8.2用代入法解二元一次方程组教学设计

合集下载

用代入法解二元一次方程组教案

用代入法解二元一次方程组教案

用代入法解二元一次方程组教案一、教学目标1.能够运用代入法解二元一次方程组。

2.理解代入法的基本思想和具体操作方法。

3.通过解题提高学生的运算和推理能力。

二、教学过程1.引入:老师将题目写在黑板上,让学生回忆一下上一节课学的解二元一次方程组的方法,看能否解出来。

2.呈现:(1)2某+y=5;(2)某-y=1;3.讲解:教师在黑板上教学,给出代入法解二元一次方程组的基本思想和具体操作方法。

(1)假设得到方程组的一个解(某1,y1),用其中一个方程将某1或y1代入另一方程中,得到一个关于某或y的一元方程,求出某或y的值。

(2)将上面求出的某或y的值代入已知方程中,求出同步的另一个变量值。

在这道题目中,我们可以先用第二个方程式求出某的值,再将某值代入第一个方程式求出y的值。

4.举例:(1)2某+y=5;(2)某-y=1;解:我们可以先将第二个方程式变形为某=y+1,然后将某值代入第一个方程式得到2(y+1)+y=5,得到y的值为1、将y值带入某=y+1得到某=2、所以(某,y)=(2,1)。

5.练习:请解下面的方程组:(1)某+y=4;(2)某-y=2;解:将第二个方程式变形为某=y+2,然后将某值代入第一个方程式得到(y+2)+y=4,解出y的值为1、将y值带入某=y+2得到某=3、所以(某,y)=(3,1)。

6.归纳:通过以上例子,我们发现代入法解二元一次方程组的方法是比较简单和易学的。

三、作业老师布置以下作业:请解下面的方程组:(1)3某-2y=5;(2)2某+4y=10;解:将第一个方程式变形为y=(3某-5)/2,然后将y值代入第二个方程式得到2某+4((3某-5)/2)=10,解出某的值为2、将某值带入y=(3某-5)/2得到y=-1、所以(某,y)=(2,-1)。

消元——解二元一次方程组 第1课时《代入法 》教案(优质)

消元——解二元一次方程组 第1课时《代入法 》教案(优质)

8.2 消元——解二元一次方程组第1课时 代入法会用代入法解二元一次方程组.(重点)一、情境导入《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗?我们可以设树上有x 只鸽子,地上有y 只鸽子,得到方程组⎩⎪⎨⎪⎧x +y =3(y -1),x -1=y +1.可是这个方程组怎么解呢?有几种解法?二、合作探究探究点:用代入法解二元一次方程组【类型一】 用代入法解二元一次方程组用代入法解下列方程组:(1)⎩⎪⎨⎪⎧2x +3y =-19,①x +5y =1;②(2)⎩⎪⎨⎪⎧2x -3y =1,①y +14=x +23.②解析:对于方程组(1),比较两个方程系数的特点可知应将方程②变形为x =1-5y ,然后代入①求解;对于方程组(2),应将方程组变形为⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5,④观察③和④中未知数的系数,绝对值最小的是2,一般应选取方程③变形,得x =3y +12. 解:(1)由②,得x =1-5y .③把③代入①,得2(1-5y )+3y =-19,2-10y +3y =-19,-7y =-21,y =3.把y =3代入③,得x =-14.所以原方程组的解是⎩⎪⎨⎪⎧x =-14,y =3; (2)将原方程组整理,得⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5.④由③,得x =3y +12.⑤ 把⑤代入④,得2(3y +1)-3y =-5,3y =-7,y =-73. 把y =-73代入⑤,得x =-3. 所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-73. 方法总结:用代入法解二元一次方程组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比较简单的或代入后容易消元的方程进行变形.【类型二】 整体代入法解二元一次方程组解方程组:⎩⎪⎨⎪⎧x +13=2y ,①2(x +1)-y =11.②解析:把(x +1)看作一个整体代入求解.解:由①,得x +1=6y .把x +1=6y 代入②,得2×6y -y =11.解得y =1.把y =1代入①,得x +13=2×1,x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =1. 方法总结:当所给的方程组比较复杂时,应先化简,但若两方程中含有未知数的部分相等时,可把这一部分看作一个整体求解.【类型三】 已知方程组的解,用代入法求待定系数的值已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( ) A .1 B .-1 C .2 D .3解析:把解代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3,所以a -b =-1.故选B. 方法总结:解这类题就是根据方程组解的定义求,将解代入方程组,得到关于字母系数的方程组,解方程组即可.三、板书设计解二元一,次方程组)⎩⎪⎨⎪⎧基本思路是“消元”代入法解二元一次方程组的一般步骤回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知基础,探究显得十分自然流畅.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力。

8.2.1 代入法解二元一次方程组 教学设计(同课异构) (2)

8.2.1 代入法解二元一次方程组 教学设计(同课异构) (2)

人教版七年级下册第八章第二节第1课时教学设计8.2消元---解二元一次方程组8.2.1用代入法解二元一次方程组【学习目标】1.会用代入法解简单的二元一次方程组2.理解解二元一次方程组的思路是消元3、经历从未知向已知转化的过程,体会化归思想【学习重难点】重点:用代入法解二元一次方程组。

难点:代入消元的思想。

【学习流程】一、复习引入,温故知新1、什么叫二元一次方程组?2、什么叫二元一次方程组的解?3.已知4x-y=-1,用关于x的代数式表示y:___________;用关于y的代数式表示x :_________【设计意图】通过复习旧知,链接新旧知识,形成数学知识体系,符合学生认知规律;二、情景导入,探究新知引言问题1对比方程组和方程,你能发现它们结构之间的关系吗?将未知数的个数由多化少逐一解决的思想【设计意图】通过中学生比较熟悉的篮球比赛等体育运动,从这样的实例导入,使学生感到即将学习的内容与身边的事物有密切联系,引起兴趣,增强求知欲。

探究新知:二元一次方程组中有两个未知数,消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,就可先解出一个未知数,再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想。

问题探究:问题2对于二元一次方程组x+y=10,2x+y=16.你能写出求x、y的过程吗?知识归纳:上面解法,是由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫代入消元法,简称代入法小组讨论:解二元一次方程组的基本想法是什么?消去一个未知数,得到一个一元一次方程【设计意图】通过环节的层层引导,让学生自己得出解决二元一次方程组的基本想法,关注学生的独立思考能力,合作学习能力;三、典例精析,达标掌握课例分析:方程中那个未知数的系数最简单?用含——的式子表示——比较简捷。

解:由①,得x= …③把③代入②,得3(___)-__= ___解这个方程,得y=___.把y=_代入③,得x= __上面节方程组的过程可以用下面的框图表示:【设计意图】通过框图展示代入法步骤及作用(代入法一般步骤典型),让学生更了解解方程组的一般流程,对方法步骤有更明确的掌握。

《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。

初中数学_8.2 代入法消元—解二元一次方程组教学设计学情分析教材分析课后反思

初中数学_8.2 代入法消元—解二元一次方程组教学设计学情分析教材分析课后反思

8.2代入法消元解二元一次方程【教师准备】例题演示的详细板书.【学生准备】复习二元一次方程组解的概念.导入一:体育节要到了.拔河是七年级(1)班的优势项目.为了取得好名次,他们想在全部22场比赛中得到40分.已知每场比赛都要分出胜负,胜队得2分,负队得1分.那么七年级(1)班应该胜、负各几场?你会用二元一次方程组解决这个问题吗?根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程组那么有哪些方法可以求得二元一次方程组的解呢?[设计意图]导入情境是学生喜闻乐见的体育活动,可以增强学生的求知欲,使学生对所学知识产生亲切感.导入二:在8.1节中我们已经看到,直接设两个未知数:胜x场、负y场,可以列方程组表示本章引言问题中的数量关系.如果只设一个未知数:胜x场,那么这个问题也可以用一元一次方程2x+(10- x)=16来解.思路上面的二元一次方程组和一元一次方程有什么关系?[设计意图]比较方程2x+(10- x)=16和方程组之间的关系,是引入代入法的关键所在.一、代入法[过渡语](针对导入二)建立二元一次方程组求未知数,目的是求适合两个方程的未知数,也就是说两个方程的未知数取值是一样的.我们从这个认识出发,探究怎样解二元一次方程组?问题1能否借助于一元一次方程解二元一次方程组?〔解析〕我们发现,二元一次方程组中第一个方程x+y=10可以写为y=10- x.由于两个方程中的y 都表示负的场数,因此我们把第二个方程2x+y=16中的y换为10- x,这个方程就化为一元一次方程2x+(10- x)=16.解这个方程,得x=6.把x=6代入y=10- x,得y=4.从而得到这个方程组的解.问题2在上面的方程组中,第一个方程x+y=10是否可以写为x =10- y,然后再把x=10- y代入到方程2x+y=16中?〔解析〕从思路上讲,问题1和问题2的思路是一样的,只是选择哪个字母代入的问题.总结:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就可以把二元一次方程组转化为我们熟悉的一元一次方程.我们可以先求出一个未知数,然后再求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入法.问题3在上述的消元过程中,是怎样实现消元的?这种消元的方法叫什么?总结:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.二、例题讲解用代入法解方程组〔解析〕方程①中x的系数是1,用含y的式子表示x,比较简便.解:由①,得x=y+3③,把③代入②,得3(y+3)- 8y=14.解这个方程,得y=- 1.把y=- 1代入③,得x=2.所以这个方程组的解是追问1:把③代入①可以吗?试试看.提示:不可以,因为方程③是由方程①变形而来的,把③代入①后,只能得到一个恒等式.追问2:把y =- 1代入①或②都可以吗?提示:可以.二元一次方程组消元后化为一元一次方程,求出一个未知数的解,代入方程①、方程②或方程③都可以求出另一个未知数的值,但代入变形后的方程③更简便一些.[知识拓展]1.当方程组中含有用一个未知数表示另一个未知数的关系式时,用代入法比较简单.2.若方程组中未知数的系数为1(或- 1),选择系数为1(或- 1)的方程进行变形,用代入法也比较简便.3.如果未知数系数的绝对值不是1,一般选择未知数系数的绝对值最小的方程变形.(补充)用代入消元法解方程组〔解析〕求方程组的解的过程叫做解方程组.由方程组的解的概念,可知解方程组就是要求出同时满足此方程组中的两个方程的x和y的值.解:由①得x=y- 5.③把③代入②,得3(y- 5)+2y=10,解这个一元一次方程,得y=5,把y=5代入③,得x=0,所以原方程组的解为[知识拓展]用代入消元法解二元一次方程组时,一般用含一个未知数的代数式表示另一个未知数,但并非绝对.如解方程组由①得2x- 3y=2③,将③代入②得+2y=9,解得y=4,再将y=4代入③得2x- 3×4=2,解得x=7,故方程组的解为这种整体代入的方法显然比常规方法简单很多,但无论是用哪一种方法进行代入消元,都应该达到同一个目的——消元.代入法解二元一次方程组的一般步骤为:(1)从方程组中选一个未知数系数比较简单的方程,将这个方程中的一个未知数,例如y,用含x的式子表示出来,也就是化成y=ax+b的形式;(2)将y=ax+b代入方程组中的另一个方程中,消去y,得到关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)把求得的x值代入方程y=ax+b中(或方程组中的任意一个方程中),求出y的值,再写成方程组解的形式;(5)检验得到的解是不是原方程组的解.1.把方程2x- 4y=1改写成用含x的式子表示y的形式是.解析:用含x的式子表示y,相当于把y看成未知数,把x看成已知数,解关于y的一元一次方程,结果为y= .故填y=.2.方程组的解是()A.B.C.D.解析:将方程y=2x代入3y+2x=8得x=1,将x=1代入y=2x得y=2.故选B.3.用代入法解方程组代入后化简比较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=5x- 2解析:根据代入法解方程组的方法结合方程组的特征即可作出判断.由题意得代入后化简比较容易的变形是由②得y=5x- 2.故选D.4.用代入法解下列方程组:(1)(2)解:(1) 把①代入②得3x- 2(2x- 3)=8,解得x=- 2.把x=- 2代入①得y=2×(- 2)- 3=- 7.所以原方程组的解为(2) 由①得x=y+3③,把③代入②得3(y+3)- 8y=14,解得y=- 1,把y=- 1代入③得x=2.所以原方程组的解为第1课时1.代入法(1)消元思想(2)代入法2.例题讲解例1例2一、教材作业【必做题】教材第93页练习第1,2题.【选做题】教材第97页习题8.2第2题.8.2学情分析七年级学生的抽象思维能力和逻辑思维能力较差,这也导致在课堂教学中,显得枯燥、乏味,加上学生的运算能力不强,使得这章内容的教学难度增大,但是他们的好奇心强,具有一定的探究能力。

“消元--二元一次方程组的解法”教学设计

“消元--二元一次方程组的解法”教学设计

“8.2 消元──二元一次方程组的解法”教学设计濮阳县站前学校侯利华学习目标知识与技能会用代入法解二元一次方程组过程与方法经历用代入法贾二元一次方程组的训练,培养运算能力,体会化归思想情感、态度、价值观通过研究解决问题的方法,培养学生合作意识与探究精神学习重点用代入法解二元一次方程组.学习难点:对数学思想方法的理解,尤其是对用代入的方法实现消元的理解.突破这一难点的关键教学过程设计(一)情景导课背景材料:老师在我们学校代三个班的数学,所教学生共143人.问题1:你能提出什么数学问题?如何解决?学生可能提出的问题:(1)每个班有多少个学生?(2)男生、女生各多少个?……针对问题(2),增加条件:男生人数的2倍比女生人数的3倍少14人.学生活动:解决问题;展示方法.教师点拨:(1)用建模思想引领思维,实际问题-数学问题.(2)一元一次方程会解但难列,因为要综合考虑问题中的各种等量关系;二元一次方程组易列,因为可以分别考虑两个等量关系,但不会解。

从而产生了新问题。

方程组对于解含多个未知数的问题很有效,它的优越性会随着问题中未知数的增加而体现得更加明显.【设计意图】(1)由于是借班上课,以此形式开课既能创造轻松的氛围、拉近师生之间的距离,又可以巧妙引出本节课的教学内容.(2)问题是学生自己提出的,因此他们解决这个问题的积极性更高,思维更开阔,各种方法的出现便会成为必然.(3)让学生体会到方程组在解决实际问题中的优越性.(二)解决问题问题2:怎么解二元一次方程组呢?追问:为什么要这样做?依据是什么?你的解题思路是什么?你的解题方法的名称是什么?为什么可以这样归纳?(学生思考、交流.)教师明确:转化思想──新问题转化成旧问题;消元思想──将未知数的个数由多化少,逐一解决.(学生展示自己的方法.)师生交流,达成共识,明确思路:变形—代入—求解—写解。

教师规范解题过程,进而形成概念:代入消元法──把二元一次方程组中的一个方程变形成用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.【设计意图】我们一直强调让学生“知其然,而且要知其所以然”.但学生往往停留在对知识或方法的表层理解的水平上,究其原因,还是没有形成较强的问题意识,不习惯于多问个“为什么是这样的”、“这样做的依据是什么”等问题.因此,教学应不失时机地培养学生养成良好的问题意识.在问题的引导下,鼓励学生投入到活动中,并留给学生足够的独立思考和自主探索的时间和空间,从而让学生积极、主动地思考,随着思维的自然流淌,“顺势”自然地理解消元思想,解决问题的思路逐渐清晰. 通过探索实践,体验知识方法的形成过程,发现代入消元法的由来及过程,真正体会消元思想.练习1 你能把下列方程写成用含x的式子表示y的形式吗?(1)3x+y-1=0;(2)2x-y=3;(3)2y-4x=7。

代入法解二元一次方程组(教案)

代入法解二元一次方程组(教案)

8.2 消元-----解二元一次方程组第一课时代入法解二元一次方程一、教学目标1、会用代入消元法解简单的二元一次方程组;2、初步体会解二元一次方程组的思想是“消元”;3、在探究代入消元法的过程中体会化归思想。

二、教学重难点1、教学重点:用代入法解简单的二元一次方程组;~2、教学难点:“二元”向“一元”的转化,消元思想。

三、教学方法引导发现、练习法相结合四、教具准备多媒体设备五、教学过程(一)复习旧知、引入新课1、判断下列式子是否是二元一次方程?①03=+xy ②2=-y x ③102=+x x ④31-=+y x ⑤zy x 23-=+ 2、判断下列式子是否是二元一次方程组?①⎩⎨⎧-=+=+12103z x y x ②⎩⎨⎧=+-=121b a ab ③⎩⎨⎧-=--=+2315n m n m ④⎪⎩⎪⎨⎧=-=+11113s ts t 3、已知二元一次方程2=-y x ,如何用x 表示y ?如何用y 表示x ?(用x 表示y 即把含x 的项和常数项移到方程的右边,含y 的项移到方程的左边;再将y 的系数化为1)①用x 表示y :2=-y x ②用y 表示x :2=-y xx y -=-2 y x +=2! x y +-=2练习:课本93P 练习1把下列方程改写成用含x 的式子表示y 的形式:(1)32=-y x (2)013=-+y x(请同学板演,教师巡视并指导、讲评)(二)层层递进、探索新知探究:(回顾引例)—解法一:设这个队胜了x 场,负了y 场。

由题意得 ⎩⎨⎧=+=+16210y x y x 凑 ⎩⎨⎧==46y x 解法二:设这个队胜了x 场,则负了()x -10场。

由题意得 ()16102=-+x x 问:(1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?()16102=-+x x162=+y x(2)我们可以把方程②中的y 替换为x -10吗?怎么换?'10=+y x ①→x y -=10用x -10替换方程162=+y x 中的y ,即把x y -=10代入方程162=+y x .(3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?二元一次方程组转换为一元一次方程,可以求出x 的值,还需求y 的值。

人教版七年级数学8.2《代入消元法解二元一次方程组》教学设计

人教版七年级数学8.2《代入消元法解二元一次方程组》教学设计
1.强化代入消元法的概念,通过生动的实例让学生理解其原理。
2.加强对代入过程的指导,让学生熟练掌握代入消元法的步骤。
3.引导学生运用代入消元法解决实际问题,培养学生的实际应用能力。
4.针对特殊情况的二元一次方程组,教师应给予充分讲解和指导,帮助学生克服困难。
在此基础上,关注学生的心理特点,激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养他们主动探究、合作学习的良好习惯。通过以上措施,使学生在掌握代入消元法的基础上,提高解决实际问题的能力,为后续学习打下坚实基础。
2.家长监督并签字,确保学生按时完成作业。
3.教师将针对作业完成情况进行批改和反馈,帮助学生发现并改正错误。
3.教学策略:
(1)关注学生的个体差异,针对不同水平的学生设计不同难度的练习题,使每个学生都能得到提高。
(2)注重启发学生思维,鼓励学生提出问题,培养学生的问题意识。
(3)加强师生互动,营造轻松、和谐的学习氛围,激发学生的学习兴趣。
(4)运用多媒体辅助教学,通过直观的动画演示代入消元法的过程,帮助学生更好地理解。
3.应用题:结合生活实际,设计一道应用题,让学生将实际问题抽象成二元一次方程组,并运用代入消元法求解。例如:“小华和小明一起去书店购买图书,小华购买了3本科技书和2本故事书,小明购买了2本科技书和4本故事书。若科技书每本20元,故事书每本15元,小华和小明一共花费了190元。求小华和小明各购买了多少本科技书和故事书。”
人教版七年级数学8.2《代入消元法解二元一次方程组》教学设计
一、教学目标
(一)知识与技能
1.理解代入消元法的概念和原理,掌握代入消元法解二元一次方程组的步骤。
2.能够根据实际问题列出二元一次方程组,并运用代入消元法求解。

《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]

《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]

第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。

讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。

三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。

情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。

教学重点:用加减消元法解二元一次方程组。

教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。

教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。

如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。

分析:[1]2x+(22-x)=40。

观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。

这正是下面要讨论的内容。

(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。

解这个方程,得x=18。

把x=18代入y=22-x,得y=4。

从而得到这个方程组的解。

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。

人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计

人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(4)巩固练习:设计不同难度的练习题,让学生独立完成,巩固所学知识。
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。

代入法解二元一次方程组教案

代入法解二元一次方程组教案

8.2代入法解二元一次方程组(第一课时)教学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神. 教学重点:用代入消元法解二元一次方程组.教学难点:探索如何用代入法将“二元”转化为“一元”的消元过程. 教学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?2、什么是二元一次方程组及二元一次方程组的解?判断:(1)二元一次方程组中各个方程的解一定是方程组的解()(2)方程组的解一定是组成这个方程组的每一个方程的解()3、把下列方程写成用含x的式子表示y的形式:(1)2x-y=3(2)3x+y-1=0二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组.这个问题能用一元一次方程解决吗?三、师生互动,课堂探究解:设篮球队胜了x 场,负了y 场. 我们知道,对于方程组{,可以用代入消元法求解。

由①得y=10-x ③把③带入②,得2x+10-x=16,解得x=6 把x=6带入③,得y=4,∴x=6,y=41、从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。

主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。

这种解方程组的方法称为代入消元法,简称代入法。

2、例1 用代入法解方程组{x+y=10 ①2x+y=16 ②x-y=3 ①3x-8y=14 ②解:由①得x=y+3 ③把③带入②,得 3 (y+3)-8y =14,解得y=-1把y=-1带入③,得y=2,∴x=2,y=-14、课堂练习:(1)教科书P93 第2题(2)请抢答:①方程-x+4y=-15用含y的代数式表示x为()A.-x=4y-15 B.x=-15+4yC. x=4y+15 D.x=-4y+15②将y=-2x-4代入3x-y=5可得()A. 3x-(2x+4)=5B. 3x-(-2x-4)=5C. 3x+2x-4=5D. 3x-2x+4=5四、课堂小结问题1、解方程组的基本思路是什么?问题2、解方程组的方法是什么?五、作业布置:教科书P97第1、2题。

代入法解二元一次方程组教案

代入法解二元一次方程组教案

代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。

8.2用代入法解二元一次方程组教学设计新部编版

8.2用代入法解二元一次方程组教学设计新部编版

教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
六、教后 反思
本课时在进行“代入消元法”时,遵循了“由浅入深、循序渐进”的原则,引导并强调学生观察未知数的系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程.在这个教学过程中,学生的学习难点就是当未知数的系数不是1的情况,用含有一个字母的代数式表示另一个
字母,教师应该引导学生熟练进行等式变换,这个过程教师往往忽略训练的
深度和广度,要注意把握训练尺度.
当堂训练
班级 姓名
(要求同学们独立快速完成)
1.解方程组213211x y x y +=⎧⎨
-=⎩


课。

五、小结反思
1.本节课你有何收获?
2.你还有什么疑惑?
3.4辆小卡车和5辆大卡车一次可运货27吨;6辆小卡车和10辆大卡车一次共可运货51吨.问小卡车和大卡车每辆车每次各运货多少吨?
4.如果m 、n 满足|m+n+2|+(m-2n+8)2=0,则mn=_________.
5.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩,和3211233x y ax by +=⎧⎨+=⎩

的解相同,
求a ,b 的值.。

8.2用代入消元法解二元一次方程组教案

8.2用代入消元法解二元一次方程组教案
其次,学生在进行代入消元法运算时,对于代数运算的掌握程度不一,部分学生在这方面显得有些吃力。针对这个问题,我计划在接下来的课程中,加强学生对基本代数运算的训练,提高他们的运算速度和准确度。
此外,实践活动和小组讨论的环节,学生的参与度较高,课堂氛围较为活跃。但我也注意到,部分学生在讨论过程中过于依赖同伴,自己独立思考的能力有待提高。在后续的教学中,我将注重引导学生独立思考,鼓励他们提出自己的观点和解决问题。
3.重点难点解析:在讲授过程中,我会特别强调代入消元法的步骤和涉及到的代数运算这两个重点。对于难点部分,如选择合适的方程进行变形和代入,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与代入消元法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示代入消元法的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代入消元法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对代入消元法的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-教师需引导学生如何在小组内部分工合作,有效利用每个人的优势,共同完成方程组的求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“8.2用代入消元法解二元一次方程组”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(如购物时计算总价和数量)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代入消元法的奥秘。

七年级数学下册8.2代入消元法解二元一次方程组教案新版新人教版

七年级数学下册8.2代入消元法解二元一次方程组教案新版新人教版

8.2代入消元法解二元一次方程组一、教材分析本课内容是在学生掌握了二元一次方程组的有关概念之后讲授的,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。

学完之后可以帮我们解决一些实际问题,也是为了今后学习函数等知识奠定了基础二、教学目标1、知识与技能(1)会用代入消元法解二元一次方程组;(2)能初步体会解二元一次方程组的基本思想——“消元”2、过程和方法(1)培养学生基本的运算技巧和能力。

(2)培养学生的观察、比较、分析、综合等能力,会应用学过的知识去解决新问题。

3、情感态度与价值观鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生合作交流意识与探究精神。

三、教学重难点教学重点用代入法来解二元一次方程组。

教学难点代入消元法和化二元为一元的转化思想。

四、教学过程设计1、提出问题、引入新课引例:(问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?)教师提出问题,学生独立完成学生根据已有的经验可以通过列一元一次方程求解后,得出结论。

如此导入新课的意图是,通过提出问题,引发学生思考,体会方程在解决实际问题中作用与价值。

2、探究新知在上述问题中,我们也可以设出两个未知数,列出二元一次方程组,那么怎样求解二元一次方程组呢?教师提出问题后,将学生分成小组讨论。

教师深入学生的讨论中,引导学生观察所列二元一次方程组⎩⎨⎧=+=+40222y x y x 与2x+(22-x)=40的内在联系。

例如,从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上结合板书显示,暴露知识发生过程,(1) y=22-x(2)用22-X 替换方程2X+Y=40中的Y ,即把Y=22-X代入2X+Y=40引导学生回答以下问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

8_2_代入消元法解二元一次方程教案

8_2_代入消元法解二元一次方程教案

2x- 3y=1 ① x=y-1 ②x- y=3 ① 3x-8y=1 4②8.2消元——解二元一次方程组【教学目标】1.会用代入消元法解简单的二元一次方程组。

2.理解解二元一次方程组的思想是“消元”,由“二元”转化为“一元”。

3.培养学生自主学习,合作交流的意识与探究精神。

【重 点】会用代入法解二元一次方程组,体会消元思想。

【难 点】理解“二元”向“一元”转化的关键是将一个方程的变形。

【教学方法】探究、引导、练习【教学用具】电子白板设备【教学过程】:一、自主探究,挑战自我课件展示问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.七1班在8场比赛中得了14分。

设比赛胜了x 场,负了y 场,由此可列出二元一次方程组 。

二、合作探究,成就自我1.课前热身:(1)把方程2x -y=3写成用含x 的式子表示 y 的形式:y= (2)把方程3x +y - 1=0写成用含y 的式子表示x 的形式x=2.例题1讲解:解方程组:3.师生归纳:(1)上面解方程组的基本思路是“消元”,把“二元”变为“一元”。

(2)主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。

这种解方程组的方法称为代入消元法,简称代入法。

.4.学生尝试,教师引导,完成例题2:5.归纳用代入法解二元一次方程组的一般步骤:(1)将方程组里的一X+y=5 ① x-y=1 ② 2 x +3y=10 ① 3x-y=4 ②ax +by=5 ①bx-ay=5 ② x=2 y=-1 个方程变形,用含有一个未知数的一次式表示另一个未知数(变形);(2)用这个一次式代替另一个方程中的相对应未知数,得到一个一元一次方程,求得一个未知数的值(代入);(3)把这个未知数的值代入一次式,求得另一个未知数的值(再代);(4)写出方程组的解并检验(写解)。

6.学以致用:引导学生完成“引入”中篮球联赛问题。

人教版七年级下册8.2代入法解二元一次方程组(一)教案

人教版七年级下册8.2代入法解二元一次方程组(一)教案

代入法解二元一次方程组(一)教学目标:1知识与技能目标:掌握用代入法解二元一次方程组的步骤,熟练运用代入法解简单的二元一次方程组.2过程与方法目标:培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形。

3情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过建模解决实际问题,增强学生学数学、用数学的意识。

教学重、难点:重点:(1)会用代入消元法解简单的二元一次方程组;(2)理解解二元一次方程组的思路是“消元”,经历从未知向已知转化的过程,体会化归思想。

难点:(1)会用代入消元法解简单的二元一次方程组;(2)体会解二元一次方程组的思路是“消元”.教学过程:一、问题引入:篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分.某队10场比赛中得到16分,那么这个队胜负场数分别是多少?思考1:你能根据问题中的等量关系列出二元一次方程组吗?设胜x 场,负y 场,则思考2:你能列一元一次方程求解吗?设胜x 场,则负(10-x )场.2x +(10-x )=16.思考3:上面的二元一次方程组和一元一次方程有什么关系?把x+y=10写成y=10-x ,并把2x+y=16中的y 换为y=10-x ,这个方程即可转化为2x+(10-x )=16.把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.消元思想:将未知数的个数由多化少、逐一解决的思想.规范解答:解:由①,得 y=10-x ③把③代入②,得 解得 x=6把x=6代入③得 y=4所以这个方程组的解是⎩⎨⎧=+=+16210y x y x 64x y =⎧⎨=⎩,.⎩⎨⎧=+=+16210y x y x 21016x x +-=.二、 典例精讲用代入法解下列二元一次方程组(1) (2)三 、学生练习1、用代入法解下列方程组:⑴ ⑵ ⑶ 2、若2a y+5b 3x 与-4a x b 2-4y 是同类项,则x=______,y=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师通过复习二元一次方程的概念以及二元一次方程组的概念,引入问题,列出二元一次方程组。
春天来临,阳光明媚,小明和父母去动物园郊游,儿童票比成人票少20元,他们三个人门票共花费70元,每张儿童票、每张成人票各多少元?
为了达到本节课的目标,首先请大家按照老师的指导认真自学(课件展示)
学习目标:1、会用代入法解二元一次方程组.
例1讲解(学生展讲,教师点拨)
黑板展讲
练习讲解(学生展讲,教师点拨)
师生共同归纳解二元一次方程组的步骤
从复习旧知识二元一次方程组的概念引入生活中的实际问题,能给学生一种轻松的心理氛围,利于学生学习新知识.
通过自学课本91页的例题,完成自学检测,充分暴露学生自学中存在的问题,从而进行更有效的、有针对性的学习,采用“兵教兵”以及小组交流的学习方法解决自己在自学中存在的问题。
2、初步体会解二元一次方程组的基本思想——“消元
阅读课本91页的例1,完成课件二自学检测中的问题,时间5分钟。
(学生单个板演,教师巡视,了解学生自学情况,并个别指导)
思考1.什么叫消元思想?
2.什么叫代入消元法?
【归纳结论】1.解方程组时,将未知数的个数由多化少、逐一解决的思想,叫消元思想.
2.把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.
在巡查中了解学生自学时遇到的困难并帮助解决,把学生的暴露的问题基本解决
在学生自学和“兵教兵”学习后,教师有针对的叫学生展讲,发现问题,了解学生的学情,对课堂生成的问题教师点拨,只讲解学生不会的问题,进行二次备课。
五、小结反思
1.本节课你有何收获?
2.你还有什么疑惑?
六、教后
反思
本课时在进行“代入消元法”时,遵循了“由浅入深、循序渐进”的原则,引导并强调学生观察未知数的系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程.在这个教学过程中,学生的学习难点就是当未知数的系数不是1的情况,用含有一个字母的代数式表示另一个字母,教师应该引导学生熟练进行等式变换,这个过程教师往往忽略训练的深度和广度,要注意把握训练尺度.
当堂训练
班级姓名
(要求同学们独立快速完成小卡车和10辆大卡车一次共可运货51吨.问小卡车和大卡车每辆车每次各运货多少吨?
4.如果m、n满足|m+n+2|+(m-2n+8)2=0,则mn=_________.
5.已知关于x,y的方程组 和 的解相同,求a,b的值.
【情感态度价值观】
了解化未知为已知的科学方法,体验由易到难的学习技巧,介绍中国是最先使用二元一次方程组的国家,激发学生的民族自豪感.
教学重点
代入消元法
教学难点
用代入法解较难的二元一次方程组.
教学方法
先学后教、当堂训练
课时安排
1课时
教学过程
教学环节
师生活动
设计意图
一、导入明标
二、自学指导
三、小组交流
四、训练拓展
课题
8.2用代入法解二元一次方程组
----教者:静宁三中邵红强
教学目标
【知识与技能】
1.了解消元法的思想.
2.理解什么是代入消元法,能用代入消元法解二元一次方程组.
【过程与方法】
通过对简单的二元一次方程组化为已学过的一元一次方程的具体事例了解消元的思想,从而进一步学习代入消元法,并用代入消元法由易到难地解二元一次方程组.
相关文档
最新文档