27.3 第1课时 位似图形的概念及画法
中考复习 27.3 第1课时 位似图形的概念及画法
27.3 位似第1课时位似图形的概念及画法教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.一.创设情境活动1 提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.思考:观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-2活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.)结论:________________________________________________二、利用位似,可以将一个图形放大或缩小活动2 提出问题:把图1中的四边形ABCD 缩小到原来的21. 分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:作法二:作法三:三、课堂练习1下列图中的两个图形不是位似图形的是( )A .B .C.D.2下列四图中的两个三角形是位似三角形的是()A.图(3)、图(4)B.B.图(2)、图(3)、图(4)C.C.图(2)、图(3)D.D.图(1)、图(2)3.如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对。
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师
《27.3 第1课时 位似图形的概念及画法》课件(三套)
作法一:(1)在四边形ABCD外任取一点O; (2)过点O分别作射线OA,OB,OC,OD; (3)分别在射线OA,OB,OC,OD上取点 A′、B′、C′、D′, 使得 OA OB OC OD 1
OA OB OC OD 2
(4)顺次连结A′B′、B′C′、C′D′、D′A′,得到所要画 的四边形A′B′C′D′,如图2.
把右图中的五边形ABCDE扩大到原来的2倍。
练 A
一B
E
练 C
●
O D
D` ●
`E ●
`●
A
●
C`
●
B`
四、归纳小结
1、如果两个图形不仅是相似图形,而且是每组对 应点连线相交于 一点 ,对应边互相 平行 ,那么 这样的两个图形叫做__位__似__图_形__.这个点叫 做 位似中心 .
2、利用位似进行作图的关键是确定_位__似_中__心 _和 _关__键__点____.
第二十七章 相似 27.3 位似
第1课时 位似图形的概念及画法
一、新课引入 1、我们学过的图形变换形式有哪些?
平移、旋转、对称
2、什么叫相似?相似与全等有什么区别与联系? 相似:形状相同。 全等:大小、形状相同,能够重合 区别:相似不一定全等,但全等一定相似。 联系:形状相同
二、学习目标
1 了解位似图形及其有关概念,了解 位似与相似的联系和区别,掌握位 似图形的性质;
解析:由题意得,五边形ABCDE与五边形A′B′C′D′E′ 是位似图形,所以五边形ABCDE与五边形A′B′C′D′E′ 相似,所以它们的周长的比等于对应边的比,即等于
OA 10 1 . OA 20 2
答案:1
2
通过这节课的学习,你有哪些收获? 1.如果两个相似图形的每组对应点所在的直线都交于一点, 对应边平行,那么这样的两个图形叫做位似图形, 这个交 点叫做位似中心, 这时两个相似图形的相似比又叫做它们 的位似比. 2.位似图形的对应点和位似中心在同一条直线上,它们到 位似中心的距离之比等于位似比.
人教版数学九年级下27.3第1课时位似图形的概念及画法教案及教学反思
27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有( )A.0个 B.1个 C.2个 D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA′,BB′,它们的交点就是位似中心.解:(1)连接对应点AE、BF,分别延长AE、BF,使AE、BF交于点O,点O就是位似中心;(2)连接对应点AN、BM,延长AN、BM,使AN、BM的延长线交于点O,点O就是位似中心;(3)连接AA′、BB′,AA′、BB′的交点就是位似中心O.方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题【类型三】 画位似图形 按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍;(2)图②中,以O 为位似中心,把△ABC 缩小为原来的13. 解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型四】 位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可.解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC=23,∴BE BC =EF DC =25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。
27.3.1 位似图形的概念及画法(公开课)PPT课件
知识点2 位似图形的性质
1.位似图形一定是相似图形,反之相 似图形不一定是位似图形.
2.判断位似图形时,要注意首先它们 必须是相似图形,其次每一对对应点所在 直线都经过同一点。
3.位似比等于相似比。
判断
下面哪些相似图形是位似图形?
√
√
×
相似图形成为位似图形必须具备两个条件: ①对应点的连线交于一点; ②对应边互相平行或在同一条直线上.
A.6
B.5
C.9
D. 8
3
综合应用
4.如图,正方形EFGH,IJKL都是正方形ABCD的位 似图形,点P是位似中心. (1)如果相似比为3,正方形ABCD的位似图形是 哪一个? (2)正方形IJKL是正方形EFGH的位似 图形吗?如果是,求相似比;是 3∶2 (3)如果由正方形EFGH得到它的位似 图形正方形ABCD,求相似比. 2∶1
3.顺次连接点A′,B′,C′,
A
D′,所得四边形A′B′C′D′就是所
B
D
A'
要求的图形.
B' D' C
C'
O
作法二:
如果在四边形外任选一点O,分别在OA,OB,
OC,OD 的反向延长线上取点A′,B′,C′,D′使得
OA' 四OA =
OOBB'= OOCC'= OODD'=12
呢?如果点 O 取在
BD
△OCD是位似图形.
知识点3 画位似图形
利用位似,可以将一个图形放大或缩小.
例如,要把四边形 ABCD 缩小到原来的 1. 2
怎么画出 来呢?
.
动手操作
作法一:1.在四边形外任选一点 O .
2.分别在线段 OA,OB,OC,OD 上取A′,B′,
人教版初中数学九年级下册精品课件 27.3 第1课时 位似图形的概念及画法
(231) 分顺在别次四在连边线接形段点外任OA'A选、、一BO'点B、、OCO'(、C如、D图'O),;D所上得取四点边A形' 、AB' 'B、' CC'' 、D'D就' ,是使所得要求O的A' 图 形OB.' OC' OD' 1 ;
OA OB OC OD 2
利用位似,可 以将一个图形
C
14
(2) 以点 C 为位似中心.
A
A′
●
B
●
B′
● C ( C′ )
15
归纳: ◑画位似图形的一般步骤:
① 确定位似中心; ② 分别连接并延长位似中心和能代表原图的关
键点; ③ 根据相似比,确定能代表所作的位似图形的
关键点; ④ 顺次连接上述各点,得到放大或缩小的图形.
16
◑利用位似进行作图的关键是确定位似中心和关 键点.
9
练一练
如图,四边形木框 ABCD 在灯泡发出的光照射
下形成的影子是四边形 A′B′C′D′,若 OB : O′B′=
1 : 2,则四边形 ABCD 的面积与四边形A′B′C′D′的面
积比为
(D)
A.4∶1
B. 2 ∶1 C.1∶ 2 D.1∶4
O
10
三 画位似图形
例1 把四边形 ABCD 缩小到原来的 1/2.
OA OB OC 2
B
③顺次连接 A' 、B' 、C'
A
就是所要求图形. C
O
A' C'
22
6. 如图,F 在 BD 上,BC、AD 相交于点 E,且
27.3 第1课时 位似图形的概念及画法
27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA ′,BB ′,它们的交点就是位似中心.解:(1)连接对应点AE 、BF ,分别延长AE 、BF ,使AE 、BF 交于点O ,点O 就是位似中心;(2)连接对应点AN 、BM ,延长AN 、BM ,使AN 、BM 的延长线交于点O ,点O 就是位似中心;(3)连接AA ′、BB ′,AA ′、BB ′的交点就是位似中心O . 方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题 【类型三】 画位似图形按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍; (2)图②中,以O 为位似中心,把△ABC 缩小为原来的13.解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题 【类型四】 位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P 为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明; (2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EFDC =25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 三、板书设计位似图形的概念及画法 1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。
九年级数学下册27_3第1课时位似图形的概念及画法教案新版新人教版
位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,把握位似图形的相关知识;(重点)2.把握位似图形的画法,能够利用作位似图形的方式将一个图形放大或缩小.(难点)一、情境导入生活中咱们常常把自己好看的照片放大或缩小,由于没有改变图形的形状,咱们取得的照片是真实的.观看图中有多边形相似吗?若是有,那么这种相似有什么一起的特点?二、合作探讨探讨点:位似图形【类型一】判定是不是是位似图形下列3个图形中是位似图形的有( )A.0个 B.1个 C.2个 D.3个解析:依照位似图形的概念可知两个图形不仅是相似图形而且每组对应点所在的直线都通过同一个点,对应边相互平行(或共线),所以位似图形是第一个和第三个.故选C.方式总结:判定两个图形是不是位似图形,第一要看它们是不是相似图形,再看它们对应极点的连线是不是交于一点.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题【类型二】确信位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点确实是位似中心;(2)连接对应点AN、BM,并延长的交点确实是位似中心;(3)连接AA′,BB′,它们的交点确实是位似中心.解:(1)连接对应点AE、BF,别离延长AE、BF,使AE、BF交于点O,点O确实是位似中心;(2)连接对应点AN、BM,延长AN、BM,使AN、BM的延长线交于点O,点O确实是位似中心;(3)连接AA ′、BB ′,AA ′、BB ′的交点确实是位似中心O .方式总结:确信位似图形的位似中心时,要找准对应极点,再通过每组对应极点作直线,交点即为位似中心. 变式训练:见《学练优》本课时练习“课后巩固提升” 第2题 【类型三】 画位似图形按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原先的2倍;(2)图②中,以O 为位似中心,把△ABC 缩小为原先的13. 解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,按序连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就能够够求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②别离延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③按序连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方式总结:画位似图形的一样步骤为:①确信位似中心;②别离连接并延长位似中心和能代表原图的关键点;③依照位似比,确信能代表所作的位似图形的关键点;④按序连接上述各点,取得放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型四】 位似图形的实际应用在放映电影时,咱们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是×,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,因此其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P 为x m 时,放映的图象正好布满整个银幕,则位似比为错误!=错误!,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方式总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方式和位似图形的性质得出答案;(2)利用比例的性质和相似三角形的性质求出BE BC =EF DC =25,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EF DC =25,解得EF =65. 方式总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学进程中,为了便于学生明白得位似图形的特点,应注意让学生通过动手操作、猜想、实验等方式取得感性熟悉,然后通过归纳总结上升到理性熟悉,将形象与抽象有机结合,形成对位似图形的熟悉.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收成.。
人教版数学九年级下册27.3 第1课时 位似图形的概念及画法
知识要点 位似图形
内容
概念 定义:两个多边形不仅相似,而且对应顶 点的连线相交于_一__点__,对应边_互__相__平__行_ _(_或__共__线__)_,像这样的两个图形叫做位似图 形.这个点叫做_位__似__中__心__.
性质 任意一对对应点到位似中心的距离之比等 于__相__似__比__.
内容
画法 一般步骤: ①定_位__似__中__心___; ②分别连接并延长位似中心和能代表原图 的__关__键__点____; ③根据相似比,确定能代表所作的位似图 形的___关__键__点___; ④顺次连接上述各点,得到放大或缩小的 图形.
对应点在位似中心异 对应点在位似中心
基本 侧:
同侧:
第二种,如图 b, ①连接 OA、OB、OC; ②分别延长 AO 至 D′,BO 至 E′,CO 至 F′,使 OD′=2AO, OE′=2BO,OF′=2CO; ③顺次连接 D′、E′、F′得到△D′E′F′,△D′E′FE∥AB,CE=2BE,则△ABC 与△DEC 是以点__C____为位似中心的位似图形,其相似比为 __3_∶__2___.
4.找出下列位似图形的位似中心. 解:如图所示.
5.按要求画位似图形并写出作图步骤:如图,以 O
为位似中心,把△ABC 放大到原来的 2 倍.
解:第一种,如图 a, ①连接 OA、OB、OC; ②分别延长 OA 至 D,OB 至 E,OC 至 F, 使 AD=OA,BE=BO,CF=CO; ③顺次连接 D、E、F 得到△DEF,△DEF 就是所 求作的三角形.
模型
(1)判断两个图形是不是位似图形,首先要 解题 看它们是不是相似图形,再看它们对应顶 策略 点的连线是否交于一点.(如T1)
人教版数学九年级下册 27.3.1位似图形的概念及画法
新知探究
3.如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请 指出其位似中心.
图(1) 图(2) 图(3) 图(4) 图(5)
是否位似图形
是 是 不是 是 不是
位似中心 点A 点P
点O
新知探究
位似图形的画法: 画出基本图形, 选取位似中心.根据条件确定对应
位似图形上的任意一对对应点到位似中心的距离之比 等于位似比.
新知探究
1.下列说法正确的是 ( D ) A. 全等图形一定是位似图形. B.相似图形一定是位似图形. C.位似图形一定是全等图形. D.位似图形是具有某种特殊位置的相似图形.
2.下列说法:①相似图形一定是位似图形;②位似图形一定是相似图形;③两个位似 图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E' 位似,则其中△ABC与△A'B'C'也是位似的,且相似比相等.其中正确的有( C )
九年级数学人教版·下册
第二十七章 27.3位似
27.3.1位似图形的概念及画法
教学目标
1.位似图形的有关概念、性质及作位似图形;(重点) 2.利用位似图形将一个图形放大或缩小.(难点)
新课导入
我们已经学习了图形的哪些变换?
对称(轴对称与轴对称图形,中心对称与中心对称图形): 对称轴,对称中心. 平移:平移的方向,平移的距离. 旋转:旋转中心,旋转方向,旋转角度. 相似:相似比.
新知探究
思考 图中多边形相似吗?如果有,那么这种相似有什么特征?
如果两个图形不仅是相似图形,而且是每组对应点连线相交于 一点 ,对应 边互相 平行 ,那么这样的两个图形叫做 位似图形 .这个点叫做 位似中心 . (位似中心可在形上、形外、形内)
人教版第二学期数学九年级下 27.3 位似第1课时 位似图形的概念及画法课件(共20张PPT)
E′
D′
D
E
O
A
A′
B
C′
A
C
B′
C′
O
B
C
B′
A′
归纳:
1. 位似图形的对应角相等,对应边成比例,周长比
等于相似比,面积比等于相似比的平方;
2. 位似图形的对应点的连线相交于一点,即经过位似中心;
3. 位似图形的对应边互相平行或在同一条直线上;
4. 位似图形上任意一对对应点到位似中心的距离之比等
于相似比.
例2 如图所示,四边形ABCD 和四边形A′ B′ C′ D′位似,相似比1 = 2,四边
形A′ B′ C′D′和四边形A″ B″ C″D″位似,相似比2 = 1. 则四边形A″ B″ C″ D″
和四边形ABCD 是位似图形吗?如果是,请说明理由并求出相似比.
解:∵ 四边形ABCD 和四边形A′ B′ C′ D′位似,
E
OD;在射线OA、OB、OC、
H
A
OD上分别取点D、E、F,使
D
O
B
C
OE = 2OA , OF = 2OB , OG =
2OC , OH = 2OD;顺次连结E、
F、G、H,使正方形ABCD与
F
G
5.如图所示,四边形ABCD的一个位似图形是四边形A′ B′ C′ D′ ,
且A,B,C,D的对应点分别是A′ ,B′ ,C′ ,D′. 图中给出了AB的对应
似中心的位似图形,且
′
=
=
′
′
=
′
;五边形ABCDE 与五
边形A′ B′ C′ D′ E′是以点O 为位似中心的位似图形,且′ = ′ =
27.3+第1课时+位似图形及画法+课件+2023-2024学年人教版九年级数学下册
O
2、如图,△ABC 与 △DEF 是位似图形,位似比为 2:3,已知 AB=4,则 DE 的长为 .
6
3、把四边形ABCD缩小到原来的 .
B'
C'
D'
A
B
C
D
O
解:
② 以点O为端点作射线 OA,OB,OC,OD;
④ 顺次连接 A',B',C',D'.
. , .
(2)求 的值.
6.如图,图形甲与图形乙是位似图形,点 为位似中心,相似比为 ,点 , 的对应点分别为点 , .若 的长为6,则 的长为_ ___.
知识点3 位似图形的画法
7.在下列图形中,以点 为位似中心,使所画图形与原图形的相似比分别为 ,2, ,分别画出其位似图形(不写作法).
④ 顺次连接 A',B',C',D'.
① 在四边形ABCD所在平面内任取一点O;
③ 分别在射线 AO,BO,CO,DO上取点A',B',C',D',
=
=
=
=
使
方法二:
则四边形A'B'C'D'即为所求的图形.
A
B
C
D
A
B
C
D
A
B
C
D
O
O
A’
B’
C’
D’
A’
B’
C’
D’
A’
B’
C’
方法三:
方法四:
方法五:
如果两个图形不仅相似,
而且对应顶点的连线相交于一点,
位似图形.
这点叫做 位似中心.
九年级数学(下)27.3第1课时位似图形的概念及画法课件
ABCD的面积∶四边形A′B′C′D′的面积为( D )
A.4∶1
B.2 ∶1
C.1∶ 2 D.1∶4
O
画位似图形
例.把四边形ABCD 缩小到原来的1/2.
1) 在四边形外任选一点O(如图),
2) 分别在线段OA、OB、OC、
A
OD上取点A' 、B' 、C' 、D' ,使得
B A'
B'
D' C
D
OA' OB' OC' OD' 1
27.3 位 似
第1课时 位似图形的概念及画法
下图是运用幻灯机(点O表示光源)把幻灯片上的一只小狗 放映到屏幕上的示意图,这两个图形之间有什么关系?
O
这两个图形的形状相同,但大小不同, 它们是相似图形.
位似图形的概念
观察与思考 思考:下列图形中有多边形相似吗?如果有,那么这
种相似有什么特征?
小组讨论
3.位似分为内位似和外位似,内位似的位似中心在连接 两个对应点的线段上;外位似的位似中心在连接两个对 应点的线段之外.
课堂小结
位似图形的概念 位似的概念及画法 位似图形的性质
画位似图形
小试牛刀
1.选出下面不同于其他三组的图形( B )
A
B
C
D
2.下列说法正确的个数为( B ) ①位似图形一定是相似图形; ②相似图形一定是位似图形; ③两个位似图形若全等,则位似中心在两个图形之间; ④若五边形ABCDE与五边形A′B′C′D′E′位似, 则其中△ABC与△A′B′C′也是位似的,且位 似比相等. A.1 B.2 C.3 D.4
D’ ,使得 OA' OB' OC' OD' 1 呢?如果点O取在四边形
人教版九年级数学下册27.3 位似3 第1课时 位似图形的概念及画法
27.3位似第1课时位似图形的概念及画法教学目标【知识与技能】1. 掌握位似图形的定义、性质及画法.2. 掌握位似图形与相似图形的区别和练习.【过程与方法】经历观察、思考及动手操作等过程,锻炼学生的分析问题,解决问题的能力.【情感态度】通过对位似图片的观察,欣赏,可激发学生的学习兴趣,增强审美意识.【教学重点】理解并掌握位似图形的定义,性质及画法.【教学难点】位似图形的多种画法.教学过程一、情境导入,初步认识问题在日常生活中,我们经常看到下面这些相似的图形,它们有什么特征呢?【教学说明】通过所展示的几幅美丽图片的观察,既可以激发学生的学习兴趣和求知欲望,增强审美意识,又能通过相似图形的这种特殊位置关系初步感受位似图形教学时,教师应着重引导学生观察这些相似图形所具有的特殊位置关系,可逐个进行剖析.二、思考探究,获取新知问题 如图,图中有多边形相似吗?如果有,那么这些图形有什么特征 ?【教学说明】让学生相互交流,共同发现,然后选取代表发表自己的观点,认识位似图形.【归纳结论】位似图形:如果两个图形的对应顶点相交于一点,对应边互相平行,这样的两个图形叫做位似图形.位似图形的特征:(1)位似图形必定是相似图形(反过来就不一定成立);(2)位似图形的对应顶点连线(或延长线)必相交于同一点,对应边互相平行;(3) 位似图形的对应边的比称为位似比,对应顶点连线(或延长线)相交的那个交点称为位似中心.)利用位似,可以将一个图形放大或缩小.三、典例精析,掌握新知例1如图,指出各组图形中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【教学说明】教师应引导学生掌握怎样判别两个图形是位似图形的方法,然后由学生自主探究,相互交流获得结论.显然(1)、(2)、(3) 中的两个图形都是位似图形,其位似中心分别为A,A,P,而(4)中两个正方形就不是位似图形,因为对应点的连线不能相交于同一点,即点O并不是对应点连线的交点.通过本例的处理可加深学生对位似图形及其性质的理解.解答过程略.例2 如图所示的是一个四边形ABCD,请将它缩小为原图的.【分析】将一个图形缩小的原图的,即是要新图形各个顶点到位似中心的距离与原图中各对应顶点到位似中心的距离之比为1:2,因而只要在同一平面内确定了某一点为位似中心的话,就一定能得到缩小后的四边形.而选取某一点为位似中心时,这点可在两个图形的外部,中间或它们的内部几种不同情形,我们不妨按三种不同情形来进行画图,试试看.解作法一:(1)在四边形ABCD的外面任取一点0(如图①所示)(2) 过点O分别作射线OA、OB、OC、OD;(3) 分别在OA、OB、OC、OD上截取点A',B’,C’,D’,使得====;(4) 顺次连接A’,B’,C’,D’,所得的四边形A’B' C’D’就是将四边形ABCD缩小后的图形,且其位似比为作法二:(1)在四边形ABCD外任取一点O (如图②)(2)作射线OA、OB、OC、OD;(3)分别在射线OA,OB,OC,OD的反向延长线上取点A’ ,B’ ,C’,D’ ,使====;(4)顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 也是四边形ABCD 缩小的图形.作法三:(1)在四边形ABCD的内部任取一点O (如图③)(2)连OA、OB、OC、OD;(3)分别在OA,OB,OC,OD上截取点A’ ,B’ ,C’,D’ ,使====;(4)顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 是将四边形ABCD 缩小的图形.【教学说明】对上述三种作图方法,教师可选讲其中一种,另两种方法在稍作提示后应留给学生完成,让学生积极参与,动手实践,在实践中增长知识,获取技能.四、运用新知,深化理解1. 如图,△OAB 和△OCD 是位似图形,AB / /CD 吗?为什么?2. 如图,以O为位似中心,画出将△ABC放大为原来的两倍的图形.【教学说明】这两道小题让学生独立完成后,相互交流.教师巡视,适时参与讨论,设计,进一步加深学生理解和掌握位似图形的定义和性质.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1. 位似图形和相似图形的联系和区别是什么?请说说看;2. 将一个图形放大或缩小,可以利用位似得到. 你认为画出一个图形的位似图形的关键是什么?通常有几种可能?【教学说明】师生共同回顾,对所学过知识进行反复梳理,加深认识.1.布置作业:从教材P51习题27.3中选取.2.完成创优作业中本课时的“课时作业”部分.教学反思本课时教学通过创设'清境让学生感受了位似的概念,接着通过实际操作,让学生体会了位似图形的作法.在教学时,应注意加强与学生的互动与交流,并让学生动手操作,提高学生的自主学习能力.。
(精品课件)人教版九年级数学下册27.3第1课时位似图形的概念及画法
A
D
(3)△ABC与△A1B1C1
A AA11
O
C
D否
O
是
B
C
B
C C1
C1
O
B1B1 否
判断位似图形的方法: 1、这两个图形是相似的; 2、每组对应点所在的直线都经过同一点. 3、对应边互相平行(或在同一直线上)
针对训练1
3. 如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形 ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.
◑利用位似进行作图的关键是确定位似中心和关键点. ◑位似分为内位似和外位似,外位似又要注意同侧位似和异侧位似。 位似中心在连接两个对应点的线段(或延长线)上.
针对训练2
如图,已知△ABC,根据要求作△A'B'C',使△A' B' C' ∽△ABC,且相似
比为 2 : 1.
(2) 以点 C 为位似中心.
问题:你能发现每一组对应点到位似中心的距 离比和位似比有什么关系?
二、位似图形的性质
知识归纳
1. 位似图形是一种特殊的相似图形,它具有相 似图形的所有性质;
2. 对应线段平行或者在一条直线上; 3. 位似图形的对应点所在直线都经过位似中心; 4. 位似图形上任意一对对应点到位似中心的距
离之比等于相似比(位似比) 。
针对训练1
1. 如图,BC∥ED,下列说法不正确的是 ( D )
A. 两个三角形是位似图形
E
B. 点 A 是两个三角形的位似中心
C. B 与 D、C 与 E是对应位似点
D. AE : AD是相似比
B
D A
C
针对训练1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.3 位似
第1课时位似图形的概念及画法
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)
一、情境导入
生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.
观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?
二、合作探究
探究点:位似图形
【类型一】判定是否是位似图形
下列3个图形中是位似图形的有()
A.0个B.1个C.2个D.3个
解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.
方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】确定位似中心
找出下列图形的位似中心.
解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA′,BB′,它们的交点就是位似中心.
解:(1)连接对应点AE、BF,分别延长AE、BF,使AE、BF交于点O,点O就是位似中心;
(2)连接对应点AN、BM,延长AN、BM,使AN、BM的延长线交于点O,点O就是位似中心;
(3)连接AA′、BB′,AA′、BB′的交点就是位似中心O.
方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
【类型三】画位似图形
按要求画位似图形:
(1)图①中,以O为位似中心,把△ABC放大到原来的2倍;
(2)图②中,以O为位似中心,把△ABC缩小为原来的1 3.
解析:(1)连接OA、OB、OC并延长使AD=OA,BE=BO,CF=CO,顺次连接D、E、F就得出图形;(2)连接OA、OB、OC,作射线CP,在CP上取点M、N、Q使MN=NQ=CQ,连接OM,作NF∥OM交OC于F,再依次作EF∥BC,DE∥AB,连接DF,就可以求出结论.
解:(1)如图①,画图步骤:①连接OA、OB、OC;②分别延长OA至D,OB至E,OC 至F,使AD=OA,BE=BO,CF=CO;③顺次连接D、E、F,∴△DEF是所求作的三角形;
(2)如图②,画图步骤:①连接OA、OB、OC,②作射线CP,在CP上取点M、N、Q
使MN=NQ=CQ,③连接OM,④作NF∥OM交OC于F,⑤再依次作EF∥BC交OB于E,DE∥AB交OA于D,⑥连接DF,∴△DEF是所求作的三角形.
方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似
中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次
连接上述各点,得到放大或缩小的图形.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
【类型四】位似图形的实际应用
在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P为放映机的光源,△ABC是胶片上面的画面,△A′B′C′为银幕上看到的画面.若胶片上图片的规格是2.5cm×2.5cm,放映的银幕规格是2m×2m,光源P与胶片的距离是20cm,则银幕应距离光源P多远时,放映的图象正好布满整个银幕?
解析:由题中条件可知△A′B′C′是△ABC的位似图形,所以其对应边成比例,进而即可
求解.
解:图中△A′B′C′是△ABC的位似图形,设银幕距离光源P为x m时,放映的图象正好
布满整个银幕,则位似比为
x
0.2=
2
2.5×10-2
,解得x=16.即银幕距离光源P16m时,放映的
图象正好布满整个银幕.
方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.
【类型五】利用位似的性质进行证明或计算
如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,
(1)图中有哪几对位似三角形,选其中一对加以证明;
(2)若AB=2,CD=3,求EF的长.
解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性
质以及相似三角形的性质求出BE BC =EF DC =25
,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;
(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EF DC
=25,解得EF =65
. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
三、板书设计
位似图形的概念及画法
1.位似图形的概念;
2.位似图形的性质及画法.
在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。