】因为4x2+y2+xy=1,所以(2x+y)2-3xy=1,即(2x+y)2-32·2xy=1,所以(2x+y)2-32·⎝⎛⎭⎪⎪⎫2x+y22≤1,解得(2x+y)2≤85,即2x+y≤2105。

2018高考数学理大一轮复习习题: 第一章 集合与常用逻辑用语 含答案 精品

2018高考数学理大一轮复习习题: 第一章 集合与常用逻辑用语 含答案 精品

第一章⎪⎪⎪集合与常用逻辑用语 第一节 集 合突破点(一) 集合的基本概念1.集合的有关概念(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a ∈A ;若b 不属于集合A ,记作b ∉A . (3)集合的表示方法:列举法、描述法、图示法. 2.常用数集及记法[例1] ( ) A .1 B .3 C .5D .9(2)若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C .0D .0或98[解析] (1)∵A ={0,1,2},∴B ={x -y |x ∈A ,y ∈A }={0,-1,-2,1,2}.故集合B 中有5个元素.本节主要包括3个知识点: 1.集合的基本概念; 2.集合间的基本关系; 3.集合的基本运算.(2)当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.故a =0或98.[答案] (1)C (2)D [方法技巧]求元素(个数)的方法高考中,常利用集合元素的互异性确定集合中的元素,一般给定一个新定义集合,如“已知集合A ,B ,求集合C ={z |z =x *y ,x ∈A ,y ∈B }(或集合C 的元素个数),其中‘*’表示题目设定的某一种运算”.具体的解决方法:根据题目规定的运算“*”,一一列举x ,y 的可能取值(应用列举法和分类讨论思想),从而得出z 的所有可能取值,然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.元素与集合的关系[例2] (1)设集合A ={2,3,4},B ={2,4,6},若x ∈A ,且x ∉B ,则x =( ) A .2 B .3 C .4 D .6(2)(2017·成都诊断)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. [解析] (1)因为x ∈A ,且x ∉B ,故x =3. (2)因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去; 当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3符合题意.所以m =-32.[答案] (1)B (2)-32[方法技巧]利用元素的性质求参数的方法已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值. (2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.能力练通 抓应用体验的“得”与“失”1.[考点二]设集合P ={x |x 2-2x ≤0},m =30.5,则下列关系正确的是( ) A .m P B .m ∈P C .m ∉PD .m ⊆P解析:选C 易知P ={x |0≤x ≤2},而m =30.5=3>2,∴m ∉P ,故选C.2.[考点一]已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3 B .6 C .8D .9解析:选D 集合B 中的元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.3.[考点二](2017·杭州模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a=-1,b =1.所以b -a =2.4.[考点一]已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为________.解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. 答案:(5,6]5.[考点一]若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________. 解析:当a =0时,方程无解;当a ≠0时,则Δ=a 2-4a =0,解得a =4.故符合题意的a 的值为4.答案:4突破点(二) 集合间的基本关系基础联通 抓主干知识的“源”与“流”表示关系文字语言记法 集合间的基本关系 子集集合A 中任意一个元素都是集合B 中的元素 A ⊆B 或B ⊇A 真子集集合A 是集合B 的子集,并且B 中至少有一个元素不属于AA B 或B A相等 集合A 的每一个元素都是集合B 的元素,集合B 的每一个元素也都是集合A 的元素A ⊆B 且B ⊆A ⇔A =B空集 空集是任何集合的子集 ∅⊆A 空集是任何非空集合的真子集∅B 且B ≠∅考点贯通 抓高考命题的“形”与“神”集合子集个数的判定含有n n n 除集合本身);非空真子集的个数为2n -2(除空集和集合本身,此时n ≥1).[例1] 已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4[解析] 由x 2-3x +2=0得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4},所以满足条件的集合C 为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.[答案] D [易错提醒](1)注意空集的特殊性:空集是任何集合的子集,是任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万不要忘记.集合间的关系考法(一) [例2] 已知集合A ={x |y =1-x 2,x ∈R},B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A[解析] 由题意知A ={x |y =1-x 2,x ∈R}, 所以A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以B A .故选B. [答案] B [方法技巧]判断集合间关系的三种方法(1)列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(2)结构法:从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(3)数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.[提醒] 在用数轴法判断集合间的关系时,其端点能否取到,一定要注意用回代检验的方法来确定.如果两个集合的端点相同,则两个集合是否能同时取到端点往往决定了集合之间的关系.考法(二) 根据集合间的关系求参数[例3] 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.[解析] ∵B ⊆A ,∴①若B =∅, 则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3]. [答案] (-∞,3] [易错提醒]将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.能力练通 抓应用体验的“得”与“失”1.[考点一]集合A ={x ∈N|0<x <4}的真子集个数为( ) A .3B .4C.7 D.8解析:选C因为A={1,2,3},所以其真子集的个数为23-1=7.2.[考点二·考法(一)](2017·长沙模拟)设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P解析:选C因为P={y|y=-x2+1,x∈R}={y|y≤1},所以∁R P={y|y>1},又Q={y|y=2x,x∈R}={y|y>0},所以∁R P⊆Q,故选C.3.[考点二·考法(二)]已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=() A.1 B.0 C.-2 D.-3解析:选C∵A⊆B,∴a+3=1,解得a=-2.故选C.4.[考点二·考法(二)]已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.解析:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],因为A⊆B,所以a≤2,b≥4,所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].答案:(-∞,-2]突破点(三)集合的基本运算1.集合的三种基本运算(1)A∩A=A,A∩∅=∅,A∪A=A,A∪∅=A.(2)A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.考点贯通 抓高考命题的“形”与“神”求交集或并集[例1] (1)(2016·x -2)<0,x ∈Z},则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2)(2016·全国乙卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3[解析] (1)因为B ={x |(x +1)(x -2)<0,x ∈Z}={x |-1<x <2,x ∈Z}={0,1},A ={1,2,3},所以A ∪B ={0,1,2,3}.(2)∵x 2-4x +3<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >32.∴A ∩B ={x |1<x <3}∩⎩⎨⎧⎭⎬⎫x ⎪⎪x >32=⎝⎛⎭⎫32,3. [答案] (1)C (2)D [方法技巧]求集合的交集或并集时,应先化简集合,再利用交集、并集的定义求解.交、并、补的混合运算[例2] (1)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}(2)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1}D .{x |0<x <1}[解析] (1)因为∁U B ={2,5,8},所以A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}. (2)∵A ∪B ={x |x ≤0}∪{x |x ≥1}={x |x ≤0或x ≥1}, ∴∁U (A ∪B )={x |0<x <1}. [答案] (1)A (2)D[方法技巧]集合混合运算的解题思路进行集合的混合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合用不等式形式表示时,可借助数轴求解,对于端点值的取舍,应单独检验.集合的新定义问题[例3] (2017·合肥模拟)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R},B ={y |y =-2x ,x ∈R},则A ⊕B 等于( )A.⎝⎛⎦⎤-94,0 B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) [解析] 因为A =⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥-94,B ={y |y <0}, 所以A -B ={y |y ≥0},B -A =⎩⎨⎧⎭⎬⎫y ⎪⎪y <-94, A ⊕B =(A -B )∪(B -A )=⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥0或y <-94. 故选C. [答案] C [方法技巧]解决集合新定义问题的两个着手点(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.能力练通 抓应用体验的“得”与“失”1.[考点一](2016·北京高考)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1} B.{0,1,2}C.{-1,0,1} D.{-1,0,1,2}解析:选C集合A={x|-2<x<2},集合B={-1,0,1,2,3},所以A∩B={-1,0,1}.2.[考点一](2017·长春模拟)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解析:选C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.3.[考点二](2017·贵阳模拟)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁B)=()RA.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)解析:选B由题意知B={x|-1≤x≤3},所以∁R B={x|x<-1或x>3},所以A∩(∁R B)={x|3<x<4},故选B.4.[考点三]定义集合A,B的一种运算:A*B={x|x=x1·x2,其中x1∈A,x2∈B},若A ={1,2},B={1,2},则A*B中的所有元素之和为()A.5 B.6 C.7 D.9解析:选C∵A*B={x|x=x1·x2,其中x1∈A,x2∈B},且A={1,2},B={1,2},∴A*B ={1,2,4},故A*B中的所有元素之和为1+2+4=7.5.[考点二]设全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为________.解析:因为A={x|x(x+3)<0}={x|-3<x<0},∁U B={x|x≥-1},阴影部分为A∩(∁U B),所以A∩(∁U B)={x|-1≤x<0}.答案:{x|-1≤x<0}[全国卷5年真题集中演练——明规律]1.(2016·全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:选D由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.2.(2015·新课标全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B =()A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}解析:选A由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.3.(2012·新课标全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10解析:选D列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.4.(2016·全国甲卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1, 2}解析:选D∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A={1,2,3},∴A∩B={1,2,3}∩{x|-3<x<3}={1,2},故选D.5.(2013·新课标全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=() A.{1,4} B.{2,3} C.{9,16} D.{1,2}解析:选A因为x=n2,所以当n=1,2,3,4时,x=1,4,9,16,所以集合B={1,4,9,16},所以A∩B={1,4}.[课时达标检测] 基础送分课时——精练“12+4”,求准求快不深挖一、选择题1.若集合A={(1,2),(3,4)},则集合A的真子集的个数是()A.16 B.8C.4 D.3解析:选D集合A中有两个元素,则集合A的真子集的个数是22-1=3.选D.2.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=()A.{0} B.{1}C.{0,1} D.{0,-1}解析:选C因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.3.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是()A .-3∈AB .3∉BC .A ∩B =BD .A ∪B =B解析:选C 由题A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B . 4.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解析:选A M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1]. 5.已知集合A =⎩⎨⎧x ⎪⎪⎭⎬⎫x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4.6.已知全集为整数集Z.若集合A ={x |y =1-x ,x ∈Z},B ={x |x 2+2x >0,x ∈Z},则A ∩(∁Z B )=( )A .{-2}B .{-1}C .[-2,0]D .{-2,-1,0}解析:选D 由题可知,集合A ={x |x ≤1,x ∈Z},B ={x |x >0或x <-2,x ∈Z},故A ∩(∁Z B )={-2,-1,0},故选D.7.(2017·成都模拟)已知全集U =R ,集合A ={x |0≤x ≤2},B ={x |x 2-1<0},则图中的阴影部分表示的集合为( )A .(-∞,1]∩(2,+∞)B .(-1,0)∪[1,2]C .[1,2)D .(1,2]解析:选B 因为A ={x |0≤x ≤2},B ={x |-1<x <1},所以A ∪B ={x |-1<x ≤2},A ∩B ={x |0≤x <1}.故图中阴影部分表示的集合为∁(A ∪B )(A ∩B )=(-1,0)∪[1,2].8.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1]C .(1,2]D .(-∞,-1]∪[1,2]解析:选C 由|x |≤1,得-1≤x ≤1,由log 2x ≤1,得0<x ≤2,所以∁U A ={x |x >1或x <-1},则(∁U A )∩B =(1,2].9.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{2,3}B .{-1,2,5}C .{2,3,5}D .{-1,2,3,5}解析:选D 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2,此时B ={2,3,-1},则A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧ba =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.故A ∪B ={-1,2,3,5}.10.设集合A ={x |y =lg(-x 2+x +2)},B ={x |x -a >0},若A ⊆B ,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .(-∞,-2)D .(-∞,-2]解析:选B 集合A ={x |y =lg(-x 2+x +2)}={x |-1<x <2},B ={x |x >a },因为A ⊆B ,所以a ≤-1.11.已知全集U ={x ∈Z|0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩N解析:选C 由已知得U ={1,2,3,4,5,6,7},N ={2,6},M ∩(∁U N )={2,3,5}∩{1,3,4,5,7}={3,5},M ∩N ={2},∁U (M ∩N )={1,3,4,5,6,7},M ∪N ={2,3,5,6},∁U (M ∪N )={1,4,7},(∁U M )∩N ={1,4,6,7}∩{2,6}={6},故选C.12.(2017·沈阳模拟)已知集合A ={x ∈N|x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素之和为( )A .15B .16C .20D .21解析:选D 由x 2-2x -3≤0,得(x +1)(x -3)≤0,又x ∈N ,故集合A ={0,1,2,3}.∵A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },∴A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A *B ={1,2,3,4,5,6},∴A *B 中的所有元素之和为21.二、填空题13.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },集合A ×B 中属于集合{(x ,y )|log x y ∈N}的元素的个数是________.解析:由定义可知A ×B 中的元素为(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8).其中使log x y ∈N 的有(2,2),(2,4),(2,8),(4,4),共4个.答案:414.设集合I ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________.解析:∵集合I ={x |-3<x <3,x ∈Z}={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.答案:{1}15.集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2}.∴A ∩(∁R B )=[-3,0).答案:[-3,0)16.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎨⎧y ⎪⎪⎭⎬⎫y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值范围是________.解析:A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值范围是(-∞,- 3 ]∪[3,2]. 答案:(-∞,- 3 ]∪[3,2] 第二节命题及其关系、充分条件与必要条件突破点(一) 命题及其关系1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及相互关系本节主要包括2个知识点: 1.命题及其关系; 2.充分条件与必要条件.3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系. 考点贯通抓高考命题的“形”与“神”命题的真假判断[例1]A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2[解析]取x=-1,排除B;取x=y=-1,排除C;取x=-2,y=-1,排除D.[答案] A[方法技巧]判断命题真假的思路方法(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,把它写成“若p,则q”的形式,然后联系其他相关的知识,经过逻辑推理或列举反例来判定.(2)一个命题要么真,要么假,二者必居其一.当一个命题改写成“若p,则q”的形式之后,判断这个命题真假的方法:①若由“p”经过逻辑推理,得出“q”,则可判定“若p,则q”是真命题;②判定“若p,则q”是假命题,只需举一反例即可.四种命题的关系得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.[例2](1)命题“若a>b,则a-1>b-1”的否命题是()A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1(2)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A.3 B.2 C.1 D.0[解析](1)根据否命题的定义可知,命题“若a>b,则a-1>b-1”的否命题应为“若a≤b,则a-1≤b-1”.(2)原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.[答案](1)C(2)C[方法技巧]1.写一个命题的其他三种命题时的注意事项(1)对于不是“若p,则q”形式的命题,需先改写为“若p,则q”形式.(2)若命题有大前提,需保留大前提.2.判断四种命题真假的方法(1)利用简单命题判断真假的方法逐一判断.(2)利用四种命题间的等价关系:当一个命题不易直接判断真假时,可转化为判断其等价命题的真假.能力练通抓应用体验的“得”与“失”1.[考点一]下列命题中为真命题的是()A.mx2+2x-1=0是一元二次方程B.抛物线y=ax2+2x-1与x轴至少有一个交点C.互相包含的两个集合相等D.空集是任何集合的真子集解析:选C A中,当m=0时,是一元一次方程,故是假命题;B中,当Δ=4+4a<0,即a<-1时,抛物线与x轴无交点,故是假命题;C是真命题;D中,空集不是本身的真子集,故是假命题.2.[考点二]命题“若x 2+y 2=0,x ,y ∈R ,则x =y =0”的逆否命题是( ) A .若x ≠y ≠0,x ,y ∈R ,则x 2+y 2=0 B .若x =y ≠0,x ,y ∈R ,则x 2+y 2≠0 C .若x ≠0且y ≠0,x ,y ∈R ,则x 2+y 2≠0 D .若x ≠0或y ≠0,x ,y ∈R ,则x 2+y 2≠0解析:选D 将原命题的条件和结论否定,并互换位置即可.由x =y =0知x =0且y =0,其否定是x ≠0或y ≠0.故原命题的逆否命题是“若x ≠0或y ≠0,x ,y ∈R ,则x 2+y 2≠0”.3.[考点二]命题“若△ABC 有一个内角为π3,则△ABC 的三个内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真命题,原命题的逆命题为“若△ABC 的三个内角成等差数列,则△ABC 有一个内角为π3”,它是真命题.故选D.4.[考点二]有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中为真命题的是________(填写所有真命题的序号).解析:①“若xy =1,则x ,y 互为倒数”的逆命题是“若x ,y 互为倒数,则xy =1”,显然是真命题;②“面积相等的三角形全等”的否命题是“若两个三角形面积不相等,则这两个三角形不全等”,显然是真命题;③若x 2-2x +m =0有实数解,则Δ=4-4m ≥0,解得m ≤1,所以“若m ≤1,则x 2-2x +m =0有实数解”是真命题,故其逆否命题是真命题;④若A ∩B =B ,则B ⊆A ,故原命题是假命题,所以其逆否命题是假命题.故真命题为①②③.答案:①②③突破点(二) 充分条件与必要条件1.充分条件与必要条件的概念2.A B B A[例1] x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2016·天津高考)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[解析] (1)∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.(2)当x =1,y =-2时,x >y ,但x >|y |不成立;若x >|y |,因为|y |≥y ,所以x >y .所以x >y 是x >|y |的必要而不充分条件.[答案] (1)A (2)C [方法技巧]充分、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.充分条件与必要条件的应用[例2] (1)2( )A .a ≥1B .a >1C .a ≥4D .a >4(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[解析] (1)命题可化为∀x ∈[1,2),a ≥x 2恒成立. ∵x ∈[1,2),∴x 2∈[1,4).∴命题为真命题的充要条件为a ≥4.∴命题为真命题的一个充分不必要条件为a >4,故选D. (2)由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,解得0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] (1)D (2)[0,3][方法技巧]根据充分、必要条件求参数的思路方法根据充分、必要条件求参数的值或取值范围的关键是合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),然后通过解方程或不等式(组)求出参数的值或取值范围.1.[考点一](2017·长沙四校联考)“x >1”是“log 2(x -1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由log 2(x -1)<0得0<x -1<1,即1<x <2,故“x >1”是“log 2(x -1)<0”的必要不充分条件,选B.2.[考点二]已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞) D .(-∞,-1]解析:选A 由3x +1<1,得3x +1-1=-x +2x +1<0,解得x <-1或x >2.因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.3.[考点一](2017·太原模拟)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若cos α≠12,则α≠2k π±π3(k ∈Z),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q ⇒/p .所以p 是q 的充分不必要条件.4.[考点二]已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3)解析:选A 设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.5.[考点一]已知函数f (x )=13x-1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填写)解析:若f (x )=13x-1+a 是奇函数, 则f (-x )=-f (x ), 即f (-x )+f (x )=0, ∴13-x-1+a +13x -1+a =2a +3x 1-3x +13x-1=0, 即2a +3x -11-3x =0,∴2a -1=0,即a =12,f (1)=12+12=1.若f (1)=1,即f (1)=12+a =1,解得a =12,所以f (x )=13x-1+12,f (-x ) =13-x-1+12=-13x -1-12=-f (x ), 故f (x )是奇函数.∴“f (1)=1”是“函数f (x )为奇函数”的充要条件. 答案:充要[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅱ)函数f (x ) 在x =x 0 处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值,故若p ,则q 是一个假命题,由极值的定义可得若q ,则p 是一个真命题.故选C.2.(2012·新课标全国卷)下面是关于复数z =2-1+i的四个命题: p 1:|z |=2;p 2:z 2=2i ;p 3:z 的共轭复数为1+i ;p 4:z 的虚部为-1. 其中的真命题为( ) A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 4解析:选C ∵复数z =2-1+i=-1-i ,∴|z |=2,z 2=(-1-i)2=(1+i)2=2i ,z 的共轭复数为-1+i ,z 的虚部为-1,综上可知p 2,p 4是真命题.[课时达标检测] 基础送分课时——精练“12+4”,求准求快不深挖 一、选择题1.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.2.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.3.“a <0,b <0”的一个必要条件为( ) A .a +b <0 B .a -b >0 C.ab >1D.ab <-1解析:选A 若a <0,b <0,则一定有a +b <0,故选A.4.已知命题p :“若x ≥a 2+b 2,则x ≥2ab ”,则下列说法正确的是( ) A .命题p 的逆命题是“若x <a 2+b 2,则x <2ab ” B .命题p 的逆命题是“若x <2ab ,则x <a 2+b 2” C .命题p 的否命题是“若x <a 2+b 2,则x <2ab ” D .命题p 的否命题是“若x ≥a 2+b 2,则x <2ab ”解析:选C 命题p 的逆命题是“若x ≥2ab ,则x ≥a 2+b 2”,故A ,B 都错误;命题p 的否命题是“若x <a 2+b 2,则x <2ab ”,故C 正确,D 错误.5.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件C.充分不必要条件D.既不充分也不必要条件解析:选A f(x)是定义在R上的奇函数可以推出f(0)=0,但f(0)=0不能推出函数f(x)为奇函数,例如f(x)=x2.故选A.6.原命题p:“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.4解析:选C当c=0时,ac2=bc2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.7.“a=2”是“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A“a=2”可以推出“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”,但反之不能推出.故“a=2”是“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”的充分不必要条件.8.(2017·杭州模拟)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.9.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.10.(2017·烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a 的取值范围是( )A .[2,+∞)B .(-∞,2]C .[-2,+∞)D .(-∞,-2]解析:选A p :|x |≤2等价于-2≤x ≤2.因为p 是q 的充分不必要条件,所以有[-2,2]⊆(-∞,a ],即a ≥2.11.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( ) A .①和② B .②和③ C .③和④D .②和④解析:选D 只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.12.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当k =1时,l :y =x +1,由题意不妨令A (-1,0),B (0,1),则S △AOB =12×1×1=12,所以充分性成立;当k =-1时,l :y =-x +1,也有S △AOB =12,所以必要性不成立. 二、填空题13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故根据否命题的定义知,该命题的否命题为:若a +b +c ≠3,则a 2+b 2+c 2<3.答案:若a +b +c ≠3,则a 2+b 2+c 2<3 14.有下列几个命题:①“若a >b ,则1a >1b”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b ,则1a ≤1b ”,假命题.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,真命题.③原命题为真命题,故逆否命题为真命题.答案:②③15.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)16.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },∵β:|x -1|<1,∴0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0] 第三节简单的逻辑联结词、全称量词与存在量词突破点(一) 简单的逻辑联结词命题p ∧q 、p ∨q 、綈p 的真假判定本节主要包括2个知识点: 1.简单的逻辑联结词; 2.全称量词与存在量词.p q p∧q p∨q 綈p真真真真假真假假真假假真假真真假假假假真简记为“p∧q两真才真,一假则假;p∨q一真则真,两假才假;綈p与p真假相反”.考点贯通抓高考命题的“形”与“神”含逻辑联结词命题的真假判断[例1](2017·大连模拟)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题的序号是() A.①③B.①④C.②③D.②④[解析]依题意可知,命题p为真命题,命题q为假命题,则綈p为假命题,綈q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为真命题,(綈p)∨q为假命题.[答案] C[方法技巧]判断含有逻辑联结词命题真假的关键及步骤(1)判断含有逻辑联结词的命题真假的关键是正确理解“或”“且”“非”的含义,应根据命题中所出现的逻辑联结词进行命题结构的分析与真假的判断.(2)判断命题真假的步骤根据复合命题的真假求参数[例2]<0},命题q:函数y=lg(ax2-x+a)的定义域为R,如果p∨q为真命题,p∧q为假命题,则实数a的取值范围为________________.[解析]由关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0},知0<a<1.由函数y =lg(ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R ,则⎩⎪⎨⎪⎧a >0,1-4a 2<0,解得a >12. 因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,即“p 假q 真”或“p 真q 假”,故⎩⎪⎨⎪⎧ a >1,a >12或⎩⎪⎨⎪⎧0<a <1,a ≤12,解得a >1或0<a ≤12,即a ∈⎝⎛⎦⎤0,12∪(1,+∞). [答案] ⎝⎛⎦⎤0,12∪(1,+∞)[方法技巧]根据复合命题真假求参数的步骤(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)求出每个命题是真命题时参数的取值范围;(3)根据给出的复合命题的真假推出每个命题的真假情况,从而求出参数的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x -1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题解析:选D 因为函数y =x 2-2x 在[1,+∞)上是增函数,所以其单调递增区间是[1,+∞),所以p 是真命题;因为函数y =x -1x 的单调递增区间是(-∞,0)和(0,+∞),所以q 是假命题.所以p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题,綈q 为真命题.故选D.2.[考点一]已知命题p :当a >1时,函数y =log 12(x 2+2x +a )的定义域为R ;命题q :“a =3”是“直线ax +2y =0与直线2x -3y =3垂直”的充要条件,则以下结论正确的是( )A .p ∨q 为真命题B .p ∧q 为假命题。

2018届高考(新课标)数学(理)大一轮复习检测第一章 集合与常用逻辑用语 1-1 Word版含答案

2018届高考(新课标)数学(理)大一轮复习检测第一章 集合与常用逻辑用语 1-1 Word版含答案

组专项基础训练(时间:分钟).(·山东)设集合={=,∈},={-<},则∪=().(-,).(,).(-,+∞) .(,+∞)【解析】∵=>,∴={>}.又-<,∴-<<,∴={-<<}.故∪={>}∪{-<<}={>-}.故选.【答案】.(·开封模拟)设集合={=-,∈},={->},则∩(∁)=().{-,} .{-,-,,,}.{,} .∅【解析】={>或<-},∴∁={-≤≤},∴∩(∁)={-,}.【答案】.(·日照模拟)集合={=},={=,>},则∩等于()..∅..(-,].∪..(-∞,-]∪[,+∞)【解析】由∪=,可得⊆.∵={≤}={-≤≤},∴-≤≤.故选.【答案】.若∈,则∈,就称是伙伴关系集合,集合=的所有非空子集中具有伙伴关系的集合的个数是.【解析】具有伙伴关系的元素组是-;,,所以具有伙伴关系的集合有个:{-},,.【答案】.(·贵阳监测)已知全集={,,,},集合是集合的恰有两个元素的子集,且满足下列三个条件:①若∈,则∈;②若∉,则∉;③若∈,则∉.则集合=.(用列举法表示)【解析】若∈,则∈,则由若∉,则∉可知,∈,假设不成立;若∈,则∉,则∉,∉,假设不成立,故集合={,}.【答案】 {,}.已知集合={(,),(,),(-,)},={(,)+-=,,∈},则∩=.【解析】、都表示点集,∩即是由中在直线+-=上的所有点组成的集合,代入验证即可.【答案】 {(,),(-,)}.已知集合={∈+<},集合={∈(-)(-)<},且∩=(-,),则=,=.【解析】={∈+<}={∈-<<},由∩=(-,)可知<,则={<<},画出数轴,可得=-,=.【答案】-组专项能力提升(时间:分钟).(·天津)已知集合={,,,},={=-,∈},则∩=().{} .{}.{,} .{,}【解析】由题意,得={,,,},∴∩={,}.【答案】.(·北京)已知集合={<},={-,,,,},则∩=().{,} .{,,}.{-,,} .{-,,,}【解析】∵={<}={-<<},又={-,,,,},∴∩={-,,}.故选.【答案】.(·浙江临海台州中学第三次统练)已知集合={,},={-∈},则∪=().{} .{,}.{,,} .∅【解析】∵={,},∴={-∈}={,},∴∪={,,}.【答案】.(·成都模拟)已知集合={>},=,则∩=.【解析】对于集合,由>,解得<<,∴={<<},∵<<,∴<<,∴<<,∴=,∴∩=.【答案】.(·兰州模拟)集合={+-≤},={=,≤≤},则∩(∁)=.。

2018高考数学(理)大一轮复习(人教)课件:《第一章 集合与常用逻辑用语》1-3

2018高考数学(理)大一轮复习(人教)课件:《第一章 集合与常用逻辑用语》1-3

3.全称命题和特称命题 命题名称 全称命题 命题结构 对 M 中任意一个 x,有 p(x)成立 存在 M 中的一个 x0,使 p(x0)成立 命题简记 ∀x∈M,p(x)
特称命题
∃x0∈M,p(x0)
4.含有一个量词的命题的否定 命题 ∀x∈M,p(x) 命题的否定 ∃x0∈M,綈 p(x0)
∃x0∈M,p(x0)
解析:选C.命题p是一个特称命题,其否定是全称命题,故选C.
考点三 全称命题、特称命题真假的判断及应用 1.判断全称命题、 命题点 特称命题的真假 2.应用命题真假 求参数
[例 3]
(1)下列命题中的假命题是(

)
A.∀x∈R,2x 1>0 C.∃x0∈R,ln x0<1
B.∀x∈N*,(x-1)2>0 D.∃x0∈R,tan x0=2
[例 2] 綈 p 是(
(1)已知命题 p:∀x1,x2∈R,(f(x2)-f(x1))· (x2-x1)≥0,则 )
A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0 B.∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)≤0 C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0 D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0
(6)∃x0∈M,p(x0)与∀x∈M,綈 p(x)的真假性相反.(√)
(7)已知命题 p:∀x∈R,x2≠x,则綈 p:∀x∈/ R,x2=x.(×)
(8)命题“存在实数 x,使 x>1”的否定是:∃x0∈R,使 x≤1.(×) (9)“∀x∈R,2x-1>0”是真命题.(√) (10)“全等三角形的面积相等”是全称命题.(√)
基础知识导航
考点典例领航 智能提升返航 课时规范训练

2018年高考数学理一轮复习文档 第一章 集合与常用逻辑用语 第1讲 集合及其运算 含答案 精品

2018年高考数学理一轮复习文档 第一章 集合与常用逻辑用语 第1讲 集合及其运算 含答案 精品

量词与存在量词1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 集合 自然数集正整数集 整数集 有理数集实数集 符号NN *(或N +)ZQR表示 关系自然语言符号 语言Venn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中 A B (或B A )集合相等集合A ,B 中元素相同A =B集合的并集 集合的交集 集合的补集图形语言符号语言A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.辨明三个易误点(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2.活用几组结论(1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.(2)A∩A=A,A∩∅=∅.(3)A∪A=A,A∪∅=A.(4)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(5)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.(6)若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.1.教材习题改编已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆DB2.教材习题改编设集合A={x|2≤x<5},B={x∈Z|3x-7≥8-2x},则A∩B=( )A.{x|3≤x<5} B.{x|2≤x≤3}C.{3,4} D.{3,4,5}C 因为A={x|2≤x<5},B={x∈Z|3x-7≥8-2x}={x∈Z|x≥3},所以A∩B={3,4}.3.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B的元素个数为( )A.0 B.1C.2 D.3C 集合A表示的是圆心在原点的单位圆,集合B表示的是直线y=x,据此画出图象,可得图象有两个交点,即A∩B的元素个数为2.4.教材习题改编已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=________.由题意得∁U B={2,5,8},所以A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.{2,5}5.教材习题改编已知集合A={x|x2-4x+3<0},B={x|2<x<4},则(∁R A)∪B=________.由已知可得集合A ={x |1<x <3},又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3},所以(∁R A )∪B ={x |x ≤1或x >2}.{x |x ≤1或x >2}集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .6D .9(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =( )A .1B .-1C .2D .-2【解析】 (1)当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2. 故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.(2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba=-1,所以a =-1,b=1.所以b -a =2.【答案】 (1)C (2)C1.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6B 因为a ∈A ,b ∈B ,所以x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8.共4个元素.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.-32集合间的基本关系(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)D (2)(-∞,3]1.在本例(2)中,若A ⊆B ,如何求解?若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.2.若将本例(2)中的集合A 改为A ={x |x <-2或x >5},如何求解? 因为B ⊆A ,所以①当B =∅时,即2m -1<m +1时,m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).1.设P ={y |y =-x 2+1,x ∈R },Q ={y |y =2x,x ∈R },则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R PC 因为P ={y |y =-x 2+1,x ∈R }={y |y ≤1},Q ={y |y =2x,x ∈R }={y |y >0},所以∁R P ={y |y >1},所以∁R P ⊆Q ,选C.2.已知集合A ={x |x 2-2x -3<0},B ={x |-m <x <m }.若B ⊆A ,则m 的范围为________. 当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |x 2-2x -3<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述m 的范围为m ≤1. m ≤1集合的基本运算(高频考点)集合的基本运算是历年各地高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题多为低档题.高考对集合运算的考查主要有以下三个命题角度: (1)求集合间的交或并运算; (2)求集合的交、并、补的混合运算; (3)已知集合的运算结果求参数的值(范围).(1)(2016·高考全国卷乙)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝ ⎛⎭⎪⎫-3,-32B .⎝ ⎛⎭⎪⎫-3,32 C.⎝ ⎛⎭⎪⎫1,32D .⎝ ⎛⎭⎪⎫32,3 (2)(2016·高考山东卷)设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}(3)已知集合A 、B 均为U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =________.【解析】 (1)由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32,则A ∩B =⎝ ⎛⎭⎪⎫32,3. (2)由题知A ∪B ={1,3,4,5},所以∁U (A ∪B )={2,6}. (3)因为A ∩B ={3},所以3∈A , 又因为(∁U B )∩A ={9},所以9∈A ,又U ={1,3,5,7,9},假设1∈A ,由A ∩B ={3}, 知1∉B ,所以1∈∁U B ,则与(∁U B )∩A ={9}矛盾, 所以1∉A ,同理5,7∉A ,则A ={3,9}. 【答案】 (1)D (2)A (3){3,9}集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn 图求解; (2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.角度一 求集合间的交或并运算1.(2016·高考全国卷甲)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}C 由已知可得B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},所以A ∪B ={0,1,2,3},故选C.角度二 求集合的交、并、补的混合运算2.(2017·海口市调研测试)设全集U =R ,集合A ={x |7-6x ≤0},集合B ={x |y =lg(x +2)},则(∁U A )∩B 等于( )A.⎝⎛⎭⎪⎫-2,76B .⎝ ⎛⎭⎪⎫76,+∞C.⎣⎢⎡⎭⎪⎫-2,76 D .⎝⎛⎭⎪⎫-2,-76A 依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥76,∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <76;B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2<x <76,选A.3.(2017·宜春中学、新余一中联考)已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁R B )∩A ,因为∁R B ={x |x ≥0},所以(∁R B )∩A ={x|0≤x<6},故选C.角度三已知集合的运算结果求参数的值(范围)4.(2017·河南省六市第一次联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B 有4个子集,则实数a的取值范围是( )A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)B 因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.)——集合中的创新问题以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托.如果集合A满足若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.【解析】由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.【答案】{0,6}解决集合创新型问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.1.设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A ={x|0<x<2},B={y|y≥0},则A⊗B=________.由已知A ={x |0<x <2},B ={y |y ≥0},又由新定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B },结合数轴得A ⊗B ={0}∪ {0}∪ 符合题意的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.6)1.(2016·高考天津卷)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( )A .{1}B .{4}C .{1,3}D .{1,4}D 由题意得,B ={1,4,7,10},所以A ∩B ={1,4}.2.设集合M ={x |x 2-2x -3<0,x ∈Z },则集合M 的真子集个数为( ) A .8 B .7 C .4D .3B 依题意,M ={x |(x +1)·(x -3)<0,x ∈Z }={x |-1<x <3,x ∈Z }={0,1,2},因此集合M 的真子集个数为23-1=7,故选B .3.(2017·南昌月考)设集合P ={a 2,log 2a },Q ={2a,b },若P ∩Q ={0},则P ∪Q =( ) A .{0,1} B .{0,1,2} C .{0,2}D .{0,1,2,3}B 因为P ∩Q ={0},所以0∈P ,只能log 2a =0,所以a =1,a 2=1,又0∈Q ,因为2a=21=2≠0,所以b =0,所以,P ={0,1},Q ={2,0},所以P ∪Q ={0,1,2}.4.(2017·河南省八市重点高中质量检测)若U ={1,4,6,8,9},A ={1,6,8},B ={4,6},则A ∩(∁U B )等于( )A .{4,6}B .{1,8}C .{1,4,6,8}D .{1,4,6,8,9}B 因为U ={1,4,6,8,9},A ={1,6,8},B ={4,6},所以∁U B ={1,8,9},因此A ∩(∁U B )={1,8},故选B .5.(2017·湖南省东部六校联考)已知集合M ={-2,-1,0,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4,x ∈Z ,则M ∩N =( )A .{-2,-1,0,1,2}B .{-1,0,1,2}C .{-1,0,1}D .{0,1}C 由12≤2x≤4,解得-1≤x ≤2,即集合N ={-1,0,1,2},所以M ∩N ={-1,0,1},故选C.6.(2017·石家庄教学质量检测(二))设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x<2,则下列结论正确的是( )A .N ⊆MB .M ⊆NC .M ∩N =∅D .M ∪N =RB 因为1x -2<0,即2x -1x >0,解得x <0或x >12,因为N =(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞,又M ={1,-1},所以可知B 正确,A ,C ,D 错误,故选B .7.已知全集U =Z ,P ={-2,-1,1,2},Q ={x |x 2-3x +2=0},则图中阴影部分表示的集合为( )A .{-1,-2}B .{1,2}C .{-2,1}D .{-1,2}A 因为Q ={1,2},所以P ∩(∁U Q )={-1,-2},故选A.8.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( )A .9B .8C .7D .6C 由x 2-4x <0得0<x <4,所以M ={x |0<x <4}.又因为N ={x |m <x <5},M ∩N ={x |3<x <n },所以m =3,n =4,m +n =7.9.设集合A =⎩⎨⎧⎭⎬⎫5,ba,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}A 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.10.(2017·湖北省七市(州)协作体联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q ={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为( )A.147 B.140C.130 D.117B 由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.11.(2017·开封市第一次模拟)设集合A={n|n=3k-1,k∈Z},B={x||x-1|>3},则A∩(∁R B)=( )A.{-1,2} B.{-2,-1,1,2,4}C.{1,4} D.∅A 当k=-1时,n=-4;当k=0时,n=-1;当k=1时,n=2;当k=2时,n =5.由|x-1|>3,得x-1>3或x-1<-3,即x>4或x<-2,所以B={x|x<-2或x>4},∁RB ={x|-2≤x≤4},A∩(∁R B)={-1,2}.12.(2017·临沂质检)已知全集U=R,集合A={x|x2-3x+2>0},B={x|x-a≤0},若∁U B⊆A,则实数a的取值范围是( )A.(-∞,1) B.(-∞,2]C.因为x2-3x+2>0,所以x>2或x<1.所以A={x|x>2或x<1},因为B={x|x≤a},所以∁U B={x|x>a}.因为∁U B⊆A,借助数轴可知a≥2,故选D.13.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为________.根据并集的概念,可知{a,a2}={4,16},故只能是a=4.414.(2017·山西省高三考前质量检测)设全集U={x∈Z|-2≤x≤4},A={-1,0,1,2,3}.若B⊆∁U A,则集合B的个数是________.由题意得,U={-2,-1,0,1,2,3,4},所以∁U A={-2,4},所以集合B的个数是22=4.415.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.因为全集U={1,2,3,4,5,6,7,8,9},由∁U(A∪B)={1,3},得A∪B={2,4,5,6,7,8,9},由A∩(∁U B)={2,4}知,{2,4}⊆A,{2,4}⊆∁U B.所以B ={5,6,7,8,9}. {5,6,7,8,9}16.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.综上,可得a 的取值范围是(-∞,-1]. (-∞,-1]17.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).(-∞,-1]∪(0,1)18.已知集合M ={1,2,3,4},集合A 、B 为集合M 的非空子集,若∀x ∈A 、y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有_____个.当A ={1}时,B 有23-1=7种情况,当A ={2}时,B 有22-1=3种情况,当A ={3}时,B 有1种情况,当A ={1,2}时,B 有22-1=3种情况,当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况,所以满足题意的“子集对”共有7+3+1+3+1+1+1=17个. 1719.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B ); (2){9}=A ∩B . (1)因为9∈(A ∩B ),所以2a -1=9或a 2=9,所以a =5或a =3或a =-3. 当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3. (2)由(1)可知,当a =5时,A ∩B ={-4,9},不合题意,当a =-3时,A ∩B ={9}.所以a =-3.20.(2017·徐州模拟)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. (1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).。

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.2含解析

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.2含解析

1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分也不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3〈0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.(√)(4)当q是p的必要条件时,p是q的充分条件.(√)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|"的逆命题B.命题“若x>1,则x2>1"的否命题C.命题“若x=1,则x2+x-2=0"的否命题D.命题“若x2〉0,则x>1”的逆否命题答案A解析对于A,其逆命题是若x〉|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x〉y。

2018版高考数学(理)一轮复习题库:第一章第1讲集合的概念和运算含解析

2018版高考数学(理)一轮复习题库:第一章第1讲集合的概念和运算含解析

第一章集合与常用逻辑用语第1讲集合的概念和运算一、选择题1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于()A.(0,1)B.[0,1] C.(0,+∞) D.{(0,1),(1,0)}解析∵A={y|x2+y2=1},∴A={y|-1≤y≤1}.又∵B={y|y=x2},∴B={y|y≥0}.A∩B={y|0≤y≤1}.答案B2。

设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N =( )A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4}解析由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.答案B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M =( ).A.{1,4} B.{1,5}C.{2,3}D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是().A.2 B.3 C.4 D.5解析B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.答案B5.设集合M={1,2},N={a2},则“a=1"是“N⊆M”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解析若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=±错误!.故“a=1”是“N⊆M"的充分不必要条件.答案A6.设集合A=错误!,B={y|y=x2},则A∩B=( ).A.[-2,2] B.[0,2]C.[0,+∞)D.{(-1,1),(1,1)}解析A={x|-2≤x≤2},B={y|y≥0},∴A∩B={x|0≤x≤2}=[0,2].答案B二、填空题7.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________。

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.1含解析

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.1含解析

1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN*(或N+)Z Q R2。

集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若A⊆B(或B⊇A)x∈A,则x∈B)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集A∪B={x|x∈A或x∈B}合补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩∁U A=∅;A∪∁U A=U;∁U(∁U A)=A。

【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)任何一个集合都至少有两个子集.( ×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ×)(3)若{x2,1}={0,1},则x=0,1.(×)(4){x|x≤1}={t|t≤1}.(√)(5)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(6)若A∩B=A∩C,则B=C.(×)1.(教材改编)若集合A={x∈N|x≤错误!},a=2错误!,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案D解析由题意知A={0,1,2,3},由a=2错误!,知a∉A。

2018年高考数学理一轮复习文档 第一章 集合与常用逻辑

2018年高考数学理一轮复习文档 第一章 集合与常用逻辑

第2讲 简单不等式的解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解集1.辨明三个易误点(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别. (3)不同参数范围的解集切莫取并集,应分类表述. 2.分式不等式的四种形式求解思路 ①f (x )g (x )>0⇔f (x )g (x )>0; ②f (x )g (x )<0⇔f (x )g (x )<0; ③f (x )g (x )≥0⇔f (x )g (x )≥0且g (x )≠0⇔f (x )g (x )>0或f (x )=0; ④f (x )g (x )≤0⇔f (x )g (x )≤0且g (x )≠0⇔f (x )g (x )<0或f (x )=0. 3.绝对值不等式的解法 (1)|f (x )|>|g (x )|⇔2>2;(2)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); (3)|f (x )|<g (x )⇔-g (x )<f (x )<g (x ).1.教材习题改编 不等式x 2-3x +2<0的解集为( ) A .(-∞,-2)∪(-1,+∞) B .(-2,-1)C .(-∞,1)∪(2,+∞)D .(1,2)D 将x 2-3x +2<0化为(x -1)·(x -2)<0,解得1<x <2.2.若不等式4x 2+ax +1>0的解集为⎩⎨⎧⎭⎬⎫x |x ≠-12,则a 的值为( ) A .4 B .-4 C .1D .-1A 由不等式4x 2+ax +1>0的解集为⎩⎨⎧⎭⎬⎫x |x ≠-12知,-a 2×4=-12.所以a =4.故选A.3.不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1 B .⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪ 由不等式x -12x +1≤0 可得⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1,所以不等式的解集为⎝ ⎛⎦⎥⎤-12,1. 4.设二次不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,则ab 的值为________.由不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,知a <0且ax 2+bx +1=0的两根为x 1=-1,x 2=13,由根与系数的关系知⎩⎪⎨⎪⎧-1+13=-b a ,-13=1a ,所以a =-3,b =-2,ab =6.65.若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4. (-∞,-4)∪(4,+∞)一元二次不等式的解法(高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题. 高考对一元二次不等式解法的考查主要有以下两个命题角度: (1)解一元二次不等式;(2)已知一元二次不等式的解集求参数.解下列不等式: (1)-2x 2+3x +2<0; (2)12x 2-ax >a 2(a ∈R ).【解】 (1)-2x 2+3x +2<0,即为2x 2-3x -2>0. Δ=(-3)2-4×2×(-2)=25>0.方程2x 2-3x -2=0的两实根为x 1=-12,x 2=2.所以2x 2-3x -2>0的解集为{x |x <-12或x >2},即原不等式的解集为{x |x <-12或x >2}.(2)因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0};③当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4. 综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度一 解一元二次不等式 1.解下列不等式: (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4.(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0.解得-2≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2≤x ≤43.(2)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0 ⇔⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}.角度二 已知一元二次不等式的解集求参数2.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为______.依题意知,⎩⎪⎨⎪⎧-13+12=-2a,-13×12=c a ,所以解得a =-12,c =2,所以不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0, 解得-2<x <3.所以不等式的解集为(-2,3). (-2,3)简单的分式不等式的解法解下列不等式: (1)1-x 3x +5≥0; (2)x -1x +2>1. 【解】 (1)原不等式可化为x -13x +5≤0, 所以⎩⎪⎨⎪⎧(x -1)(3x +5)≤0,3x +5≠0,所以⎩⎪⎨⎪⎧-53≤x ≤1,x ≠-53,即-53<x ≤1.故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-53<x ≤1.(2)原不等式可化为x -1x +2-1>0, 所以x -1-(x +2)x +2>0,所以-3x +2>0,则x <-2. 故原不等式的解集为{x |x <-2}.解下列不等式:(1)x +1x -3≥0; (2)5x +1x +1<3.(1)不等式x +1x -3≥0可以转化为(x +1)(x -3)≥0且x ≠3,所以解集为{x |x >3或x ≤-1}.(2)不等式5x +1x +1<3可以改写为5x +1x +1-3<0,即2(x -1)x +1<0,故原不等式的解集为{x |-1<x <1}.简单的绝对值不等式的解法设函数f (x )=|2x -3|-1. (1)解不等式f (x )<0;(2)若方程f (x )=a 无实数根,求a 的范围. 【解】 (1)f (x )<0即为|2x -3|<1. 即-1<2x -3<1. 所以1<x <2.所以不等式f (x )<0的解集为{x |1<x <2}. (2)法一:方程f (x )=a 无实数根, 即|2x -3|=a +1无实数根, 因为|2x -3|≥0, 所以a +1<0,即a <-1.所以当a <-1时,方程f (x )=a 无实数根.法二:方程f (x )=a 无实数根,即函数f (x )=|2x -3|-1与y =a 的图象无交点(如图).所以a 的范围为a <-1.含绝对值不等式的常用解法(1)基本性质法:a 为正实数,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a .(2)平方法:两边平方去掉绝对值符号,适用于|x -a |<|x -b |或|x -a |>|x -b |型的不等式的求解.(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.1.不等式|2x -1|>3的解集为( ) A .{x |x <-2或x >1} B .{x |-2<x <1} C .{x |x <-1或x >2} D .{x |-1<x <2}C 由|2x -1|>3得2x -1<-3或2x -1>3,即x <-1或x >2,故选C. 2.不等式|2x -3|<3x +1的解集为________. 由|2x -3|<3x +1得⎩⎪⎨⎪⎧3x +1>0,-(3x +1)<2x -3<3x +1, 解得⎩⎪⎨⎪⎧x >-13,x >25,即x >25.故不等式|2x -3|<3x +1的解集为{x |x >25}.{x |x >25}——分类讨论思想在解不等式中的应用解关于x 的不等式ax 2-(a +1)x +1<0(a >0).【解】 原不等式可化为⎝⎛⎭⎪⎫x -1a (x -1)<0(a >0),①若0<a <1,则1a>1,所以1<x <1a;②若a =1,则1a=1,所以不等式无解;③若a >1,则1a <1,所以1a<x <1.综上知,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <1a ;当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a<x <1.(1)本题利用了分类讨论思想,所谓分类讨论思想,是在研究和解决数学问题时,若问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,从而达到解决整个问题的目的,这一思想方法,我们称为“分类讨论思想”.分类讨论是“化整为零,各个击破,积零为整”的解题策略.(2)本题根据1a和1的大小进行比较,对于含参数的不等式一般要分类讨论,对于含绝对值的不等式也要分类讨论.不等式|x -1|+|x +2|≥5的解集为________.由⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5得x ≤-3; 由⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5得无解; 由⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5得x ≥2.即所求的解集为{x |x ≤-3或x ≥2}. {x |x ≤-3或x ≥2}1.不等式-2x 2+x <-3的解集为( ) A .{x |-32<x <1}B .{x |-1<x <32}C .{x |x <-32或x >1}D .{x |x <-1或x >32}D -2x 2+x <-3, 即为2x 2-x -3>0,Δ=25>0,方程2x 2-x -3=0的两实根为x 1=-1,x 2=32,所以2x 2-x -3>0的解集为{x |x <-1或x >32},故选D .2.不等式x -43-2x<0的解集是( )A .{x |x <4}B .{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <4 C 不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4.3.关于x 的不等式-12x 2+mx +n >0的解集为{x |-1<x <2},则m +n 的值为( )A .-12B .-32C.12D .32D -12x 2+mx +n >0,即为x 2-2mx -2n <0.由题意知,x 2-2mx -2n <0的解集为{x |-1<x <2}.所以⎩⎪⎨⎪⎧-1+2=2m ,-1×2=-2n .所以m =12,n =1.所以m +n =32,故选D .4.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B =( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}B 因为A ={x |-1≤x ≤1},B ={x |0<x ≤2},所以A ∩B ={x |0<x ≤1}.5.(2017·福建晋江高二检测)若不等式f (x )=ax 2-x -c >0的解集为(-2,1),则函数y =f (x )的图象为( )B 因为不等式的解集为(-2,1),所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B .6.若0<a <1,则不等式x 2-3(a +a 2)x +9a 3≤0的解集为( ) A .{x |3a 2≤x ≤3a } B .{x |3a ≤x ≤3a 2} C .{x |x ≤3a 2或x ≥3a }D .{x |x ≤3a 或x ≥3a 2}A 因为0<a <1,所以0<3a 2<3a ,而方程x 2-3(a +a 2)x +9a 3=0的两个根分别为3a 和3a 2,所以不等式的解集为{x |3a 2≤x ≤3a }.7.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式ax -bx -2>0的解集是( )A .{x |x <-1或x >2}B .{x |-1<x <2}C .{x |1<x <2}D .{x |x >2}A 依题意,a >0且-b a=1.ax -b x -2>0⇔(ax -b )(x -2)>0⇔⎝ ⎛⎭⎪⎫x -b a (x -2)>0, 即(x +1)(x -2)>0⇒x >2或x <-1.8.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,则不等式x +x ·f (x )≤2的解集为( )A .(-∞,-1]B .(-1,1)C .(-∞,1]D .(1,+∞)C 原不等式等价于⎩⎪⎨⎪⎧x ≥0x +x 2≤2或⎩⎪⎨⎪⎧x <0x -x 2≤2, 解得0≤x ≤1或x <0,所以不等式的解集为(-∞,1],故选C.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3,故选A.10.若不等式-x 2+2x +m >0的解集是∅,则实数m 的取值范围为( ) A .m ≤-1 B .m ≥-1 C .m ≤1D .m ≥1A -x 2+2x +m >0, 即为x 2-2x -m <0.由题意得Δ=(-2)2-4×1×(-m )≤0, 即4+4m ≤0,所以m ≤-1.故选A.11.不等式x +5(x -1)≥2的解集是( ) A.⎣⎢⎡⎦⎥⎤-3,12 B .⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3] D .⎣⎢⎡⎭⎪⎫-12,1∪(1,3] D 由x +5(x -1)2≥2,得x +5-2(x -1)2(x -1)2≥0, 即-2x 2+5x +3(x -1)2≥0. 所以原不等式等价于⎩⎪⎨⎪⎧-2x 2+5x +3≥0,x -1≠0, 即⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1.解得⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,所以原不等式的解集是⎣⎢⎡⎭⎪⎫-12,1∪(1,3]. 12.(2017·广东省联合体联考)已知函数f (x )=⎩⎪⎨⎪⎧|3x -4|,x ≤2,2x -1,x >2,则使f (x )≥1的x 的取值范围为( )A.⎣⎢⎡⎦⎥⎤1,53 B .⎣⎢⎡⎦⎥⎤53,3 C .(-∞,1)∪⎣⎢⎡⎭⎪⎫53,+∞ D .(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3 D 不等式f (x )≥1等价于⎩⎪⎨⎪⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3,故选D . 13.不等式|x (x -2)|>x (x -2)的解集是________.不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.{x |0<x <2}14.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________. 原不等式即(x -a )·⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a,所以a <x <1a. ⎩⎨⎧⎭⎬⎫x |a <x <1a 15.不等式x -1x ≥2的解集为________. 不等式x -1x ≥2,即x -1x -2≥0,即-x -1x ≥0,所以x +1x≤0,等价于x (x +1)≤0且x ≠0,所以-1≤x <0.原不等式可化为⎩⎪⎨⎪⎧x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6,解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32≤x ≤32. ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32≤x ≤3217.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则有a =________,b =________.由题意得集合A ={x |x <-1或x >3},又A ∪B =R ,A ∩B =(3,4],所以集合B 为{x |-1≤x ≤4},由一元二次不等式与一元二次方程的关系,可得a =-3,b =-4.-3 -418.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,=n ,则关于x 的不等式42-36+45<0的解集为________.由42-36+45<0,得32<<152,又当且仅当n ≤x <n +1(n ∈N *)时,=n ,所以=2,3,4,5,6,7,所以所求不等式的解集为 (1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0,即2x 2+5x -3<0,解得-3<x <12, 即不等式ax 2-5x +a 2-1>0的解集为⎝ ⎛⎭⎪⎫-3,12.20.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. (1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a, 所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .。

2018版高考数学(全国人教B版理)大一轮复习讲义:第一章集合与常用逻辑用语第2讲含答案

2018版高考数学(全国人教B版理)大一轮复习讲义:第一章集合与常用逻辑用语第2讲含答案

基础巩固题组(建议用时:25分钟)一、选择题1。

已知命题p:所有指数函数都是单调函数,则綈p为()A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C.存在一个指数函数,它不是单调函数D.存在一个单调函数,它不是指数函数解析命题p:所有指数函数都是单调函数,则綈p为:存在一个指数函数,它不是单调函数。

答案C2.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=错误!对称。

则下列判断正确的是( )A.p为真B。

綈p为假C.p∧q为假D。

p∧q为真解析p为假命题,q为假命题,∴p∧q为假。

答案C3。

2016年巴西里约奥运会,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳"可表示为( )A。

(綈p)∨(綈q) B.p∨(綈q)C。

(綈p)∧(綈q) D.p∨q解析命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p)∨(綈q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q”的否定。

答案A4。

(2017·西安调研)已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根。

则下列命题为真命题的是()A.p∧(綈q)B。

(綈p)∧qC。

(綈p)∧(綈q) D.p∧q解析由题意知命题p是真命题,命题q是假命题,故綈p是假命题,綈q是真命题,由含有逻辑联结词的命题的真值表可知p∧(綈q)是真命题.答案A5。

下列命题中,真命题是( )A.∃x∈R,e x≤0B.∀x∈R,2x〉x2C。

a+b=0的充要条件是错误!=-1D.“a〉1,b>1"是“ab>1"的充分条件解析因为y=e x〉0,x∈R恒成立,所以A不正确.因为当x=-5时,2-5〈(-5)2,所以B不正确。

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.3含解析

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.3含解析

1.命题p∧q,p∨q,綈p的真假判断p q p∧qp∨q綈p真真真真假真假假真假假真假真真假假假假真2.量词名词常见量词表示符号全称量词所有、一切、任意、全部、每一个、任给等∀存在量词存在一个、至少有一个、有一个、某个、有些、某些等∃3。

全称命题和特称命题4。

含有一个量词的命题的否定【知识拓展】1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p、q中有一个为真,则p∨q为真,即有真为真;(2)p∧q:p、q中有一个为假,则p∧q为假,即有假即假;(3)綈p:与p的真假相反,即一真一假,真假相反.2.含一个量词的命题的否定的规律是“改量词,否结论”.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)命题p∧q为假命题,则命题p、q都是假命题.(×) (2)命题p和綈p不可能都是真命题.( √)(3)若命题p、q至少有一个是真命题,则p∨q是真命题.( √)(4)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.(×)(5)“长方形的对角线相等”是特称命题.( ×)(6)命题“对顶角相等"的否定是“对顶角不相等".( ×)1.设命题p:函数y=sin 2x的最小正周期为错误!;命题q:函数y=cos x的图象关于直线x=错误!对称,则下列判断正确的是()A.p为真B.綈q为假C.p∧q为假D.p∨q为真答案C解析函数y=sin 2x的最小正周期为错误!=π,故命题p为假命题;x=错误!不是y=cos x的对称轴,命题q为假命题,故p∧q为假.故选C.2.已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析綈p为真知p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假,故“綈p为真”是“p∧q为假"的充分不必要条件,故选A。

2018年高考数学(理)一轮复习文档第一章 集合与常用逻辑用语高考零距离1 集合与常用逻辑用语含答案

2018年高考数学(理)一轮复习文档第一章 集合与常用逻辑用语高考零距离1 集合与常用逻辑用语含答案

集合与常用逻辑用语年份卷别具体考查内容及命题位置2016甲卷集合的表示、集合的并集运算、一元二次不等式的解法·T2乙卷集合的表示、集合的交集运算、一元二次不等式的解法·T1丙卷集合的表示、集合的交集运算、一元二次不等式的解法·T12015Ⅰ卷特称命题的否定·T3Ⅱ卷集合的表示、集合的交集运算、一元二次不等式的解法·T12014Ⅰ卷集合的表示、集合的交集运算、一元二次不等式的解法·T1Ⅱ卷集合的表示、集合的交集运算、一元二次不等式的解法·T11.集合作为高考必考内容,多年来命题较稳定,多以选择题的形式在前3题的位置进行考查,难度较小,命题的热点依然会集中在集合的运算上,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等知识命题.题示参数真题呈现考题溯源题示对比(2015·高考全国卷Ⅱ,T1)已知集合A={x|-1<x<2},B={x|0〈x<3},则A∪B=()A。

(-1,3)B.(-1,0)C。

(0,2)D.(2,3)(2016·高考全国卷丙,T1)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}题溯源(必修1 P8例5)设集合A={x|-1<x<2},集合B={x|1〈x〈3},求A∪B.题溯源(必修1 P11例8)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.题溯源C。

{0,2,6,10} D.{0,2,4,6,8,10}(2016·高考全国卷乙,T1)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=( )A.错误!B.错误!C。

2018届高考数学(理)第一轮总复习全程训练考点集训第1章 集合与常用逻辑用语 天天练1 Word版含解析

2018届高考数学(理)第一轮总复习全程训练考点集训第1章 集合与常用逻辑用语 天天练1 Word版含解析

天天练集合的概念与运算一、选择题.(·银川质检)设全集={∈*≤},={},={},则∁(∩)=( ).{} .{}.{} .{}.(·贵阳监测)如图,全集=,集合={<<},={<<},则图中阴影部分所表示的集合为( ).{<<} .{<<}.{<} .{>}.(·太原五中检测)已知集合={∈--≤},={=},则∩子集的个数为( ).....(·赣州摸底)已知集合={--≤,∈},={(+)<,∈},则∩=( ).() .] .{} .{}.(·长沙一模)记集合={->},={=,∈},若∈∩,则的取值范围是( ).(-∞,) .(-∞,].,+∞) .(,+∞).(·河南适应性测试)已知集合={},={=,∈},则∪中的元素个数为( ).....(·衡水中学一调)已知全集=,集合={--≤},={>},那么集合∩(∁)=( ).{-≤<} .{≤或≥}.{-≤<-} .{-≤≤}.(·太原二模)已知集合={(-)<},={<<},且∩={<<},则+=( ) ....二、填空题.已知全集={=,=,},集合={-},={},则∩(∁)=..设集合={()=-+是(,+∞)上的增函数},={=,∈-]},则∁(∩)=..已知集合={-(++)+(+)>},={=-+,≤≤}.若∩=∅,则实数的取值范围是.三、解答题.已知集合={--≤},={-+-≤,∈,∈}.()若∩=],求实数的值;()若⊆∁,求实数的取值范围.天天练集合的概念与运算.由于全集={∈*≤}={},={},={},∩={},则∁(∩)={},故选..由图可知,阴影部分表示的是集合∪={<<},故选..因为={-},=(,+∞),所以∩={},其子集的个数为=,故选..由--≤得-≤≤,所以={-≤≤}.由(+)<,得<+<,解得-<<,所以={},所以∩={},故选..依题意得,∈->,<,因此实数的取值范围是(-∞,),选..因为={},所以∪={},元素个数为,故选..依题意={-≤≤},={<-或>},故∁={-≤≤},故∩(∁)={-≤≤},故选..不等式(-)<⇔<-<⇔<<,集合={<<},又∩={<<},则=,=,+=,故选..{-}解析:={=,=,}={-},∁={-},∴∩(∁)={-}.技巧点拨:研究集合之间的关系,处理集合的交、并、补运算问题,常用韦恩图、数轴等几何工具辅助解题. 一般地,对离散型数集、抽象的集合间的运算,可借助韦恩图,而对连续型集合间的运算,可借助数轴的直观性,进行合理转化..(-∞,)∪(,+∞)解析:′()=-+,要使函数()在(,+∞)上是增函数,则′()=-+≥在(,+∞)上恒成立,即≤+,因为+≥=,所以≤,即集合={≤}.集合={=,∈-]}={≤≤},所以∩={≤≤},所以∁(∩)=(-∞,)∪(,+∞)..(-∞,-]∪,]解析:={<或>+},={≤≤}.当∩=∅时,(\\(+≥≤)),∴≤≤或≤-,∴的取值范围是(-∞,-]∪,]..解析:由已知得={-≤≤},。

2018版高考数学大一轮复习 第一章 集合与常用逻辑用语 第.

2018版高考数学大一轮复习 第一章 集合与常用逻辑用语 第.
∃ ”表示. 常叫做存在量词,用符号“___ (4)特称命题:含有存在量词的命题. 特 称 命 题 “ ห้องสมุดไป่ตู้ 在 M 中 的 一 个 元 素 x0 , 使 p(x0) 成 立 ” , 简 记 ∃x0∈M,p(x0) _____________.
3.含有一个量词的命题的否定 命题 ∀x∈M,p(x) ∃x0∈M,p(x0) 命题的否定
[易错防范]
1.正确区别命题的否定与否命题 “否命题”是对原命题“若 p ,则 q”的条件和结论分别加以否定
而得的命题,它既否定其条件,又否定其结论;“命题的否定”
即“綈 p”,只是否定命题 p 的结论 . 命题的否定与原命题的真假 总是对立的,即两者中有且只有一个为真.
2.几点注意:
(1) 注意命题是全称命题还是特称命题,是正确写出命题的否定 的前提; (2) 注意命题所含的量词,对于量词隐含的命题要结合命题的含 义显现量词,再进行否定; (3) 注意“或”“且”的否定,“或”的否定为“且”,“且” 的否定为“或”.
(1)“p∨q” 、 “p∧q”、 “ 綈 p” 形式命题真
假的判断关键是对逻辑联结词“或”“且”“非”含义的
理解,其操作步骤是:①明确其构成形式;②判断其中命 题 p , q 的真假;③确定 “p∨q”“p∧q”“ 綈 p” 形式命 题的真假. (2)p且q形式是“一假必假,全真才真”,p或q形式是“一
2.(选修1-1P18B组改编)已知p:2是偶数,q:2是质数,则 命题綈p,綈q,p∨q,p∧q中真命题的个数为( A.1 解析 B.2 C.3 D.4 )
p和q显然都是真命题,所以綈p,綈q都是假命题,
p∨q,p∧q都是真命题.
答案 B
3.(2015· 全国Ⅰ卷)设命题p:∃n∈N,n2>2n,则綈p为( A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n 解析 D.∃n∈N,n2=2n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时达标检测(三) 简单的逻辑联结词、全称量词与存在量词一、选择题1.(2017·东北育才检测)已知命题p :∀x ∈R ,e x-x -1>0,则綈p 是( ) A .∀x ∈R ,e x-x -1<0 B .∃x 0∈R ,e x 0-x 0-1≤0 C .∃x 0∈R ,e x 0-x 0-1<0D .∀x ∈R ,e x-x -1≤0解析:选B 因为全称命题的否定是特称命题,所以命题p :∀x ∈R ,e x-x -1>0,则綈p :∃x 0∈R ,e x 0-x 0-1≤0.故选B.2.(2017·湖南四县联考)下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1 D .“a >1,b >1”是“ab >1”的充分条件解析:选D 因为y =e x >0,x ∈R 恒成立,所以A 为假命题;因为当x =-5时,2-5<(-5)2,所以B 为假命题;当a =b =0时,a +b =0,但是a b没有意义,所以C 为假命题;“a >1,b >1”是“ab >1”的充分条件,显然正确.故选D.3.(2017·西安质检)已知命题p :∃x 0∈R ,log 2(3x 0+1)≤0,则( ) A .p 是假命题;綈p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;綈p :∀x ∈R ,log 2(3x+1)>0 C .p 是真命题;綈p :∀x ∈R ,log 2(3x+1)≤0 D .p 是真命题;綈p :∀x ∈R ,log 2(3x+1)>0解析:选B ∵3x >0,∴3x +1>1,则log 2(3x +1)>0,∴p 是假命题;綈p :∀x ∈R ,log 2(3x+1)>0.故选B.4.有下列四个命题,其中真命题是( ) A .∀n ∈R ,n 2≥nB .∃n ∈R ,∀m ∈R ,m ·n =mC .∀n ∈R ,∃m ∈R ,m 2<n D .∀n ∈R ,n 2<n解析:选B 对于选项A ,令n =12即可验证其为假命题;对于选项C 、选项D ,可令n=-1加以验证,均为假命题,故选B.5.命题p :∃x ∈N ,x 3<x 2;命题q :∀a ∈(0,1)∪(1,+∞),函数f (x )=log a (x -1)的图象过点(2,0),则( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真解析:选A ∵x 3<x 2,∴x 2(x -1)<0,∴x <0或0<x <1,故命题p 为假命题,易知命题q 为真命题,选A.6.(2016·昆明一中考前强化)已知命题p :∀x ∈R ,x +1x ≥2;命题q :∃x 0∈⎣⎢⎡⎦⎥⎤0,π2,使sin x 0+cos x 0=2,则下列命题中为真命题的是( )A .(綈p )∧qB .p ∧(綈q )C .(綈p )∧(綈q )D .p ∧q解析:选A 在命题p 中,当x <0时,x +1x<0,所以命题p 为假命题,所以綈p 为真命题;在命题q 中,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,当x =π4时,sin x +cos x =2,所以q 为真命题.由此可得(綈p )∧q 为真命题,故选A.7.(2017·衡阳质检)已知命题p :∃α∈R ,cos(π-α)=cos α;命题q :∀x ∈R ,x 2+1>0.则下面结论正确的是( )A .p ∧q 是真命题B .p ∧q 是假命题C .綈p 是真命题D .p 是假命题解析:选A 对于命题p :取α=π2,则cos(π-α)=cos α,所以命题p 为真命题;对于命题q :∵x 2≥0,∴x 2+1>0,所以q 为真命题.由此可得p ∧q 是真命题.故选A.8.(2017·开封模拟)已知命题p 1:∀x ∈(0,+∞),3x>2x,命题p 2:∃θ∈R ,sin θ+cos θ=32,则在命题q 1:p 1∨p 2;q 2:p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:选C 因为y =⎝ ⎛⎭⎪⎫32x 在R 上是增函数,即y =⎝ ⎛⎭⎪⎫32x>1在(0,+∞)上恒成立,所以命题p 1是真命题;sin θ+cos θ=2sin ⎝⎛⎭⎪⎫θ+π4≤2,所以命题p 2是假命题,綈p 2是真命题,所以命题q 1:p 1∨p 2,q 4:p 1∧(綈p 2)是真命题,故选C.9.已知命题p :∀x ∈R,3x>0;命题q :∃x 0∈R ,log 12x 20<0.则下列命题为真命题的是( )A .p ∧qB .(綈p )∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选A 易知命题p 是真命题;取x 0=2,则log 1222=-2,所以命题q 是真命题,所以p ∧q 为真命题,故选A.10.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x +2<0的解集是{x |1<x <2},现有以下结论:①命题“p ∧q ”是真命题; ②命题“p ∧綈q ”是假命题; ③命题“綈p ∨q ”是真命题; ④命题“綈p ∨綈q ”是假命题. 其中正确的是( ) A .②③ B .①②④ C .①③④D .①②③④解析:选D ∵命题p :∃x 0∈R ,使tan x 0=1为真命题,命题q :x 2-3x +2<0的解集是{x |1<x <2}也为真命题,∴“p ∧q ”是真命题,“p ∧綈q ”是假命题,“綈p ∨q ”是真命题,“綈p ∨綈q ”是假命题,故①②③④都正确.11.(2017·西安模拟)下列说法中错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0” B .“x =2”是“x 2-3x +2=0”的充分不必要条件C .若命题p :∃x 0∈R ,使得x 20-x 0+1≤0,则綈p :对∀x ∈R ,都有x 2-x +1>0 D .若p ∨q 为真命题,则p ,q 均为真命题解析:选D A 中,“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”,故A 正确;B 中,由x 2-3x +2=0,解得x =1或x =2,因此“x =2”是“x 2-3x +2=0”的充分不必要条件,故B 正确;C 中,命题p :∃x 0∈R ,使得x 20-x 0+1≤0,则綈p :对∀x ∈R ,都有x 2-x +1>0,故C 正确;D 中,由p ∨q 为真命题,可知p ,q 中至少有一个为真命题,故D 不正确.故选D.12.(2017·郑州质量预测)已知函数f (x )=x +4x ,g (x )=2x+a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈,使得f (x 1)≥g (x 2),则实数a 的取值范围是( )A .(-∞,1]B .D .),因为f (x )在⎣⎢⎡⎦⎥⎤12,1上为减函数,g (x )在上为增函数,所以f (x )min =f (1)=5,g (x )min =g (2)=4+a ,所以5≥4+a ,即a ≤1,故选A.二、填空题13.命题p 的否定是“对∀x ∈(0,+∞),x >x +1”,则命题p 是________. 解析:因为p 是綈p 的否定,所以只需将全称量词变为特称量词,再对结论进行否定即可.答案:∃x 0∈(0,+∞),x 0≤x 0+114.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析:当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0.答案:15.已知命题p :∀x ∈R ,x 2-a ≥0;命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围为________.解析:由已知条件可知p 和q 均为真命题,由命题p 为真得a ≤0,由命题q 为真得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a ≤-2.答案:(-∞,-2] 16.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为________.(把你认为正确结论的序号都填上)解析:在①中,命题p 是真命题,命题q 也是真命题,故“p ∧(綈q )”是假命题是正确的.在②中,由l 1⊥l 2,得a +3b =0,所以②不正确.在③中“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”正确.答案:①③。

相关文档
最新文档