八年级数学竞赛试题 Microsoft Word 文档 (2)

合集下载

(整理版)八年级数学竞赛试题

(整理版)八年级数学竞赛试题

八年级数学竞赛试题一、选择题〔每题4分,共40分〕1、计算)21(22x x x -÷-的结果是〔 〕A. x B. x 1- C . x x 2-- D. x1 2、假设a >0,那么aa 1> B. 假设a>a 2,那么a>1 C. 假设0<a<1,那么a>a 2 D. 假设a a =,那么0>a 3、,81002022=+-+-x x x 那么3x 的最大整数值是〔 〕A. 0B. 1C. 2D. 34、a-b=1,那么a 2-b 2-2b 的值是〔 〕 A. 0 B. 1 C. 2 D. 45、在平面直角坐标系内,A 、B 、C 三点的坐标分别是〔0,0〕,〔4,0〕,〔3,2〕,以 A 、B 、C 三点为顶点画平行四边形,那么第四个顶点不可能在〔 〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、三角形三边长分别是2、3、4,三边上的高分别是h a , h b , h c .那么 )111()cb ac b a h h h h h h ++⋅++(的值是〔 〕 A. 641 B. 538 C. 738 D. 439 7、 If 0<m <1,then m must be smaller than its ( )A. Opposite number.B. inverse.C.absolute value.D.square.〔英汉词典:inverse 倒数;absolute 绝对〕8、假设,k cb a b ac a c b =+=+=+那么直线y=kx-k 必经过〔 〕 A. 第一、二象限 B. 第二、三象限 C.第三、四象限 D.第一、四象限9、四个人的年龄分别为a,b,c,d,任取三个人的平均年龄加上余下一人的年龄分别是w,x,y,z,那么zy x w d c b a ++++++的值是〔 〕 A. 1 B. 2 C. 21 D. 32 10、如图,将△ABC 沿DE 折叠,使点A 与边BC 的中点F 重合,有下面四个结论:①EF ∥AB,且EF=21AB. ②AF 平分∠DFE. ③S 四边形ADFE =21AF ·DE.④∠BDF+∠FEC=2∠BAC. 其中正确的选项是〔 〕A. ①②③B. ②③④C. ③④D. ①②③④二、A 组填空题〔每题4分,共40分〕11、假设1<x <,那么2)2014(1-+-x x = . 12、假设4x 2+9y 2=8800,xy=-100,那么2x-3y= . 13、假设〔x-4〕〔x+n)=x 2-mx+24,那么m+n= .14、一次函数y=(m-3)x-2的图象不经过第二象限,一次函数y=(m-4)x+3的图象不 经过第三象限,化简:m m m m 6916822-+-+-= .15、关于x 的分式方程234222+=-+-x x mx x 会产生增根,那么m = . 16、如果要〔x-2)2+(x+3)2=15,那么〔2-x)(3+x)的值是 。

数学初二竞赛试题及答案

数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。

2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。

3. 一个数的立方根是2,那么这个数是________。

4. 一个数的倒数是1/2,那么这个数是________。

5. 一个圆的半径是5cm,那么它的直径是________cm。

三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。

2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。

初二数学竞赛试卷及答案

初二数学竞赛试卷及答案

一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。

12. 下列分数中,最简分数是______。

13. 下列数中,能被5整除的是______。

14. 下列方程中,方程的解为x=3的是______。

15. 下列数中,平方根是正数的是______。

16. 下列代数式中,合并同类项后的结果为5x的是______。

17. 下列函数中,函数值为0的x值有______。

18. 下列数中,是合数的是______。

19. 下列图形中,面积最小的是______。

20. 若a=2,b=4,则a×b的值为______。

三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。

八年级数学竞赛测试题二及答案(K12教育文档)

八年级数学竞赛测试题二及答案(K12教育文档)

八年级数学竞赛测试题二及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛测试题二及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛测试题二及答案(word版可编辑修改)的全部内容。

A 1F GEA12008年路桥实验中学八年级数学竞赛模拟试题(考试时间:120分钟 满分:120分)命题时间:2008—5-19 一、选择题(共8小题,每小题5分,满分40分) 1、下面4种说法:(1)一个有理数与一个无理数的和一定是无理数 (2)一个有理数与一个无理数的积一定是无理数(3)两个无理数的和一定是无理数 (4)两个无理数的积一定是无理数 其中,正确的说法个数为( ). A .1B .2C .3D .42、已知一次函数y =kx +b ,其中kb 〉0。

则所有符合条件的一次函数的图象一定通过( )。

A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限3为整点,如图(1)所示的正方形内(包括边界)整点 的个数是( )A .13B .21C .17D .254.如果关于x 的不等式组⎪⎩⎪⎨⎧-<+--≥+-23)21(22)(3x b b x a x a x 的整数解仅为1、2、3,那末适合这个不等式组的整数对(a ,b)共有( )A .32对B .35对C .40对D .48对5、现有一列数1239899100,,,,,,a a a a a a ⋅⋅⋅,其中37989,7,1a a a ==-=-,且满足任意相邻三个数的和为常数,则1239899100a a a a a a +++⋅⋅⋅+++的值为( )A .0B .40C .32D .266、如图(2)将六边形ABCDEF 沿着直线GH 折叠,使点A 、B 落在六边形CDEFGH 的内部,则下列结论一定正确的是( ) A .∠1+∠2=900°-2(∠C+∠D+∠E+∠F) B .∠1+∠2=1080°-2(∠C+∠D+∠E+∠F ) C .∠1+∠2=720°-(∠C+∠D+∠E+∠F )D .∠1+∠2=360°-12(∠C+∠D+∠E+∠F)7、如图(3)菱形ABCD 中,∠ABC=120°,F 是DC AF 的延长线交BC 的延长线于E ,则直线BF 与直线的锐角的度数为( )A .30°B .40°C .50°D .60°8、将长、宽、高分别为a ,b ,c (a >b >c ,单位:cm ) 的三块相同的长方体按图所示的三种方式放入三个底面 面直径为d (d >),高为h 的相同圆柱形水 桶中,再向三个水桶内以相同的速度匀速注水, 直至注满水桶为止, 水桶内的水深y(cm )与注水时 间t(s )的函数关系如图(4)所示,则注水速度为 ( )A .302/cm sB .322/cm sC .342/cm sD .402/cm s二、填空题(共6小题,每小题5分,满分30分)9、小明在整个上学途中,他出发后t 分钟时,他所在的位置与家的距离为s 千米,且s 与t 之间的函数关系的图象如图中的折线段OA —OB 所示。

初中八年级数学竞赛试题

初中八年级数学竞赛试题

初中八年级数学竞赛试题一、选择题(每题3分,共30分)1. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 82. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -43. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²4. 如果一个数的绝对值是3,那么这个数可能是:A. 3B. -3C. 3或-3D. 05. 下列哪个分数是最简分数:A. 4/8B. 5/10C. 3/4D. 6/96. 一个正整数n,如果n²+n+1是质数,那么n的取值范围是:A. n=0B. n=1C. n=2D. n=-17. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,它的体积是:A. 72 cm³B. 144 cm³C. 216 cm³D. 432 cm³8. 一个数列的前三项是2, 4, 6,如果这是一个等差数列,那么第四项是:A. 8B. 9C. 10D. 119. 一个数的立方根是2,这个数是:A. 6B. 8C. 4D. 210. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是_________。

12. 一个直角三角形的两个锐角的度数之和是_________。

13. 如果一个数的立方是-8,那么这个数是_________。

14. 一个数的倒数是1/4,那么这个数是_________。

15. 一个圆的直径是10厘米,那么它的周长是_________厘米。

三、解答题(共50分)16. (10分)解方程:2x + 5 = 1717. (15分)证明:在一个直角三角形中,如果一条直角边是另一条直角边的两倍,那么斜边是这条直角边的根号3倍。

初二数学竞赛题(含答案)

初二数学竞赛题(含答案)

初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。

将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =40°,那么∠XYZ = °。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

3、甲、乙两位探险者到沙漠进行探险。某日早晨 7∶00 甲先出发,他以 6 千米/时的速度向
东行走,1 小时后乙出发,他以 5 千米/时的速度向北行进。上午 10∶00,甲、乙二人的距
离的平方是_____。
4、一个等腰三角形的周长为 16,底边上的高是 4,则这个三角形的三边长分别是________,

4
a
12 . 设
p,q 均 为 正 整 数 , 且
7
p
11


q最



pq 的 值
10 q 15


以下三、四、五题要求写出解题过程. 三、(本题满分 20 分) 13.在一次抗击雪灾而募捐的演出中,晨光中学有 A、B、C、D 四个班的同学参加演出,已 知 A、B 两个班共 16 名演员,B、C 两个班共 20 名演员,C、D 两个班共 34 名演员,且各班 演员的人数正好按 A、B、C、D 次序从小到大排列,求各班演员的人数. 四、(本题满分 20 分)
的面积是( )
A、3cm2 B、4cm2 C、5cm2 D、2cm2
13、以线段 a 16,b 13, c 10, d 6 为边,
且使 a∥c 作四边形,这样的四边形( )
A、能作一个
B、能作两个 C、能作三个
D、能作无数个
E、不能作
14、如图 5,正方形的面积为 256,点 F 在 AD 上,点 E 在 AB 的延长线上,Rt△CEF 的面积
________,_________。 5、已知:如图 1,E、F 分别是正方形 ABCD 的边 BC、 CD 上的点,AE、AF 分别与对角线 BD 相交于 M、N, 若∠EAF=500,则∠CME+∠CNF=________。

(word完整版)新人教版八年级(下)数学竞赛试卷及,文档

(word完整版)新人教版八年级(下)数学竞赛试卷及,文档

八年级第二学期数学竞赛试题〔考试时间:100 分钟试卷总分:120分〕一、选择题〔本小题共 12 小题,每题 3 分,共 30 分〕以下各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中。

1、素来角三角形两边分别为 3 和 5,那么第三边为A、4B、34C、4 或34D、22、用两个全等的等边三角形,能够拼成以下哪一种图形A 、矩形B、菱形C、正方形D、等腰梯形3、菱形的面积为2,其对角线分别为x 、y,那么 y 与 x 的图象大体为A B C D4、△ ABC的三边长分别为a、 b、 c,以下条件:①∠ A=∠B-∠ C;②∠ A:∠ B:∠ C=3:4: 5;③a2(b c )(b c) ;④a : b : c 5 :12: 13,其中能判断△是直角三角形的个数有ABCA.1 个B.2 个C.3个D.4 个5、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花〔如右图〕拉到岸边,花柄正好与水面成600夹角,测得 AB 长 60cm,那么荷花处水深OA 为A、 120cmB、60 3 cmC、60cmD、cm 20 3第7题图第 8题图第9题图6、如图,□ABCD 的对角线 AC 、 BD 订交于 O,EF 过点 O 与 AD 、BC 分别订交于 E、F,假设 AB=4 , BC=5,OE=1.5, 那么四边形 EFCD 的周长为A、16B、14C、12D、100,那么∠EDC、如图,把菱形ABCD 沿 AH 折叠,使B点落在BC上的 E 点处,假设∠B=707的大小为A、100B、 150C、200D、3008、以下命题正确的选项是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、若是按次连接一个四边形各边中点获取的是一个正方形,那么原四边形必然是正方形。

D、对角线互相垂直的四边形面积等于对角线乘积的一半。

(完整word版)初二数学竞赛试题及答案一,文档

(完整word版)初二数学竞赛试题及答案一,文档

初二数学竞赛试题及答案一〔说明:本卷可使用计算器,考试时间120 分钟,总分值120 分〕一、选择题〔每题 5 分,共 30 分〕1、使a b a b 成立的条件是〔〕A 、 ab> 0B、 ab> 1C、 ab≤ 0 D 、 ab≤ 12、某商品的标价比本钱价高p%,当该商品降价出售时,为了不亏损本钱,售价的折扣〔即降价的百分数〕不得超过 d%,那么 d 可用 p 表示为〔〕A 、pp B 、 p C、 100 p D、 100 p100100 p100 p3、有一种足球由32 块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,那么白皮的块数是〔〕A 、 22B 、 20C、 18 D 、 164、某个班的全体学生进行短跑、跳高、铅球三个工程的测试,有5 名学生在这三个工程的测试中都没有到达优秀,其余学生到达优秀的工程、人数如下表:短跳铅短跑、跳高、跑高球跳高铅球铅球、短跑短跑、跳高、铅球1718156652那么这个班的学生总数是〔〕A 、 35B 、 37C、 40 D 、 485、甲、乙、丙三个学生分别在 A 、B 、C 三所大学学习数学、物理、化学中的一个专业,假设:①甲不在 A 校学习;②乙不在 B 校学习;③在 B 校学习的学数学;④在 A 校学习的不学化学;⑤乙不学物理,那么〔〕A 、甲在B 校学习,丙在 A 校学习B、甲在 B 校学习,丙在C 校学习C、甲在 C 校学习,丙在 B 校学习 D 、甲在 C 校学习,丙在 A 校学习6、: a、b 是正数,且 a+b=2,那么a21b2 4 的最小值是〔〕A 、13B 、5C、25 D 、7二、填空题〔每题 5 分,共30 分〕7、2x=a, 3x=t,那么24x=(用含 a,t 的代数式表示 )8、△ ABC 中, AB=AC=5 , BC=6 ,点 F 在 BC 上,那么点 F 到另外两边的距离和是21999( x 2) 3( x 1) 211 的值为9、x5x0 ,那么代数式x2C 10、如图,正方形ABCD 的面积为 256,D点 F 在 AD 上,点 E 在 AB 的延长线上,F 直角△ CEF 的面积为200,那么 BE =.11、把 7 本不同的书分给甲、乙两人,A BE 甲至少要分到 2 本,乙至少要分到 1 本,两人的本数不能只相差1,那么不同的分法共有种 .12、如果用两个 1,两个2,两个3,两个 4,要求排成具有以下特征的数列:一对 1 之间正好有一个数字,一对2之间正好有两个数字,一对3之间正好有三个数字,一对 4 之间正好有四个数字,请写出一个正确答案.三、解答〔每小15 分,共 60 分〕13、某商店有 A 种本出售,每本零售0.30 元,一打〔 12 本〕售价 3.00 元, 10 打以上的,每打可以按2.70 元付款 .(1〕初二〔 1〕班共 57 人,每人需要 1 本 A 种本,班集体去,最少需要付多少元?(2〕初三年共 227 人,每人需要 1 本 A 种本,年集体去,最少需付多少元?14、察式子1×2× 3× 4+ 1=5 22× 3×4× 5+ 1=112B3× 4×5× 6+ 1=192⋯⋯〔1〕猜测 20000× 20001× 20002× 20003+1=〔〕2〔2〕写出一个具有普遍性的,并出明. 15、如:四形ABCD 中, AD = DC,∠ ABC = 30°,∠ADC = 60° .探索以 AB 、 BC、 BD ,能否成直角三角形,并明理由 .AC16、四位数abcd是一个完全平方数,且D ab 2cd 1,求个四位数.[参答 ]1、C2、C3、 B4、C5、 A6、A7、a3 t8、9、 200410、 1211、 4912、 41312432 或 2342131413、〔1〕可买 5 打或 4 打 9 本,前者需付款× 5=,后者只需付款× 4+× 9= 14.7 元 .故该班集体去买时,最少需付14.7 元.〔2〕227= 12×18+11,可买 19 打或 18 打加 11 本,前者需付款×19=;后者需付款 2.70 ×18+×11=51.9 元,比前者还要多付 0.6 元.故该年级集体去买,最少需付 51.3 元.14、〔1〕 400060001〔2〕对于一切自然数n,有 n〔n+1〕 (n+2)(n+3)+1=(n2+3n+1)2.证略故20000×20001×20002× 20003+1=〔 200002+3×20000+1〕2.=400060001215、明:以BC 作等△ BCE , AE 、 AC.因∠ ABC = 30°,∠ CBE = 60°,所以∠ ABE =90°,所以 AB 2+ BE2=AE 2①, AD = DC ,∠ ADC = 60°,所以△ ADC 是等三角形.因在△ DCB 和△ ACE 中, DC= AC ,∠DCB =∠ DCA +∠ ACB =∠ ECB +∠ ACB =∠ ACE ,而BC =CE,所以△ DCB ≌△ ACE ,所以 BD = AE,而 BC =BE ,由①式,得BD 2=AB 2+ BC 2BA ECD16、设abcd m 2,那么32≤m≤99.又设 cd x ,那么 ab 2x 1.于是100〔2x+1〕+x=m2,201x= m2-100即67×3x=〔 m+10〕 (m-10).由于 67 是质数,故 m+10 与 m- 10 中至少有一个是67 的倍数 .〔1〕假设 m+10=67k〔k 是正整数〕,因为 32≤m≤99,则m+10=67,即 m=57.检验知 572=3249,不合题意,舍去 .〔2〕假设 m-10=67k〔k 是正整数〕,那么 m-10=67, m=77.所以, abcd 77 25929.。

数学竞赛初二试卷及答案

数学竞赛初二试卷及答案

一、选择题(每题5分,共25分)1. 下列各数中,既是正整数又是偶数的是()A. 1B. 3C. 5D. 82. 已知一个数的平方根是2,那么这个数是()A. 4B. 6C. 8D. 103. 下列各数中,是绝对值最小的是()A. -2B. 2C. -3D. 34. 如果a=3,b=5,那么a²+b²的值是()A. 8B. 14C. 18D. 225. 已知一个等差数列的首项是2,公差是3,那么第10项是()A. 29B. 32C. 35D. 38二、填空题(每题5分,共25分)6. 一个数的倒数是它的平方根,这个数是______。

7. 已知一个数的平方根是4,那么这个数的立方根是______。

8. 下列各数中,是质数的是______。

9. 一个等差数列的前三项分别是3、5、7,那么这个数列的公差是______。

10. 已知一个等比数列的首项是2,公比是3,那么第5项是______。

三、解答题(每题15分,共45分)11. (10分)一个等差数列的前三项分别是2、5、8,求这个数列的公差和第10项。

解答:公差 d = 5 - 2 = 3第10项 a₁₀ = a₁ + (10 - 1)d = 2 + 9 3 = 2912. (10分)一个等比数列的首项是2,公比是3,求这个数列的前5项。

解答:第1项 a₁ = 2第2项 a₂ = 2 3 = 6第3项 a₃ = 2 3² = 18第4项 a₄ = 2 3³ = 54第5项 a₅ = 2 3⁴ = 16213. (15分)已知一个数的平方根是4,那么这个数的立方根是多少?解答:设这个数为x,则有x² = 4解得x = ±2所以这个数的立方根是±2。

答案:一、1.D 2.A 3.A 4.B 5.C二、6. 1 7. 2 8. 2、3、5、7 9. 3 10. 162三、11. 公差为3,第10项为29;12. 2、6、18、54、162;13. ±2。

八年级数学竞赛试题卷(含答案)

八年级数学竞赛试题卷(含答案)

第二学期八年级数学竞赛试题卷分值:120分 测试时间:120分钟一、选择题(6×4′=24′)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。

1、已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( ) A.9 B.±3 C.3 D. 52、已知关于x 的方程(a -1)x 2-2x +1=0有实数根,则a 的取值范围是( ) A.a ≤2 B,a >2 C.a ≤2且a ≠1 D.a <-23、足球一般是用黑白两种颜色的皮块缝制而成,如图所示黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( ) A .16块、16块 B .8块、24块 C .20块、12块 D .12块、20块4、如图,等腰直角三角形ABC 中,∠ACB =90°,在斜边AB 上取两点M 、N ,使∠MCN =45°.设MN =x ,BN =n ,AM =m ,则以x 、m 、n 为边的三角形的形状为( ) A.锐角三角形 B.直角三角形C.等腰直角三角形D.随x 、m 、n 的值而定5、某人才市场2012年下半年应聘和招聘人数排名前5个类别的情况如下图所示,若用同一类别中应聘人数与招聘人数比值的大小来衡量该类别的就业情况,则根据图中信息,下列对就业形势的判断一定..正确的是( ) A .医学类好于营销类;B .建筑类好于法律类;C .外语类最紧张;D .金融类好于计算机类 6、在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为( )A .11+ 11 3 2B .11- 11 3 2;C .11+ 11 3 2或11- 11 3 2 ;D .11+ 11 3 2或1+ 3 2ABCMN应聘人数类别医学 外语 金融 法律 计算机21580200301546084506530医学 金融 外语 建筑 营销招聘人数12460102908910 76507040类别(第8题)二、填空题(10×5′=50′)7、为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回鱼塘,经过一段时间,待有标记的鱼完全混合于鱼群后,又捕捞了两次,第一次捕捞了200条鱼,其中有24条有标记,第二次捕捞了220条,其中有18条有标记.估计鱼塘中鱼的数量为 条. 8、有下列命题:①两条直线被第三条直线所截,同旁内角互补; ②已知两边及其中一边的对角能作出唯一一个三角形;③已知x 1、x 2中关于x 的方程2x 2+px +P +1=0的两根,则x 1+x 2+x 1x 2的值是负数; ④某细菌每半小时分裂一次(每个分裂两个),则经过2小时它由1个分裂为16个; ⑤若方程210x mx +-=中0m >,则方程有一正根和一负根,且负根的绝对值较大. 其中正确的命题是 .9、在纸上画一个正六边形,在六边形外画一条直线a ,从六个顶点分别向直线a 引垂线可以得到k 个不同的垂足,那么k 的值在3,4,5,6这四个数中不可能取得的是_________.10、如图所示,△ABC 中,AD ⊥BC 于D ,点E 、F 、G 分别是AB 、BD 、 AC 的中点,EG =32EF ,EF +AD =12,则△ABC 的面积为__________. 11、商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.每件商品降价_________元时,商场日盈利可达到2100元。

八年级数学竞赛题及答案解析

八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .1D .4 2.下列各式中计算正确的是()A .9)9(2-=-B .525±=C .1=-D .2)2(2-=-3.若1k k <+(k 是整数),则k =() A .6B .7C .8D .94.下列计算正确的是()A.ab ·ab =2ab C.3-=3(a ≥0) D.·=(a ≥0,b ≥0) 5.满足下列条件的三角形中,不是直角三角形的是() A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7.将一根24cm 的筷子置于底面直径为15cm ,高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A .(4,-3)B .(-4,3)C .(0,-3)D .(0,3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( ) A .(0,5) B .(-1,5) C .(9,5) D .(-1,0) 10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是() A .b a<B .3<aC .3<bD .2-<c 二、填空题(每小题3分,共24分) 11.函数y =的自变量x 的取值范围是________. 12.点P (a ,a -3)在第四象限,则a 的取值范围是.13.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则a b 的值为__________. 14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为__________.15.在△ABC 中,a ,b ,c 为其三边长,,,,则△ABC 是_________.16.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则BC 边上的高是_________cm .17.若),(b a A 在第二、四象限的角平分线上,a 与b 的关系是_________. 18已知:m 、n 为两个连续的整数,且m<<n ,则m +n =_________.三、解答题(共66分)19.(8分)如图,已知等腰△的周长是,底边上的高的长是, 求这个三角形各边的长.20.(8分)计算: (1)44.1-21.1;(2)0)31(33122-++;(3)2)75)(75(++-;(4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积. 22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25m ,如图所示斜靠在一面墙上,梯子底端C 离墙7m. (1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4m ,那么梯子的底部在水平方向也是滑动了4m 吗? 第24题图第25题图25.(8分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 的函数图象的其余部分; (3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?年级数学竞赛答题卡D C第19题图二、填空题(每小题3分,共24分) 11.12.13.14. 15.16.17.18.三、解答题(共66分)19.(8分)如图,已知等腰△的周长是,底边上的高的长是,求这个三角形各边的长. 20.(8分)计算: (1)44.1-21.1;(2)0)31(33122-++;(3)2)75)(75(++-;(4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积. 22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值. 24.(8分)一架云梯长25m ,如图所示斜靠在一面墙上,梯子底端C 离墙7m. (1)这个梯子的顶端A 距地面有多高? (2)如果梯子的顶端下滑了4m ,那么梯子的底部在水平方向也是滑动了4m 吗?25.(8分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 的函数图象的其余部分; (3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?期中检测题参考答案一、选择题1.C 解析:|-5|=5;|-2|=2,|1|=1,|4|=4,所以绝对值最小的数是1,故选C .D C第19题图2.C 解析:选项A 9=,选项B 5=,选项D 中22(=,所以只有选项C 中1=-正确.3.D 解析:∵81<90<100,∴,即910,∴k =9.4.D 解析:因为22ab ab a b ⋅=,所以A 项错误;因为33(2)8a a =,所以B 项错误;因为0)a =≥,所以C 0,0)a b =≥≥,所以D 项正确.5.D 解析:判断一个三角形是不是直角三角形有以下方法: ①有一个角是直角或两锐角互余; ②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角. B 、C 满足勾股定理的逆定理,故选D.6.C 解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5的周长为3+4+5=12或3+47C . 7.D 解析:筷子在杯中的最大长度为22815+=17(cm ),最短长度为8cm ,则筷子露在杯子外面的长度h 的取值范围是24-17≤h ≤24-8,即7≤h ≤16,故选D .8.C 解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(-2,3)关于原点的对称点为(2,-3).根据平移的性质,结合直角坐标系,(2,-3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C .9.B 解析:∵△ABC 向左平移5个单位长度,A (4,5),4-5=-1, ∴点A 1的坐标为(-1,5),故选B . 10.D 解析:设直线l的表达式为()0y kx b k =+≠,直线l经过第一、二、三象限,∴0k >,函数值y 随x 的增大而增大.01>-,∴a b >,故A 项错误;02>-,∴3a >,故B 项错误;12->-,∴3b >,故C 项错误;13-<,∴2c <-,故D 项正确.二、填空题11.x ≥2解析:因为使二次根式有意义的条件是被开方数≥0,所以x -2≥0,所以x ≥2. 12.0<a <3解析:本题考查了各象限内点的坐标的符号特征以及不等式的解法. ∵点P (a ,a -3)在第四象限,∴a >0,a -3<0,解得0<a <3.13.25解析:本题考查了关于y 轴对称的点的坐标特点,关于y 轴对称的点的横坐标互为相反数,纵坐标相同,可得a +b =-3,1-b =-1,解得b =2,a =-5,∴a b =25.14.y =0.3x +6解析:因为水库的初始水位高度是6米,每小时上升0.3米,所以y 与x 的函数关系式为y =0.3x +6(0≤x ≤5).15.直角三角形解析:因为所以△是直角三 角形.16.8解析:如图,AD 是BC 边上的高线. ∵AB =AC =10cm ,BC =12cm , ∴BD =CD =6cm ,∴在Rt △ABD 中,由勾股定理,得AD=8(cm ).17.互为相反数解析:第二、四象限的角平分线上的点的横、纵坐标的绝对值相等,•符号 相反.18.7解析:∵9<11<16,∴3<<4.又∵m 、n 为两个连续的整数,∴m =3,n =4,∴m +n =3+4=7.三、解答题19.解:设,由等腰三角形的性质,知.由勾股定理,得,即,解得, 所以,. 20.解:(1). (2).(33=+=+= (4).61513334)31(331220=+=++=-++ (5) (6).21.解:梯形.因为AB ∥CD ,AB 的长为2,CD 的长为5,AB 与CD 之间的距离为4,所以S 梯形ABCD =(25)42+⨯=14. 22.解:因为a 31-≥0,︱8b -3︱≥0,且a 31-和︱8b -3︱互为相反数,DBC第16题答图所以a 31-,0=︱8b -3︱,0= 所以,83,31==b a所以()2-ab -27=64-27=37. 23.分析:直接把A 点和B 点的坐标分别代入y =kx +b ,得到关于k 和b 的方程组,然后解方程组即可.解:把(1,3)、(0,-2)分别代入y =kx +b ,得+32k b b =⎧⎨=-⎩,,解得52k b =⎧⎨=-⎩,,即k ,b 的值分别为5,-2.24.分析:(1)可设这个梯子的顶端A 距地面有x m 高,因为云梯长、梯子底端离墙距离、梯子的顶端距地面高度是直角三角形的三边长,所以x 2+72=252,解出x 即可.(2)如果梯子的顶端下滑了4m ,那么梯子的底部在水平方向不一定滑动了4m ,应计算才能确定. 解:(1)设这个梯子的顶端A 距地面有x m 高, 根据题意,得AB 2+BC 2=AC 2,即x 2+72=252,解得x =24, 即这个梯子的顶端A 距地面有24m 高. (2)不是.理由如下:如果梯子的顶端下滑了4m ,即AD =4m,BD =20m. 设梯子底端E 离墙距离为y m ,根据题意,得BD 2+BE 2=DE 2,即202+y 2=252,解得y =15. 此时CE =15-7=8(m ).所以梯子的底部在水平方向滑动了8m.25.解:(1)甲行走的速度:150530÷=(米/分). (2)补画的图象如图所示(横轴上对应的时间为50). (3)由函数图象可知,当t =12.5时,s =0; 当12.5≤t ≤35时,s =20t -250; 当35<t ≤50时,s =-30t +1500.当甲、乙两人相距360米时,即s =360, 360=20t -250,解得30.5=t ,360=-30t +1500.解得38=t∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.26.解:(1)设一名熟练工加工1件A 型服装需要x 小时,加工1件B 型服装需要y 小时,由题意,得解得答:一名熟练工加工1件A 型服装需要2小时,加工1件B 型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件. ∴W=16a+12(25×8-2a)+800,∴W=-8a+3200.又a≥(200-2a),解得a≥50.∵-8<0,∴W随着a的增大而减小.∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.。

八年级数学竞赛试题及答案.docx

八年级数学竞赛试题及答案.docx
排除:23145、21543、25341、41325、43521
还剩:21345、25143、23541、43125、45321
所以共有
5种排法故选:D.
2、 设18
路公交车的速度是
x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为
s米.
每隔6分钟从背后开过一辆
18路公交车,则6x-6y=s.①
1、法一:设
a1,a2,a3,a4,a5是1,2,3,4,5的一个满足要求的排列.
首先,对于a1,a2,a3,a4,不能有连续的两个都是偶数
,否则,这两个之后都是偶数,与已知条件矛盾.
又如果a(1≤i≤3)是偶数,a
i+1是奇数,则ai+2是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,
i
除非接的这个奇数是最后一个数.
(第3题)
的值等 于
.(x表示不超过x的最大整数)
5.小明家电话号码原为六位数
,第一次升位是在首位号码和第二位号码之间加上数字
8,成为一个七位数的
电话号码;第二次升位是在首位号码前加上数字
2,成为一个八的 电 话 号 码 的 八 位 数,恰 是 原 来 电 话 号 码 的 六 位 数 的81倍,则 小 明 家 原 来 的 电 话 号 码
所以a1,a2,a3,a4,a5只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:
2,1,3,4,5;
2,3,5,4,1;
2,5,1,4,3;
4,3,1,2,5;
4,5,3,2,1.
法二:第一位是
2,后面两位奇数任意:21345、23145、21543、25143、23541、25341
第一位是4,后面两位奇数不能是1、5或5、1:41325、43125、43521、45321

初二全国数学竞赛试题

初二全国数学竞赛试题

初二全国数学竞赛试题
初二全国数学竞赛试题
备考期间,考生可以适当放松,同时也要静下心来做好接下来的复习。

下面小编为你整理了初二全国数学竞赛试题,希望能帮到你!
初二全国数学竞赛试题1
初二全国数学竞赛试题2
初二全国数学竞赛试题3
数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。

目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。

本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。

《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。

”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的.数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。

同时,要重视培养学生的独立思考和自学的能力”。

《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。

除教学大纲所列内容外,本大纲补充列出以下内容。

这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。

初二数学竞赛试题

初二数学竞赛试题

八年级数学知识竞赛试题一、选择题(每题6分,共36分) 1、若方程组3133x y k x y +=+⎧⎨+=⎩的解为x,y ,且2<k <4,则x-y 的取值范围是( )(A ) 0<x-y <0.5 (B ) 0<x-y <1 (C ) -3<x-y <-1 (D )-1<x-y <1 2、新制作的渗水防滑地板是形状相同的长方形.如图1,三块这样的地板可以拼成一个大 的长方形.如果大长方形的周长为150厘米,则一块渗水妨滑地板的面积是( ) 平方厘米. (A) 450 (B) 600 (C) 900 (D) 13503.如图,将纸片△ABC 沿着DE 折叠压平,且∠1+∠2=72°,则∠A =( )A .72°B .24°C .36°D .18°4.如图是一块矩形ABCD 的场地,长AB =102m ,宽AD =51m ,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )(A )5050m 2 (B )4900m 2 (C)5000m 2 (D)4998m 25填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .746、一个水池装有5只水管,有些是进水管,有些是出水管,依次编号为①②③④⑤,分别打开两管,注满水池的时间记录如下表: 打开水管号①②②③ ①③ ②④ ③⑤ 注满水池(分钟) 68121315要想单独打开一只水管,用最短的时间注满水池,应打开( )A 、①号水管B 、②号水管C 、③号水管D 、④号或⑤号水管 二、填空题(每题6分,共36分)7、如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子, 摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第n 个图案需要 枚 棋子。

初二数学竞赛试题

初二数学竞赛试题

初二数学竞赛试题本文将提供一套适用于初二学生的数学竞赛试题,共计10道题目,涵盖多个数学领域,旨在提升学生的数学应用能力和解题技巧。

请同学们仔细阅读每道题目,并尽量独立思考并解答。

题目一:已知正方形ABCD的边长为4cm,点E是AB边上的一个点,连接CE并延长至F,使得DE = EF。

求CD和CF的交点G到点BC的距离。

题目二:已知直角三角形ABC,∠B = 90°,AB = 6cm,BC = 8cm。

点E是AC边上的一个点,满足AD : DC = 2 : 1,连接BE并延长至F,使得EF与BC垂直且交于点F。

求EF的长度。

题目三:若a, b, c是正数,且满足abc = 1,求证:a^3 + b^3 + c^3 ≥ a^2 +b^2 + c^2。

题目四:已知函数f(x) = x^2 - 4x + 1,求f(3)的值以及f(x)的最小值点的横坐标。

题目五:已知等差数列的首项是2,公差是3,求第10项和前10项的和。

题目六:在平面直角坐标系中,点A(-2, 1)和点B(4, -3)分别为线段AB的两个端点,求线段AB的长度。

题目七:已知集合A = {1, 3, 5, 7, 9},集合B = {2, 6, 8},将集合B中的元素逐一插入集合A中后形成一个新的集合C,请写出集合C的所有元素。

题目八:已知函数y = 2^x,求解方程2^x - 3 = 0的解并表示在坐标系中。

题目九:一根高为10cm的竖杆,从离地面3cm的地方被割断。

从离地面的剩余部分下方任取一点,求从该点向上看去看不见竖杆的区域的面积。

题目十:将一个边长为10cm的正方形ABCD以AB为底边作折叠,使得B点与A点重合,使得C点与线段AB的中点重合形成一个新形状。

求该新形状的周长。

希望以上数学竞赛试题能够对同学们的数学能力提升有所帮助。

祝愿大家都能取得优异的成绩!。

数学竞赛试题及答案(word版本)

数学竞赛试题及答案(word版本)

高中数学竞赛试题总分200分一、选择题(50分) 1、已知i 是虚数单位,则复数122ii +-=( ) Ai B i - C 4355i -- D 4355i -+2、下列函数中,既是奇函数,又是在区间(,)-∞+∞上单调递增的函数是( ) A2y x x =+ B 2sin y x x =+ C 3y x x =+ D tan y x =3、已知,a b 均为单位向量,其夹角为θ,则命题:1p a b ->是命题5:[,)26q ππθ∈的( )A 充分非必要条件B 必要非充分条件C 充要条件D 非充分非必要条件 4、已知集合{}{}|12,|21P x x M x a x a =≤≤=-≤≤+,若PM P =,则实数a 的取值范围是( ) A(,1]-∞ B [1,)+∞ C [1,1]- D [1,)-+∞5、函数sin()cos()226yx x ππ=++-的最大值是( )A 134B 4C 2D 6、如图,四棱锥S ABCD -的底面是正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( )A AB SA ⊥ B BC 平面SADC BC 与SA 所成的角等于AD 与SC 所成的角DSA 与平面SBD 所成的角等于SC 与平面SBD 所成的角7、程序框图如图所示,若22(),()log f x x g x x ==,输入x 的值为0.25,则输出的结果是( ) A0.24 B 2- C 2 D 0.25-8、设,i j 分别表示平面直角坐标系,x y 轴上的单位向量,且25a i a j -+-=,则2a i+的取值范围是()AB[5 CD [59、已知12,F F 分别为双曲线22:1927x y C -=的左右焦点,点A 的坐标为9(,22,则12F AF ∠的平分线与轴的交点M 的坐标为( ) A(2,0) B (2,0)- C (4,0) D (4,0)-10、设2()f x x bx c =++,若方程()f x x =无实根,则方程(())f f x x =( )A 有四个相异实根B 有两个相异实根C 有一个实根D 无实数根二、填空题(共49分)11、设直线4y ax =-与直线8y x b =-关于直线y x =对称,则___,____.a b ==12、已知1cos sin 1cos xx x-=+,则_______.x =13、已知xR ∈+的值为_______.14、已知实数,,,a b c d 满足221ab c d =+=,则22()()a c b d -+-的最小值为_______. 15、设数列{}n a 为等比数列,且每项都大于1,则201112012111lg lg lg lg i i i a a a a =+∑的值为_______.16、设0x >,则44433311()()()11()()x x x x f x x x x x+-+=+-+的最小值为_______. 17、如图是一个残缺的33⨯幻方,此幻方每一行每一列及每一条对角线上得三个数之和有相等的值,则x 的值为_______.三、解答题(每题17分,共51分)18、已知实数1210,,,x x x 满足101011|1|4,|2|6i i i i x x ==-≤-≤∑∑,求1210,,,x x x 的平均值.19、设P 为椭圆2212516x y +=长轴上一个动点,过点P 斜率为k 直线交椭圆于两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学竞赛试题
第一部分(共6题.每题10分)
1实数a 、b 互为相反数,c 、d 互为倒数,x 绝对值为
7,求代数

2()x a b cd x +++.
2已知21a +的平方根是±3,522a b +-的算术平方根是4,求34a b -的平方根.
3 如图所示,已知△ABC 和直线MN .求作:△A ′B ′C ′,使△A ′B ′C ′和△ABC 关于直线MN 对称.(不要求写作法,只保留作图痕迹)
4如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE =FE ,FC ∥AB ,
求证:AD =CF .
5作出函数24y x =-的图象,并根据图象回答下列问题: (1)当 -2≤x ≤4时,求函数y 的取值范围; (2)当x 取什么值时,y <0,y =0,y>0? (3)当x 取何值时,-4<y <2?
E
A
B D
C
6.如图,已知点C是AB上一点,ΔACM、ΔCBN都是等边三角形.
(1)说明AN=MB.
(2)将ΔACM绕点C按逆时针旋转180°,使A点落在CB上,请对照原题图画出符合要求的图形.
(3)在(2)所得到的图形中,结论“AN=BM”是否成立?若成立,请说明理由;若不成立,也请说明理由.
第二部分(共5题.每题12分)
7.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式;
(2)求销售价定为30元时,每日的销售利润.8分析探索题
细心观察下图,认真分析各式,然后解答问题.
2
1
)1
(2=
+S
1
=
2
1

3
1
)2
(2=
+S
2
=
2
2

4
1
)3
(2=
+S
3
=
2
3
……
(1)请用含有n(n为正整数)的等式表示上述变化规律;
(2)推算出OA
10
的长.
(3)求出2
10
2
3
2
2
2
1
S
S
S
S+
+
+
+ 的值.
9.如图把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
(1)写出图中一对全等的三角形,并写出它们的所有对应角;
(2)设AED
∠的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?
(用含有x或y的代数式表示)
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
1
A
2
A
4
A
6
A
D
E
C
B
A′
2
1
10.如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,
(1)试判断ABC △与AEG △面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?
11通过市场调查,一段时间内某地区某一种农副产品的需求数量y (千克)与市场价格x (元/千克)(030x <<)存在下列关系:
又假设该地区这种农副产品在这段时间内的生产数量z (千克)与市场价格x (元/千克)成正比例关系:400z x =(030x <
<).现不计其它因素影响,如果需求数量y 等于生产数量z ,那么此时市场处于平衡状态. (1)请通过描点画图探究y 与x 之间的函数关系,并求出函数关系式; (2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内
农民的总销售收入各是多少? (3)如果该地区农民对这种农副产
品进行精加工,此时生产数量z 与市场价格x 的函数关系发生改变,而需
求数量y 与市场价格x 的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?
元/千克)
F
B
D
(图1)。

相关文档
最新文档