江苏省徐州市铜山区2018-2019期中七年级下学期数学试题(word版含答案)
2018-2019学年度第二学期期中质量检测七年级数学试卷及答案
26.(本题满分 12 分) (1)如图①,△OAB、△OCD 的顶点 O 重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+ ∠COD= ▲ °;(直接写出结果) (2)连接 AD、BC,若 AO、BO、CO、DO 分别是四边形 ABCD 的四个内角的平分线. ①如图②,如果∠AOB=110°,那么∠COD 的度数为 ▲ ;(直接写出结果) ②如图③,若∠AOD=∠BOC,AB 与 CD 平行吗?为什么?
x
y
=-2,求
a
的值.
25.(本题满分 8 分) (1)观察下列式子: ① 21 20 =2-1=1= 20 ; ② 22 21 =4-2=2= 21 ; ③ 23 22 =8-4=4= 22 ; …… 根据上述等式的规律,试写出第 n 个等式,并说明第 n 个等式成立; (2)求 20 21 22 22 019 的个位数字.
A.4
B.5
C.6
D.7
4. 下列式子从左到右的变形中,属于因式分解的是·············································· ( ▲ )
A. 4x x = 5x
B. (x 2)2 = x2 4x 4
C. a2 a 1= a(a 1) 1
说明: (x 3)(x 7) 、 x(x 1) 计算正确分别给 1 分.
19.(本题满分 6 分,每小题 3 分)因式分解: 解:(1)原式= x2 (2y)2 ·········································································· 1 分
说明: (2a)3 、 a5 a2 计算正确分别给 1 分.
徐州市铜山区2018-2019学年七年级下期中数学试卷含答案解析
2019-2019学年江苏省徐州市铜山区七年级(下)期中数学试卷一、精心选一选:本大题共8小题,每小题3分,共24分1.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(a+1)2=a2+1 D.(﹣x)8÷x2=x62.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣13.如图所示,两条直线AB、CD被第三条直线EF所截,∠1=75°,下列说法正确的()A.若∠4=75°,则AB∥CD B.若∠4=105°,则AB∥CDC.若∠2=75°,则AB∥CD D.若∠2=155°,则AB∥CD4.下列长度的三根木棒首尾相接,能做成三角形的框架的是()A.3cm,5cm,10cm B.5cm,4cm,9cm C.4cm,6cm,9cm D.5cm,7cm,13cm 5.下列计算正确的是()A.(x+2)(x﹣2)=x2﹣2 B.(a+b)(b﹣a)=a2﹣b2C.(﹣a+b)2=a2﹣2ab+b2D.(﹣a﹣b)2=a2﹣2ab+b26.已知是二元一次方程4x+ky=2的解,则k的值为()A.﹣2 B.2 C.1 D.﹣17.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°8.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=()A.20°B.60°C.70°D.80°二、细心填一填:本大题共10小题,每小题3分,共30分9.人体红细胞的直径约为0.0000077m,用科学记数法表示为______.10.化简:(1﹣2y)(1+2y)=______.11.分解因式:xy2﹣2xy+x=______.12.已知a m=2,a n=3,那么3a m﹣n=______.13.如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了______米.14.如图,阴影部分的面积为______.15.(﹣0.25)15×(﹣4)12=______.16.已知a+b=4,ab=1,则a2+b2的值是______.17.如果实数x,y满足方程组,那么x2﹣y2=______.18.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是______.三、解答题(共8小题,满分66分)19.(1)﹣32﹣0+()﹣2(2)(﹣2a2)2•a4﹣(5a4)2.20.(1)分解因式(a2+4)2﹣16a2(2)解方程组:.21.先化简,再求值:4x(x﹣3)﹣(2x﹣1)2,其中x=﹣.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,BB′,则AA′,BB′的数量和位置关系是______.(3)作出BC边上的中线AD;(4)求△ABD的面积.23.如图,在(1)AB∥CD;(2)∠A=∠C;(3)∠E=∠F中,请你选取其中的两个作为条件,另一个作为结论,说明它的正确性和理由.我选取的条件是______,结论是______.我判断的结论是:______,我的理由是:______.24.已知下列等式:①22﹣12=3;②32﹣22=5;③42﹣32=7,…(1)请仔细观察前三个式子的规律,写出第④个式子:______;(2)请你找出规律,写出第n个式子,并说明式子成立的理由:______.利用(2)中发现的规律计算:1+3+5+7+…+2019+2019.25.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式______;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.26.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:______;(2)仔细观察,在图2中“8字形”的个数:______个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)2019-2019学年江苏省徐州市铜山区七年级(下)期中数学试卷参考答案与试题解析一、精心选一选:本大题共8小题,每小题3分,共24分1.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(a+1)2=a2+1 D.(﹣x)8÷x2=x6【考点】整式的混合运算.【分析】分别根据合并同类项、同底数幂的乘法和除法、完全平方公式进行逐一计算即可.【解答】解:A、x2+x2=2x2,故选项错误;B、x2•x3=x5,故选项错误;C、(a+1)2=a2+2a+1,故选项错误;D、(﹣x)8÷x2=x6,故选项正确.故选:D.2.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣1【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是乘法交换律,故C错误;D、是整式的乘法,故D错误;故选:B.3.如图所示,两条直线AB、CD被第三条直线EF所截,∠1=75°,下列说法正确的()A.若∠4=75°,则AB∥CD B.若∠4=105°,则AB∥CDC.若∠2=75°,则AB∥CD D.若∠2=155°,则AB∥CD【考点】平行线的判定.【分析】A、由于∠4=75°,那么∠3=180°﹣75°=105°,于是∠1≠∠3,故AB、CD不平行;B、由于∠4=105°,那么∠3=180°﹣105°=75°,于是∠1=∠3,故AB、CD平行;C、由于∠2=75°,那么∠1=∠2,但是∠1、∠2是对顶角,故AB、CD不平行;D、由于∠2=155°,那么∠1≠∠2,又由于∠1、∠2是对顶角,故此题矛盾,而AB、CD 更不可能不平行.【解答】解:A、∵∠4=75°,∴∠3=180°﹣75°=105°,∴∠1≠∠3,∴AB、CD不平行,故此选项错误;B、∵∠4=105°,∴∠3=180°﹣105°=75°,∴∠1=∠3,∴AB、CD平行,故此选项正确;C、∵∠2=75°,∴∠1=∠2,又∵∠1、∠2是对顶角,∴AB、CD不平行,故此选项错误;D、∵∠2=155°,∴∠1≠∠2,又∵∠1、∠2是对顶角,∴∠1=∠2,故此题矛盾,而AB、CD更不可能不平行,故此选项错误.故选B.4.下列长度的三根木棒首尾相接,能做成三角形的框架的是()A.3cm,5cm,10cm B.5cm,4cm,9cm C.4cm,6cm,9cm D.5cm,7cm,13cm 【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、5+3<10,不能组成三角形,故本选项错误;B、4+5=9,不能组成三角形,故本选项错误;C、4+6>9,能能组成三角形,故本选项正确;D、5+7<13,不能组成三角形,故本选项错误.故选:C.5.下列计算正确的是()A.(x+2)(x﹣2)=x2﹣2 B.(a+b)(b﹣a)=a2﹣b2C.(﹣a+b)2=a2﹣2ab+b2D.(﹣a﹣b)2=a2﹣2ab+b2【考点】平方差公式;完全平方公式.【分析】直接利用平方差公式以及完全平方公式等知识分别化简求出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故此选项错误;B、(a+b)(b﹣a)=﹣a2+b2,故此选项错误;C、(﹣a+b)2=a2﹣2ab+b2,正确;D、(﹣a﹣b)2=a2+2ab+b2,故此选项错误;6.已知是二元一次方程4x+ky=2的解,则k的值为()A.﹣2 B.2 C.1 D.﹣1【考点】二元一次方程的解.【分析】将x与y的值代入方程计算即可求出k的值.【解答】解:将x=2、y=3代入方程得:8+3k=2,解得:k=﹣2,故选:A.7.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°【考点】平行线的性质.【分析】根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,故选B.8.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=()A.20°B.60°C.70°D.80°【考点】三角形内角和定理.【分析】求出∠ACB,根据角平分线定义求出∠BCE即可,根据三角形内角和定理求出∠BCD,代入∠FCD=∠BCE﹣∠BCD,求出∠FCD,根据三角形的内角和定理求出∠CDF即可.【解答】解:∵∠A+∠B+∠ACB=180°,∠A=30°,∠B=70°,∴∠ACB=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=×80°=40°,∴∠CDB=90°,∵∠B=70°,∴∠BCD=90°﹣70°=20°,∴∠FCD=∠BCE﹣∠BCD=20°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=70°.故选C.二、细心填一填:本大题共10小题,每小题3分,共30分9.人体红细胞的直径约为0.0000077m,用科学记数法表示为7.7×10﹣6m.【考点】科学记数法—表示较小的数.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为7.7,10的指数为﹣6.【解答】解:0.000 007 7=7.7×10﹣6.故答案为:7.7×10﹣6m.10.化简:(1﹣2y)(1+2y)=1﹣4y2.【考点】平方差公式.【分析】套用平方差公式展开即可.【解答】解:(1﹣2y)(1+2y)=12﹣(2y)2=1﹣4y2,故答案为:1﹣4y2.11.分解因式:xy2﹣2xy+x=x(y﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式x,再对剩余项利用完全平方公式分解因式.【解答】解:xy2﹣2xy+x,=x(y2﹣2y+1),=x(y﹣1)2.12.已知a m=2,a n=3,那么3a m﹣n=2.【考点】同底数幂的除法.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:3a m﹣n=3a m÷a n=3×2÷3=2,故答案为:2.13.如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了90米.【考点】多边形内角与外角.【分析】利用多边形的外角和即可解决问题.【解答】解:由题意可知,小明第一次回到出发地A点时,他一共转了360°,且每次都是向左转40°,所以共转了9次,一次沿直线前进10米,9次就前进90米.14.如图,阴影部分的面积为a2.【考点】扇形面积的计算.【分析】先根据题意得到扇形BEF的面积等于扇形CED的面积,即图形1的面积等于图形3的面积,通过割补的方法可知阴影部分的面积=图形1的面积+图形3的面积=正方形ABEF 的面积.【解答】解:如图,四边形ABEF和四边形ECDF为正方形,且边长为a那么扇形BEF的面积等于扇形CED的面积所以图形1的面积等于图形3的面积则阴影部分的面积=图形1的面积+图形3的面积=正方形ABEF的面积=a2.15.(﹣0.25)15×(﹣4)12=﹣.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则和有理数的乘法运算法则将原式变形求出答案.【解答】解:原式=[(﹣0.25×(﹣4)]12×(﹣0.25)3=(﹣)3=﹣.故答案为:﹣.16.已知a+b=4,ab=1,则a2+b2的值是14.【考点】完全平方式.【分析】利用完全平方和公式(a+b)2=a2+b2+2ab解答.【解答】解:∵a+b=4,ab=1,∴a2+b2=(a+b)2﹣2ab=16﹣2=14;即a2+b2=14.故答案是:14.17.如果实数x,y满足方程组,那么x2﹣y2=﹣10.【考点】二元一次方程组的解;平方差公式.【分析】方程组的两个方程两边分别相乘,即可求出答案.【解答】解:①×②得:(x﹣y)(x+y)=﹣10,所以x2﹣y2=﹣10,故答案为:﹣1018.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是36°.【考点】平行线的性质;三角形内角和定理;直角三角形的性质.【分析】过C作CE∥QT∥SH,根据平行线性质求出∠FCE=∠α=54°,∠β=∠NCE,根据∠FCN=90°,即可求出答案.【解答】解:过C作CE∥QT∥SH,∴∠FCE=∠α=54°,∴∠β=∠NCE=90°﹣54°=36°.故答案为:36°.三、解答题(共8小题,满分66分)19.(1)﹣32﹣0+()﹣2(2)(﹣2a2)2•a4﹣(5a4)2.【考点】单项式乘单项式;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】(1)根据非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,可得答案;(2)根据积的乘方等于乘方的积,可得单项式的乘法,根据单项式的乘法,可得同类项,根据合并同类项,可得答案.【解答】解:(1)原式=﹣9﹣1+9=﹣1;(2)原式=4 a4•a4﹣25 a8=4 a8﹣25 a8=﹣21 a8.20.(1)分解因式(a2+4)2﹣16a2(2)解方程组:.【考点】解二元一次方程组;因式分解-运用公式法.【分析】(1)原式利用平方差公式分解,再利用完全平方公式化简即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)原式=(a2+4﹣4a)(a2+4+4a)=(a﹣2)2(a+2)2;(2)由②得:x=﹣3+2y ③,把③代入①得,y=1,把y=1代入③得:x=﹣1,则原方程组的解为:.21.先化简,再求值:4x(x﹣3)﹣(2x﹣1)2,其中x=﹣.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4x2﹣12x﹣(4x2﹣4x+1)=4x2﹣12x﹣4x2+4x﹣1=﹣8x﹣1,当x=﹣时,原式=﹣8×(﹣)﹣1=6.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,BB′,则AA′,BB′的数量和位置关系是平行且相等.(3)作出BC边上的中线AD;(4)求△ABD的面积.【考点】作图-平移变换.【分析】(1)直接利用点A变换为A′得出平移规律,进而得出答案;(2)利用平移的性质得出AA′,BB′的数量和位置关系;(3)利用网格得出BC的中点,进而得出答案;(4)利用△ABD的面积=S,进而得出答案.△ABC【解答】解:(1)如图所示:△A′B′C′即为所求;(2)AA′,BB′的数量和位置关系是:平行且相等;故答案为:平行且相等;(3)如图所示:AD即为所求;=(9﹣1﹣1.5﹣3)=1.75.(4)△ABD的面积=S△ABC23.如图,在(1)AB∥CD;(2)∠A=∠C;(3)∠E=∠F中,请你选取其中的两个作为条件,另一个作为结论,说明它的正确性和理由.我选取的条件是(1)(2),结论是(3).我判断的结论是:(3),我的理由是:两直线平行,内错角相等.【考点】平行线的判定.【分析】选择(1)、(2),证出AE∥CF,即可得出结论(3).【解答】解:我选择的条件是(1)、(2),结论是(3).理由如下:∵AB∥CD,∴∠C=∠ABF,∵∠A=∠C,∴∠A=∠ABF,∴AE∥CF,∴∠E=∠F(两直线平行,内错角相等;故答案为:(1)、(2),(3);③,两直线平行,内错角相等.24.已知下列等式:①22﹣12=3;②32﹣22=5;③42﹣32=7,…(1)请仔细观察前三个式子的规律,写出第④个式子:52﹣42=9;(2)请你找出规律,写出第n个式子,并说明式子成立的理由:n2+2n+1﹣n2=2n+1.利用(2)中发现的规律计算:1+3+5+7+…+2019+2019.【考点】平方差公式.【分析】(1)由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;(2)等式左边减数的底数与序号相同,由此得出第n个式子;(3)由3=22﹣12,5=32﹣22,7=42﹣32,…,将算式逐一变形,再寻找抵消规律.【解答】解:(1)依题意,得第④个算式为:52﹣42=9;故答案为:52﹣42=9;(2)根据几个等式的规律可知,第n个式子为:(n+1)2﹣n2=2n+1;故答案为:n2+2n+1﹣n2=2n+1;(3)由(2)的规律可知,1+3+5+7+…+2019=1+(22﹣12)+(32﹣22)+(42﹣32)+…+=10132.25.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=(2a+b)(a+2b).【考点】因式分解的应用;完全平方公式的几何背景.【分析】(1)直接根据图形写出等式;(2)将所求式子与(1)的结论对比,得出变形的式子,代入求值即可;(3)①画出图形,答案不唯一,②根据原图形面积=组合后长方形的面积得出等式.【解答】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,=112﹣2×38,=45;(3)①如图所示,②如上图所示的矩形面积=(2a+b)(a+2b),它是由2个边长为a的正方形、5个边长分别为a、b的长方形、2个边长为b的小正方形组成,所以面积为2a2+5ab+2b2,则2a2+5ab+2b2=(2a+b)(a+2b),故答案为:2a2+5ab+2b2=(2a+b)(a+2b).26.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:∠A+∠D=∠B+∠C;(2)仔细观察,在图2中“8字形”的个数:6个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)【考点】三角形内角和定理.【分析】(1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;(2)根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;(3)根据(1)的关系式求出∠OCB﹣∠OAD,再根据角平分线的定义求出∠DAM﹣∠PCM,然后利用“8字形”的关系式列式整理即可得解;(4)根据“8字形”用∠B、∠D表示出∠OCB﹣∠OAD,再用∠D、∠P表示出∠DAM﹣∠PCM,然后根据角平分线的定义可得∠DAM﹣∠PCM=(∠OCB﹣∠OAD),然后整理即可得证.【解答】解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)交点有点M、O、N,以M为交点有1个,为△AMD与△CMP,以O为交点有4个,为△AOD与△COB,△AOM与△CON,△AOM与△COB,△CON 与△AOD,以N为交点有1个,为△ANP与△CNB,所以,“8字形”图形共有6个;(3)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;(4)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.2019年9月27日。
2018-2019学年度七年级下册期中数学试卷(含答案和解析)
2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
2018-2019年度数学学科初一年级第二学期期中考试试题+答案
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
2018-2019学年徐州市铜山县七年级下期中数学试卷-有标准答案
2018-2019学年江苏省徐州市铜山县七年级(下)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD2.(3分)下列运算正确的是()A.a﹣(b+c)=a﹣b+c B.2a2•3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+13.(3分)下列给出的各组线段的长度中,能组成三角形的是()A.4,5,6 B.6,8,15 C.5,7,12 D.3,7,134.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115° D.125°5.(3分)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()A.45°B.35°C.55°D.125°6.(3分)下列运算中,正确的是()A.(a+b)2=a2+b2B.(﹣x﹣y)2=x2+2xy+y2C.(x+3)(x﹣2)=x2﹣6 D.(﹣a﹣b)(a+b)=a2﹣b27.(3分)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.268.(3分)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°二、填空题(每小题3分,共30分)9.(3分)肥皂泡泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为10.(3分)化简:(﹣3x2)•(4x﹣3)=.11.(3分)分解因式:ax2﹣2ax+a=.12.(3分)计算(﹣xy2)3=.13.(3分)一个多边形的每一个外角都等于30°,则该多边形的内角和等于.14.(3分)若方程mx+ny=6的两个解是,,则m=,n=.15.(3分)若a m=6,a n=2,则a m﹣n的值为.16.(3分)如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.17.(3分)计算0.1252015×(﹣8)2016=.18.(3分)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是.三、解答题(本大题共8小题,共66分)19.(8分)(1)(2)(﹣a3)2+a2•a4﹣(2a4)2÷a2.20.(8分)(1)分解因式:2x2﹣18;(2)解方程组:.21.(8分)先化简,再求值:4x(x﹣3)﹣(2x﹣1)2,其中x=﹣.22.(8分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后的△A1B1C1;(3)图中AC与A1C1的关系是;(4)图中△ABC的面积是.23.(8分)如图,EF∥AD,∠1=∠2,∠BAC=75°.将求∠AGD的过程填写完整.解:∵EF∥AD (已知)∴∠2=()又∵∠1=∠2 (已知)∴∠1=∠3 ()∴AB∥()∴∠BAC+ =180°()∵∠BAC=75°(已知)∴∠AGD=.24.(8分)(1)填空:21﹣20==2();22﹣21==2();23﹣22==2();……(2)探索(1)中式子的规律,试写出第n个等式;(3)计算20+21+22+ (21000)25.(8分)已知:2a=3,2b=5,2c=75.(1)求22a的值;(2)求2c﹣b+a的值;(3)试说明:a+2b=c.26.(10分)直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.2018-2019学年江苏省徐州市铜山县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD【解答】解:A、C、因为∠A+∠D=180°,由同旁内角互补,两直线平行,所以AB∥CD,故A 错误,C正确;B、因为∠C+∠D=180°,由同旁内角互补,两直线平行,所以AD∥BC,故B错误;D、∠A与∠C不能构成三线八角,无法判定两直线平行,故D错误.故选:C.2.(3分)下列运算正确的是()A.a﹣(b+c)=a﹣b+c B.2a2•3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+1【解答】解:A、原式=a﹣b﹣c,故本选项错误;B、原式=6a5,故本选项正确;C、原式=2a3,故本选项错误;D、原式=x2+2x+1,故本选项错误;故选:B.3.(3分)下列给出的各组线段的长度中,能组成三角形的是()A.4,5,6 B.6,8,15 C.5,7,12 D.3,7,13【解答】解:根据三角形的三边关系,得A、4+5>6,能组成三角形,符合题意;B、6+8<15,不能够组成三角形,不符合题意;C、5+7=12,不能够组成三角形,不符合题意;D、3+7<13,不能够组成三角形,不符合题意.故选:A.4.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115° D.125°【解答】解:∵l1∥l2,∴∠1=∠3=65°,∵∠3+∠2=180°,∴∠2=180°﹣65°=115°,故选:C.5.(3分)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()A.45°B.35°C.55°D.125°【解答】解:∵a∥b,∴∠1=∠3=55°,∵∠3+∠2+90°=180°,∴∠2+∠3=90°,∴∠2=90°﹣55°=35°,故选:B.6.(3分)下列运算中,正确的是()A.(a+b)2=a2+b2B.(﹣x﹣y)2=x2+2xy+y2C.(x+3)(x﹣2)=x2﹣6 D.(﹣a﹣b)(a+b)=a2﹣b2【解答】解:A、(a+b)2=a2+2ab+b2≠a2+b2,故本选项错误;B、(﹣x﹣y)2=x2+2xy+y2,故本选项正确;C、(x+3)(x﹣2)=x2+x﹣6≠x2﹣6,故本选项错误;D、(﹣a﹣b)(a+b)=﹣(a+b)2≠a2﹣b2,故本选项错误.故选:B.7.(3分)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.26【解答】解:∵平移距离为4,∴BE=4,∵AB=8,DH=3,∴EH=8﹣3=5,=S△DEF,∵S△ABC=S阴∴S四边形ABEH∴阴影部分的面积为=×(8+5)×4=26故选:D.8.(3分)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°;故选:D.二、填空题(每小题3分,共30分)9.(3分)肥皂泡泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为7.1×10﹣7【解答】解:0.00000071=7.1×10﹣7,故答案为:7.1×10﹣7.10.(3分)化简:(﹣3x2)•(4x﹣3)=﹣12x3+9x2.【解答】解:原式=﹣12 x3+9x2故答案为:﹣12x3+9x211.(3分)分解因式:ax2﹣2ax+a=a(x﹣1)2.【解答】解:ax2﹣2ax+a,=a(x2﹣2x+1),=a(x﹣1)2.12.(3分)计算(﹣xy2)3=﹣x3•y6.【解答】解:原式=﹣x3•y6.故答案为:﹣x3•y6.13.(3分)一个多边形的每一个外角都等于30°,则该多边形的内角和等于1800°.【解答】解:多边形的边数是:=12.则内角和是:(12﹣2)•180=1800°14.(3分)若方程mx+ny=6的两个解是,,则m=4,n=2.【解答】解:把,分别代入mx+ny=6,得,(1)+(2),得3m=12,m=4,把m=4代入(2),得8﹣n=6,解得n=2.所以m=4,n=2.15.(3分)若a m=6,a n=2,则a m﹣n的值为3.【解答】解:a m﹣n=a m÷a n=6÷2=3.故答案为:3.16.(3分)如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=90度.【解答】解:如图所示,过M作MN∥a,则MN∥b,根据平形线的性质:两条直线平行,内错角相等.得∠1=∠AMN,∠2=∠BMN,∴∠1+∠2=∠3=90°.故填90.17.(3分)计算0.1252015×(﹣8)2016=8.【解答】解:原式=(﹣0.125×8)2015×(﹣8)=8.故答案为:8.18.(3分)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(m﹣n)2.【解答】解:图(1)是一个长为2m,宽为2n(m>n)的长方形,∴正方形的边长为:m+n,∵由题意可得,正方形的边长为(m+n),正方形的面积为(m+n)2,∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故答案为:(m﹣n)2.三、解答题(本大题共8小题,共66分)19.(8分)(1)(2)(﹣a3)2+a2•a4﹣(2a4)2÷a2.【解答】解:(1)原式=4﹣2+1=3;(2)原式=a6+a6﹣4a6=﹣2a6.20.(8分)(1)分解因式:2x2﹣18;(2)解方程组:.【解答】解:(1)原式=2(x2﹣9)=2(x+3)(x﹣3)(2)由②得:x=﹣3+2y ③,把③代入①得,3(﹣3+2y)﹣y=﹣4,解得y=1,把y=1代入③得:x=﹣1,则原方程组的解为:.21.(8分)先化简,再求值:4x(x﹣3)﹣(2x﹣1)2,其中x=﹣.【解答】解:原式=4x2﹣12x﹣(4x2﹣4x+1)=4x2﹣12x﹣4x2+4x﹣1=﹣8x﹣1,当x=﹣时,原式=﹣8×(﹣)﹣1=6.22.(8分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后的△A1B1C1;(3)图中AC与A1C1的关系是平行;(4)图中△ABC的面积是8.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知AC∥A1C1.故答案为:平行;=5×7﹣×5×1﹣×7×2﹣×5×7(4)S△ABC=35﹣﹣7﹣=8.故答案为:8.23.(8分)如图,EF∥AD,∠1=∠2,∠BAC=75°.将求∠AGD的过程填写完整.解:∵EF∥AD (已知)∴∠2=∠3(两直线平行同位角相等)又∵∠1=∠2 (已知)∴∠1=∠3 (等量代换)∴AB∥DG(内错角相等两直线平行)∴∠BAC+ ∠AGD=180°(两直线平行同旁内角互补)∵∠BAC=75°(已知)∴∠AGD=105°.【解答】解:∵EF∥AD (已知)∴∠2=∠3 (两直线平行同位角相等)又∵∠1=∠2 (已知)∴∠1=∠3 (等量代换)∴AB∥DG (内错角相等两直线平行)∴∠BAC+∠AGD=180°(两直线平行同旁内角互补)∵∠BAC=75°(已知)∴∠AGD=105°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;105°.24.(8分)(1)填空:21﹣20=2﹣1=2(0);22﹣21=4﹣2=2(1);23﹣22=8﹣4=2(2);……(2)探索(1)中式子的规律,试写出第n个等式;(3)计算20+21+22+ (21000)【解答】解:(1)21﹣20=2﹣1=20;22﹣21=4﹣2=21;23﹣22=8﹣4=22;……,故答案为:2﹣1、1;4﹣2、1;8﹣4、2.(2)第n个等式为2n﹣2n﹣1=2n﹣1;(3)原式=21﹣20+22﹣21+23﹣22+…+21001﹣21000=21001﹣1.25.(8分)已知:2a=3,2b=5,2c=75.(1)求22a的值;(2)求2c﹣b+a的值;(3)试说明:a+2b=c.【解答】解:(1)22a=(2a)2=32=9;(2)2c﹣b+a=2c÷2b×2a=75÷5×3=45;(3)因为22b=(5)2=25,所以2a22b=2a+2b=3×25=75;又因为2c=75,所以2c=2a+2b,所以a+2b=c.26.(10分)直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、B E分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CD A+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.。
2018-2019学年江苏省徐州市七年级(下)期中数学试卷及答案 含解析
2018-2019学年江苏省徐州市七年级第二学期期中数学试卷一、选择题1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x63.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5B.6C.9D.134.△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5.如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个6.把多项式x2+ax+b分解因式,得(x﹣1)(x﹣3),则a,b的值分别是()A.a=4,b=3B.a=﹣4,b=﹣3C.a=﹣4,b=3D.a=4,b=﹣3 7.若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a8.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题4分,满分32分)9.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为千克.10.六边形的内角和是°.11.计算:(﹣2a2b3)2=.12.计算:(m+2n)(m﹣n)=.13.如图,直线a、b被直线c所截,a∥b,∠2=45°,则∠1=.14.已知x m=6,x n=3,则x m﹣n的值为.15.若x2﹣2ax+16是完全平方式,则a=.16.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是.三、解答题(共有9题,共84分.解答时应写出文字说明、证明过程或演算步骤)17.(16分)计算:(1)﹣20+﹣32(2)(﹣x3)2﹣x2⋅x3+x7÷(﹣x)2(3)(x﹣y+3)(x+y﹣3)(4)(2x+3)2(2x﹣3)218.先化简,再求值:(a﹣b)2﹣(a+2b)(a﹣2b)+5b(a﹣b),其中a=﹣.b=3,19.分解因式:(1)18a2﹣50(2)2x2y﹣8xy+8y20.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△ABC的高CD,中线BE;(3)在右图中能使S△ABC=S△PBC的格点P的个数有个(点P异于点A).21.已知x+y=7,xy=6.试求:(1)x﹣y的值;(2)x3y+xy3的值.22.如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.23.如图,在△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠C=70°,∠B=30°求∠DAE的度数;(2)若∠C﹣∠B=20°,则∠DAE=°.24.利用若干块图①所示的长方形和正方形硬纸片可以拼出一些新的长方形,并用不同的方法计算它的面积,从而得到相应的等式.计算图②的面积可以得到等式(a+2b)(a+b)=a2+3ab+2b2.(1)计算图③的面积,可以得到等式:(2)在虚线框中用图①所示的长方形和正方形硬纸片若干块(每种至少用一次),拼成一个长方形,使拼出的长方形面积为2a2+7ab+3b2,并把二次三项式2a2+7ab+3b2分解因式.2a2+7ab+3b2=:(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的长和宽(x>y),观察图形,指出以下关系式正确的有个.(1)xy=(2)x+y=m(3)x2﹣y2=m⋅n(4)x2+y2=25.将一副三角尺的直角重合放置(∠B=30°,∠C=45°),如图1所示,(1)图1中∠BEC的度数为;(2)三角尺AOB的位置保持不动,将三角尺COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角尺COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.参考答案一、选择题(共有8小题,每小题3分,共24分.在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【分析】根据平移与旋转的性质得出.解:A、能通过其中一个四边形平移得到,故本选项不符合题意;B、能通过其中一个四边形平移得到,故本选项不符合题意;C、能通过其中一个四边形平移得到,故本选项不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,故本选项符合题意.故选:D.2.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减分别计算.解:A、x2+x2=2x2,故A选项错误;B、x2•x3=x5,故B选项错误;C、(2x3)2=4x6,故C选项错误;D、(﹣x)8÷x2=x6,故D选项正确;故选:D.3.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5B.6C.9D.13【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.解:根据三角形的三边关系,得第三边大于:9﹣3=6,而小于:3+9=12.则此三角形的第三边可能是:9.故选:C.4.△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【分析】设∠A=x,则∠B=2x,∠C=3x,再根据三角形内角和定理求出x的值,进而可得出结论.解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.5.如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定定理,(3)(4)能判定AB∥CD.解:(1)∠B+∠BCD=180°,能判定AD∥BC,则不能判定AB∥CD;(2)∠1=∠2,能判定AD∥BC,所不能判定AB∥CD;(3)∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;(4)∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.满足条件的有(3),(4).故选:B.6.把多项式x2+ax+b分解因式,得(x﹣1)(x﹣3),则a,b的值分别是()A.a=4,b=3B.a=﹣4,b=﹣3C.a=﹣4,b=3D.a=4,b=﹣3【分析】直接利用多项式乘法化简,再利用各项系数对应相等得出答案.解:x2+ax+b=(x﹣1)(x﹣3)=x2﹣4x+3,故a=﹣4,b=3,故选:C.7.若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.解:a=0.32=0.09,b=﹣3﹣2=﹣,c=(﹣3)0=1,∴c>a>b,故选:B.8.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF =2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴③错误;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°+∠ABC)=90°﹣∠ABC,∴④正确;∠BDC=∠DCF﹣∠DBF=∠ACF﹣∠ABC=∠BAC,∴⑤正确,故选:D.二、填空题(共8小题,每小题4分,满分32分)9.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 2.1×10﹣5千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 021=2.1×10﹣5.故答案为:2.1×10﹣5.10.六边形的内角和是720°.【分析】根据多边形的内角和公式(n﹣2)•180°列式计算即可得解.解:(6﹣2)•180°=720°.故答案为:720.11.计算:(﹣2a2b3)2=4a4b6.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘进行计算即可.解:(﹣2a2b3)2=(﹣2)2(a2)2(b3)2=4a4b6.故答案为:4a4b6.12.计算:(m+2n)(m﹣n)=m2+mn﹣2n2.【分析】根据多项式的乘法解答即可.解:(m+2n)(m﹣n)=m2+mn﹣2n2,故答案为:m2+mn﹣2n2,13.如图,直线a、b被直线c所截,a∥b,∠2=45°,则∠1=135°.【分析】根据两直线平行,同位角相等可得∠3=∠2,再根据平角的定义解答.解:如图,∵a∥b,∴∠3=∠2=45°,∴∠1=180°﹣∠3=180°﹣45°=135°.故答案为:135°.14.已知x m=6,x n=3,则x m﹣n的值为2.【分析】根据同底数幂的除法法则求解.解:∵x m=6,x n=3,∴x m﹣n=6÷3=2.故答案为:2.15.若x2﹣2ax+16是完全平方式,则a=±4.【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.解:∵x2﹣2ax+16是完全平方式,∴﹣2ax=±2×x×4∴a=±4.16.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是20°.【分析】先根据平行线的性质,设∠DEF=∠EFB=α,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG 即可列方程求得α的值.解:∵AD∥BC,∴设∠DEF=∠EFB=α,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠EFG=180°﹣2α,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2α﹣α=120.解得α=20.即∠DEF=20°,故答案为:20°.三、解答题(共有9题,共84分.解答时应写出文字说明、证明过程或演算步骤)17.(16分)计算:(1)﹣20+﹣32(2)(﹣x3)2﹣x2⋅x3+x7÷(﹣x)2(3)(x﹣y+3)(x+y﹣3)(4)(2x+3)2(2x﹣3)2【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可;(3)根据整式的混合计算解答即可;(4)根据整式的混合计算解答即可.解:(1)原式=﹣1﹣8﹣9=﹣18,(2)原式=x6﹣x5+x5=x6,(3)原式=[x﹣(y﹣3)][x+(y﹣3)]=x2﹣(y﹣3)2=x2﹣(y2+9﹣6y)=x2﹣y2﹣9+6y,(4)原式=[(2x+3)(2x﹣3)]2=(4x2﹣9)2=16x4+81﹣72x2.18.先化简,再求值:(a﹣b)2﹣(a+2b)(a﹣2b)+5b(a﹣b),其中a=﹣.b=3,【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=a2+b2﹣2ab﹣(a2﹣4b2)+5ab﹣5b2=3ab,把a=﹣.b=3代入3ab=.19.分解因式:(1)18a2﹣50(2)2x2y﹣8xy+8y【分析】(1)利用提公因式法分解因式和利用平方差公式分解因式即可;(2)提公因式法分解因式和利用完全平方公式分解因式即可.解:(1)原式=2(9a2﹣25)=2(3a﹣5)(3a+5);(2)原式=2y(x2﹣4x+4)=2y(x﹣2)2.20.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△ABC的高CD,中线BE;(3)在右图中能使S△ABC=S△PBC的格点P的个数有4个(点P异于点A).【分析】(1)利用网格特点和平移的性质,分别画出点A、B、C的对应点A′、B′、C′即可;(2)利用网格特点,作CD⊥AB于D,找出AC的中点可得到BE;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC=S△ABC的格点P的个数有4个.故答案为:4.21.已知x+y=7,xy=6.试求:(1)x﹣y的值;(2)x3y+xy3的值.【分析】(1)(x﹣y)2=(x+y)2﹣4xy,将已知代入即可;(2)x2+y2=(x+y)2﹣2xy=37,x3y+xy3=xy(x2+y2),代入即可;解:(1)(x﹣y)2=(x+y)2﹣4xy,∵x+y=7,xy=6,∴(x﹣y)2=25,∴x﹣y=±5;(2)x3y+xy3=xy(x2+y2),∵x2+y2=(x+y)2﹣2xy,∴x2+y2=37,∴x3y+xy3=xy(x2+y2)=222;22.如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.23.如图,在△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠C=70°,∠B=30°求∠DAE的度数;(2)若∠C﹣∠B=20°,则∠DAE=10°.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠BAE的度数即可;根据AD⊥BC及三角形内角和定理可求出∠BAD的度数,再由(1)中求出的∠BAE的度数即可求出∠DAE的度数;(2)先根据三角形内角和定理及角平分线的性质用∠B、∠C表示出∠BAE的度数,再根据直角三角形的性质用∠B表示出∠BAD的度数,∠DAE=∠BAD﹣∠BAE,化简即可求出∠DAE的度数.解:(1)如图,∵在△ABC中∠C=70°,∠B=30°,∴∠BAC=180°﹣∠C﹣∠B=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠CAE=∠BAC=×80°=40°;∵AD⊥BC,∠C=70°,∴∠CAD=90°﹣∠C=90°﹣70°=20°,∵∠CAE=40°,∴∠DAE=∠CAE﹣∠CAD=40°﹣20°=20°;(2)如图,∵AE平分∠BAC,∴∠CAE=(180°﹣∠C﹣∠B),∵AD⊥BC,∴∠CAD=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=(90°﹣∠C)﹣(180°﹣∠C﹣∠B)=(∠C﹣∠B)=10°.故答案为:10.24.利用若干块图①所示的长方形和正方形硬纸片可以拼出一些新的长方形,并用不同的方法计算它的面积,从而得到相应的等式.计算图②的面积可以得到等式(a+2b)(a+b)=a2+3ab+2b2.(1)计算图③的面积,可以得到等式(2a+b)(a+2b)=2a2+5ab+2b2:(2)在虚线框中用图①所示的长方形和正方形硬纸片若干块(每种至少用一次),拼成一个长方形,使拼出的长方形面积为2a2+7ab+3b2,并把二次三项式2a2+7ab+3b2分解因式.2a2+7ab+3b2=(a+3b)(2a+b):(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的长和宽(x>y),观察图形,指出以下关系式正确的有4个.(1)xy=(2)x+y=m(3)x2﹣y2=m⋅n(4)x2+y2=【分析】利用面积相等,根据大长方形面积与多个小长方形,正方形面积和相等,即可求解;解:(1)利用面积相等得到:(2a+b)(a+2b)=2a2+5ab+2b2;故答案为(2a+b)(a+2b)=2a2+5ab+2b2;(2)如图:故答案为(a+3b)(2a+b);(3)如图可知:x+y=m,x﹣y=n,∴x2﹣y2=(x+y)(x﹣y)=m⋅n;x=,y=,∴xy=,x2+y2=(x+y)2﹣2xy=m2﹣=;故4个结论都成立;故答案为4;25.将一副三角尺的直角重合放置(∠B=30°,∠C=45°),如图1所示,(1)图1中∠BEC的度数为165°;(2)三角尺AOB的位置保持不动,将三角尺COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角尺COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.【分析】(1)由已知可求出∠CAE=180°﹣60°=120°,再根据三角形外角性质求出∠BEC的度数.(2)①由OD∥AB可得∠BOD=∠B=30°,再由∠BOD+∠BOC=90°和∠AOC+∠BOC=90°求出∠AOC.②将三角板△COD继续绕O旋转,OC边能与AB平行,由平行可得∠COB=∠B=30°,从而求出∠AOC.解:(1)∠CAE=180°﹣∠BAO=180°﹣60°=120°,∴∠BEC=∠C+∠CAE=45°+120°=165°,故答案为:165°.(2)①∵OD∥AB,∴∠BOD=∠B=30°,又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,∴∠AOC=∠BOD=30°.′②存在,如图1,当AB∥OC时,则∠COB=∠B=30°,∴∠AOC=90°+30°=120°;如图2,当AB∥CD时,延长DO交AB于D′,∴∠AD′O=∠D=45°,∴∠AOD′=75°,∴∠AOC=∠AOD′+90°=165°;如图3,当AB∥OD时,∠DOB=∠B=30°,∴∠AOC=∠DOB=30°;如图4,当AB∥OD时,∠AOD=∠A=60°,∴∠AOC=90°+60°=150°;如图5,当AB∥OC时,∴∠AOC=∠A=60°;如图6,当AB∥CD时,∠1=∠A=60°,∴∠AOC=60°﹣45°=15°;综上所述,∠AOC的度数为:15°,30°,60°,120°,150°,165°.。
徐州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
徐州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D【考点】角的平分线,平行线的性质【解析】【解答】解:∵AB∥CD,∠A=120°,∴∠DCA=180°﹣∠A=60°,∵CE平分∠ACD,∴∠ECD= ∠DCA=30°,故答案为:D.【分析】先根据两直线平行,同旁内角互补,求出∠DCA的度数,再根据角平分线的定义得出∠ECD= ∠DCA,计算即可求解。
2、(2分)如图,数轴上A,B两点分别对应实数a、b,则下列结论中正确的是()A. a+b>0B. ab>0C.D. a+ab-b<0【答案】C【考点】实数在数轴上的表示【解析】【解答】解:由数轴可知:b<-1<0<a<1,A.∵b<-1<0<a<1,∴a+b<0,故错误,A符号题意;B.∵b<0,a>0,∴ab<0,故错误,B不符号题意;C.∵b<0,a>0,∴原式=1-1=0,故正确,C符号题意;D.∵b<0,0<a<1,∴a-1<0,∴原式=b(a-1)+a>0,故错误,D不符号题意;故答案为:C.【分析】由数轴可知b<-1<0<a<1,再对各项一一分析即可得出答案.3、(2分)如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()A. A处B. B处C. C处D. D处【答案】B【考点】用坐标表示地理位置【解析】【解答】解:∵一号墙堡的坐标为(4,2),四号墙堡的坐标为(−2,4),∴一号暗堡的坐标和四号暗堡的横坐标为一正一负,∴B点可能为坐标原点,∴敌军指挥部的位置大约是B处。
江苏省徐州市铜山区2018-2019期中七年级下学期数学考试试题
2018-2019学年度第二学期期中考试七年级数学试题亲爱的同学:一转眼,七年级下学期已过去一半,我们又获取了许多新的数学知识,提高了多方面的数学能力,现在是展示你的实力的时候,你可要尽情地发挥哦!祝你成功!注意:本次期中考试,时间是100分钟,满分120分.一、精心选一选:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有.且呆有一项是正确的,把所选答案填涂在答题卡相应位置上.1.如图,四边形EFGH是由四边形ABCQ平移得到的,已知AD=5,ZB=70°,则A.FG=G,/G=70°B.EH=5,ZF=70°C.EF=5,ZF=70°D.EF=5,ZE=70°2.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是A.0.156x10「5b.0.156X105 C. 1.56X10-6 D. 1.56xl063.a'可以等于A.(―a)2-(—a)3B.(—a) -(—a)4C.(—a2)-a3D.(—a3)-(~a2)4.下列计算中,结果正确的是A.a2,a3=a6B.(2a)•(3a)=6aC.(a2)3=a6D.a2=a35.已知3*=s3y=b,则32R等于a,]_A.bB.a2bbD.a+b6.如图,已知直线AB、CD被直线AE所截,AB〃CD,Zl=50°,Z2的度数是A.100°B.110°C.120°D.130°cB7.小晶有两根长度为5cm^8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择A.2cmB.3cmC.8cmD.15cm8.如图,在长方形ABCZ)中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为二、细心填一填:本大题共10小题,每小题3分,共30分.请把答案填写在答题卡相应位置上.9.计算:(x-)(3x—1)=▲.10.如图,如果则可得DE//BC,如果ZB=Z2,,那么可得▲11.一个五边形的三个内角是直角,另两个内角都是n。
2018年徐州市铜山县七年级下期中数学试卷及答案
2017-2018学年江苏省徐州市铜山县七年级(下)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD 2.(3分)下列运算正确的是()23533622+1)=xDC.a.+a(=2a﹣A.a﹣(b+c)=ab+c B.2ax+1?3a =6a3.(3分)下列给出的各组线段的长度中,能组成三角形的是()A.4,5,6 B.6,8,15C.5,7,12D.3,7,134.(3分)如图,直线l∥l,直线l与l,l分别交于A,B两点,若∠1=65°,则23112∠2=()A.65° B.75° C.115° D.125°5.(3分)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()A.45° B.35° C.55° D.125°6.(3分)下列运算中,正确的是()1222222+2xy+y=xx﹣=ay+b) B.(﹣.A(a+b)222﹣=x6x﹣2b)C.(x+3))D.(﹣a﹣b)(a+b=a(﹣7.(3分)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.268.(3分)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80° B.100° C.90° D.95°二、填空题(每小题3分,共30分)9.(3分)肥皂泡泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为2)?(4x﹣3)= 10.(3分)化简:(﹣3x.2﹣2ax+a= 分)分解因式:ax.11.(323= ).12.(3分)计算(﹣xy13.(3分)一个多边形的每一个外角都等于30°,则该多边形的内角和等于.,,则m= ,n= .(3分)若方程mx+ny=6的两个解是.14mnm﹣n的值为a .315.(分)若a=6,a=2,则16.(3分)如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.220162015.) 3分)计算0.125= ×(﹣817.()的长方形,用剪刀沿图中虚线(对n(m>1)是一个长为2m,宽为2n18.(3分)图()那样拼成一2称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(.个正方形,则中间空的部分的面积是分)668小题,共三、解答题(本大题共)(1.(8分)192222443.+a÷?a)﹣(2aa(2)(﹣a)2;2x18﹣.(8分)(1)分解因式:20.2)解方程组:(2.x=1)﹣,其中3.21(8分)先化简,再求值:4x(x﹣)﹣(2x﹣的顶点都在方格纸格的方格纸中,△ABC(8分)如图,在每个小正方形边长为1.22点上.;CD边上的中线ABC的AB(1)画出△;CAB向右平移2)画出△ABC4个单位后的△(111; C的关系是 A3()图中AC与11. ABC的面积是)图中△(4323.(8分)如图,EF∥AD,∠1=∠2,∠BAC=75°.将求∠AGD的过程填写完整.解:∵EF∥AD (已知)∴∠2= ()又∵∠1=∠2 (已知)∴∠1=∠3 ()∴AB∥()∴∠BAC+ =180°()∵∠BAC=75°(已知)∴∠AGD= .24.(8分)(1)填空:10();= 2=2﹣221(); = 2=2﹣232();=2 2 ﹣2 =……(2)探索(1)中式子的规律,试写出第n个等式;0121000.+2+2++2……(3)计算2abc=752.=5,.(8分)已知:2=3,2252a的值;2(1)求c﹣b+a的值;2(2)求(3)试说明:a+2b=c.26.(10分)直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.4在运动的过程中,B点A、分别是∠BAO和∠ABO角的平分线,、(1)如图1,已知AEBE试求若不发生变化,的大小是否会发生变化?若发生变化,请说明变化的情况;∠AEB的大小.AEB出∠、的角平分线,又DEBAP和∠ABM、,已知AB不平行CD,ADBC分别是∠)如图(22的大小是否会CEDB在运动的过程中,∠、分别是∠ADC和∠BCD的角平分线,点ACE明理由;若不发生变化,试求出其值.发生变化?若发生变化,请说的角平分线及延长BOQ、∠OAG的角平分线与∠G3(3)如图,延长BA至,已知∠BAO的度数.倍,试求∠3ABO中,如果有一个角是另一个角的,在△、线相交于EFAEF52017-2018学年江苏省徐州市铜山县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD 【解答】解:A、C、因为∠A+∠D=180°,由同旁内角互补,两直线平行,所以AB∥CD,故A错误,C正确;B、因为∠C+∠D=180°,由同旁内角互补,两直线平行,所以AD∥BC,故B错误;D、∠A与∠C不能构成三线八角,无法判定两直线平行,故D错误.故选:C.2.(3分)下列运算正确的是()23533622+1x+1(+a)=2a=x=ab+c)﹣b+c B.2a ?3a=6aD C.a.aA.﹣(,故本选项错误;c﹣【解答】解:A、原式=ab﹣5,故本选项正确;B、原式=6a3,故本选项错误;=2aC、原式2,故本选项错误;、原式=x+2x+1D.故选:B)(3分)下列给出的各组线段的长度中,能组成三角形的是(.313,,12,D.3775C,,.6 54A.,,B6815.,【解答】解:根据三角形的三边关系,得A、4+5>6,能组成三角形,符合题意;B、6+8<15,不能够组成三角形,不符合题意;C、5+7=12,不能够组成三角形,不符合题意;D、3+7<13,不能够组成三角形,不符合题意.故选:A.4.(3分)如图,直线l∥l,直线l与l,l分别交于A,B两点,若∠1=65°,则21123∠2=()A.65° B.75° C.115° D.125°【解答】解:∵l∥l,21∴∠1=∠3=65°,∵∠3+∠2=180°,∴∠2=180°﹣65°=115°,故选:C.5.(3分)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()A.45° B.35° C.55° D.125°【解答】解:∵a∥b,∴∠1=∠3=55°,∵∠3+∠2+90°=180°,∴∠2+∠3=90°,∴∠2=90°﹣55°=35°,故选:B.7).(3分)下列运算中,正确的是(6222222+2xy+y)=x B.(﹣a+bA.()x=a﹣+by)=x﹣x+3)(x﹣b)(a+b)=a﹣b2C.(aD.(﹣﹣22222,故本选项错误;=aa+2ab+b+b【解答】解:A、(a+b)≠222,故本选项正确;﹣y)+2xy+y=xB、(﹣x22,故本选项错误;﹣6≠x6)(x﹣2)=x﹣+xC、(x+3222,故本选项错误.ab)=﹣(a+b)﹣≠(D、(﹣a﹣b)a+b.B故选:的方C分)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点(3,求阴影部分的面积为4DH=3,平移距离为DEF向平移到△的位置,∠B=90°,7.AB=8,)(26D.24 C.25 .A20 B.,【解答】解:∵平移距离为4,BE=4∴,DH=3∵AB=8,,3=5EH=8﹣∴,S=S∵DEF△△ABC=SS∴阴四边形ABEH4=26)×∴阴影部分的面积为8+5=×(.故选:D88.(3分)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80° B.100° C.90° D.95°【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,BMF=×100°=50°,BMN=∠∴∠BNF=×70°=35°,BNM=∠∠在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°;故选:D.二、填空题(每小题3分,共30分)9.(3分)肥皂泡泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数﹣7 10法表示为 7.1×﹣7,10【解答】解:0.00000071=7.1×﹣7.7.1故答案为:×10232.+9x3)= ﹣12x10.(3分)化简:(﹣3x)?(4x﹣32+9x12 x【解答】解:原式=﹣32+9x12x故答案为:﹣22.1)2ax+a= ﹣a(x分)分解因式:11.(3ax﹣2﹣2ax+a,【解答】解:ax2﹣2x+1),(=ax2.1﹣)x=a(92336 ?y﹣3分)计算(﹣xyx).= 12.(36.﹣=x?y【解答】解:原式36.故答案为:﹣x?y13.(3分)一个多边形的每一个外角都等于30°,则该多边形的内角和等于1800°.【解答】解:多边形的边数是: =12.则内角和是:(12﹣2)?180=1800°,,则m= 4 ,n= 2 分)若方程14.(3mx+ny=6.的两个解是分别代入mx+ny=6【解答】解:把,,,得,得+(2)(1),3m=12,m=4,得)m=4把代入(2,﹣8n=6.解得n=2.n=2所以m=4,nmnm﹣.3 的值为,=6a,则=2a分)若(15.3anmm﹣n.÷a【解答】解:=6=a2=3÷a.3故答案为:分)如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片316.(度.1+21上、下是平行的,转动刀片时会形成∠和∠,则∠∠90 2=【解答】解:如图所示,过M作MN∥a,则MN∥b,10根据平形线的性质:两条直线平行,内错角相等.得∠1=∠AMN,∠2=∠BMN,∴∠1+∠2=∠3=90°.故填90.20152016= 8 )0.125.×(﹣8(17.3分)计算2015×(﹣8)0.125×8)(﹣【解答】解:原式==8.故答案为:8.18.(3分)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一2.﹣n)个正方形,则中间空的部分的面积是(m【解答】解:图(1)是一个长为2m,宽为2n(m>n)的长方形,∴正方形的边长为:m+n,∵由题意可得,正方形的边长为(m+n),2,m+n)正方形的面积为(∵原矩形的面积为4mn,22.)﹣n)﹣4mn=(m(∴中间空的部分的面积=m+n2.n)故答案为:(m﹣三、解答题(本大题共8小题,共66分))1(分8.19()113224422.2a)÷+a)?aa﹣()(2(﹣a【解答】解:(1)原式=4﹣2+1=3;6666.﹣4a)原式(2=a2a+a=﹣2﹣18;1)分解因式:2x20.(8分)()解方程组:2.(2﹣9)=2(x+3)(x﹣3【解答】解:(1)原式=2(x)(2)由②得:x=﹣3+2y ③,把③代入①得,3(﹣3+2y)﹣y=﹣4,解得y=1,把y=1代入③得:x=﹣1,则原方程组的解为:.2.,其中x=﹣x﹣3)﹣(2x﹣1)4x21.(8分)先化简,再求值:(22)4x4x+1【解答】解:原式=4x﹣﹣12x﹣(221+4x﹣=4x12x﹣﹣4x,8x﹣1=﹣.)﹣=﹣81=6x=当×(﹣﹣时,原式的顶点都在方格纸格ABC8分)如图,在每个小正方形边长为1的方格纸中,△.22(点上.;边上的中线的ABCD(1)画出△ABC;BC向右平移)画出△ABC4个单位后的△A(2111;平行的关系是A3()图中AC与C 11.8 ABC4()图中△的面积是12)如图所示;1【解答】解:()如图所示;2(.C∥A(3)由图可知AC11故答案为:平行;75×﹣××1﹣×7××(4)S=572﹣×5ABC△﹣﹣﹣7=35.=8.8故答案为:的过程填写完整.AGD2,∠BAC=75°.将求∠∥AD,∠1=∠23.(8分)如图,EF(已知)AD EF解:∵∥)(两直线平行同位角相等3 ∴∠2= ∠(已知)1=∠2 又∵∠)等量代换 1=∠3 (∴∠)内错角相等两直线平行 DG AB∴∥()两直线平行同旁内角互补=180°(AGD BAC+ ∴∠∠13∵∠BAC=75°(已知)∴∠AGD= 105°.【解答】解:∵EF∥AD (已知)∴∠2=∠3 (两直线平行同位角相等)又∵∠1=∠2 (已知)∴∠1=∠3 (等量代换)∴AB∥DG (内错角相等两直线平行)∴∠BAC+∠AGD=180°(两直线平行同旁内角互补)∵∠BAC=75°(已知)∴∠AGD=105°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;105°.24.(8分)(1)填空:10( 0 );= 2﹣1 2﹣2=221();1 4﹣22 ﹣2=2=32();﹣4 2=2﹣22 = 8……(2)探索(1)中式子的规律,试写出第n个等式;0121000.+2)计算2++2 (23)100;1=22=2﹣2﹣1【解答】解:()211;﹣2﹣2=2=42322;4=22﹣2=8﹣……,故答案为:2﹣1、1;4﹣2、1;8﹣4、2.nn﹣1n﹣1;个等式为)第(2n2﹣2=214102132100110002﹣2+2+﹣2…+2)原式(3=2+2﹣2﹣1001﹣1.=2abc=7522.=5(8分)已知:2,=3,25.2a的值;)求2(1c﹣b+a的值;2)求2((3)试说明:a+2b=c.2aa22=9;=322=()【解答】解:(1)c﹣b+acba=75÷5×23=45(2)2×2=2;÷2b2=25,5)因为2)=((3a2ba+2b=3×225=752;=2所以c=75,又因为2ca+2b,=22所以所以a+2b=c.26.(10分)直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.【解答】解:(1)∠AEB的大小不变,15∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,ABE=∠,∠ABO∴∠,BAE=∠OABABE=(∠OAB+∠∠∴∠BAE+ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,ABC=∠ABMBAP,∠∴∠,BAD=∠ABC=(∠PAB+∠ABM∴∠BAD+∠)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,EOQ=∠BOQ,∴∠BAOEAO=∠,∠=∠)ABO,﹣∠E=∠EOQBOQEAO=(∠﹣∠BAO∴∠的角平分线,OAG分别是∠BAO和∠AFAE∵、∴∠EAF=90°.16在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.17。
2018-2019学年苏科版七年级下期中数学试卷(含答案解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠2+∠3=180°2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5B.6C.9D.133.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x64.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.86.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=.11.若3x=24,3y=6,则3x﹣y的值为.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年岁.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.21.(8分)解方程组:(1)(2)22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B 的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD 与直线AB互相垂直时,t=秒.参考答案与试题解析一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠2+∠3=180°【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b,故A选项正确;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b,故B选项正确;C、∵∠1=∠4,∠3+∠4=180°,∴∠3+∠1=180°,不符合同位角相等,两直线平行的条件,故C选项错误;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b,故D选项正确.故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5B.6C.9D.13【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:9﹣3=6,而小于:3+9=12.则此三角形的第三边可能是:9.故选:C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.3.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减分别计算.【解答】解:A、x2+x2=2x2,故A选项错误;B、x2•x3=x5,故B选项错误;C、(2x3)2=4x6,故C选项错误;D、(﹣x)8÷x2=x6,故D选项正确;故选:D.【点评】此题主要考查了合并同类项,同底数幂的乘法,积的乘方,同底数幂的除法,关键是掌握计算法则.4.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.【解答】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.8【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n 的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°【分析】先延长AE交CD于F,根据AB∥CD,∠A=115°,即可得到∠AFD=65°,再根据∠AED是△DEF的外角,∠E=80°,即可得到∠CDE=80°﹣65°=15°.【解答】解:延长AE交CD于F,∵AB∥CD,∠A=115°,∴∠AFD=65°,又∵∠AED是△DEF的外角,∠E=80°,∴∠CDE=80°﹣65°=15°.故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.【解答】解:设购甲、乙、丙三种商品各一件,分别需要x元、y元、z元,根据题意有:,把这两个方程相加得:4x+4y+4z=340,4(x+y+z)=340,x+y+z=85.即购甲、乙、丙三种商品各一件共需85元钱.故选:C.【点评】本题考查了三元一次方程组的应用,解题时认真审题,弄清题意,再列方程组解答,此题难度不大,考查方程思想.8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为7.6×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6×10﹣8,故答案为:7.6×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=﹣2.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0.【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.11.若3x=24,3y=6,则3x﹣y的值为4.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵3x=24,3y=6,∴3x﹣y=3x÷3y=24÷6=4.故答案为:4.【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=5或﹣7.【分析】根据完全平方公式即可求出答案.【解答】解:∵(x±3)2=x2±6x+9,∴﹣(m+1)=±6解得:m=5或﹣7故答案为:5或﹣7;【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=30°.【分析】先根据三角形内角和等于180°求出∠B+∠A的度数,然后与∠B﹣∠A=40°两式相加即可求出∠A.【解答】解:∵∠C=80°,∴∠B+∠A=180°﹣80°=100°①,∵∠B﹣∠A=40°②,∴①﹣②得,2∠A=140°,解得∠A=30°.故答案为:30°.【点评】本题考查了三角形的内角和定理与加减消元法,先求出∠B+∠C的度数是解题的关键.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=3.【分析】把m﹣n=﹣1看作一个整体,代入代数式(m﹣n)2﹣2m+2n求得数值即可.【解答】解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2×(﹣1)=1+2=3.故答案为:3.【点评】此题考查代数式求值,注意整体代入求得问题.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.【分析】先根据绝对值与平方的非负性,求出x与y的值,然后代入求值即可.【解答】解:∵(2x﹣y+7)2+|x+y﹣1|=0,∴,解得,∴y x=3﹣2=.故答案为:.【点评】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年31岁.【分析】设教师今年x岁,学生今年y岁,根据“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设教师今年x岁,学生今年y岁,根据题意得:,解得:.故答案为:31.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为a+3b.【分析】1张边长为a的正方形卡片的面积为a2,6张边长分别为a、b的矩形卡片的面积为6ab,9张边长为b的正方形卡片面积为9b2,∴16张卡片拼成一个正方形的总面积=a2+6ab+9b2=(a+3b)2,∴大正方形的边长为:a+3b.【解答】解:由题可知,16张卡片总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴新正方形边长为a+3b.【点评】本题考查了完全平方公式几何意义的理解,利用完全平方公式分解因式后即可得出大正方形的边长.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是20°.【分析】先根据平行线的性质,设∠DEF=∠EFB=a,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG即可列方程求得a的值.【解答】解:∵AD∥BC,∴设∠DEF=∠EFB=a,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠EFG=180°﹣2a,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2a﹣a=120.解得a=20.即∠DEF=20°,故答案为:20°.【点评】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)【分析】(1)先计算零指数幂、负整数指数幂和乘方,再计算加减可得;(2)先计算乘方,再计算乘法,最后合并同类项即可得;(3)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(4)先根据多项式乘多项式、单项式乘多项式法则计算,再合并同类项即可得.【解答】解:(1)原式=1+4﹣8=﹣3;(2)原式=9a12﹣2a12﹣8a9=7a12﹣8a9;(3)原式=x2+2x+1﹣(1﹣4x2)=x2+2x+1﹣1+4x2=5x2+2x;(4)原式=x2﹣3x+2x﹣6﹣x2﹣x=﹣2x﹣6.【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握实数和整式的混合运算顺序和运算法则.20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.【分析】(1)先提取公因式4,再对余下的多项式利用平方差公式继续分解;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解.【解答】解:(1)4a2﹣16,=4(a2﹣4),=4(a+2)(a﹣2);(2)(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x),=(x﹣2)2(x+2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.(8分)解方程组:(1)(2)【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),将①代入②,得:﹣6y+4y=6,解得:y=﹣3,将y=﹣3代入①,得:x=6,则方程组的解为;(2),①+②×2,得:4x=16,解得:x=4,将x=4代入②,得:2+y=6,解得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).【分析】(1)将x+y、xy的值代入x2y+xy2=xy(x+y)计算可得;(2)将原式变形为(xy)2﹣(x+y)2+2xy+1,再把x+y、xy的值代入计算可得.【解答】解:(1)当x+y=4、xy=1时,x2y+xy2=xy(x+y)=1×4=4;(2)当x+y=4、xy=1时,原式=x2y2﹣x2﹣y2+1=x2y2﹣(x2+y2)+1=(xy)2﹣(x+y)2+2xy+1=1﹣16+2+1=﹣12.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握多项式乘多项式运算法则、因式分解及完全平方公式.23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B 的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是平行且相等;(3)求△DEF的面积.【分析】(1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.【解答】解:(1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,故答案为:平行且相等;=3×3﹣×2×3﹣×1×2﹣×1×3=.(3)S△DEF【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【解答】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点评】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10﹣x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x 值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【解答】解:(1)根据题意得:,解得:.(2)设A型车购买x台,则B型车购买(10﹣x)台,根据题意得:2.4x+2(10﹣x)=22.4,解得:x=6,∴10﹣x=4,∴120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A、B型车价格间的关系列出关于a、b的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量列出关于x的一元一次方程.26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD 与直线AB互相垂直时,t=20或110秒.【分析】(1)依据题意得出∠1+∠5=∠2+∠6,即可得到a∥b;(2)分两种情况讨论:当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°;当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH =3t°﹣180°﹣100°,分别依据角的和差关系进行计算即可.【解答】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b;(2)如图,当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°,∵∠CAG+∠ACG=90°,∴30°+t°+100°﹣3t°=90°,解得t=20;如图,当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,∵∠BAE=∠ACH+∠AHC,∴30°+t°=3t°﹣180°﹣100°+90°,解得t=110,综上所述,当直线CD与直线AB互相垂直时t的值为20或110.故答案为:20或110.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.。
铜陵市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
铜陵市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,在下列条件中,能判断AD∥BC的是()A. ∠DAC=∠BCAB. ∠DCB+∠ABC=180°C. ∠ABD=∠BDCD. ∠BAC=∠ACD 【答案】A【考点】平行线的判定【解析】【解答】解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),A符合题意;B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,B不符合题意;C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,C不符合题意;D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,D不符合题意;故答案为:A.【分析】根据各个选项中各角的关系,再利用平行线的判定定理,对各选项逐一判断即可。
2、(2分)二元一次方程x-2y=1 有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.【答案】B【考点】二元一次方程组的解【解析】【解答】解:二元一次方程x-2y=1 ,当时,,故A. 是方程x-2y=1 的解;当时,,故B不是方程x-2y=1 的解;故C. 是方程x-2y=1的解;当x=-1 时,y=-1 ,故 D. 是方程x-2y=1 的解,故答案为:B【分析】分别将各选项中的x、y的值代入方程x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
3、(2分)下列方程组中,属于二元一次方程组的是()A.B.C.D.【答案】C【考点】二元一次方程组的定义【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;B. 第一个方程不是整式方程,故不是二元一次方程组;C. 符合二元一次方程组的定义,是二元一次方程组;D.含有三个未知数,故不是二元一次方程组。
2018-2019学年七年级(下)期中数学试卷及答案解析
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
2018-2019学年第二学期期中质量检测七年级数学试题及答案
2018-2019学年第二学期期中质量检测七年级数学试题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只一个选项是正确的.1.下列代数运算正确的是( )A.66x x x ⋅=B.()3322x x =C.()2224x x +=+D.()326x x =2.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A.8410⨯B.8410-⨯C.80.410⨯D.8410-⨯3.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144m m -=;④()3236xy x y =。
他做对的个数是( )A.1B.2C.3D.44.下列各式中,计算结果正确的是( )A.()()22x y x y x y +--=-B.()()232346x y x y x y -+=-C.()()22339x y x y x y ---+=--D.()()2242222x y x y x y -+=-5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A.23bB.26bC.29bD.236b6.如图,通过计算大正方形的面积,可以验证的公式是( )A.()222a b c a b c ++=++B.()2222a b c a b c ab bc ac ++=+++++C.()2222222a b c a b c ab bc ac ++=+++++D.()2222234a b c a b c ab bc ac ++=+++++7.如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形。
(a>0)剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙)则长方形的面积为( )A.()2225cm a a +B.()2315cm a +C.()269cm a +D.()2615cm a +8.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上. 如果∠1=20°,么∠2的度数是( )A.15°B.20°C.25°D.30°第8题图 第9题图9.如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.∠B=∠CB.AD//BCC.∠2+∠B=180°D.AB//CD10.下列正确说法的个数是( )①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.1B.2C.3D.411.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂重物的质量x (kg )有下面的关系,那么弹簧总长y (cm )与所挂重物x (kg )之间的关系式为( )A.y=0.5x+12B.y=x+10.5C.y=0.5x+1D.y=x+1212.如图,在△ABC 中,AC=BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动,则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A B C D二、填空题:本题共6小题,每小题填对得4分,共24分. 只要求在答题纸上填写最后结果.13.若长方形的面积是2323a ab a ++,长为3a ,则它的宽为________.14.已知()2893n =,则n=________.15.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则 ∠1=________度.16. 三角形ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,三角形ABC 的面积从________变化到________.17.如图所示,根据平行线的性质,完成下列问题:如果AB//CD ,那么∠1=________,∠2+________=180°; 如果AD//BC ,那么∠1=________,∠2+________=180°.18.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.三、解答题:本题共7小题,满分60分.在答题纸上写出必要的文字说明或演算步骤.19.(本小题满分13分)解下列各题:(1)计算:()()2201801133π-⎛⎫---+- ⎪⎝⎭.(4分)(2)计算:()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦.(4分)(3)用乘法公式计算:2199199201-⨯.(5分)20.(本小题满分7分)先化简,再求值:()()()()()222222m n m n m n m n m n +--+--+,其中12m =-,n=2.已知()25-=,求下列式子的值:a ba b+=,()23(1)22+;(2)6ab.a b22.(本小题满分7分)小安的一张地图上有A,B,C3三个城市,地图上的C城市被墨污染了(如图),但知道∠ABC=∠α,∠ABC=∠β,你能用尺规作图帮他在下图中确定C城市的具体位置吗?(不作法,保留作图痕迹)23.(本小题满分8分)如图,直线AB//CD,BC平分∠ABD,∠1=65°,求∠2的度数.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥1AB ,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.25.(本小题满分10分)周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s (km )与小明离家时间t (h )的关系图,请根据图回答下列问题:(1)图中自变量是____,因变量是______;(2)小明家到滨海公园的路程为____ km ,小明在中心书城逗留的时间为____ h ;(3)小明出发______小时后爸爸驾车出发;(4)图中A 点表示___________________________________;(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.第25题图2017—2018学年度第二学期期中质量检测七年级数学参考答案与评分标准一、选择题:本大题共12小题,每小题3分,共36分.二、填空题:本题共6小题,每小题填对得4分,共24分. 13. 213a b ++ 14. 14 15. 30 16. 264cm ,220cm 17. ∠1,∠,4,∠2,∠BAD 18. 5cm三、解答题:本题共7小题,满分60分.19.解:(1)()()2201801133π-⎛⎫---+- ⎪⎝⎭=1-1+9 ………………………3分=9; ………………………4分(2)原式=()32223223x y x y x y x y x y --+÷ ……………………2分 ()3222223x y x y x y =-÷ …………………………………3分2233xy =- …………………………………………4分 (3)2199198201-⨯()()()2200120012001=---⨯+ …………………………………2分2220040012001=-+-+ (4)分=-400+2=-398 ………………………………………5分20.解:()()()()()222+n 222m n m n m m n m n +----+()()()222222442224m mn n m mn mn n m n =++-+---- …………………2分222222442228m mn n m mn mn n m n =++--++-+ (4)分 239mn n =+. …………………………5分 当12m =-,n=2时, 原式213292336332⎛⎫=⨯-⨯+⨯=-+= ⎪⎝⎭. ………………………7分 21.解:(1)因为()25a b +=,()23a b -=,所以2225a ab b ++=,2223a ab b -+=, ……………………2分 所以()2228a b +=,所以224a b +=; …………………………4分(2)因为224a b +=,所以425ab +=, …………………………6分 所以12ab =,所以63ab =. …………………………7分 22.解:画对一个角得2分,标出C 点得3分.点C 为所求的点.23.解:因为AB//CD ,根据“两直线平行,同位角相等”、“两直线平行,同旁内角互补”所以∠ABC=∠1=65°,∠ABD+∠BDC=180°. ……………………4分因为BC平分∠ABD,根据“角平分线定义”,所以∠ABD=2∠ABC=130°.所以∠BDC=180°-∠ABD=50°. …………………………6分根据“对顶角相等”,所以∠2=∠BDC=50°. …………………………8分24.解:(1)CD//EF. …………………………1分理由:因为CD⊥AB,EF⊥AB,所以∠CDF=∠EFB=90°,…………………………2分根据“同位角相等,两直线平行”所以CD//EF. …………………………4分(2)DG//BC,…………………………5分理由:因为CD//EF,根据“两直线平行,同位角相等”…………………………6分所以∠2=∠BCD,因为∠1=∠2,所以∠1=∠BCD,…………………………7分根据“内错角相等,两直线平行”所以DG//BC. …………………………8分25.解:(1)t,s;(2分)(2)30,1.7;(2分)(3)2.5;(1分)(4)2.5小时后小明继续坐公交车到滨海公园;(1分)(5)小明从中心书城到滨海公园的平均速度为301212km /h 4 2.5-=-, 小明爸爸驾车的平均速度为30=30km /h 3.5 2.5-; 爸爸驾车经过12h 3012-追上小明;(2分)(6)小明从家到中心书城时,他的速度为12=15km /h 0.8,∴他离家路程s 与坐车时间t 之间的关系式为s=15t (0≤t ≤0.8)(2分)第25题图。
2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)
2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。
苏教版2018—2019学年第二学期期中七年级数学试卷含答案
2018—2019学年第二学期期中七年级数学试卷含答案考试范围:苏科版《数学》七年级下册第八、九、十、十一章内容;考试时间:120分钟;考试题型:选择题、填空题、解答题;考试分值:130分。
一、选择题(每题3分,共30分)1.化简﹣b•b 3•b 4的正确结果是( ▲ )A .﹣b 7B .b 7C .-b 8D .b 82.已知⎩⎨⎧==32y x 是关于x 、y 的方程4kx-3y=-1的一个解,则k 的值为( ▲ ) A.1 B.-1 C.2 D.-2 3.不等式2x+1≥5的解集在数轴上表示正确的是 ( ▲) 4.若多项式)3)(1(-+x x =b ax x ++2,则a ,b 的值分别是( ▲ ) A .2=a ,3=b B .2-=a ,3-=b C .2-=a ,3=b D .2=a ,3-=b 5. 下列计算中,正确的是( ▲ ) A. 235235x x x +=;B. 236236x x x =g ;C. 322()2x x x ÷-=-;D. 236(2)2x x -=- 6. 不等式321x +>-的解集是( ▲ ) A. 13x >- B. 13x <- C. 1x >- D. 1x <- 7. 若2,3m n a a ==,则2m n a -的值是( ▲ ) A. 1 B. 12 C. 34 D. 43 8.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( ▲ ) A. 7385y x y x =+⎧⎨=+⎩B. 7385y x y x =+⎧⎨+=⎩C. 7385y x y x =-⎧⎨+=⎩D.7385y x y x =-⎧⎨=+⎩ 9.计算1158得到的结果的个位数字是( ▲ )A. 8B.6C.4D.210.若正整数x 、y 满足222017x y -=,则这样的数对(,)x y 个数是( ▲ )A.0B.1C.3D.2017 二、填空题(本大题共有8小题,每小题3分,共24分)11.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法班级 姓名 学号 .得分_____________表示为▲ .12.一个长方体的长、宽、高分别是3x-4,2x 和x,它的体积等于 ▲ .13.不等式组⎪⎩⎪⎨⎧<≥-3203x x ,的解集是 ▲ . 14.已知a +b=3,a b=2,则(a -b)2= ▲ .15. 某地准备对一段长120 m 的河道进行清淤疏通.若甲工程队先用 4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工 作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m ,乙工程队平均每天疏通河道y m ,则)(y x +的值为 ▲ .16.已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 ▲ . 17.若0a >,并且代数式216x ax ++是一个完全平方式,则a =18.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a +b )n (n =1,2,3,4,……)的展开式的系数规律(按n 的次数由大到小的顺序):请依据上述规律,写出(x-2)2017展开式中含x 2016项的系数是 ▲ . 三、解答题(本大题共有10小题,共76分.解答时应写出必要的步骤)19.(本题满分6分) 计算: ;)()()(20172201-221--3.14--+-π20.(本题6分)已知x 2+x ﹣5=0,求代数式(x ﹣1)2﹣x (x ﹣3)+(x+2)(x ﹣2)的值.21.(本题满分8分)因式分解:(1)2x 3y -8xy ; (2)222(4)16x x +-.22.(本题满分6分)解不等式1215312≤+--x x ,把它的解集在数轴上表示出来,并求出这个不等式的负整数解. 1 1 (a +b )1= a +b1 2 1 (a +b )2= a 2+2ab +b 21 3 3 1 (a +b )3= a 3+3a 2b +3ab 2+b 31 4 6 4 1 (a +b )4= a 4+4a 3b +6a 2b 2+4ab 3+b 4…… ……–1–2–3–412340 23.(本题满分6分)若3x y +=,且(2)(2)12x y ++=.(1)求xy 的值; (2)求223x xy y ++的值.24.(本题满分8分,每小题4分)解方程组: (1)21325x y x y +=⎧⎨-=⎩ (2)2234742x y z x y x z ++=⎧⎪+=⎨⎪=+⎩25(本题满分8分)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,问A 型节能灯最多可以买多少只?26.(本题满分8分)已知关于x 、y 的方程组⎩⎨⎧-=-+=+.172,652y x m y x (1)求方程组的解(用含m 的代数式表示);(2)若方程组的解满足条件x <0,且y <0,求m 的取值范围.27. (本题满分10分)观察下列关于自然数的等式:a 1:32-12=8×1;a 2:52-32=8×2;a 3:72-52=8×3;……根据上述规律解决下列问题:(1)写出第a 4个等式:___________;(2)写出你猜想的第a n 个等式(用含n 的式子表示),并验证其正确性;(3)对于正整数k ,若a k ,a k+1,a k+2为△ABC 的三边,求k 的取值范围.a .28.(本题满分10分)已知A=2 a -7,B=a2- 4a+3,C= a2 +6a-28,其中2(1)求证:B-A>0,并指出A与B的大小关系;(2)阅读对B因式分解的方法:解:B=a2- 4a+3=a2- 4a+4-1=(a-2)2-1=(a-2+1)(a-2-1)=(a-1)(a-3).请完成下面的两个问题:①照上述方法分解因式:x2- 4x-96;②指出A与C哪个大?并说明你的理由.参考答案与评分标准一、选择题(本大题共有10小题,每小题3分,共30分)1.C ;2.A ;3.D ;4.B ;5.D ;6.B ;7.D ;8.D ;9.C ;10.B 。
2018-2019学年江苏省徐州市铜山区七年级(下)期末数学试卷含解析
2018-2019学年江苏省徐州市铜山区七年级(下)期末数学试卷一、选择题:(每小题3分,共24分).1.(3分)如图,∠1和∠2是同位角的是()A.B.C.D.2.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣63.(3分)下列计算正确的是()A.x3•x2=2x6B.x4•x2=x8C.(﹣x2)3=﹣x6D.(x3)2=x54.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.5.(3分)方程组的解是()A.B.C.D.6.(3分)由x<y得到ax>ay,则a的取值范围是()A.a>0B.a<0C.a≥0D.a≤07.(3分)如图,﹣3x≤9的解集在数轴上可表示为()A.B.C.D.8.(3分)下列句子中,是命题的是()A.画一个角等于已知角B.a、b两条直线平行吗C.直角三角形两锐角互余D.过一点画已知直线的垂线二、填空题(每小题4分,共40分)9.(4分)分解因式a2b+ab2=.10.(4分)化简:(﹣3x2)•(4x﹣3)=.11.(4分)若a x=5,a y=3,则a y﹣x=.12.(4分)不等式2x﹣3<5x+7的最小整数解为.13.(4分)一个五边形有三个内角是直角,另两个内角都等于n°,则n=.14.(4分)甲、乙两人各工作5天,共生产零件80件.设甲每天生产零件x件,乙天生产零件y 件,可列二元一次方程.15.(4分)将数轴上x的范围用不等式表示:.16.(4分)命题“如果a2=b2,那么a=b.”的否命题是.17.(4分)如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为个单位.18.(4分)若方程组中,x的值与y的值的和为12,则k的值等于.三、解答题(共76分)19.计算:(1)y4+(y2)4÷y4﹣(﹣y2)2;(2)0.23×0.44×12.54.20.把下列各式分解因式:(1)a4﹣16;(2)18a2﹣50.21.(1)解不等式组:(2)解方程组:22.完成下面的证明.如图、∠BAP与∠APD互补,∠BAE=∠CPF,求证:∠E=∠F.对于本题小丽是这样证明的,请你将她的证明过程补充完整.证明:∵∠BAP与∠APD互补,(已知)∴AB∥CD.()∴∠BAP=∠APC.()∵∠BAE=∠CPF,(已知)∴∠BAP﹣∠BAE=∠APC﹣∠CPF,(等量代换)即=.∴AE∥FP.()∴∠E=∠F.()23.某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.24.小明舅舅是某工地爆破员,他想考一下小明,他说:工地爆破时导火线的燃烧速度是0.8m/s,点燃导火线的人要在爆破时跑到200米以外的安全区域.如果引爆人跑的速度是5米/秒,那么导火线长度应大于多少cm?25.甲、乙二人同时解一个方程组,甲解得,乙解得.甲仅因为看错了方程(1)中y的系数a,乙仅因为看错了方程(2)中x的系数b,求方程组正确的解.26.如图,△ABC中,BE,CD为角平分线且交点为点O.(1)若∠ABC=60°,∠ACB=80°,求∠BOC的度数;(2)若∠BOC=120°,求∠A的度数;(3)若∠A=α时,求∠BOC的度数.2018-2019学年江苏省徐州市铜山区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分).1.【解答】解:由同位角的定义可知选项A符合题意,故选:A.2.【解答】解:0.0000065=6.5×10﹣6;故选:B.3.【解答】解:∵x3•x2=x5,∴选项A不符合题意;∵x4•x2=x6,∴选项B不符合题意;∵(﹣x2)3=﹣x6,∴选项C符合题意;∵(x3)2=x6,∴选项D不符合题意.故选:C.4.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.5.【解答】解:,①+②×2得:9x=18,解得:x=2,把x=2代入②得:y=3,则方程组的解为,故选:B.6.【解答】解:∵由x<y得到ax>ay,∴不等号的方向改变了,∴a<0;故选:B.7.【解答】解:不等式的两边同时除以﹣3得,x≥﹣3,在数轴上表示为:故选:D.8.【解答】解:A、画一个角等于已知角,不是判断句,没有做出判断,不是命题,B、a、b两条直线平行吗,不是判断句,没有做出判断,不是命题C、直角三角形两锐角互余,是命题,D、过一点画已知直线的垂线,不是可以判断真假的陈述句,不是命题,故选:C.二、填空题(每小题4分,共40分)9.【解答】解:a2b+ab2=ab(a+b).故答案为:ab(a+b).10.【解答】解:原式=﹣12 x3+9x2故答案为:﹣12x3+9x211.【解答】解:a y﹣x=a y÷a x=3÷5=,故答案为:.12.【解答】解:2x﹣3<5x+7,﹣3x<10,,最小整数解是﹣3,故答案为﹣3.13.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.14.【解答】解:依题意得:5(x+y)=80.故答案是:5(x+y)=80.15.【解答】解:数轴上表示不等式组解集的方法可知,该不等式的解集为:x>2.故答案是:x>2.16.【解答】解:如果a2≠b2,那么a≠b.故答案为:如果a2≠b2,那么a≠b.17.【解答】解:根据题意,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,故四边形ABFD的边长分别为AD=1个单位,BF=3个单位,AB=DF=2个单位;故其周长为8个单位.故答案为:8.18.【解答】解:解方程得:,根据题意得:(2k﹣6)+(4﹣k)=12解得:k=14.故答案为:14.三、解答题(共76分)19.【解答】解:(1)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4;(2)0.23×0.44×12.54=0.23×(0.4×12.5)4=0.23×54=(0.2×5)3×5=5.20.【解答】解:(1)原式=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2);(2)原式=2(9a2﹣25)=2(3a+5)(3a﹣5).21.【解答】解:(1)解不等式①,得x≥1,解不等式②,得x>2,所以原不等式组的解集为x>2.(2)①+②得:4x=6,解得x=,把x=代入①得:+2y=1,解得y=﹣,所以方程组的解为.22.【解答】证明:∵∠BAP与∠APD互补,(已知)∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等),∵∠BAE=∠CPF,(已知)∴∠BAP﹣∠BAE=∠APC﹣∠CPF,即∠EAP=∠APE,∴AE∥FP(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;∠EAP,∠APF;内错角相等,两直线平行;两直线平行,内错角相等.23.【解答】解:设火车的速度为x米/秒,火车的长度为y米,由题意,得,解得:.答:火车的速度为20米/秒,火车的长度为200米.24.【解答】解:导火线长度应为xcm,依题意,得:5×>200,解得:x>32.答:导火线长度应大于32cm.25.【解答】解:把代入(2)得:13b﹣49=16,解得:b=5,把代入(1)得:18+4a=6,解得:a=﹣3,方程组为,(1)×7﹣(2)×3得:﹣x=﹣6,解得:x=6,把x=6代入(1)得:y=2,则方程组的正确解为.26.【解答】解:(1)∵BE,CD为角平分线,∠ABC=60°,∠ACB=80°,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°;(2)∵∠BOC=120°,∴∠OBC+∠OCB=180°﹣∠BOC=60°,∵BE,CD为角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠ABC+∠ACB=120°,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣(∠ABC+∠ACB)=60°;(3)∵BE,CD为角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣(∠ABC+∠ACB),∴∠ABC+∠ACB=180°﹣∠A,∴∠ABC+∠ACB=(180°﹣∠A)=90°﹣∠A,∴∠OBC+∠OCB=90°﹣∠A,又∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+α.。
铜山县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
铜山县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列调查方式,你认为正确的是()A. 了解我市居民日平均用水量采用抽查方式B. 要保证“嫦娥一号”卫星发射成功,对零部件采用抽查方式检查质量C. 了解北京市每天的流动人口数,采用普查方式D. 了解一批冰箱的使用寿命采用普查方式【答案】A【考点】全面调查与抽样调查【解析】【解答】解:A、了解我市居民日平均用水量,知道大概就可以,适合采用抽查方式;B、要保证“嫦娥一号”卫星发射成功,对零部件要求很精密,不能有点差错,所以适合采用普查方式检查质量;C、了解北京市每天的流动人口数,知道大概就可以,适合采用抽查方式;D、了解一批冰箱的使用寿命,具有破坏性,所以适合采用抽查方式.故答案为:A【分析】根据抽样调查和全面调查的特征进行判断即可确定正确的结论.2、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()A. B. C. D.【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:,②−①,得3a+b=3④①×3+③,得5a−2b=19⑤由④⑤可知,选项D不符合题意,故答案为:D.【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
3、(2分)下列各数:0.3333…,0,4,-1.5,,,-0.525225222中,无理数的个数是()A. 0个B. 1个C. 2个D. 3个【答案】B【考点】无理数的认识【解析】【解答】解:是无理数,故答案为:B【分析】根据无理数的定义,无限不循环的小数就是无理数,常见的无理数有三类:①开方开不尽的;②及含的式子;③象0.101001001…这类有规律的数;从而得出答案。
2019学年徐州市部分学校七年级下期中数学试卷(含答案解析)
2018-2019学年江苏省徐州市部分学校七年级(下)期中数学试卷一、选择题(本大题有8小题,每小题3分,共24分)1.下列运算正确的是()A.x2•x3=x5B.(x2)3=x5C.x6÷x2=x3D.x2+x3=x52.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1083.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4B.5C.6D.94.下列各式由左边到右边的变形,是因式分解的是()A.3x(x+y)+3x2+3xy B.﹣2x2﹣2xy=﹣2x(x+y)C.(x+5)(x﹣5)=x2﹣25D.x2+x+1=x(x+1)+15.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD6.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°7.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A.2,3,7B.3,7,2C.2,5,3D.2,5,78.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,那a,b,c三数的大小为()A.a>b>c B.c>a>b C.c<b<a D.a>c>b二、填空题(本大题共有8小题,每小题4分,共32分)9.在△ABC中,∠A=40°,∠B=60°,则∠C=°.10.若正多边形的一个外角是40°,则这个正多边形的边数是.11.若(x﹣4)(x+7)=x2+mx+n,则m+n=.12.若x+y=3,则2x•2y的值为.13.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为.14.已知单项式3x2y3与﹣5x2y2的积为mx4y n,那么m﹣n=.15.若4x2﹣mx+9是完全平方式,则m的值是.16.观察下列等式:32﹣12=8×1;52﹣32=8×2;72﹣52=8×3;…,请用含正整数n的等式表示你所发现的规律:.三、解答题(本大题共有9小题,共84分)17.(16分)计算:(1);(2)(﹣x2)3﹣x•x5+(2x3)2;(3)5002﹣499×501;(4)(x﹣1)(x2﹣1)(x+1).18.(6分)先化简,再求值:(x﹣1)2﹣2x(x﹣3)+(x+2)(x﹣2),其中x=2.19.(8分)把下列各式分解因式:(1)2a2﹣50;(2)(a+b)2+4(a+b+1)20.(8分)如图,在方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.(1)画出△ABC先向右平移6格,再向上平移1格所得的△A′B′C′;(2)画出△ABC的AB边上的中线CD和高线CE;(3)△ABC的面积为.21.(8分)如图,点E、F分别在AB、CD上,AD分别交BF、CE于点H、G,∠1=∠2,∠B=∠C.(1)探索BF与CE有怎样的位置关系?为什么?(2)探索∠A与∠D的数量关系,并说明理由.22.(6分)已知:a+b=3,ab=1,试求(1)(a﹣1)(b﹣1)的值;(2)a3b+ab3的值.23.(10分)(1)填空:31﹣30=3()×2,32﹣31=3()×2,33﹣32=3()×2,…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算:3+32+33+ (32018)24.(10分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2﹣4a+4=0,则a=.b=.(2)已知x2+2y2﹣2xy+6y+9=0,求x y的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长.25.(12分)(1)如图1,在△ABC中,∠DBC与∠ECB分别为△ABC的两个外角,若∠A=60°,∠DBC+∠ECB=°;(2)如图2,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有怎样的数量关系?为什么?(3)如图3,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A+∠D有怎样的数量关系?为什么?(4)如图4,在五边形ABCDE中,BP、CP分别平分外角∠NBC、∠MCB,∠P与∠A+∠D+∠E有怎样的数量关系?直接写出答案.江苏省徐州市部分学校七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题有8小题,每小题3分,共24分)1.下列运算正确的是()A.x2•x3=x5B.(x2)3=x5C.x6÷x2=x3D.x2+x3=x5【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分别化简得出答案.【解答】解:A、x2•x3=x5,故此选项正确;B、(x2)3=x6,故此选项错误;C、x6÷x2=x4,故此选项错误;D、x2+x3,无法计算,故此选项错误;故选:A.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、幂的乘方运算等知识,正确掌握相关运算法则是解题关键.2.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4B.5C.6D.9【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.下列各式由左边到右边的变形,是因式分解的是()A.3x(x+y)+3x2+3xy B.﹣2x2﹣2xy=﹣2x(x+y)C.(x+5)(x﹣5)=x2﹣25D.x2+x+1=x(x+1)+1【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、是整式的乘法,故A错误;B、是把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、没是把一个多项式转化成几个整式积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.5.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD【分析】A、B、C、根据同旁内角互补,判定两直线平行;D、∠A与∠C不能构成三线八角,因而无法判定两直线平行.【解答】解:A、C、因为∠A+∠D=180°,由同旁内角互补,两直线平行,所以AB∥CD,故A 错误,C正确;B、因为∠C+∠D=180°,由同旁内角互补,两直线平行,所以AD∥BC,故B错误;D、∠A与∠C不能构成三线八角,无法判定两直线平行,故D错误.故选:C.【点评】平行线的判定:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.6.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可;【解答】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选:B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.7.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A.2,3,7B.3,7,2C.2,5,3D.2,5,7【分析】根据长方形的面积=长×宽,求出长为a+3b,宽为2a+b的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.【解答】解:长为a+3b,宽为2a+b的长方形的面积为:(a+3b)(2a+b)=2a2+7ab+3b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.【点评】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.8.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,那a,b,c三数的大小为()A.a>b>c B.c>a>b C.c<b<a D.a>c>b【分析】首先求出a,b,c三数的值各是多少;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,判断出a,b,c三数的大小即可.【解答】解:a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c=(﹣)﹣2=,因为1,所以a>c>b.故选:D.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.二、填空题(本大题共有8小题,每小题4分,共32分)9.在△ABC中,∠A=40°,∠B=60°,则∠C=80°°.【分析】根据三角形内角和是180度来求∠C的度数即可.【解答】解:在△ABC中,∠A=40°,∠B=60°,则由三角形内角和定理知,∠C=180°﹣∠B﹣∠A=180°﹣40°﹣60°=80°.故答案是:80°.【点评】本题考查了三角形内角和定理.三角形内角和定理:三角形内角和是180°.10.若正多边形的一个外角是40°,则这个正多边形的边数是9.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.11.若(x﹣4)(x+7)=x2+mx+n,则m+n=﹣25.【分析】先根据多项式乘以多项式法则进行计算,求出m、n的值,即可得出答案.【解答】解:(x﹣4)(x+7)=x2+3x﹣28,∵(x﹣4)(x+7)=x2+mx+n,∴m=3,n=﹣28,∴m+n=﹣25,故答案为:﹣25.【点评】本题考查了多项式乘以多项式法则,能熟练根据多项式乘以多项式法则进行计算是解此题的关键.12.若x+y=3,则2x•2y的值为8.【分析】运用同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:∵x+y=3,∴2x•2y=2x+y=23=8.故答案为:8.【点评】本题考查了同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.13.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为15°.【分析】根据两直线平行,内错角相等求出∠BCE=∠E=30°,然后求出∠ACE的度数.【解答】解:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故答案为:15°.【点评】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.14.已知单项式3x2y3与﹣5x2y2的积为mx4y n,那么m﹣n=﹣20.【分析】将两单项式相乘后利用待定系数即可取出m与n的值.【解答】解:3x2y3×(﹣5x2y2)=﹣15x4y5,∴mx4y n=﹣15x4y5,∴m=﹣15,n=5∴m﹣n=﹣15﹣5=﹣20故答案为:﹣20【点评】本题考查单项式乘以单项式,解题的关键是熟练运用整式的乘法法则,本题属于基础题型.15.若4x2﹣mx+9是完全平方式,则m的值是m=±12.【分析】本题考查完全平方公式,这里根据首末两项是2x和3的平方可得,中间一项为加上或减去它们乘积的2倍,即:mx=±2•2x•3,由此得m=±12.【解答】解:∵(2x±3)2=4x2±12x+9,∴在4x2﹣mx+9中,m=±12.【点评】本题是根据完全平方公式的结构特征进行分析,对此类题要真正理解完全平方公式,并熟记公式,这样才能灵活应用,本题易错点在于:是加上或减去两数乘积的2倍,在此有两种情况,要全面分析,避免漏解.16.观察下列等式:32﹣12=8×1;52﹣32=8×2;72﹣52=8×3;…,请用含正整数n的等式表示你所发现的规律:(2n+1)2﹣(2n﹣1)2=8n.【分析】由等式可以看出:等式的左边是连续奇数的平方差,右边是8的倍数,由此规律得出答案即可.【解答】解:∵32﹣12=8=8×1;52﹣32=16=8×2;72﹣52=24=8×3;…∴第n个等式为(2n+1)2﹣(2n﹣1)2=8n.故答案为:(2n+1)2﹣(2n﹣1)2=8n.【点评】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,利用规律解决问题.三、解答题(本大题共有9小题,共84分)17.(16分)计算:(1);(2)(﹣x2)3﹣x•x5+(2x3)2;(3)5002﹣499×501;(4)(x﹣1)(x2﹣1)(x+1).【分析】(1)先求出每一部分的值,再代入求出即可;(2)先算乘方,再算乘法,最后合并即可;(3)先变形,再根据平方差公式求出即可;(4)根据平方差公式求出即可.【解答】解:(1)原式=4+1﹣2=3;(2)原式=﹣x6﹣x6+4x6=2x6;(3)原式=500 2﹣(500+1)×(500﹣1)=500 2﹣(500 2﹣1)=1;(4)原式=(x2﹣1)(x2+1)=x4﹣1.【点评】本题考查了整式的混合运算、零指数幂、负整数指数幂、有理数的混合运算等知识点,能灵活运用法则进行计算是解此题的关键,注意运算顺序.18.(6分)先化简,再求值:(x﹣1)2﹣2x(x﹣3)+(x+2)(x﹣2),其中x=2.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+1﹣2x2+6x+x2﹣4=4x﹣3,当x=2 时,原式=4×2﹣3=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(8分)把下列各式分解因式:(1)2a2﹣50;(2)(a+b)2+4(a+b+1)【分析】(1)首先提取公因式2,直接利用平方差公式计算得出答案;(2)将(a+b)看作整体,进而利用完全平方公式分解因式即可.【解答】解:(1)2a2﹣50=2(a2﹣25)=2(a+5)(a﹣5);(2)(a+b)2+4(a+b+1)=(a+b)2+4(a+b)+4=(a+b+2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(8分)如图,在方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.(1)画出△ABC先向右平移6格,再向上平移1格所得的△A′B′C′;(2)画出△ABC的AB边上的中线CD和高线CE;(3)△ABC的面积为7.【分析】(1)根据网格结构找出点A、B、C向右平移6格,向上平移1格所对应的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出AB的中点D,过点C与AB垂直的直线经过的格点,然后分别作出即可;(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)△A′B′C′如图所示;(2)中线CD和高线CE如图所示;(3)△ABC的面积=5×3﹣×1×5﹣×2×4﹣×1×3,=15﹣2.5﹣4﹣1.5,=15﹣8,=7.故答案为:7.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.难点在于根据网格结构确定出垂线.21.(8分)如图,点E、F分别在AB、CD上,AD分别交BF、CE于点H、G,∠1=∠2,∠B=∠C.(1)探索BF与CE有怎样的位置关系?为什么?(2)探索∠A与∠D的数量关系,并说明理由.【分析】(1)根据平行线的判定解答即可;(2)根据平行线的判定和性质解答即可.【解答】解:(1)BF∥CE,理由如下:∵∠1=∠2,∠2=∠GHB,∴∠1=∠GHB,∴BF∥CE;(2)∠A=∠D,理由如下:∵BF∥CE,∴∠C=∠BFD,∵∠B=∠C,∴∠B=∠BFD,∴AB∥CD,∴∠A=∠D.【点评】考查了平行线的判定和性质,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.22.(6分)已知:a+b=3,ab=1,试求(1)(a﹣1)(b﹣1)的值;(2)a3b+ab3的值.【分析】(1)利用多项式的乘法展开,再利用加法结合律,即可得出结论;(2)先提取公因式ab,再利用完全平方公式将原式处理成ab(a+b)2﹣2(ab)2,代值即可得出结论.【解答】解:∵a+b=3,ab=1,(1)(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)﹣1=1﹣3﹣1=3;(2)a3b+ab3=ab(a2+b2)=ab[(a2+b2+2ab)﹣2ab]=ab(a+b)2﹣2(ab)2=1×32﹣2×12=7.【点评】此题主要考查了分解因式,完全平方公式,解本题的关键是将原式整理成ab和a+b的形式.23.(10分)(1)填空:31﹣30=3(0)×2,32﹣31=3(1)×2,33﹣32=3(2)×2,…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算:3+32+33+ (32018)【分析】(1)各式计算即可得到结果;(2)归纳总结得到一般性规律,验证即可;(3)原式变形后,利用得出的规律计算即可求出值.【解答】解:(1)根据题意得:31﹣30=30×2,32﹣31=31×2,33﹣32=32×2,…故答案为:0,1,2;(2)3n﹣3n﹣1=3n﹣1×2,验证:左边=3n﹣3n﹣1=31+n﹣1﹣3n﹣1=3×3n﹣1﹣3n﹣1=(3﹣1)×3n﹣1=2×3n﹣1=右边,∵左边=右边,∴3n﹣3n﹣1=3n﹣1×2;(3)∵3n﹣3n﹣1=3n﹣1×2,∴3+32+33+…+32018=(2×3+2×32+2×33+…+2×32018)=(32﹣3+33﹣32+…+32019﹣32018)=(32019﹣3).【点评】此题考查了有理数的混合运算,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.24.(10分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2﹣4a+4=0,则a=2.b=0.(2)已知x2+2y2﹣2xy+6y+9=0,求x y的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长.【分析】(1)已知等式利用完全平方公式化简后,再利用非负数的性质求出a与b的值即可;(2)已知等式变形并利用完全平方公式化简,再利用非负数的性质求出x与y的值,代入原式计算即可求出值;(3)已知等式变形并利用完全平方公式化简,再利用非负数的性质求出a,b的值,进而确定出三角形周长.【解答】解:(1)已知等式整理得:(a﹣2)2+b2=0,解得:a=2,b=0;故答案为:2;0;(2)∵x2+2y2﹣2xy+6y+9=0,∴x2+y2﹣2xy+y2+6y+9=0,即(x﹣y)2+(y+3)2=0,则x﹣y=0,y+3=0,解得:x=y=﹣3,∴x y=(﹣3)﹣3=﹣;(3)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得:a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,则△ABC的周长为1+3+3=7.【点评】此题考查了因式分解的应用,以及非负数的性质:偶次幂,熟练掌握完全平方公式是解本题的关键.25.(12分)(1)如图1,在△ABC中,∠DBC与∠ECB分别为△ABC的两个外角,若∠A=60°,∠DBC+∠ECB=240°;(2)如图2,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有怎样的数量关系?为什么?(3)如图3,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A+∠D有怎样的数量关系?为什么?(4)如图4,在五边形ABCDE中,BP、CP分别平分外角∠NBC、∠MCB,∠P与∠A+∠D+∠E有怎样的数量关系?直接写出答案270°﹣(∠A+∠E+∠D).【分析】(1)根据三角形内角和定理求出∠ABC+∠ACB,根据外角的性质计算;(2)根据角平分线的定义得到∠PBC=∠DBC,∠PCB=∠ECB,根据三角形内角和定理计算;(3)根据四边形内角和等于360°计算;(4)根据五边形的内角和等于540°、三角形的外角的性质、角平分线的定义计算.【解答】解:(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠DBC+∠ECB=360°﹣120°=240°,故答案为:240;(2)∵BP、CP分别平分外角∠DBC、∠ECB,∴∠PBC=∠DBC,∠PCB=∠ECB,∴∠ABC+∠ACB=180°﹣∠A,∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,∴∠PBC+∠PCB=90°+∠A,∴∠P=180°﹣(∠PBC+∠PCB)=90°﹣∠A;(3)∴∠ABC+∠ACB=360°﹣∠A﹣∠D,∴∠DBC+∠ECB=360°﹣(360°﹣∠A﹣∠D)=∠A+∠D,∴∠PBC+∠PCB=(∠A+∠D),∴∠P=180°﹣(∠A+∠D);(4)五边形的内角和=(5﹣2)×180°=540°,∴∠ABC+∠ACB=540°﹣∠A﹣∠E﹣∠D,∴∠DBC+∠ECB=360°﹣(540°﹣∠A﹣∠E﹣∠D)=∠A+∠E+∠D﹣180°,∴∠PBC+∠PCB=(∠A+∠E+∠D﹣180°),∠P=180°﹣(∠A+∠E+∠D﹣180°)=270°﹣(∠A+∠E+∠D)故答案为:270°﹣(∠A+∠E+∠D).【点评】本题考查的是三角形的角平分线的定义、三角形内角和定理、多边形的内角和的计算,掌握角平分线的定义、多边形的内角和公式是解题的关键.。
徐州市2018-2019学年七下期中数学试题
第5题第8题2018-2019 学年度第二学期期中检测七年级数学试题(全卷共 140 分,考试时间 90 分钟)一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分. 在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 下列图形中,不能通过其中一个四边形平移得到的是A.B .C .D .2.下列计算正确的是A.x 2+x 2=2x 4B.x 2⋅x 3=x 6C.(2x 3)2=2x 6D.(-x )8÷x 2=x 63.已知三角形的两边分别为3和9,则此三角形的第三边可能是A.5B.6C.9D.134.△ABC 中,若∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形5.如图,下列条件中:(1)∠B +∠BAD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5;能判定AB ∥CD 的条件个数有4.1个B .2个C .3个D .4个6.把多项式x 2+ax +b 分解因式,得(x ﹣1)(x ﹣3),则a ,b 的值分别是A .a =4,b =3B .a =﹣4,b =﹣3C .a =﹣4,b =3D .a =4,b =﹣37.若a =0.32,b =-3-2,c =(-3)0,那么a 、b 、c 三数的大小为A.a >c >bB.c >a >bC.a >b >cD.c >b >a1第16题8.如图,∠ABC =∠ACB ,AD ,BD ,CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③DB 平分∠ADC ;④∠ADC =90︒-∠ABD ;⑤∠BDC =1∠BAC .其中正确的结论有2A .1个B .2个C .3个D .4个二、填空题(本大题共有8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为▲.10.六边形的内角和是▲°.11.计算:(-2a 2b 3)2=▲.12.计算:(m +2n )(m -n )= ▲.13.如图,直线a 、b 被直线c 所截,a ∥b ,∠2=45︒.那么∠1=▲︒.14.已知xm =6,x n =3,则x m -n =▲.15.若x 2-2ax +16能用完全平方式分解因式,则a =▲.16.如图,图1是长方形纸带,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,若图3中∠CFE =120°,则图1中的∠DEF 的度数是▲°.三、解答题(本大题共有9题,共84分.解答时应写出文字说明、证明过程或演算步骤)17.(16分)计算:(1)-20+(-1)-3-322(3)(x -y +3)(x +y -3)(2)(-x 3)2-x 2⋅x 3+x 7÷(-x )2(4)(2x +3)2(2x -3)218.(6分)先化简,再求值:(a -b )2-(a +2b )(a -2b )+5b (a -b ),其中b =3.a =-,3第13题19.(8分)分解因式:(1)18a 2-50(2)2x 2y -8xy +8y20.(8分)如右图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ´B ´C ´,(2)在图中画出△ABC 的高CD ,中线BE ;(3)在右图中能使S △ABC =S △PBC 的格点P 的个数有▲个(点P 异于点A ).21.(8分)已知x +y =7,xy =6.试求:(1)x -y 的值;(2)x 3y +xy 3的值.22.(8分)如图,∠1=80°,∠2=100°,∠C =∠D .(1)判断AC 与DF 的位置关系,并说明理由;(2)若∠C 比∠A 大20°,求∠F 的度数.AB E DC第23题23.(8分)如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC .(1)若∠C =70°,∠B =30°求∠DAE 的度数;(2)若∠C -∠B =20︒,则∠DAE =▲°.24.(10分)利用若干块图①所示的长方形和正方形硬纸片可以拼出一些新的长方形,并用不同的方法计算它的面积,从而得到相应的等式.计算图②的面积可以得到等式(a +2b )(a +b )=a 2+3ab +2b 2.(1)计算图③的面积,可以得到等式▲:(2)在虚线框中用图①所示的长方形和正方形硬纸片若干块(每种至少用一次),拼成一个长方形,使拼出的长方形面积为2a 2+7ab +3b 2,并把二次三项式2a 2+7ab +3b 2分解因式.2a 2+7ab +3b 2= ▲:(3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的长和宽(x >y ),观察图形,指出以下关系式正确的有▲个.(2)x +y =m 第20题第22题第25题图2图1(3)x 2-y 2=m ⋅n (4)x 2+y 2=m 2+n 22a ab ②abb ①25.(12分)将一副三角尺的直角重合放置(∠B =30︒,∠C =45︒),如图1所示,(1)图1中∠BEC 的度数为▲º;(2)三角尺AOB 的位置保持不动,将三角尺COD 绕其直角顶点O 顺时针方向旋转:①当旋转至图2所示位置时,恰好OD ∥AB ,求此时∠AOC 的大小;②若将三角尺COD 继续绕O 旋转,直至回到图1位置,在这一过程中,是否会存在△COD 其中一边能与AB 平行?如果存在,请你画出图形,并直.接.写出相应的∠AOC 的大小;如果不存在,请说明理由.④第24题。
铜山县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
铜山县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若方程组的解为x,y,且x+y>0,则k的取值范围是()A. k>4B. k>﹣4C. k<4D. k<﹣4【答案】B【考点】解二元一次方程组,解一元一次不等式【解析】【解答】解:两式相加得:4x+4y=k+4∵x+y>0∴4x+4y=4(x+y)>0即k+4>0k>﹣4故答案为:B.【分析】先观察x,y的系数,系数之和都是4,所以两式相加得x+y=(k+4)÷4,再让k+4>0,解得k>﹣42、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.3、(2分)周敏一月各项消费情况如图所示,下面说法正确的是()A. 从图中可以看出各项消费数额B. 从图中可以看出总消费数额C. 从图中可以看出餐费占总消费额的40%,且在各项消费中最多【答案】C【考点】扇形统计图【解析】【解答】解:因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一月中的具体变化情况,所以选项A、B不正确;从图中可以直接看出餐费占总消费数额的40%,因为40%>30%>20%>10%,所以在各项消费中最多.故答案为:C.【分析】扇形统计图中只有各部分占整体的百分率,所以只能根据百分率的大小判断各部分的大小.4、(2分)下列各数中最小的是()A. -2018B.C.D. 2018【答案】A【考点】实数大小的比较【解析】【解答】解:∵-2018<-<<2018,∴最小的数为:-2018,故答案为:A.【分析】数轴左边的数永远比右边的小,由此即可得出答案.5、(2分)下列说法,正确的有()(1 )整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A. 1个B. 2个C. 3个D. 4个【答案】A【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,立方根及开立方,有理数及其分类【解析】【解答】解:(1)整数和分数统称为有理数;正确.(2)符号不同的两个数叫做互为相反数;错误,比如2,-4符号不同,不是互为相反数.(3)一个数的绝对值一定为正数;错误,0的绝对值是0.(4)立方等于本身的数是1和-1.错误,0的立方等于本身,故答案为:A.【分析】根据有理数的定义,可对(1)作出判断;只有符号不同的两个数叫互为相反数,可对(2)作出判断;任何数的绝对值都是非负数,可对(3)作出判断;立方根等于它本身的数是1,-1和0,可对(4)作出判断,综上所述可得出说法正确的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年度第二学期期中考试七年级数学试题
亲爱的同学:
一转眼,七年级下学期已过去一半,我们又获取了许多新的数学知识,提高了多方面的数学能力,现在是展示你的实力的时候,你可要尽情地发挥哦!祝你成功!
注意:本次期中考试,时间是100分钟,满分120分.
一、精心选一选:本大题共8 小题,每小题3 分,共24 分.在每小题给出的四个选项中,有.且.只.有.一项是正确的,把所选答案填涂在答题卡相应位置上.
1.如图,四边形EFGH 是由四边形ABCD 平移得到的,已知AD=5,∠B=70°,则A.FG=5,∠G=70° B.EH=5,∠F=70°
C. EF=5,∠F=70°
D.EF=5,∠E=70°
E
A
F H
B D
G
C
2.2009 年初甲型H1N1 流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1 流感球形病毒细胞的直径约为0.00000156 m,用科学记数法表示这个数是
A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106
3.a5 可以等于
A.(-a)2·(-a)3 B.(-a) ·(-a)4 C.(-a 2) ·a 3 D.(-a 3) ·(-a 2)
4.下列计算中,结果正确的是
A.a 2• a 3= a 6 B.(2a)•(3a)=6a C.(a 2)3= a 6 D.a 6÷a 2= a 3 5.已知3x=a,3y=b,则32x-y 等于
a2 1
A.b B.a 2 b C.2 a b D.a2+b
6.如图,已知直线AB、CD 被直线AE 所截,AB∥CD,∠1=50°,∠2 的度数是A.100°B.110° C. 120°D.130°
7.小晶有两根长度为5cm、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为2cm 、3cm、8cm 、15cm 的木条供她选择,那她第三根应选择
A.2cm
B.3cm
C.8cm
D.15cm
8.如图,在长方形ABCD 中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为
A. 44cm2
B. 36cm2
C. 96 cm2
D.84cm2
二、细心填一填:本大题共10 小题,每小题3 分,共30 分.请把答案填写在答题卡相应位置上.
9.计算:(x—2)(3x-1)= ▲.
10.如图,如果∠B=∠1,则可得DE//BC,如果∠B=∠2,,那么可得▲.
11.一个五边形的三个内角是直角,另两个内角都是n°,则n= ▲°.12.已知: 5x m+7 - 2y2n-1 = 4 是二元一次方程,则mn= ▲.
13.若4x2-2ax+49 是完全平方式,则a= ▲.
14.若a、b 为正整数,且3 a·9 b=81,则a+2b=▲.
的等式为▲.
,则它的腰长为▲.
⎨ ⎨ 17.红圆珠笔每支 0.7 元,蓝圆珠笔每支 1.2 元,小明一共买了 20 支这两种圆珠笔,共花了 19 元,如果设买红圆珠笔 x 支,蓝圆珠笔 y 支,请你帮助小明列出关于 x ,y 的二元一次方程组为 ▲ .
18.如图,四边形 ABCD 中,∠A =160°,∠B =50°,∠ADC 、∠BCD 的平分线相交于点 E ,则∠CED = ▲ °.
A 三、解答题:本大题 8 小题,共 66 分.解答应写出文字说明、推理过程或演算步骤.请把答案写在答题卡相应位置上.
19.(本题 8 分) 计算:
(1) ( y 2 )3 ÷ y 6 y ;
(2) y 4 + ( y 2 )4 ÷ y 4 -(- y 2 )2
.
20.(本题 8 分) 因式分解:
(1)x 2+10x+25;
(2)4x 2﹣64.
21.(本题 8 分) 解方程组:
⎧ x + 2 y = 1, (1) ⎩3x - 2 y = 5;
⎧2x - 5y = -4, (2) ⎩3x - 2 y = 5.
B D
E
C
画图并填空:如图,方格纸中每个小正方形的边长都为 1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点 B 的对应点 B′.
(1)在给定方格纸中画出平移后的△A′B′C′;
(2)画出△A′B′C′中 A′B′ 边上的中线 C’D 和 B’C’边上的高线 A’E ;
(3)线段 AA′与线段 BB′的关系是:
▲ ;
(4)求三角形 A’C’D 的面积(写出简单的推理过程).
23.(本题 8 分)
如图,已知 AB ∥CD ,∠ABE =130°,∠CDE =152°,求∠BED 的度数.
24.(本题 8 分)
已知 x +y =4,xy =3.
(1)求 x 2+y 2 的值;
(2)求 x 3y +2x 2y 2+xy 3.
B
B '
C
A
[数学实验探索活动]
实验材料现有若干块如图①所示的正方形和长方形硬纸片.
实验目的:
用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.
例如,选取正方形、长方形硬纸片共6 块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b) =a2+3ab+2b2.
问题探索:
(1) 小明想用拼图的方法解释多项式乘法(2a+b)(a+b) =2a2+3ab+b2 ,那么需要两种正方形纸片_ 张,长方形纸片 _张;
(2)选取正方形、长方形硬纸片共8 块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;
(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2 分解因式,并把所拼的图形画在虚线方框内;
探究与发现:
如图1 所示的图形,像我们常见的学习用品−−圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC 与∠A、∠B、∠C 之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX= ▲_°;
②如图3,DC 平分∠ADB,EC 平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE 的度数;
③如图4,∠ABD,∠ACD 的10 等分线相交于点G1、G2、…、G9,若∠BDC=140°,∠BG1C=77°,求∠A= ▲°.
参考答案
1.B.
2.C.
3.D.
4.C.
5.A.
6.D.
7.C.
8.A.
9.3x 2-7x+2;
10.AB//EF ;
11.135°;
12.-6.
13.-14,14;
14.4.
15.(a+b )(a+2b )=a 2+3ab+2b 2;
16.7.
17.⎩
⎨⎧=+=+20192.17.0y x y x ; 18.105°;
19.(1)原式=y ;(2)原式=y 4;
20.(1)原式=(x+5)2;(2)原式=4(x-4)(x+4);
21.(1)⎩⎨⎧-==25.05.1y x ;(2)⎩
⎨⎧==23y x ; 22.解:(1)画图略;(2)画图略;(3)平行;(4)画图略;
23.解:过点E 作直线EF ∥AB ,
∵AB ∥CD ,
∴EF ∥CD ,
∵AB ∥EF ,
∴∠1=180°-∠ABE=180°-130°=50°;
∵EF ∥CD ,
∴∠2=180°-∠CDE=180°-152°=28°;
∴∠BED=∠1+∠2=50°+28°=78°.
24.解:(1)x 2+y 2=10;(2)原式=48.
25.解:(1)4,3;
(2)正方形、长方形硬纸片共8块的面积等于长为a+3b ,宽为a+b 的矩形面积,所以a2+4ab+3b2=(a+3b )(a+b );
(3)2b 2-5ab+2a 2=(2b-a )(b-2a ).。