【最新】高中数学-2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 J单元
【最新】高中数学-2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 C单元
数 学C 单元 三角函数C1 角的概念及任意角的三角函数C2 同角三角函数的基本关系式与诱导公式12.B9、C2、C6 函数f (x )=4cos 2x 2·cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.12.2 f (x )=4cos 2x2sin x -2sin x -|ln(x +1)|=2sin x ⎝ ⎛⎭⎪⎫2cos 2x2-1-|ln(x +1)|=sin 2x -|ln(x +1)|.令f (x )=0,得sin 2x =|ln(x +1)|.在同一坐标系中作出函数y =sin 2x 与函数y =|ln(x +1)|的大致图像,如图所示.观察图像可知,两个函数的图像有2个交点,故函数f (x )有2个零点. 19.C2、C5、C8 如图14所示,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos Asin A;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D2的值.19.解:(1)证明:tan A 2=sin A2cos A 2=2sin2A22sin A 2cosA 2=1-cos Asin A .(2)由A +C =180°,得C =180°-A ,D =180°-B . 由(1)知, tanA2+tanB2+tanC2+tanD2=1-cos A sin A +1-cos B sin B +1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B )=2sin A +2sin B.连接BD ,在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A , 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C ,所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A ,则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422×(6×5+3×4)=37.于是sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫372=2107. 连接AC ,同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422×(6×3+5×4)=119,于是sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫1192=6 1019. 所以tan A 2+tan B 2+tan C2+tan D2=2sin A +2sin B=2×7210+2×19610=4103.9.C2、C5、C7 若tan α=2tan π5,则cos α-3π10sin α-π5=( )A .1B .2C .3D .49.C cos α-3π10sin α-π5=sin α-3π10+π2sin α-π5=sin α+π5sin α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sinπ5cos π5cos π5+sinπ52·sin π5cosπ5cos π5-sinπ5=3sinπ5sin π5=3. 18.C2、C3、C5、C6 已知函数f (x )=sin π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值; (2)讨论f (x )在π6,2π3上的单调性.18.解:(1)f (x )=sin π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在π6,5π12上单调递增;在5π12,2π3上单调递减.C3 三角函数的图象与性质17.C4、C3 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数f (x )的解析式; (2)将y =f (x )图像上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图像,若y =g (x )图像的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.17.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6.(2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,所以g (x )=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6. 因为y =sin x 的图像的对称中心为(k π,0),k ∈Z . 所以令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图像关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,k ∈Z ,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.15.C5,C3 已知函数f (x )=2sin x 2cos x2-2sin 2x2.(1)求f (x )的最小正周期; (2)求f (x )在区间上的最小值. 15.解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4.当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.12.A3、C3 若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.12.1 ∵y =tan x 在区间⎣⎢⎡⎦⎥⎤0,π4上单调递增,∴y =tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4的最大值为tan π4=1.又∵“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,∴m ≥1.4.C3,C4 下列函数中,最小正周期为π且图像关于原点对称的函数是( ) A .y =cos2x +π2 B .y =sin2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x4.A 选项A 中,y =-sin 2x ,最小正周期为π,且图像关于原点对称;选项B 中,y =cos 2x 是偶函数,图像不关于原点对称;选项C 中,y =2sin ⎝⎛⎭⎪⎫2x +π4,图像不关于原点对称;选项D 中,y =2sin ⎝⎛⎭⎪⎫x +π4,最小正周期为2π.故选A.15.C3、C5、C6 已知函数f (x )=sin 2x -sin 2x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间-π3,π4上的最大值和最小值.15.解:(1)由已知,有f (x )=1-cos 2x2-1-cos2x -π32=1212cos 2x +32sin 2x -12cos 2x = 34sin 2x -14cos 2x =12sin2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间-π3,-π6上是减函数,在区间-π6,π4上是增函数,f -π3=-14,f -π6=-12,f π4=34,所以f (x )在区间-π3,π4上的最大值为34,最小值为-12. 18.C2、C3、C5、C6 已知函数f (x )=sin π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值; (2)讨论f (x )在π6,2π3上的单调性.18.解:(1)f (x )=sin π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在π6,5π12上单调递增;在5π12,2π3上单调递减.C4 函数sin()y A x ωϕ=+的图象与性质10.C4 已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)10.A 依题意得f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上单调递减,且直线x =π6是f (x )的图像的一条对称轴.又f (-2)=f (π-2),f (0)=f ⎝ ⎛⎭⎪⎫π3,且π6<π3<π-2<2<2π3,所以f (0)=f ⎝ ⎛⎭⎪⎫π3>f (π-2)=f (-2)>f (2),故选A.17.C4、C3 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数f (x )的解析式; (2)将y =f (x )图像上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图像,若y =g (x )图像的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.17.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,所以g (x )=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6. 因为y =sin x 的图像的对称中心为(k π,0),k ∈Z . 所以令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图像关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,k ∈Z ,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.8.C4 函数f (x )=cos(ωx +φ)的部分图像如图12所示,则f (x )的单调递减区间为( )图12A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 8.D 由图知T 2=54-14=1,所以T =2,即2π||ω=2,所以ω=±π.因为函数f (x )的图像过点⎝ ⎛⎭⎪⎫14,0,所以当ω=π时,ω4+φ=π2+2k π,k ∈Z ,解得φ=π4+2k π,k ∈Z ;当ω=-π时,ω4+φ=-π2+2k π,k ∈Z ,解得φ=-π4+2k π,k ∈Z .所以f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4,由2k π<πx +π4<π+2k π解得2k -14<x <2k +34,k ∈Z ,故选D.9.C4、C9 将函数f (x )=sin 2x 的图像向右平移φ0<φ<π2个单位后得到函数g (x )的图像,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4 D.π69.D 由已知得g (x )=sin(2x -2φ),又|f (x 1)-g (x 2)|=2,0<φ<π2,所以当|x 1-x 2|取最小值时,刚好是取两个函数相邻的最大值与最小值点.令2x 1=π2,2x 2-2φ=-π2,则|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ=π3,得φ=π6.3.C4 要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图像,只需将函数y =sin 4x 的图像( ) A .向左平移π12个单位 B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.B 设将y =sin 4x 的图像向右平移φ个单位,得到y =sin 4(x -φ)=sin(4x -4φ)=sin ⎝⎛⎭⎪⎫4x -π3 ,则φ=π12. 3.C4 如图12,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )图12A .5B .6C .8D .103.C 据图可知,-3+k =2,得k =5,所以y max =3+5=8.4.C3,C4 下列函数中,最小正周期为π且图像关于原点对称的函数是( ) A .y =cos2x +π2 B .y =sin2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x4.A 选项A 中,y =-sin 2x ,最小正周期为π,且图像关于原点对称;选项B 中,y =cos 2x 是偶函数,图像不关于原点对称;选项C 中,y =2sin ⎝⎛⎭⎪⎫2x +π4,图像不关于原点对称;选项D 中,y =2sin ⎝⎛⎭⎪⎫x +π4,最小正周期为2π.故选A.11.C4、C5、C6 函数f (x )=sin 2x +sin x cos x +1的最小正周期是____________,单调递减区间是________.11.π ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k∈Z ) f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,则最小正周期是π.单调递减区间: 2k π+π2≤2x -π4≤2k π+3π2(k ∈Z )⇒k π+3π8≤x ≤k π+7π8(k ∈Z ).C5 两角和与差的正弦、余弦、正切16.F3、C5 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sinx ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.8.C5 已知tan α=-2,tan(α+β)=17,则tan β的值为________.8.3 因为β=(α+β)-α,所以tan β=tan =tan (α+β)-tan α1+tan (α+β)tan α=17+21-27=3.17.C5、C8 △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C;(2)若AD =1,DC =22,求BD 和AC 的长. 17.解:(1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC . 由正弦定理可得 sin ∠B sin ∠C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.2.C5 sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.122.D sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.15.C5,C3 已知函数f (x )=2sin x 2cos x2-2sin 2x2.(1)求f (x )的最小正周期; (2)求f (x )在区间上的最小值. 15.解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4.当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22. 12.C5 sin 15°+sin 75°的值是________. 12.62sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 19.C2、C5、C8 如图14所示,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos Asin A;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D2的值.19.解:(1)证明:tan A 2=sin A2cos A 2=2sin2A22sin A 2cosA 2=1-cos Asin A .(2)由A +C =180°,得C =180°-A ,D =180°-B . 由(1)知, tanA2+tanB2+tanC2+tanD2=1-cos A sin A +1-cos B sin B +1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B )=2sin A +2sin B.连接BD ,在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A , 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C ,所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A ,则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422×(6×5+3×4)=37.于是sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫372=2107. 连接AC ,同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422×(6×3+5×4)=119,于是sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫1192=6 1019.所以tan A 2+tan B 2+tan C 2+tan D2=2sin A +2sin B=2×7210+2×19610=4103.15.C3、C5、C6 已知函数f (x )=sin 2x -sin 2x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间-π3,π4上的最大值和最小值.15.解:(1)由已知,有f (x )=1-cos 2x2-1-cos2x -π32=1212cos 2x +32sin 2x -12cos 2x = 34sin 2x -14cos 2x =12sin2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间-π3,-π6上是减函数,在区间-π6,π4上是增函数,f -π3=-14,f -π6=-12,f π4=34,所以f (x )在区间-π3,π4上的最大值为34,最小值为-12. 11.C4、C5、C6 函数f (x )=sin 2x +sin x cos x +1的最小正周期是____________,单调递减区间是________.11.π ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k∈Z ) f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,则最小正周期是π.单调递减区间: 2k π+π2≤2x -π4≤2k π+3π2(k ∈Z )⇒k π+3π8≤x ≤k π+7π8(k ∈Z ).9.C2、C5、C7 若tan α=2tan π5,则cos α-3π10sin α-π5=( )A .1B .2C .3D .49.C cos α-3π10sin α-π5=sin α-3π10+π2sin α-π5=sin α+π5sin α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sinπ5cos π5cos π5+sinπ52·sin π5cosπ5cos π5-sinπ5=3sinπ5sin π5=3. 18.C2、C3、C5、C6 已知函数f (x )=sin π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值; (2)讨论f (x )在π6,2π3上的单调性.18.解:(1)f (x )=sin π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在π6,5π12上单调递增;在5π12,2π3上单调递减.C6 二倍角公式12.B9、C2、C6 函数f (x )=4cos 2x 2·cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.12.2 f (x )=4cos 2x2sin x -2sin x -|ln(x +1)|=2sin x ⎝ ⎛⎭⎪⎫2cos 2x2-1-|ln(x +1)|=sin 2x -|ln(x +1)|.令f (x )=0,得sin 2x =|ln(x +1)|.在同一坐标系中作出函数y =sin 2x 与函数y =|ln(x +1)|的大致图像,如图所示.观察图像可知,两个函数的图像有2个交点,故函数f (x )有2个零点. 12.C6,C8 在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=________.12.1 根据题意,cos A =b 2+c 2-a 22bc =52+62-422×5×6=34.因为0<A <π,所以sin A =1-cos 2A =74.同理可求sin C =3 78,所以sin 2A sin C =2sin A cos Asin C=1. 6.A2、C6 “sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件6.A sin α=cos α时,cos 2α=cos 2α-sin 2α=0,反之cos 2α=0时,sin α=±cos α,故“sin α=cos α”是“cos 2α=0”的充分不必要条件.15.C3、C5、C6 已知函数f (x )=sin 2x -sin 2x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间-π3,π4上的最大值和最小值.15.解:(1)由已知,有f (x )=1-cos 2x2-1-cos2x -π32=1212cos 2x +32sin 2x -12cos 2x = 34sin 2x -14cos 2x =12sin2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间-π3,-π6上是减函数,在区间-π6,π4上是增函数,f -π3=-14,f -π6=-12,f π4=34,所以f (x )在区间-π3,π4上的最大值为34,最小值为-12.11.C4、C5、C6 函数f (x )=sin 2x +sin x cos x +1的最小正周期是____________,单调递减区间是________.11.π ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k∈Z ) f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,则最小正周期是π.单调递减区间: 2k π+π2≤2x -π4≤2k π+3π2(k ∈Z )⇒k π+3π8≤x ≤k π+7π8(k ∈Z ).18.C2、C3、C5、C6 已知函数f (x )=sin π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值; (2)讨论f (x )在π6,2π3上的单调性.18.解:(1)f (x )=sin π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在π6,5π12上单调递增;在5π12,2π3上单调递减.C7 三角函数的求值、化简与证明 14.C7、F3 设向量a k =⎝⎛⎭⎪⎫cos k π6,sink π6+cosk π6(k =0,1,2,…,12),则k =011(a k ·a k +1)的值为________. 14.93 因为a k ·a k+1=cosk π6cos(k +1)π6+⎝⎛⎭⎪⎫sin k π6+cos k π6⎣⎢⎡⎦⎥⎤sin (k +1)π6+cos (k +1)π6=2cosk π6cos(k +1)π6+sin k π6sin (k +1)π6+sin k π6cos (k +1)π6+cos k π6sin (k +1)π6=cosk π6cos(k +1)π6+cos π6+sin (2k +1)π6=12cos (2k +1)π6+sin (2k +1)π6+334,所以k =011(a k ·a k +1)=12×334+12k =011cos (2k +1)π6+k =011sin (2k +1)π6=9 3.16.C7、C8 设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC面积的最大值.16.解:(1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12.由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立, 因此12bc sin A ≤2+34,所以△ABC 面积的最大值为2+34.图129.C2、C5、C7 若tan α=2tan π5,则cos α-3π10sin α-π5=( )A .1B .2C .3D .49.C cos α-3π10sin α-π5=sin α-3π10+π2sin α-π5=sin α+π5sin α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sinπ5cos π5cos π5+sinπ52·sin π5cosπ5cos π5-sinπ5=3sinπ5sin π5=3.C8 解三角形16.C8 在△ABC 中,∠A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.16.解:设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c .由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC =(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a =310.又由正弦定理得sin B =b sin ∠BAC a =3310=1010, 且0<B <π4,所以cos B =1-sin 2B =1-110=31010. 在△ABD 中,由正弦定理得AD =AB ·sin B sin (π-2B )=6sin B 2sin B cos B =3cos B=10.11.C8 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.11.1 ∵sin B =12,∴B =π6或5π6.当B =5π6时,有B +C =π,不符合,∴B =π6=C ,∴b cos π6=a 2=32,∴b =1.13.C8 如图12,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.图1213.100 6 依题意,在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°.由正弦定理得BC sin ∠BAC =AB sin ∠ACB ,即BC sin 30°=600sin 45°,所以BC =300 2.在△BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002·tan 30°=100 6.15.C8 在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.15.解:(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知,AB sin C =BC sin A ,所以sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角,则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 17.C5、C8 △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠Bsin ∠C ;(2)若AD =1,DC =22,求BD 和AC 的长. 17.解:(1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC . 由正弦定理可得 sin ∠B sin ∠C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.16.C8 在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.16.(6-2,6+2) 如图所示.MB <AB <EB ,在△BMC 中,CB =CM =2,∠BCM =30°,由余弦定理知MB 2=22+22-2×2×2cos 30°=8-43=(6-2)2,所以MB =6- 2.在△EBC 中,设EB =x ,由余弦定理知4=x 2+x 2-2×x ×x cos 30°,得x 2=8+43=(6+2)2,所以x =6+2,即EB =6+2,所以6-2<AB <6+ 2.12.C6,C8 在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=________.12.1 根据题意,cos A =b 2+c 2-a 22bc =52+62-422×5×6=34.因为0<A <π,所以sin A =1-cos 2A =74.同理可求sin C =3 78,所以sin 2A sin C =2sin A cos Asin C=1. 12.C8 若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________. 12.7 由S △ABC =12×5×8sin A =103,得sin A =32.又A 为锐角,∴A =π3,∴由余弦定理得BC =25+64-2×5×8cos π3=49=7.17.C8 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角. (1)证明:B -A =π2;(2)求sin A +sin C 的取值范围.17.解:(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B ,所以sin B =cos A ,即sin B =sin π2+A .又B 为钝角,因此π2+A ∈π2,π,故B =π2+A ,即B -A =π2.(2)由(1)知,C =π-(A +B )=π-2A +π2=π2-2A >0,所以A ∈0,π4.于是sin A +sin C =sin A +sin π2-2A =sin A +cos 2A =-2sin 2A +sin A +1= -2sin A -142+98.因为0<A <π4,所以0<sin A <22,因此22<-2sin A -142+98≤98. 由此可知,sin A +sin C 的取值范围是22,98. 16.C7、C8 设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC面积的最大值.16.解:(1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12.由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立, 因此12bc sin A ≤2+34,所以△ABC 面积的最大值为2+34.17.C8 △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.17.解:(1)因为m∥n ,所以a sin B -3b cos A =0, 由正弦定理得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A =3, 由于0<A <π,所以A =π3.(2)方法一:由余弦定理得a 2=b 2+c 2-2bc cos A ,而a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0, 因为c >0,所以c =3.故△ABC 的面积为12bc sin A =332.方法二:由正弦定理得7sinπ3=2sin B ,从而sin B =217,又由a >b ,知A >B ,所以cos B =277.故sin C =sin(A +B )=sin B +π3=sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为12ab sin C =332.19.C2、C5、C8 如图14所示,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos Asin A;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D2的值.19.解:(1)证明:tan A 2=sin A2cos A 2=2sin2A22sin A 2cosA 2=1-cos Asin A .(2)由A +C =180°,得C =180°-A ,D =180°-B . 由(1)知, tanA2+tanB2+tanC2+tanD2=1-cos A sin A +1-cos B sin B +1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B )=2sin A +2sin B.连接BD ,在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A , 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C ,所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A ,则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422×(6×5+3×4)=37.于是sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫372=2107. 连接AC ,同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422×(6×3+5×4)=119,于是sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫1192=6 1019. 所以tan A 2+tan B 2+tan C2+tan D2=2sin A +2sin B=2×7210+2×19610=4103.13.C8 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.13.8 在△ABC 中,cos A =-14,则sin A =154,又由△ABC 的面积为315 ,可得12bc sin A =315,求得bc =24,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc -14=64,解得a =8.16.C8 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 16.解:(1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C . 又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C =sin 2C , 解得tan C =2.(2)由tan C =2,C ∈(0,π)得 sin C =2 55,cos C =55.又因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以 sin B =31010.由正弦定理得c =2 23b .又因为A =π4,12bc sin A =3,所以bc =6 2,故b =3.13.C8 在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.13. 6 在△ABD 中,由正弦定理,得sin ∠ADB =AB ·sin BAD=2×323=22.由题意知0°<∠ADB <60°,所以∠ADB =45°,则∠BAD =15°,所以∠BAC =2∠BAD =30°,所以C =30°,所以BC =AB = 2.由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos B =(2)2+(2)2-22×2cos 120°= 6.C9 单元综合19.C9 已知函数f (x )的图像是由函数g (x )=cos x 的图像经如下变换得到:先将g (x )图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移π2个单位长度.(1)求函数f (x )的解析式,并求其图像的对称轴方程. (2)已知关于x 的方程f (x )+g (x )=m 在=cos(α+φ)cos(β+φ)+sin(α+φ)sin(β+φ) =-cos 2(β+φ)+sin(α+φ)sin(β+φ)=-⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫m 52+⎝ ⎛⎭⎪⎫m 52=2m25-1. 9.C4、C9 将函数f (x )=sin 2x 的图像向右平移φ0<φ<π2个单位后得到函数g (x )的图像,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4 D.π69.D 由已知得g (x )=sin(2x -2φ),又|f (x 1)-g (x 2)|=2,0<φ<π2,所以当|x 1-x 2|取最小值时,刚好是取两个函数相邻的最大值与最小值点.令2x 1=π2,2x 2-2φ=-π2,则|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ=π3,得φ=π6.7. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知cos 2A +32=2cos A.(1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.7.解:(1)根据倍角公式,得2cos 2A +12=2cos A ,即4cos 2A -4cos A +1=0,所以(2cosA -1)2=0,所以cos A =12.因为0<A <π,所以A =π3.(2)由a sin A =b sin B =c sin C ,得b =23sin B ,c =23sin C ,所以l =1+b +c =1+23(sin B +sin C ).因为A =π3,所以B +C =2π3,所以l =1+23⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B =1+2sin ⎝ ⎛⎭⎪⎫B +π6.因为0<B <2π3,所以l ∈(2,3].8. 已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且△ABC 的面积S =32ac cos B .(1)若c =2a ,求角A ,B ,C 的大小; (2)若a =2,且π4≤A ≤π3,求c 的取值范围.8. 解:由题意可知,12ac sin B =32ac cos B ,化简,得sin B =3cos B ,即tan B =3,又0<B <π,所以B =π3.(1)由余弦定理得,b 2=a 2+c 2-2ac cos B =a 2+4a 2-2a 2=3a 2, ∴b =3a ,∴a ∶b ∶c =1∶3∶2,易求得A =π6,C =π2.(2)由asin A=csin C,得c =a sin C sin A =2sin C sin A .由C =2π3-A ,得c =2sin ⎝⎛⎭⎪⎫2π3-A sin A=2⎝ ⎛⎭⎪⎫sin 2π3cos A -cos 2π3sin A sin A =3tan A+1.又由π4≤A ≤π3知1≤tan A ≤3,故c ∈.10. 已知函数f (x )=3sin ωx -cos ωx (ω>0)的图像与直线y =2的相邻两个交点之间的距离为π.(1)求函数f (x )的单调递增区间;(2)设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,若f (A )=2,a =3b ,求角B 的大小.10.解:(1)因为f (x )=3sin ωx -cos ωx (ω>0,x ∈R ),所以f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6,所以函数f (x )的最大值为2.因为函数f (x )的图像与直线y =2的相邻两个交点之间的距离为π,所以f (x )的最小正周期T =π,所以2πω=π,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,解得k π-π6≤x ≤k π+π3,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)由(1)知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6.在△ABC 中,因为f (A )=2,所以2sin ⎝ ⎛⎭⎪⎫2A -π6=2,所以sin ⎝ ⎛⎭⎪⎫2A -π6=1.因为0<A <π,所以A =π3.因为a =3b ,所以sin A =3sin B ,所以sin π3=3sin B ,所以sin B =12.因为a >b ,所以A >B ,所以0<B <π3,所以B =π6.7. 函数f (x )=sin(ωx + φ)x ∈R ,ω>0, |φ | <π2的部分图像如图K162所示,如果x 1,x 2 ∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( ) A.12 B.22 C.32D .1 7.C 由图像知,函数的最小正周期T =2⎝⎛⎭⎪⎫π3+π6=π,则ω=2ππ=2.由函数f (x )的图像过点⎝ ⎛⎭⎪⎫-π6,0,得sin ⎝ ⎛⎭⎪⎫-π3+φ=0,又|φ|<π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3.由x 1,x 2 ∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),易得点(x 1,f (x 1))与点(x 2,f (x 2))关于直线x =π12对称,即x 1 + x 2=π6,所以f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫π3+π3=32.。
【最新】高中数学-2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 G单元
数 学 G 单元 立体几何G1 空间几何体的结构19.G1 如图18,长方体ABCD A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.图1819.解:(1)交线围成的正方形EHGF 如图.(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为9779也正确.18.G1,G4,G5 如图15,在三棱锥V ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V ABC 的体积.图1518.解:(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥CVAB的体积等于1 3OC·S△VAB=33.又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为3 3.18.G1、G5如图14,直三棱柱ABC A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F AEC的体积.图1418.解:(1)证明:如图,因为三棱柱ABC A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.因此AE⊥平面B1BCC1.而AE⊂平面AEF,所以平面AEF ⊥平面B 1BCC 1.(2)设AB 的中点为D ,连接A 1D ,CD . 因为△ABC 是正三角形,所以CD ⊥AB .又三棱柱ABC A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角. 由题设,∠CA 1D =45°,所以A 1D =CD =32AB = 3. 在Rt △AA 1D 中,AA 1=A 1D 2-AD 2=3-1=2,所以FC =12AA 1=22.故三棱锥F AEC 的体积V =13S △AEC ·FC =13×32×22=612. 9.G1 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3 B.42π3C .22πD .42π9.B 由条件知该直角三角形的斜边长为22,斜边上的高为2,故围成的几何体的体积为2×13×π×(2)2×2=42π3.18.G1,G4,G5 一个正方体的平面展开图及该正方体的直观图的示意图如图12所示. (1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG .图1218.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCDEFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.10.G1、G2一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m3.图1310.83π 根据三视图可知,该几何体是圆柱与两个圆锥的组合体,其体积V =π×12×2+2×13×π×12×1=83π(m 3).G2 空间几何体的三视图和直观图9.G2 一个四面体的三视图如图12所示,则该四面体的表面积是( )图12A .1+ 3B .1+2 2C .2+ 3D .2 29.C 四面体的直观图如图所示,设O 是AC 的中点,则OP =OB =1,因此PB =2,于是S △PAB =S △PBC =34×(2)2=32,S △PAC =S △ABC =12×2×1=1,故四面体的表面积S =2×1+2×32=2+ 3.11.G2 圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图14所示.若该几何体的表面积为16+20π,则r =( )图14A .1B .2C .4D .811.B 由三视图可知,此组合体的前半部分是一个底面半径为r ,高为2r 的半圆柱(水平放置),后半部分是一个半径为r 的半球,其中半圆柱的一个底面与半球的半个圆面重合,所以此几何体的表面积为2r ·2r +12πr 2+12πr 2+πr ·2r +2πr 2=4r 2+5πr 2=16+20π,解得r =2.6.G2 一个正方体被一个平面截去一部分后,剩余部分的三视图如图12,则截去部分体积与剩余部分体积的比值为( )图12A.18B.17 C.16 D.156.D 由剩余部分的三视图可知,正方体被截去一个三棱锥,剩余部分如图所示,设正方体的棱长为a ,则被截去的三棱锥的体积为13×12a 2×a =16a 3,而正方体的体积为a 3,所以截去部分体积与剩余部分体积的比值为15.7.G2 某四棱锥的三视图如图12所示,该四棱锥最长棱的棱长为( )图12A .1 B. 2 C. 3 D .27.C 根据三视图可得,此四棱锥是底面是正方形,有一条侧棱和底面垂直的四棱锥,如图所示,所以最长棱的棱长为PC =12+12+12=3,故选C.9.G2 某几何体的三视图如图13所示,则该几何体的表面积等于( )图13A .8+2 2B .11+2 2C .14+2 2D .159.B 由三视图可知,该几何体是底面为直角梯形的直四棱柱,其表面积S =(1+1+2+2)×2+12×(1+2)×1×2=11+2 2.10.G2、G7、K3 某工件的三视图如图13所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )图13A.89πB.827πC.24(2-1)3πD.8(2-1)3π10.A 由三视图知,原工件是底面半径为1,母线长为3的圆锥.设新正方体工件的棱长为x,借助轴截面,由三角形相似可得,x32-12=1-22x1,得x=223,故V正=x3=16227,又V圆锥=13π×12×32-12=22π3,故利用率为16227223π=89π,选A.5.G2一个几何体的三视图如图12所示,则该几何体的表面积为()图12A.3π B.4πC.2π+4 D.3π+45.D 该几何体是底面半径为1、高为2的圆柱被其轴截面截开的半个圆柱,其表面积为12×2π×1×2+2×12×π×12+2×2=3π+4.14.G2,G7 在三棱柱ABC A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P A 1MN 的体积是________.14.124 由题意知,三棱柱的底面是直角边长为1的等腰直角三角形,棱柱的高为1且该棱柱为直三棱柱,其底面积为12,三棱锥A 1PMN 的底面积是12×12×1,高为12,故三棱锥P A 1MN 的体积为13×12×14=124.10.G1、G2 一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m 3.图1310.83π 根据三视图可知,该几何体是圆柱与两个圆锥的组合体,其体积V =π×12×2+2×13×π×12×1=83π(m 3).2.G2 某几何体的三视图如图11所示(单位:cm),则该几何体的体积是( )图11A .8 cm 3B .12 cm 3C.323 cm 3 D.403cm 3 2.C 该几何体为一个正方体和一个四棱锥的组合体,故所求体积为23+13×2×2×2=323.G3 平面的基本性质、空间两条直线6.G3 若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交6.D 若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则l 至少与l 1,l 2中的一条相交,故选D.5.A2、G3 l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件5.A 由l 1,l 2是异面直线,可得l 1,l 2不相交,所以p ⇒q ;由l 1,l 2不相交,可得l 1,l 2是异面直线或l 1∥l 2,所以q ⇒/ p .所以p 是q 的充分条件,但不是q 的必要条件.故选A.G4 空间中的平行关系18.G4,G5,G11 如图13,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.图1318.G1,G4,G5如图15,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.图1518.解:(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥CVAB的体积等于1 3OC·S△VAB=33.又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为3 3.18.G4、G5如图13,三棱台DEF ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.18.证明:(1)证法一:如图,连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则M为CD的中点.又H为BC的中点,所以HM∥BD.又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,AB∩BE=B,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)如图,连接HE,GE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC,又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.18.G1,G4,G5一个正方体的平面展开图及该正方体的直观图的示意图如图12所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.图1218.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCDEFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.17.G4、G5、G11如图14,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C中点.(1)求证:EF∥平面A1B1BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.图1417.解:(1)证明:如图所示,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又因为EF⊄平面A1B1BA,所以EF∥平面A1B1BA.(2)证明:因为AB =AC ,E 为BC 的中点,所以AE ⊥BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC 的中点,所以NE ∥B 1B ,NE =12B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1. 在Rt △A 1MB 1中,可得A 1B 1=B 1M 2+A 1M 2=4. 在Rt △A 1NB 1中,sin ∠A 1B 1N =A 1N A 1B 1=12,因此∠A 1B 1N =30°, 所以直线A 1B 1与平面BCB 1所成的角为30°.4.G4,G5 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β D .若α∥β,则l ∥m4.A 由两平面垂直的判定定理知,A 正确;对于B ,直线l ,m 相交、平行、异面都有可能,故不正确;对于C ,要求α内两条相交直线都平行于β,才能推出α∥β,故不正确;对于D ,l ,m 平行和异面都有可能,故不正确.16.G4、G5 如图12,在直三棱柱ABC A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.图1216.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为三棱柱ABC A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.G5 空间中的垂直关系18.G4,G5,G11如图13,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.图1320.G5、G12 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图14所示的阳马P ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连接DE ,BD ,BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V 1V 2的值.图1420.解:(1)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC . 由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D , 所以BC ⊥平面PCD .又DE ⊂平面PCD ,所以BC ⊥DE . 又因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC . 而PC ∩BC =C ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形, 即四面体EBCD 是一个鳖臑,其四个面的直角分别是∠BCD ,∠BCE ,∠DEC ,∠DEB . (2)由已知,PD 是阳马P ABCD 的高,所以V 1=13S 长方形ABCD ·PD =13BC ·CD ·PD ;由(1)知,DE 是鳖臑D BCE 的高,BC ⊥CE , 所以V 2=13S △BCE ·DE =16BC ·CE ·DE .在Rt △PDC 中,因为PD =CD ,点E 是PC 的中点,所以DE =CE =22CD . 于是V 1V 2=13BC ·CD ·PD 16BC ·CE ·DE =2CD ·PD CE ·DE=4.18.G5 如图15,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC, 三棱锥E ACD 的体积为63,求该三棱锥的侧面积.图1518.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E ACD 的体积V E ACD =13×12AC ·GD ·BE =624x 3=63,故x =2.从而可得AE =EC =ED =6,所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E ACD 的侧面积为3+2 5.18.G1,G4,G5 如图15,在三棱锥V ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V ABC 的体积.图1518.解:(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥CVAB的体积等于1 3OC·S△VAB=33.又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为3 3.20.G5、G12如图15,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.(1)若D为线段AC的中点,求证:AC⊥平面PDO;(2)求三棱锥PABC体积的最大值;(3)若BC=2,点E在线段PB上,求CE+OE的最小值.图1520.解:方法一:(1)证明:在△AOC 中,因为OA =OC ,D 为AC 的中点, 所以AC ⊥DO .又PO 垂直于圆O 所在的平面, 所以PO ⊥AC .因为DO ∩PO =O ,DO ⊂平面PDO ,PO ⊂平面PDO , 所以AC ⊥平面PDO . (2)因为点C 在圆O 上,所以当CO ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又AB =2,所以△ABC 面积的最大值为 12×2×1=1. 又因为三棱锥P ABC 的高PO =1,故三棱锥P ABC 体积的最大值为13×1×1=13.(3)在△POB 中,PO =OB =1,∠POB =90°, 所以PB =12+12= 2. 同理PC =2,所以PB =PC =BC .在三棱锥P ABC 中,将侧面BCP 绕PB 旋转至平面BC ′P, 使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值. 又因为OP =OB ,C ′P =C ′B , 所以OC ′垂直平分PB , 即E 为PB 中点.从而OC′=OE+EC′=22+62=2+62,亦即CE+OE的最小值为2+62.方法二:(1)(2)同方法一.(3)在△POB中,PO=OB=1,∠POB=90°,所以∠OPB=45°,PB=12+12= 2.同理PC= 2.所以PB=PC=BC,所以∠CPB=60°.在三棱锥PABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.所以在△OC′P中,由余弦定理得,OC′2=1+2-2×1×2×cos(45°+60°)=1+2-2 2×22×12-22×32=2+3.从而OC′=2+3=2+62.所以CE+OE的最小值为22+62.18.G1、G5如图14,直三棱柱ABC A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F AEC的体积.图1418.解:(1)证明:如图,因为三棱柱ABC A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.因此AE ⊥平面B 1BCC 1.而AE ⊂平面AEF , 所以平面AEF ⊥平面B 1BCC 1.(2)设AB 的中点为D ,连接A 1D ,CD . 因为△ABC 是正三角形,所以CD ⊥AB .又三棱柱ABC A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角. 由题设,∠CA 1D =45°,所以A 1D =CD =32AB = 3. 在Rt △AA 1D 中,AA 1=A 1D 2-AD 2=3-1=2,所以FC =12AA 1=22.故三棱锥F AEC 的体积V =13S △AEC ·FC =13×32×22=612. 18.G4、G5 如图13,三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .18.证明:(1)证法一:如图,连接DG ,CD ,设CD ∩GF =M ,连接MH . 在三棱台DEF ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形, 则M 为CD 的中点.又H 为BC 的中点, 所以HM ∥BD .又HM ⊂平面FGH ,BD ⊄平面FGH , 所以BD ∥平面FGH .证法二:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形HBEF 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,AB ∩BE =B , 所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH .(2)如图,连接HE ,GE .因为G ,H 分别为AC ,BC 的中点, 所以GH ∥AB .由AB ⊥BC ,得GH ⊥BC , 又H 为BC 的中点, 所以EF ∥HC ,EF =HC ,因此四边形EFCH 是平行四边形, 所以CF ∥HE .又CF ⊥BC ,所以HE ⊥BC .又HE ,GH ⊂平面EGH ,HE ∩GH =H , 所以BC ⊥平面EGH . 又BC ⊂平面BCD , 所以平面BCD ⊥平面EGH .18.G5 如图15(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1 BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1 BCDE 的体积为362,求a 的值.图1518.解:(1)证明:在图(1)中, 因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,即在图(2)中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC . 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE ,即A 1O 是四棱锥A 1 BCDE 的高. 由图(1)知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1 BCDE 的体积V =13×S ×A 1O =13×a 2×22a =26a 3. 由26a 3=362,得a =6. 18.G1,G4,G5 一个正方体的平面展开图及该正方体的直观图的示意图如图12所示. (1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG .图1218.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCDEFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.17.G4、G5、G11如图14,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB 1=27,点E 和F 分别为BC 和A 1C 中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 1所成角的大小.图1417.解:(1)证明:如图所示,连接A 1B .在△A 1BC 中,因为E 和F 分别是BC 和A 1C 的中点,所以EF ∥BA 1.又因为EF ⊄平面A 1B 1BA ,所以EF ∥平面A 1B 1BA .(2)证明:因为AB =AC ,E 为BC 的中点,所以AE ⊥BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC 的中点,所以NE ∥B 1B ,NE =12B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1. 在Rt △A 1MB 1中,可得A 1B 1=B 1M 2+A 1M 2=4. 在Rt △A 1NB 1中,sin ∠A 1B 1N =A 1N A 1B 1=12,因此∠A 1B 1N =30°, 所以直线A 1B 1与平面BCB 1所成的角为30°.4.G4,G5 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m4.A 由两平面垂直的判定定理知,A正确;对于B,直线l,m相交、平行、异面都有可能,故不正确;对于C,要求α内两条相交直线都平行于β,才能推出α∥β,故不正确;对于D,l,m平行和异面都有可能,故不正确.18.G5,G11如图14,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.图1418.解:(1)证明:设E为BC的中点,连接DE.由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A 1F ⊥DE ,垂足为F ,连接BF . 因为A 1E ⊥平面ABC ,所以BC ⊥A 1E . 因为BC ⊥AE ,所以BC ⊥平面AA 1DE . 所以BC ⊥A 1F ,所以A 1F ⊥平面BB 1C 1C .所以∠A 1BF 为直线A 1B 和平面BB 1C 1C 所成的角. 由AB =AC =2,∠CAB =90°,得EA =EB = 2. 由A 1E ⊥平面ABC ,得A 1A =A 1B =4,A 1E =14. 由DE =BB 1=4,DA 1=EA =2,∠DA 1E =90°,得A 1F =72. 所以sin ∠A 1BF =A 1F A 1B =78. 20.G5、G7 如图14,三棱锥P ABC 中,平面PAC ⊥平面ABC ,∠ABC =π2,点D ,E在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P DFBC 的体积为7,求线段BC 的长.图1420.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰三角形PDC 中DC 边的中点,故PE ⊥AC . 又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因为∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE . (2)设BC =x ,则在直角三角形ABC 中,AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,△AFE ∽△ABC ,故S △AFE S △ABC =232=49,即S △AFE =49S △ABC .由AD =12AE ,得S △AFD =12S △AFE =12×49S △ABC =29S △ABC =19x 36-x 2,从而四边形DFBC 的面积为S四边形DFBC=S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2.由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P DFBC 的高. 在直角三角形PEC 中,PE =PC 2-EC 2=42-22=2 3. 所以V 四棱锥P DFBC =13·S 四边形DFBC ·PE =13×718x 36-x 2·23=7,故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3. 所以BC =3或BC =3 3.G6 多面体与球 G7 棱柱与棱锥10.G2、G7、K3 某工件的三视图如图13所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )图13A.89π B.827πC.24(2-1)3π D.8(2-1)3π10.A 由三视图知,原工件是底面半径为1,母线长为3的圆锥.设新正方体工件的棱长为x ,借助轴截面,由三角形相似可得,x32-12=1-22x1,得x =223,故V 正=x 3=16227,又V 圆锥=13π×12×32-12=22π3,故利用率为16227223π=89π,选A.14.G2,G7 在三棱柱ABC A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P A 1MN 的体积是________.14.124 由题意知,三棱柱的底面是直角边长为1的等腰直角三角形,棱柱的高为1且该棱柱为直三棱柱,其底面积为12,三棱锥A 1PMN 的底面积是12×12×1,高为12,故三棱锥P A 1MN 的体积为13×12×14=124.5.G2、G7、G8 某几何体的三视图如图12所示,则该几何体的体积为()图12A.13+2πB.13π6C.7π3 D.5π25.B 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =13×12×π×12×1+π×12×2=13π6.20.G5、G7 如图14,三棱锥P ABC 中,平面PAC ⊥平面ABC ,∠ABC =π2,点D ,E在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P DFBC 的体积为7,求线段BC 的长.图1420.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰三角形PDC 中DC 边的中点,故PE ⊥AC . 又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因为∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE . (2)设BC =x ,则在直角三角形ABC 中,AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,△AFE ∽△ABC ,故S △AFE S △ABC =232=49,即S △AFE =49S △ABC .由AD =12AE ,得S △AFD =12S △AFE =12×49S △ABC =29S △ABC =19x 36-x 2,从而四边形DFBC 的面积为S四边形DFBC=S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2.由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P DFBC 的高. 在直角三角形PEC 中,PE =PC 2-EC 2=42-22=2 3. 所以V 四棱锥P DFBC =13·S 四边形DFBC ·PE =13×718x 36-x 2·23=7,故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3. 所以BC =3或BC =3 3.9.G7 现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.9.7 设新的底面半径为r ,则13π×52×4+π×22×8=13πr 2×4+πr 2×8 ,即283πr 2=1003π+32π,解得r =7.G8 多面体与球5.G2、G7、G8 某几何体的三视图如图12所示,则该几何体的体积为( )图12A.13+2πB.13π6C.7π3 D.5π25.B 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =13×12×π×12×1+π×12×2=13π6.10.G8 已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.C 因为V 三棱锥O ABC =V 三棱锥C OAB ,所以三棱锥O ABC 体积的最大值即三棱锥C OAB 体积的最大值,所以当C 到平面OAB 的距离最大时,即CO ⊥平面OAB 时,体积最大,设球的半径为r ,则V 三棱锥O ABC=V三棱锥C OAB=16r 3=36,所以r =6,则球O 的表面积S =4πr 2=144π.图12A.13+2πB.13π6C.7π3 D.5π2G9 空间向量及运算G10 空间向量解决线面位置关系G11 空间角与距离的求法17.G4、G5、G11 如图14,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 1所成角的大小.图1417.解:(1)证明:如图所示,连接A 1B .在△A 1BC 中,因为E 和F 分别是BC 和A 1C 的中点,所以EF ∥BA 1.又因为EF ⊄平面A 1B 1BA ,所以EF ∥平面A 1B 1BA .(2)证明:因为AB =AC ,E 为BC 的中点,所以AE ⊥BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC 的中点,所以NE ∥B 1B ,NE =12B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1. 在Rt △A 1MB 1中,可得A 1B 1=B 1M 2+A 1M 2=4. 在Rt △A 1NB 1中,sin ∠A 1B 1N =A 1N A 1B 1=12,因此∠A 1B 1N =30°,所以直线A1B1与平面BCB1所成的角为30°.18.G5,G11如图14,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.图1418.解:(1)证明:设E为BC的中点,连接DE.由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,所以BC⊥平面AA1DE.所以BC⊥A1F,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A 1E ⊥平面ABC ,得A 1A =A 1B =4,A 1E =14. 由DE =BB 1=4,DA 1=EA =2,∠DA 1E =90°,得A 1F =72. 所以sin ∠A 1BF =A 1F A 1B =78. 18.G4,G5,G11 如图13,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.图13 图1422.G11、G12 如图16,在四棱锥P ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.图1622.解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2), 设平面PCD 的一个法向量为m =(x ,y ,z ),所以m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1, 所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)由BP →=(-1,0,2),可设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),所以CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2), 从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2 . 设1+2λ=t ,t ∈,则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910,当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|取得最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.G12 单元综合6.G12 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图11,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )。
【最新】高中数学-2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元
K 概率 K1 随事件的概率12.K1 从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是________. 12.25 从边长为1的正方形的中心和顶点这五点中,随机选取两点,共有10种取法,该两点间的距离为22的有4种,所求事件的概率为 P =410=25.K2 古典概型15.K2 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).15.15 6节课共有A 66=720种排法,相邻两节文化课间至少间隔1节艺术课排法有A 33A 34=144种排法,所以相邻两节文化课间至少间隔1节艺术课的概率为144720=15.18.K2 如图1-6,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O 共面的概率.图1-618.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种; y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种; z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种;所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这个6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P =220=110.(2)选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P =1220=35.10.K2 袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.4510.B 用列举法可得:从袋中任取两球有15种取法,其中一白一黑共有6种取法,由等可能事件的概率公式可得p =615=25.15.I1、K2 某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.15.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以P (B )=315=15.18.K2、B10、I2 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.18.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -85,n <17,85,n ≥17(n ∈N ).(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4. ②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.17.I2、K2 某校100名学生期中考试语文成绩的频率分布直方图如图1-4所示,其中成绩分组区间是:.图1-4(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.6.K2 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.6.35 本题考查等比数列的通项公式的运用以及古典概型的求解.解题突破口为等比数列通项公式的运用.由通项公式a n =1×(-3)n -1得,满足条件的数有1,-3,-33,-35,-37,-39,共6个,从而所求概率为P =35.19.I4、K2 电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:图1-6将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷 合计 男 女 合计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2,P (χ2≥k )0.05 0.01 k3.8416.63519.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”为25人,从而完成2×2列联表如下:非体育迷 体育迷 合计 男 30 15 45 女 45 10 55 合计7525100将2×2列联表中的数据代入公式计算,得χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=100×30×10-45×15275×25×45×55=10033≈3.030. 因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5个,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}.其中a i 表示男性,i =1,2,3,b j 表示女性,j =1,2.Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A 表示“任选2人中,至少有1人是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},事件A 由7个基本事件组成,因而P (A )=710.18.K2 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.18.解:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E .从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ).共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为: (A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等,因此这此基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.19.I2、K2 假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:图1-8(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率. 19.解:(1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为14.(2)根据抽样结果,寿命大于200小时的产品有75+70=145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529. K3 几何概型11.K3 在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( )A.16B.13C.23D.4511.C 本小题主要考查几何概型.解题的突破口为弄清是长度之比、面积之比还是体积之比.令AC =x ,CB =12-x ,这时的面积为S =x (12-x ),根据条件S =x (12-x )>20⇒x 2-12x +20<0⇒2<x <10,矩形面积大于20 cm 2的概率P =10-212=23,故而答案为C.10.K3 如图1-3,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )图1-3A.12-1πB.1π C .1-2π D.2π10.C 如下图所示,不妨设扇形的半径为2a ,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =14π(2a )2=πa 2①,而S 1+S 3与S 2+S 3的和恰好为一个半径为a 的圆的面积,即S 1+S 3+S 2+S 3=πa 2②. 由①-②得S 3=S 4;又由图可知S 3=S 扇形EOD +S 扇形COD -S 正方形OEDC =12πa 2-a 2,所以S 阴影=πa 2-2a 2.故由几何概型概率公式可得,所求概率P =S 阴影S 扇形OAB =πa 2-2a 2πa 2=1-2π.故选C. 3.E5、K3 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22 C.π6 D.4-π43.D 本题考查了线性规划、圆的概念、圆的面积公式以及几何概型公式等基础知识. 如图所示,P =S 2S =S -S 1S =4-π4.K4 互斥事件有一个发生的概率17.K4 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) 17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14. 因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.18.K4、K5 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.18.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1 B 1 A 2 B 2)+P (A 1 B 1 A 2 B 2 A 3 B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫123 =1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A 1 B 1 A 2 B 2)+P (A 1 B 1 A 2 B 2A 3)=P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)·P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427. K5 相互对立事件同时发生的概率20.K5 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16, P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A ) =0.16×0.4+0.48×(1-0.4) =0.352.(2)P (B 0)=0.62=0.36,P (B 1)=2×0.4×0.6=0.48,P (B 2)=0.42=0.16,P (A 2)=0.62=0.36.C =A 1·B 2+A 2·B 1+A 2·B 2 P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2)=P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2)=0.48×0.16+0.36×0.48+0.36×0.16 =0.307 2.18.K4、K5 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.18.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1 B 1 A 2 B 2)+P (A 1 B 1 A 2 B 2 A 3 B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫123 =1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A 1 B 1 A 2 B 2)+P (A 1 B 1 A 2 B 2A 3)=P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)·P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427. K6 离散型随机变量及其分布列22.K6 设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).22.解:(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对, 故P (ξ=2)=6C 212=111,于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611,所以随机变量ξ的分布列是因此E (x )K7 条件概率与事件的独立性 K8 离散型随机变量的数字特征与正态分布17.K8、I1、I2 近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.注:s 2=1n,其中x 为数据x 1,x 2,…,x n 的平均数17.解:(1)厨余垃圾投放正确的概率约为 “厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601000=0.7,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值. 因为x =13(a +b +c )=200, 所以s 2=13=80 000.K9 单元综合17.K9 某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率. 17.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950. 解得p =15.(2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么P (D )=C 23110·⎝ ⎛⎭⎪⎫1-1102+⎝ ⎛⎭⎪⎫1-1103=9721000=243250. 答:系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250.。
【最新】高中数学-2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 N单元
数 学N 单元 选修4系列N1 选修4-1 几何证明选讲21.A.N1 选修41:几何证明选讲如图17,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD .图1721.A.证明:在△ADB 和△ABC 中, 因为∠ABC =90°,BD ⊥AC ,∠A 为公共角, 所以△ADB ∽△ABC ,于是∠ABD =∠C . 在Rt △BDC 中,因为E 是BC 的中点, 所以ED =EC ,从而∠EDC =∠C , 所以∠EDC =∠ABD .22.N1 选修41:几何证明选讲如图16所示,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .图1622.证明:(1)设E 是AB 的中点,连接OE . 因为OA =OB ,∠AOB =120°, 所以OE ⊥AB ,∠AOE =60°.在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O相切.(2)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O′是A,B,C,D 四点所在圆的圆心,作直线OO′.由已知得O在线段AB的垂直平分线上,又O′在线段AB的垂直平分线上,所以OO′⊥AB.同理可证,OO′⊥CD,所以AB∥CD.22.N1选修41:几何证明选讲如图16,⊙O中AB的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.图1622.解:(1)连接PB,BC,则∠BFD=∠PBA+∠BPD,∠PCD=∠PCB+∠BCD.因为AP=BP,所以∠PBA=∠PCB,又∠BPD=∠BCD,所以∠BFD=∠PCD.又∠PFB+∠BFD=180°,∠PFB=2∠PCD,所以3∠PCD=180°,因此∠PCD=60°.(2)证明:因为∠PCD=∠BFD,所以∠PCD+∠EFD=180°,由此知C,D,F,E四点共圆,其圆心既在CE的垂直平分线上,又在DF的垂直平分线上,故G就是过C,D,F,E四点的圆的圆心,所以G在CD的垂直平分线上,又O也在CD的垂直平分线上,因此OG⊥CD.22.N1选修41:几何证明选讲如图15,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(1)证明:B ,C ,G ,F 四点共圆;(2)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.图1522.解:(1)证明:因为DF ⊥EC ,所以△DEF ∽△CDF ,则有∠GDF =∠DEF =∠FCB ,DF CF =DE CD =DG CB, 所以△DGF ∽△CBF ,由此可得∠DGF =∠CBF ,因此∠CGF +∠CBF =180°,所以B ,C ,G ,F 四点共圆. (2)由B ,C ,G ,F 四点共圆,CG ⊥CB 知FG ⊥FB ,连接GB .由G 为Rt △DFC 斜边CD 的中点,知GF =GC ,故Rt △BCG ≌Rt △BFG ,因此,四边形BCGF 的面积S 是△GCB 面积S △GCB 的2倍,即S =2S △GCB =2×12×12×1=12.N2 选修4-2 矩阵21.B .N2 选修42:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 20 -2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB .21.B .解:设B =⎣⎢⎡⎦⎥⎤a b c d ,则B -1B = ⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2⎣⎢⎡⎦⎥⎤a bc d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤a -12c b -12d 2c 2d =⎣⎢⎡⎦⎥⎤100 1,故⎩⎪⎨⎪⎧a -12c =1,b -12d =0,2c =0,2d =1,解得⎩⎪⎨⎪⎧a =1,b =14,c =0,d =12,所以B =⎣⎢⎢⎡⎦⎥⎥⎤1 140 12.因此,AB =⎣⎢⎡⎦⎥⎤1 20 -2⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540 -1.N3 选修4-4 参数与参数方程16.N3 下列极坐标方程中,对应的曲线为图13的是()图13A .ρ=6+5cos θB .ρ=6+5sin θC .ρ=6-5cos θD .ρ=6-5sin θ16.D 依次取θ=0,π2,π,3π2,结合图形可知只有ρ=6-5sin θ满足题意.11.N3 在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.11.2 将极坐标方程转化为直角坐标方程进行运算.由x =ρcos θ,y =ρsin θ,得直线的直角坐标方程为x -3y -1=0,因为ρ=2cos θ,ρ2(sin 2θ+cos 2θ)=2ρcosθ,所以圆的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1,圆心(1,0)在直线上,因此AB 为圆的直径,所以|AB |=2.21.C .N3 选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB的长.21.C .解:椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y 24=1,得1+12t 2+32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167.23.N3 选修44:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .23.解:(1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsinθ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知得tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,在C 3上, 所以a =1.23.N3 选修44:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 23.解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin(α+π3)-2, 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为(32,12).23.N3 选修44:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.23.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入圆C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11,所以|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,则tan α=±153,所以l 的斜率为153或-153.N4 选修4-5 不等式选讲 21.D .N4 选修45:不等式选讲设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .21.D .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .24.N4 选修45:不等式选讲 已知函数f (x )=|x +1|-|2x -3|. (1)在图17中画出y =f (x )的图像; (2)求不等式|f (x )|>1的解集.图1724.解:(1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32, 则y =f (x )的图像如图所示.(2)由f (x )的表达式及图像得,当f (x )=1时,x =1或x =3; 当f (x )=-1时,x =13或x =5.故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为{x ⎪⎪⎪x <13或1<x <3或x >5}.24.N4 选修45:不等式选讲已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 24.解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是 选修45:不等式选讲已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.24.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,因此|a +b |<|1+ab |.N5 选修4-7 优选法与试验设计。
【最新】高中数学-2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 G单元
数 学 G 单元 立体几何G1 空间几何体的结构19.G1、G11 如图17,长方体ABCD A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.图17(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 19.解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10, 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),所以FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面α的一个法向量,则 ⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0, 所以可取n =(0,4,3). 又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面α所成角的正弦值为4515.19.G5、G1、G11 如图16,已知四棱台ABCD A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形,A 1A =6,且A 1A ⊥底面ABCD ,点P ,Q 分别在棱DD 1,BC 上.(1)若P 是DD 1的中点,证明:AB 1⊥PQ ;(2)若PQ ∥平面ABB 1A 1,二面角P QD A 的余弦值为37,求四面体ADPQ 的体积.图1619.解:方法一:由题设知,AA 1,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m =BQ ,0≤m ≤6.(1)若P 是DD 1的中点,则P 0,92,3,PQ →=6,m -92,-3.又AB 1→=(3,0,6),于是AB 1→·PQ→=18-18=0,所以AB 1→⊥PQ →,即AB 1⊥PQ .(2)由题设知,DQ →=(6,m -6,0),DD 1→=(0,-3,6)是平面PQD 内的两个不共线向量.设n 1=(x ,y ,z )是平面PQD 的一个法向量,则⎩⎪⎨⎪⎧n 1·DQ →=0,n 1·DD 1→=0,即⎩⎪⎨⎪⎧6x +(m -6)y =0,-3y +6z =0.取y =6,得n 1=(6-m ,6,3).又平面AQD 的一个法向量是n 2=(0,0,1),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=31·(6-m )2+62+32=3(6-m )2+45.而二面角P QD A 的余弦值为37,因此3(6-m )2+45=37,解得m =4或m =8(舍去),此时Q (6,4,0).设DP →=λDD 1→(0<λ≤1),而DD 1→=(0,-3,6),由此得点P (0,6-3λ,6λ),所以PQ →=(6,3λ-2,-6λ).因为PQ ∥平面ABB 1A 1,且平面ABB 1A 1的一个法向量是n 3=(0,1,0),所以PQ →·n 3=0,即3λ-2=0,即λ=23,从而P (0,4,4).于是,将四面体ADPQ 视为以△ADQ 为底面的三棱锥P ADQ ,则其高h =4,故四面体ADPQ 的体积V =13S △ADQ ·h =13×12×6×6×4=24.方法二:(1)如图所示,取A 1A 的中点R ,连接PR ,BR ,PC .因为A 1A ,D 1D 是梯形A 1ADD 1的两腰,P 是D 1D 的中点,所以PR ∥AD ,于是由AD ∥BC 知,PR ∥BC ,所以P ,R ,B ,C 四点共面.由题设知,BC ⊥AB ,BC ⊥A 1A ,所以BC ⊥平面ABB 1A 1,因此BC ⊥AB 1.①因为tan ∠ABR =AR AB =36=A 1B 1A 1A=tan ∠A 1AB 1,所以∠ABR =∠A 1AB 1,因此∠ABR +∠BAB 1=∠A 1AB 1+∠BAB 1=90°,于是AB 1⊥BR .再由①即知AB 1⊥平面PRBC ,又PQ ⊂平面PRBC ,故AB 1⊥PQ .(2)如图所示,过点P 作PM ∥A 1A 交AD 于点M ,则PM ∥平面ABB 1A 1.②因为A 1A ⊥平面ABCD ,所以PM ⊥平面ABCD ,过点M 作MN ⊥QD 于点N ,连接PN ,则PN ⊥QD ,∠PNM 为二面角P QD A 的平面角,所以cos ∠PNM =37,即MN PN =37,从而PMMN =403.③ 连接MQ ,由PQ ∥平面ABB 1A 1及②知, 平面PQM ∥平面ABB 1A 1,所以MQ ∥AB .又四边形ABCD 是正方形,所以四边形ABQM 为矩形,故MQ =AB =6. 设MD =t ,则MN =MQ ·MD MQ 2+MD 2=6t36+t2.④ 过点D 1作D 1E ∥A 1A 交AD 于点E ,则四边形AA 1D 1E 为矩形,所以D 1E =A 1A =6,AE =A 1D 1=3,因此ED =AD -AE =3.于是PM MD =D 1E ED =63=2,所以PM =2MD =2t .再由③④,得36+t 23=403,解得t =2,因此PM =4.故四面体ADPQ 的体积V =13S △ADQ ·PM=13×12×6×6×4=24.7.G1 在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3D .2π 7.C 旋转后的几何体为一个底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,所求几何体的体积为π×12×2-13π×12×1=53π.18.G1、G4、G11 一个正方体的平面展开图及该正方体的直观图的示意图如图13所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角A EG M 的余弦值.图1318.解:(1)点F ,G ,H 的位置如图所示.(2)证明:连接AC ,BD 交于点O ,连接OH ,OM . 因为M ,N 分别是BC ,GH 的中点, 所以OM ∥CD ,且OM =12CD ,HN ∥CD ,且HN =12CD ,所以OM ∥HN ,OM =HN ,所以四边形MNHO 是平行四边形, 从而MN ∥OH .又MN ⊄平面BDH ,OH ⊂平面BDH , 所以MN ∥平面BDH . (3)方法一: 过M 作MP ⊥AC 于P .在正方体ABCD EFGH 中,AC ∥EG , 所以MP ⊥EG .过P 作PK ⊥EG 于K ,连接KM , 所以EG ⊥平面PKM , 从而KM ⊥EG ,所以∠PKM 是二面角A EG M 的平面角. 设AD =2,则CM =1,PK =2. 在Rt △CMP 中,PM =CM sin 45°=22. 在Rt △PKM 中,KM =PK 2+PM 2=3 22.所以cos ∠PKM =PK KM =2 23,即二面角A EG M 的余弦值为2 23.方法二:如图,以D 为坐标原点,分别以DA →,DC →,DH →方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Dxyz .设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0), 所以GE →=(2,-2,0),MG →=(-1,0,2). 设平面EGM 的一个法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·GE →=0,n 1·MG →=0,得⎩⎪⎨⎪⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1).在正方体ABCD EFGH 中,DO ⊥平面AEGC ,则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2+2+04+4+1·1+1+0=2 23,故二面角A EG M 的余弦值为2 23.10.G1、G2 一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m 3.图1310.83π 根据三视图可知几何体是圆柱与两个圆锥的组合体,其体积V =π×12×2+2×13×π×12×1=83π(m 3).G2 空间几何体的三视图和直观图7.G2 一个四面体的三视图如图11所示,则该四面体的表面积是( )图11A .1+ 3B .2+ 3C .1+2 2D .2 27.B 四面体的直观图如图所示,设O 是AC 的中点,则OP =OB =1,因此PB =2,于是S △PAB =S △PBC =34×(2)2=32,S △PAC =S △ABC =12×2×1=1,故四面体的表面积S =2×1+2×32=2+3,故选B. 6.G2 一个正方体被一个平面截去一部分后,剩余部分的三视图如图12,则截去部分体积与剩余部分体积的比值为( )图12A.18B.17C.16D.156.D 几何体的直观图为正方体ABCD A 1B 1C 1D 1截去了一个三棱锥A A 1B 1D 1,如图所示.易知V 三棱锥A A 1B 1D 1=16V 正方体,所以V 三棱锥A A 1B 1D 1VB 1D 1C 1 ABCD =15,故选D.11.G2 圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图14所示.若该几何体的表面积为16+20π,则r =( )图14A .1B .2C .4D .811.B 由三视图可知,此组合体的前半部分是一个底面半径为r ,高为2r 的半圆柱(水平放置),后半部分是一个半径为r 的半球,其中半圆柱的一个底面与半球的半个圆面重合,所以此几何体的表面积为2r ·2r +12πr 2+12πr 2+πr ·2r +2πr 2=4r 2+5πr 2=16+20π,解得r =2.5.G2 某三棱锥的三视图如图12所示,则该三棱锥的表面积是( )图12A .2+ 5B .4+ 5C .2+2 5D .55.C 根据三视图可得到直观图(如图所示).取D 为BC 的中点,根据题意可知,AD ⊥BC ,AD =2,BC =2,SA =1,且SA ⊥平面ABC .在Rt △SAB 中,SB =1+4+1=6,同理SC =6,所以△SBC 是等腰三角形,所以BC 边上的高SD =6-1= 5.所以三棱锥的表面积是12×2×2+2×12×5×1+12×2×5=2+25.10.G2、G7、B12、K3 某工件的三视图如图13所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积原工件的体积( )图13A.89π B.169πC.4(2-1)3π D.12(2-1)3π10.A 方法一:由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此正四棱柱的底面对角线为2x ,高为h ,则由三角形相似可得,x 1=2-h2,∴h =2-2x ,x ∈(0,1),其体积V 长=(2x )2h =2x 2(2-2x )≤2x +x +2-2x 33=1627当且仅当x =23时取等号,V 圆锥=13π×12×2=23π,得利用率为162723π=89π. 方法二:由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此正四棱柱的底面对角线为2x ,高为h ,则由三角形相似可得,x 1=2-h2,∴h =2-2x ,x ∈(0,1),其体积V 长=(2x )2h =2x 2(2-2x )=-4x 3+4x 2,令V 长′=-12x 2+8x =0,得当x =23时,V长取最大值1627.又V 圆锥=13π×12×2=23π,得利用率为162723π=89π,故选A. 5.G2 一个几何体的三视图如图13所示,则该几何体的表面积为( )图13A .3πB .4πC .2π+4D .3π+45.D 该几何体是底面半径为1、母线长为2的圆柱被其轴截面截开的半个圆柱,其表面积为12×2π×1×2+2×12×π×12+2×2=3π+4.10.G1、G2 一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m 3.图1310.83π 根据三视图可知几何体是圆柱与两个圆锥的组合体,其体积V =π×12×2+2×13×π×12×1=83π(m 3). 2.G2 某几何体的三视图如图11所示(单位:cm),则该几何体的体积是( )图11A .8 cm 3B .12 cm 3C.323 cm 3 D.403cm 32.C 该几何体为一个正方体和一个正四棱锥的组合体,故该几何体的体积V =23+13×2×2×2=323(cm 3),故选C.5.G2、G7、G8 某几何体的三视图如图12所示,则该几何体的体积为( )图12A.13+πB.23+π C.13+2π D.23+2π 5.A 由三视图知,该几何体为一个半圆柱与一个三棱锥的组合体,其中半圆柱的底面圆的半径为1、高为2,三棱锥的底面为一个等腰直角三角形,斜边上的高为1,所以该几何体的体积V =13×12×2×1×1+12π×12×2=13+π.G3 平面的基本性质、空间两条直线14.G3,G9 如图12所示,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 和AF 所成的角为θ,则cos θ的最大值为________.图1214.25 分别以AB ,AD ,AQ 为x 轴,y 轴,z 轴建立空间直角坐标系,并设正方形边长为2,QM =m (0≤m ≤2),则AF →=(2,1,0),EM →=(-1,m ,2),所以cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AF →·EM →|AF →|·|EM →|=2-m 5m 2+25(0≤m ≤2). 令f (m )=2-m5m 2+25(0≤m ≤2),则 f ′(m )=-5m 2+25-(2-m )×10m 25m 2+255m 2+25. 因为m ∈,所以f ′(m )<0,故f (m )max =f (0)=25,即cos θ的最大值为25.13.G3 如图14,在三棱锥A BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.图1413.78 连接ND ,取ND 的中点为E ,则ME ∥AN ,则异面直线AN ,CM 所成的角为∠EMC .因为AN =ND =MC =32-12=2 2,所以ME =2,CE =(2)2+12=3,则cos ∠EMC=CM 2+ME 2-CE 22CM ·ME =8+2-32×22×2=78.G4 空间中的平行关系5.G4、G5 已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行...,则在α内不存在...与β平行的直线D .若m ,n 不平行...,则m 与n 不可能...垂直于同一平面 5.D 如图,在正方体ABCD A 1B 1C 1D 1中,平面ADD 1A 1,平面ABB 1A 1都垂直于平面ABCD ,但这两个平面不平行,A 错;直线A 1D 1和A 1B 1都平行于平面ABCD ,但这两条直线不平行,B 错;平面ADD 1A 1与平面ABCD 不平行,但平面ADD 1A 1内的直线A 1D 1与平面ABCD 平行,C 错;D 的逆否命题是“若m ,n 都垂直于同一平面,则m ,n 必平行”,此逆否命题为真,故D 正确.19.G4、G11 如图14所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C ;(2)求二面角E A 1D B 1的余弦值.图1419.解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,所以B 1C ∥面A 1DE .又B 1C⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1).因为E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →,得r 1,s 1,t 1应满足方程组⎩⎪⎨⎪⎧0.5r 1+0.5s 1=0,s 1-t 1=0, 令t 1=1,可得n 1=(-1,1,1).设面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),A 1B 1→=(1,0,0),A 1D →=(0,1,-1), 由此同理可得n 2=(0,1,1).结合图形知,二面角E A 1D B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.16.G4、G5 如图12,在直三棱柱ABC A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.图1216.证明:(1)由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC .又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为三棱柱ABC A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.4.A2,G4设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.B 当m⊂α,m∥β时,不能确定平面α与β平行;当α∥β时,根据平面与平面平行的性质,可以推出m∥β.7.A2,G4,G5若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.B 若m⊥α,l⊥m,则l⊂α或l∥α;若m⊥α,l∥α,则l⊥m.故选B.17.G4、G11如图13,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值.图1317.解:方法一:(1)证明:如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得,AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF , 从而四边形HGFD 是平行四边形, 所以GF ∥DH .又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE .(2)如图,在平面BEC 内,过B 点作BQ ∥EC .因为BE ⊥CE ,所以BQ ⊥BE .又因为AB ⊥平面BEC ,所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以BE →,BQ →,BA →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则A (0,0,2),B (0,0,0),E (2,0,0),F (2,2,1).因为AB ⊥平面BEC ,所以BA →=(0,0,2)为平面BEC 的一个法向量. 设n =(x ,y ,z )为平面AEF 的一个法向量. 又AE →=(2,0,-2),AF →=(2,2,-1), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧2x -2z =0,2x +2y -z =0,取z =2,得n =(2,-1,2),从而cos 〈n ,BA →〉=n ·BA →|n |·|BA →|=43×2=23,所以平面AEF 与平面BEC 所成锐二面角的余弦值为23.方法二:(1)证明:如图,取AB 中点M ,连接MG ,MF .又G 是BE 的中点,所以GM ∥AE . 又AE ⊂平面ADE ,GM ⊄平面ADE , 所以GM ∥平面ADE .在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点得MF ∥AD . 又AD ⊂平面ADE ,MF ⊄平面ADE , 所以MF ∥平面ADE .又因为GM ∩MF =M ,GM ⊂平面GMF ,MF ⊂平面GMF , 所以平面GMF ∥平面ADE . 因为GF ⊂平面GMF , 所以GF ∥平面ADE . (2)同方法一.图1217.G4、G5、G11如图12,在三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.17.解:(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEFABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则O为CD的中点.又H为BC的中点,所以OH∥BD.又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEFABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH .(2)连接BG ,设AB =2,则CF =1. 方法一:在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC ,在△ABC 中,AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz , 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1), 可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1), 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的一个法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0),所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12,所以平面FGH 与平面ACFD 所成的角(锐角)的大小为60°.方法二:作HM ⊥AC 于点M ,作MN ⊥GF 于点N ,连接NH . 由FC ⊥平面ABC ,得HM ⊥FC , 又FC ∩AC =C , 所以HM ⊥平面ACFD , 因此GF ⊥NH ,所以∠MNH 即为所求的角.在△BGC 中,MH ∥BG ,MH =12BG =22,由△GNM ∽△GCF , 可得MN FC =GM GF, 从而MN =66. 由HM ⊥平面ACFD ,MN ⊂平面ACFD , 得HM ⊥MN ,因此tan ∠MNH =HMMN=3, 所以∠MNH =60°,所以平面FGH 与平面ACFD 所成的角(锐角)的大小为60°.18.G1、G4、G11 一个正方体的平面展开图及该正方体的直观图的示意图如图13所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角A EG M 的余弦值.图1318.解:(1)点F ,G ,H 的位置如图所示.(2)证明:连接AC ,BD 交于点O ,连接OH ,OM . 因为M ,N 分别是BC ,GH 的中点, 所以OM ∥CD ,且OM =12CD ,HN ∥CD ,且HN =12CD ,所以OM ∥HN ,OM =HN ,所以四边形MNHO 是平行四边形, 从而MN ∥OH .又MN ⊄平面BDH ,OH ⊂平面BDH , 所以MN ∥平面BDH . (3)方法一: 过M 作MP ⊥AC 于P .在正方体ABCD EFGH 中,AC ∥EG , 所以MP ⊥EG .过P 作PK ⊥EG 于K ,连接KM , 所以EG ⊥平面PKM , 从而KM ⊥EG ,所以∠PKM 是二面角A EG M 的平面角. 设AD =2,则CM =1,PK =2.在Rt △CMP 中,PM =CM sin 45°=22. 在Rt △PKM 中,KM =PK 2+PM 2=3 22.所以cos ∠PKM =PK KM =2 23,即二面角A EG M 的余弦值为2 23.方法二:如图,以D 为坐标原点,分别以DA →,DC →,DH →方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Dxyz .设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0), 所以GE →=(2,-2,0),MG →=(-1,0,2). 设平面EGM 的一个法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·GE →=0,n 1·MG →=0,得⎩⎪⎨⎪⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1).在正方体ABCD EFGH 中,DO ⊥平面AEGC ,则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2+2+04+4+1·1+1+0=2 23,故二面角A EG M 的余弦值为2 23.17.G4、G10、G11 如图14,在四棱柱ABCD A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ;(2)求二面角D 1 AC B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.图1417.解:如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点,得M 1,12,1,N (1,-2,1).(1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量,MN →=0,-52,0,由此可得MN →·n =0.又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0).设n 1=(x ,y ,z )为平面ACD 1的一个法向量,则⎩⎪⎨⎪⎧n 1·AD →1=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x -2y +2z =0,2x =0.不妨设z =1,可得n 1=(0,1,1).设n 2=(x ,y ,z )为平面ACB 1的一个法向量,则⎩⎪⎨⎪⎧n 2·AB →1=0,n 2·AC →=0,由AB 1→=(0,1,2),得⎩⎪⎨⎪⎧y +2z =0,2x =0.不妨设z =1,可得n 2=(0,-2,1). 因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010,于是sin 〈n 1,n 2〉=31010.所以二面角D 1 AC B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈,则E (0,λ,2),从而NE →=(-1,λ+2,1).又n =(0,0,1)为平面ABCD 的一个法向量,由已知,得cos 〈NE →,n 〉=NE →·n|NE →|·|n |=1(-1)2+(λ+2)2+12=13,整理得λ2+4λ-3=0,又因为λ∈,解得λ=7-2.所以线段A 1E 的长为7-2.G5 空间中的垂直关系5.G4、G5 已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行...,则在α内不存在...与β平行的直线D .若m ,n 不平行...,则m 与n 不可能...垂直于同一平面 5.D 如图,在正方体ABCD A 1B 1C 1D 1中,平面ADD 1A 1,平面ABB 1A 1都垂直于平面ABCD ,但这两个平面不平行,A 错;直线A 1D 1和A 1B 1都平行于平面ABCD ,但这两条直线不平行,B 错;平面ADD 1A 1与平面ABCD 不平行,但平面ADD 1A 1内的直线A 1D 1与平面ABCD 平行,C 错;D 的逆否命题是“若m ,n 都垂直于同一平面,则m ,n 必平行”,此逆否命题为真,故D 正确.19.G5、G12 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图15,在阳马P ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交PB 于点F ,连接DE ,DF ,BD ,BE .(1)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.图1519.解:(方法一)(1)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC ,由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D ,所以BC ⊥平面PCD . 而DE ⊂平面PCD ,所以BC ⊥DE . 又因为PD =CD ,点E 是PC 的中点, 所以DE ⊥PC .而PC ∩BC =C ,所以DE ⊥平面PBC . 而PB ⊂平面PBC ,所以PB ⊥DE .又PB ⊥EF ,DE ∩EF =E ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .(2)如图所示,在面PBC 内,延长BC 与FE 交于点G ,连接DG ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB ⊥平面DEF ,所以PB ⊥DG . 又因为PD ⊥底面ABCD ,所以PD ⊥DG . 而PD ∩PB =P ,所以DG ⊥平面PBD .故∠BDF 是面DEF 与面ABCD 所成二面角的平面角. 设PD =DC =1,BC =λ,有BD =1+λ2. 在Rt △PDB 中,由DF ⊥PB , 得∠DPF =∠FDB =π3,则tan π3=tan ∠DPF =BD PD =1+λ2=3,解得λ= 2.所以DC BC =1λ=22.故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =22.(方法二)(1)证明:如图所示,以D 为原点,射线DA ,DC ,DP 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系.设PD =DC =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB →=(λ,1,-1).又点E 是PC 的中点,所以E ⎝ ⎛⎭⎪⎫0,12,12,DE →=⎝ ⎛⎭⎪⎫0,12,12,于是PB →·DE →=0,即PB ⊥DE .又已知EF ⊥PB ,而DE ∩EF =E ,所以PB ⊥平面DEF .因PC →=(0,1,-1),DE →·PC →=0,则DE ⊥PC ,所以DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .(2)由PD ⊥平面ABCD ,得DP →=(0,0,1)是平面ABCD 的一个法向量.由(1)知,PB ⊥平面DEF ,所以BP →=(-λ,-1,1)是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则cos π3=BP →·DP →|BP →|·|DP →|=1λ2+2=12, 解得λ=2,所以DC BC =1λ=22.故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =22.16.G4、G5 如图12,在直三棱柱ABC A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ;(2)BC1⊥AB1.图1216.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为三棱柱ABC A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.18.G5、G11如图15,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.图15(1)证明:平面AEC⊥平面AFC;(2)求直线AE 与直线CF 所成角的余弦值.18.解:(1)连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC .又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C ()0,3,0,所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 17.G5,G11 如图15,在四棱锥A EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(1)求证:AO ⊥BE ;(2)求二面角F AE B 的余弦值; (3)若BE ⊥平面AOC ,求a 的值.图1517.解:(1)证明:因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF . 又因为平面AEF ⊥平面EFCB ,AO ⊂平面AEF , 所以AO ⊥平面EFCB , 所以AO ⊥BE .(2)取BC 的中点G ,连接OG . 由题设知,四边形EFCB 是等腰梯形, 所以OG ⊥EF .由(1)知AO ⊥平面EFCB , 又OG ⊂平面EFCB , 所以OA ⊥OG .如图建立空间直角坐标系O xyz .则E (a ,0,0),A (0,0,3a ),B (2,3(2-a ),0),EA →=(-a ,0,3a ),BE →=(a -2,3(a -2),0).设平面AEB 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,(a -2)x +3(a -2)y =0.令z =1,则x =3,y =-1,于是n =(3,-1,1).平面AEF 的一个法向量为p =(0,1,0). 所以cos 〈n ,p 〉=n ·p |n||p|=-55.由题知二面角F AE B 为钝角,所以它的余弦值为-55. (3)因为BE ⊥平面AOC ,所以BE ⊥OC , 即BE →·OC →=0.因为BE →=(a -2,3(a -2),0), OC →=(-2,3(2-a ),0),所以BE →·OC →=-2(a -2)-3(a -2)2. 由BE →·OC →=0及0<a <2,解得a =43.7.A2,G4,G5 若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.B 若m ⊥α,l ⊥m ,则l ⊂α或l ∥α;若m ⊥α,l ∥α,则l ⊥m .故选B. 19.G5、G1、G11 如图16,已知四棱台ABCD A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形,A 1A =6,且A 1A ⊥底面ABCD ,点P ,Q 分别在棱DD 1,BC 上.(1)若P 是DD 1的中点,证明:AB 1⊥PQ ;(2)若PQ ∥平面ABB 1A 1,二面角P QD A 的余弦值为37,求四面体ADPQ 的体积.图1619.解:方法一:由题设知,AA 1,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m =BQ ,0≤m ≤6.(1)若P 是DD 1的中点,则P 0,92,3,PQ →=6,m -92,-3.又AB 1→=(3,0,6),于是AB 1→·PQ→=18-18=0,所以AB 1→⊥PQ →,即AB 1⊥PQ .(2)由题设知,DQ →=(6,m -6,0),DD 1→=(0,-3,6)是平面PQD 内的两个不共线向量.设n 1=(x ,y ,z )是平面PQD 的一个法向量,则⎩⎪⎨⎪⎧n 1·DQ →=0,n 1·DD 1→=0,即⎩⎪⎨⎪⎧6x +(m -6)y =0,-3y +6z =0.取y =6,得n 1=(6-m ,6,3).又平面AQD 的一个法向量是n 2=(0,0,1),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=31·(6-m )2+62+32=3(6-m )2+45. 而二面角P QD A 的余弦值为37,因此3(6-m )2+45=37,解得m =4或m =8(舍去),此时Q (6,4,0).设DP →=λDD 1→(0<λ≤1),而DD 1→=(0,-3,6),由此得点P (0,6-3λ,6λ),所以PQ →=(6,3λ-2,-6λ).因为PQ ∥平面ABB 1A 1,且平面ABB 1A 1的一个法向量是n 3=(0,1,0),所以PQ →·n 3=0,即3λ-2=0,即λ=23,从而P (0,4,4).于是,将四面体ADPQ 视为以△ADQ 为底面的三棱锥P ADQ ,则其高h =4,故四面体ADPQ 的体积V =13S △ADQ ·h =13×12×6×6×4=24.方法二:(1)如图所示,取A 1A 的中点R ,连接PR ,BR ,PC .因为A 1A ,D 1D 是梯形A 1ADD 1的两腰,P 是D 1D 的中点,所以PR ∥AD ,于是由AD ∥BC 知,PR ∥BC ,所以P ,R ,B ,C 四点共面.由题设知,BC ⊥AB ,BC ⊥A 1A ,所以BC ⊥平面ABB 1A 1,因此BC ⊥AB 1.①因为tan ∠ABR =AR AB =36=A 1B 1A 1A=tan ∠A 1AB 1,所以∠ABR =∠A 1AB 1,因此∠ABR +∠BAB 1=∠A 1AB 1+∠BAB 1=90°,于是AB 1⊥BR .再由①即知AB 1⊥平面PRBC ,又PQ ⊂平面PRBC ,故AB 1⊥PQ .(2)如图所示,过点P 作PM ∥A 1A 交AD 于点M ,则PM ∥平面ABB 1A 1.②因为A 1A ⊥平面ABCD ,所以PM ⊥平面ABCD ,过点M 作MN ⊥QD 于点N ,连接PN ,则PN ⊥QD ,∠PNM 为二面角P QD A 的平面角,所以cos ∠PNM =37,即MN PN =37,从而PMMN =403.③ 连接MQ ,由PQ ∥平面ABB 1A 1及②知, 平面PQM ∥平面ABB 1A 1,所以MQ ∥AB .又四边形ABCD 是正方形,所以四边形ABQM 为矩形,故MQ =AB =6. 设MD =t ,则MN =MQ ·MD MQ 2+MD 2=6t36+t2.④ 过点D 1作D 1E ∥A 1A 交AD 于点E ,则四边形AA 1D 1E 为矩形,所以D 1E =A 1A =6,AE =A 1D 1=3,因此ED =AD -AE =3.于是PM MD =D 1E ED =63=2,所以PM =2MD =2t .再由③④,得36+t 23=403,解得t =2,因此PM =4.故四面体ADPQ 的体积V =13S △ADQ ·PM=13×12×6×6×4=24.图1217.G4、G5、G11如图12,在三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.17.解:(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEFABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则O为CD的中点.又H为BC的中点,所以OH∥BD.又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEFABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH .(2)连接BG ,设AB =2,则CF =1. 方法一:在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC ,在△ABC 中,AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz , 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1), 可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1), 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的一个法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0),所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12,所以平面FGH 与平面ACFD 所成的角(锐角)的大小为60°.方法二:作HM ⊥AC 于点M ,作MN ⊥GF 于点N ,连接NH . 由FC ⊥平面ABC ,得HM ⊥FC , 又FC ∩AC =C , 所以HM ⊥平面ACFD , 因此GF ⊥NH ,所以∠MNH 即为所求的角.在△BGC 中,MH ∥BG ,MH =12BG =22,由△GNM ∽△GCF , 可得MN FC =GM GF, 从而MN =66. 由HM ⊥平面ACFD ,MN ⊂平面ACFD , 得HM ⊥MN ,因此tan ∠MNH =HM MN=3, 所以∠MNH =60°,所以平面FGH 与平面ACFD 所成的角(锐角)的大小为60°.18.G5、G10、G11 如图16(1)所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图16(2)所示.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.图1618.解:(1)证明:在图(1)中,因为AB =BC =1,AD =2,E 是AD 的中点, ∠BAD =π2,所以BE ⊥AC ,BE ∥CD .即在图(2)中,BE ⊥OA 1,BE ⊥OC ,又OA 1∩OC =O ,OA 1⊂平面A 1OC ,OC ⊂平面A 1OC , 从而BE ⊥平面A 1OC . 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1BE C 的平面角, 所以∠A 1OC =π2.如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED , 所以B22,0,0,E -22,0,0,A 10,0,22,C 0,22,0, 得BC →=-22,22,0,A 1C →=0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63. 17.G5、G11 如图15,在三棱柱ABC A 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1BD B 1的平面角的余弦值.图1517.解:(1)证明:设E 为BC 的中点,连接A 1E ,DE ,AE ,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE .因为AB =AC ,所以AE ⊥BC . 故AE ⊥平面A 1BC .由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A , 所以四边形A 1AED 为平行四边形. 故A 1D ∥AE .又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC .(2)方法一:作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F .由AE =EB =2,∠A 1EA =∠A 1EB =90°, 得A 1B =A 1A =4.由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等.由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1BD B 1的平面角. 由A 1D =2,A 1B =4,∠DA 1B =90°,得BD =3 2,A 1F =B 1F =43,由余弦定理得cos ∠A 1FB 1=-18.方法二:以CB 的中点E 为原点,分别以射线EA ,EB 为x 轴,y 轴的正半轴,建立空间直角坐标系E xyz ,如图所示.由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2,2,14).因此A 1B →=(0,2,-14),BD →=(-2,-2,14),DB 1→=(0,2,0). 设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,得⎩⎨⎧2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,可取m =(0,7,1).由⎩⎪⎨⎪⎧n ·DB 1→=0,n ·BD →=0,得⎩⎨⎧2y 2=0,-2x 2-2y 2+14z 2=0,可取n =(7,0,1). 于是|cos 〈m ,n 〉|=|m ·n||m|·|n|=18.由题意可知,所求二面角的平面角是钝角,故二面角A 1BD B 1的平面角的余弦值为-18.19.G5、G11、G12 如图15所示,三棱锥P ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2. (1)证明:DE ⊥平面PCD ;(2)求二面角A PD C 的余弦值.图1519.解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE . 由CE =2,CD =DE =2,得△CDE 为等腰直角三角形,故CD ⊥DE . 由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,得DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1,又已知EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,所以DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA →,CB →,CP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A 32,0,0,E (0,2,0),D (1,1,0),所以ED →=(1,-1,0),DP →=(-1,-1,3),DA →=12,-1,0.设平面PAD 的一个法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的一个法向量n 2可取为ED →,即n 2=(1,-1,0). 法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=36,故所求二面角A PD C 的余弦值为36.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课标理数12.J2用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)课标理数12.J214 【解析】若不考虑数字2,3至少都出现一次的限制,对个位,十位,百位,千位,每个“位置”都有两种选择,所以共有24=16个四位数,然后再减去“2222,3333”这两个数,故共有16-2=14个满足要求的四位数.大纲理数7.J2某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种 B.10种C.18种 D.20种大纲理数7.J2 B 【解析】若取出1本画册,3本集邮册,有C14种赠送方法;若取出2本画册,2本集邮册,有C24种赠送方法,则不同的赠送方法有C14+C24=10种,故选B.大纲文数9.J2 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A.12种 B.24种C.30种 D.36种大纲文数9.J2 B 【解析】从4位同学中选出2人有C24种方法,另外2位同学每人有2种选法,故不同的选法共有C24×2×2=24种,故选B.课标理数15.J2给n个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如图1-3所示:图1-3由此推断,当n=6时,黑色正方形互不..的着色方案共有________种,至少有两个黑..相邻色正方形相邻..的着色方案共有________种.(结果用数值表示)课标理数15.J221 43 【解析】 (1)以黑色正方形的个数分类:①若有3块黑色正方形,则有C34=4种;②若有2块黑色正方形,则有C25=10种;③若有1块黑色正方形,则有C16=6种;④若无黑色正方形,则有1种.所以共有4+10+6+1=21种.(2)至少有2块黑色相邻包括:有2块黑色相邻,有3块黑色相邻,有4块黑色相邻,有5块黑色相邻,有6块黑色相邻等几种情况.①有2块黑色正方形相邻,有(C23+C13)+A24+C15=23种;②有3块黑色正方形相邻,有C12+A23+C14=12种;③有4块黑色正方形相邻,有C12+C13=5种;④有5块黑色正方形相邻,有C12=2种;⑤有6块黑色正方形相邻,有1种.故共有23+12+5+2+1=43种.课标理数12.J3 设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 课标理数12.J3 0 【解析】 a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021,所以a 10+a 11=-C 1121+C 1021=0.大纲理数13.J3 (1-x )20的二项展开式中,x 的系数与x 9的系数之差为________. 大纲理数13.J 3 0 【解析】 展开式的第r +1项为C r 20(-x )r =C r 20(-1)rx r2,x 的系数为C 220,x 9的系数为C 1820,则x 的系数与x 9的系数之差为0.大纲文数13.J3 (1-x )10的二项展开式中,x 的系数与x 9的系数之差为________. 大纲文数13.J3 0 【解析】 展开式的第r +1项为C r 10(-x )r =C r 10(-1)r x r,x 的系数为-C 110,x 9的系数为-C 910,则x 的系数与x 9的系数之差为0.课标理数6.J3 (1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10课标理数6.J3 B 【解析】 因为(1+2x )5的通项为T r +1=C r 5(2x )r =2r C r 5x r, 令r =2,则2r C r 5=22C 25=4×5×42=40,即x 2的系数等于40,故选B.课标理数10.J3 x ⎝ ⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答)课标理数10.J3 84 【解析】 先求⎝ ⎛⎭⎪⎫x -2x 7中x 3的系数,由于T r +1=C r 7x 7-r ⎝ ⎛⎭⎪⎫-2x r=C r 7x7-2r(-2)r ,所以7-2r =3,所以r =2,即x 4的系数为C 27(-2)2=84.课标理数11.J3 ⎝ ⎛⎭⎪⎫x -13x 18的展开式中含x 15的项的系数为________.(结果用数值表示)课标理数11.J3 17 【解析】 二项展开式的通项为T r +1=C r18x18-r⎝ ⎛⎭⎪⎫-13x r =()-1r ⎝ ⎛⎭⎪⎫13rC r18·x 18-32r .令18-32r =15,解得r =2.所以展开式中含x 15的项的系数为()-12⎝ ⎛⎭⎪⎫132C 218=17.课标文数12.J3 ⎝ ⎛⎭⎪⎫x -13x 18的展开式中含x 15的项的系数为________.(结果用数值表示)课标文数12.J3 17 【解析】 二项展开式的通项为T r +1=C r18x18-r⎝ ⎛⎭⎪⎫-13x r =()-1r ⎝ ⎛⎭⎪⎫13rC r18·x 18-32r .令18-32r =15,解得r =2.所以展开式中含x 15的项的系数为()-12⎝ ⎛⎭⎪⎫132C 218=17.课标理数8.J3 ⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40课标理数8.J3 D 【解析】 令x =1得各项系数和为⎝ ⎛⎭⎪⎫1+a 1(2-1)5=(1+a )=2, ∴a=1,所以原式变为⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5,⎝ ⎛⎭⎪⎫2x -1x 5展开式的通项为T r +1=C r 5(2x )r ⎝ ⎛⎭⎪⎫-1x 5-r=(-1)5-r 2r C r 5x 2r -5.令2r -5=-1,得r =2; 令2r -5=1,得r =3, 所以常数项为(-1)5-222C 25+(-1)5-323C 35=(-4+8)C 25=40.课标理数14.J3 若⎝⎛⎭⎪⎫x -a x 26展开式的常数项为60,则常数a 的值为________.课标理数14.J3 4 【解析】 T r +1=C r 6x 6-r⎝ ⎛⎭⎪⎫-a x 2r =C r 6x 6-r (-1)r a r 2x -2r =C r 6x 6-3r (-1)r a r 2,由6-3r =0,得r =2, 所以C 26a =60,所以a =4.课标理数4.J3 (4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .20课标理数4.J3 C 【解析】 由T r +1=C r n a n -r b r可知所求的通项为T r +1=C r 6(4x )6-r (-2-x )r=C r 6(-1)r (2x )12-3r,要出现常数项,则r =4,则常数项为C 46(-1)4=15,故选C.大纲文数13.J3 (x +1)9的展开式中x 3的系数是________.(用数字作答)大纲文数13.J3 84 【解析】 本题主要考查二项展开式通项的应用. (x +1)9的展开式通项为T r +1=C r 9x9-r,所以x 3的系数是C 69=9×8×73×2×1=84.课标理数5.J3 在⎝ ⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( )A .-154 B.154 C .-38 D.38课标理数5.J3 C 【解析】 由二项式展开式得,T r +1=C r6⎝ ⎛⎭⎪⎫x 26-r ⎝⎛⎭⎪⎫-2x r =()-1r 22r-6C r 6x 3-r,令r =1,则x 2的系数为()-1·22×1-6C 16=-38.课标理数13.J3 设二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B=4A ,则a 的值是________.课标理数13.J3 2 【解析】 由题意得T r +1=C r 6x 6-r⎝⎛⎭⎪⎫-a x r =()-a r C r6x 6-32r ,∴A =()-a 2C 26,B =()-a 4C 46.又∵B =4A ,∴()-a 4C 46=4()-a 2C 26,解之得a 2=4. 又∵a >0,∴a =2.大纲理数4.J3 (1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) A .6 B .7 C .8 D .9大纲理数4.J3 B 【解析】 由题意可得C 5n 35=C 6n 36,即C 5n =3C 6n , 即n !5!(n -5)!=3·n !6!(n -6)!,解得n =7.故选B.大纲文数11.J3 (1+2x )6的展开式中x 4的系数是______.大纲文数11.J3 240 【解析】 ∵(1+2x )6的展开式中含x 4的项为C 46(2x )4=240x 4,∴展开式中x 4的系数是240.。