八年级数学上册第1章勾股定理1.3勾股定理的应用作业课件新版北师大版

合集下载

北师大版八年级数学上册《1-3 勾股定理的应用》课堂教学课件PPT初中公开课

北师大版八年级数学上册《1-3 勾股定理的应用》课堂教学课件PPT初中公开课

NEPQR12北师大版 数学 八年级 上册在同一平面内,两点之间,线段最短从行政楼A 点走到教学楼B 点怎样走最近?教学楼行政楼BA你能说出这样走的理由吗?导入新知素养目标3.培养学生的空间想象力,并增强数学知识的应用意识.2. 运用勾股定理及其逆定理解决简单的实际问题.1. 灵活会用勾股定理求解立体图形上两点之间的最短距离问题.以小组为单位,研究蚂蚁在圆柱体的A 点沿侧面爬行到B 点的问题.讨论 1.蚂蚁怎样沿圆柱体侧面从A 点爬行到B 点?2.有最短路径吗?若有,哪条最短?你是怎样找到的?BA我要从A 点沿侧面爬行到B 点,怎么爬呢?大家快帮我想想呀!知识点 1BAdABA'ABBAO想一想蚂蚁走哪一条路线最近?A'蚂蚁A→B的路线若已知圆柱体高为12 cm ,底面周长为18 cm ,则:BArO12侧面展开图1218÷2AB小结:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.A'A'AB 2=122+(18÷2)2 所以AB =15.例1 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米?(已知油罐的底面半径是2m ,高AB 是5m ,π取3)ABABA'B'解:油罐的展开图如图,则AB '为梯子的最短距离. 因为AA '=2×3×2=12, A 'B '=5m ,所以AB '=13m . 即梯子最短需13米.素养考点 1利用勾股定理解决圆柱体的最短路线问题数学思想:立体图形平面图形转化展开如图所示,一个圆柱体高20cm ,底面半径为5cm ,在圆柱体下底面的A 点处有一只蜘蛛,它想吃到上底面与A 点相对的B 点处的一只已被粘住的苍蝇,这只蜘蛛从A 点出发,沿着圆柱体的侧面爬到B 点,最短路程是多少?(π取3)变式训练解:如图所示,将圆柱侧面沿AC 剪开并展平,连接AB ,则AB 的长即为蜘蛛爬行的最短路程.根据题意得AC =20 cm ,BC =12×2×π×5=15(cm ).在△ABC 中,∠ACB =90°,由勾股定理得AB 2=BC 2+AC 2=152+202=252,所以AB =25 cm ,最短路程是25cm .B牛奶盒A例2 学习了最短问题,小明灵机一动,拿出了牛奶盒,把小蚂蚁放在了点A 处,并在点B 处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程吗?6cm8cm 10cm素养考点 2利用勾股定理解决长方体的最短路线问题长方体爬行路径A BFEH GA BCDE FGH前(后)上(下)A BCDE FGHB CGFE H A BCDE FGH右(左)上(下)前(后)右(左)B CAE F G分析BB 18AB 2610B 3AB 12=102 +(6+8)2=296AB 22= 82 +(10+6)2=320AB 32= 62 +(10+8)2=360因为360>320>296所以AB 1 最短.A B点A和点B分别是棱长为10cm的正方体盒子上相对的两点,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程的平方是多少?前上A BAB左上AB前右变式训练ABC解:如图所示在Rt△ABC中,利用勾股定理可得,AB2=AC2+BC2=20 2+102=500101010所以AB2=500.李叔叔想要检测雕塑底座正面的AD 边和BC 边是否分别垂直于底边AB ,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?解:连接对角线AC ,只要分别量出AB 、BC 、AC 的长度即可.AB 2+BC 2=AC 2△ABC 为直角三角形知识点2(2)量得AD长是30cm,AB长是40 cm,BD长是50 cm. AD边垂直于AB边吗?解:AD2+AB2=302+402=502=BD2,得∠DAB=90°,AD边垂直于AB边.(3)若随身只有一个长度为20 cm的刻度尺,能有办法检验AD边是否垂直于AB边吗?解:在AD上取点M,使AM=9,在AB上取点N使AN=12,测量MN是否是15,是,就是垂直;不是,就是不垂直.例 如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格?解:因为AB =DC =8m ,AD =BC =6m , 所以AB 2+BC 2=82+62=64+36=100. 又因为AC 2=92=81,所以AB 2+BC 2≠AC 2,∠ABC ≠90°, 所以该农民挖的不合格.素养考点 1利用勾股定理的逆定理解答测量问题有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边壁的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒最长是多少米?解:图形可简化为左下图,设伸入油桶中的长度为 x 米,即AB =x 米,而AC =2米,BC =1.5米, 有x 2=1.52+22 ,x =2.5故,最长是2.5+0.5=3(米)答:这根铁棒的最长3米,最短2米.故,最短是1.5+0.5=2(米)当最短时:x =1.5ACB最短是多少米?变式训练巩固练习如图是一个滑梯示意图,若将滑道AC 水平放置,则刚好与AB 一样长.已知滑梯的高度CE=3m ,CD =1m ,试求滑道AC 的长.故滑道AC 的长度为5m .解:设滑道AC 的长度为x m ,则AB 的长也为x m ,AE 的长度为(x -1)m .在Rt △ACE 中,∠AEC =90°,由勾股定理得AE 2+CE 2=AC 2,即(x -1)2+32=x 2,解得x =5.例知识点 3探究新知甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6km/h 的速度向正东行走,1小时后乙出发,他以5km/h 的速度向正北行走.上午10:00,甲、乙两人相距多远?解:如图:已知A 是甲、乙的出发点,10:00甲到达B 点,乙到达C 点.则:AB =2×6=12(千米),AC =1×5=5(千米).在Rt △ABC 中,所以BC =13(千米)即甲乙两人相距13千米.BC 2=AC 2+AB 2 =52+122=169=132巩固练习解:连接BD .在Rt △ABD 中,由勾股定理得 BD 2=AB 2+AD 2,所以BD =5cm .又因为CD =12cm ,BC =13cm ,所以BC 2=CD 2+BD 2,所以△BDC 是直角三角形.所以S 四边形ABCD =S Rt △BCD -S Rt △ABD =12BD •CD -12AB •AD =12 ×(5×12-3×4)=24 (cm 2).CBA D 例 如图,四边形ABCD 中,AB ⊥AD ,已知AD =3cm ,AB =4cm ,CD =12cm ,BC =13cm ,求四边形ABCD 的面积.素养考点 1利用勾股定理的逆定理解答面积问题探究新知如图,在四边形ABCD 中,AC ⊥DC ,△ADC 的面积为30 cm 2,DC =12 cm ,AB =3cm ,BC =4cm ,求△ABC 的面积.解:因为S △ACD =30 cm 2,DC =12 cm. 所以AC =5 cm.又因为AB 2+BC 2=32+42=52=AC 2,所以△ABC 是直角三角形, ∠B 是直角. 所以D C BA 变式训练S △ACD =12CD •AC =12×12× AC =30( cm 2 )S △ABC =12AB •BC =12×3× 4=6( cm 2 )巩固练习如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为____cm(杯壁厚度不计).解析:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离, A′B=A′2+B2=162+122=故答案为20.2020(cm)连接中考基础巩固题1.五根小木棒,其长度分别为7,15,20,24,25,现将他D们摆成两个直角三角形,其中摆放方法正确的是( )A. B.C. D.2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300 m ,公园到医院的距离为400 m ,若公园到超市的距离为500 m ,则公园在医院的 ( )A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定B 基础巩固题3.如图,某探险队的A 组由驻地O 点出发,以12km/h 的速度前进,同时,B 组也由驻地O 出发,以9km/h 的速度向另一个方向前进,2h 后同时停下来,这时A ,B 两组相距30km .此时,A ,B 两组行进的方向成直角吗?请说明理由.解:因为出发2小时,A 组行了12×2=24(km ), B 组行了9×2=18(km ),又因为A ,B 两组相距30km ,且有242+182=302,所以A ,B 两组行进的方向成直角.基础巩固题AO B4.在城市街路上速度不得超过70千米/时,一辆小汽车某一时刻行驶在路边车速检测仪的北偏东30°距离30米处,过了2秒后行驶了50米,此时小汽车与车速检测仪间的距离为40米. 问:2秒后小汽车在车速检测仪的哪个方向?这辆小汽车超速了吗?车速检测仪小汽车30米30°北60°解:小汽车在车速检测仪的南偏东60°方向或北偏西60°方向.25米/秒=90千米/时>70千米/时所以小汽车超速了.2秒后50米40米基础巩固题如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.A DB C341312能力提升题解:连接AC .在Rt △ABC 中,AC =A 2+B 2=32+42=5,在△ACD 中,AC 2+CD 2=52+122=169=AD 2,所以△ACD 是直角三角形,且∠ACD =90°.所以S 四边形ABCD =S Rt △ABC +S Rt △ACD =6+30=36.能力提升题A DBC341312如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长.拓广探索题PC BAQ解:设AB 为3x cm ,BC 为4x cm ,AC 为5x cm ,因为周长为36cm ,即AB +BC +AC =36cm ,所以AB =9cm ,BC =12cm ,AC =15cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,过3秒时,BP =9-3×2=3(cm ),BQ =12-1×3=9(cm ),在Rt △PBQ 中,由勾股定理得PQ =32+92=310 (cm ).拓广探索题所以3x +4x +5x =36,解得x =3.PC BAQ勾股定理及逆定理的应用应用最短路径问题方法认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定理来解决问题解决不规则图形面积问题测量问题课堂小结作业内容教材作业从课后习题中选取自主安排配套练习册练习课后作业谢谢观看 Thank You。

第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)

第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)

13.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5 和11,则b的面积为( C)
A.4 B.6 C.16 D.55
14.如图,隔湖有两点A,B,从与BA方向成直角的BC方向 上的点C,测得CA=50米,CB=40米,求:
(1)A,B两点间的距离; (2)点B到直线AC的距离.
解:作BD⊥AC于点D.(1)由勾股定理得AB=30米 (2)由面积 法: 12 AB×BC= 12 AC×BD,得BD=24(米).答:A,B两点间的距离 是30米,B点到直线AC的距离是24米
A.0.7米 B.0.8米 C.0.9米 D.1.0米
9.如图所示是一段楼梯,高BC=3 cm,斜边AB是5 m,如果 在楼梯上铺地毯,那么至少需要地毯( C )
A.5米 B.6米 C.7米 D.8米
10.如图,一个透明的圆柱形状的玻璃杯,由内部测得其底面 半径为3 cm,高为8 cm,今有一支12 cm的吸管任意斜放于杯中, 若不考虑吸管的粗细,吸管露出杯口长度最少为____cm2.
17.为了丰富少年儿童的业余文化生活,某社区要在如图的 AB所在的直线上建一图书阅览室.该社区有两所学校,所在 的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B.已知AB =25 km,CA=15 km,DB=10 km.试问:阅览室E建在距点A 多少千米处,才能使它到C,D两所学校的距离相等.
11.如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请你帮他计算 阳光透过的最大面积.
解:在直角三角形中,由勾股定理可得,直角三角形的斜边长 为5 m,所以长方形塑料薄膜的面积是5×20=100(m2)即阳光 透过的最大面积是100 m2

北师大版数学八年级上册《勾股定理的验证及应用》课件

北师大版数学八年级上册《勾股定理的验证及应用》课件









+ ,

四边形 = △ + △ = + ( − ) ,



所以 + =



所以 + = .

+ (

− ) .
例2 如图,在铁路 附近有两个村庄 , ,它们到铁路的距离分
所以 ∠ + ∠ = ∘ .所以 ∠ = ∘ .
因为 梯形 = △ + △ + △ ,

所以 (

+ )( + ) =
整理得 + = .



+ + .



变式 勾股定理神秘而美妙,它的证法多样,“面积法”是常用的方
该树 的一棵大树上,大树高 ,且巢离树顶部 .
当它听到巢中幼鸟的叫声时,立即赶过去.如果它飞行的速度
为 / ,那么它至少需要多少时间才能赶回巢中?
解:如图,
由题意知 = , = − = , = .
过点 作 ⊥ 于点 ,则 = − = , = .
在 △ 中,
= + = + = () .
5. 如图,数学活动课上,老师组织学生测量学校旗杆的高度.
同学们发现系在旗杆顶端的绳子拉直垂到了地面且还多 .
同学们把绳子的末端拉开 后,发现绳子末端刚好接触地
别是 和 ,作 ⊥ , ⊥ ,垂足分别为 , ,
且 = .现要在铁路旁建一个农副产品收购站 ,使 站到 ,

北师大版八年级数学上册《勾股定理》课件(共18张PPT)

北师大版八年级数学上册《勾股定理》课件(共18张PPT)

知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 勾股定理的应用

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 勾股定理的应用

8.(2020·锦州期末)如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车 尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问: 发生火灾的住户窗口距离地面多高?
解:∵AC⊥BC,∴∠ACB=90°.在Rt△ABC中,根据勾股定理,得BC2=AB2 -AC2=152-92=144,∴BC=12米,∴BD=12+2=14(米).答:发生火灾的住户窗 口距离地面14米
A.5≤a≤2 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
11.(2020·迎泽月考)一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形 DEFH的边长为2米,∠B=90°,AB=8米,BC=6米.当正方形DEFH运动到什么 位置,即当AE=( C )米时,有DC2=AE2+BC2.
数学 八年级上册 北师版
第一章 勾股定理
1.3 勾股定理的应用
1.如图,正方体的边长为1,一只蚂蚁从正方体的一个顶点A爬行到另一个顶点B, 则蚂蚁爬行的最短距离的平方是( ) D
A.2 B.3 C.4 D.5
2.(2020·沈河期中)如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿 着圆柱的侧面移动到BC的中点S,则移动的最短距离为( A )
17.为筹备元旦晚会,同学们设计了一个圆筒形灯罩,底色涂成白色,然后缠绕 彩纸(彩纸宽度忽略不计).如图,已知圆筒高108 cm,其截面周长为36 cm,如果在 表面上缠绕彩纸4圈,应剪多长的彩纸?
解:将圆筒展开,可得长方形,整个彩纸也随之分成相等的4段,如图,只需求出 每一段所需的彩纸的长度AC即可,在Rt△ABC中,AB=36 cm,BC=108÷4= 27(cm),由勾股定理,得AC2=AB2+BC2=362+272=2 025,所以AC=45 cm,故 整个彩纸的长为45×4=180(cm)

北师大版八年级数学上册第一章全部课件

北师大版八年级数学上册第一章全部课件
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

B
① A′

B′
A
B A′
③Aຫໍສະໝຸດ (2)路线①,②,③中最短路线是哪条?

3
B
① A′
B
A′
12

B′ ②
AA
(3)若圆柱的高为12,底面半径为3时,3条路线分别多 长?(π取3)
做一做
Br
① A′
B
A′
h

B′②
h=12,r=3 h=3.75,r=3 h=2.625,r=3
A A
路线① 路线② 路线③ 最短
最短时: x 1.5,
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
3.如图,在棱长为10 cm的正方体的一个顶点A处有一 只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是 1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬 到B?
B
A
B B
A
【解析】因为从A到B最短路径AB满足 AB2=202+102=500>400,所以不能在20 s内从A爬 到B.
【规律方法】将立体图形展开成平面图形,找出两点间的最 短路径,构造直角三角形,利用勾股定理求解.
运用勾股定理解决实际问题时,应注意: 1.没有图的要按题意画好图并标上字母. 2.有时需要设未知数,并根据勾股定理列出相应的方程 来解.
数学是无穷的科学.
——赫尔曼外尔
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022

八年级数学上册1《勾股定理的应用》课件 2022年北师大版八上数学PPT+

八年级数学上册1《勾股定理的应用》课件 2022年北师大版八上数学PPT+

9.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,
但他把这三个数据与其他的数据弄混了,请你帮助他找出来为( C )
A.13,12,12
B.12,12,8
C.13,10,12
D.5,8,4
10.如图,王大伯家屋后有一块长12 m,宽8 m的矩形空地,他在以
长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,
思路探究:除了截短法和延长法外,在等腰三角形中,我们通常作底边的中线或高或顶角平分 线,以便使用等腰三角形的性质(三线合一).
第一章 三角形的证明 复习
回顾 思考1
“原名〞 知多少
公理:公认的真命题称为公理(axiom). 证明:除了公理外,其它真命题的正确性都通过推理的方法证实.
推理的过程称为证明. 定理:经过证明的真命题称为定理(theorem). 推论:由一个公理或定理直接推出的定理,叫做这个公理或定理的推论(corollary).推 论可以当作定理使用.
第8题图
第9题图
15.(8分)在一棵树的10 m高处有两只猴子,其中一只爬下树走向离树 20 m的池塘,而另一只爬向树顶后直扑池塘,如果两只猴子经过的距 离相等,问这棵树有多高? 解:如图,点B为树顶,D处有两只猴子,那么AD=10 m,C为池塘, 那么AC=20 m.设BD的长为x m,那么树的高度为(10+x) m.因为 AC+AD=BD+BC,所以BC=20+10-x=(30-x)m.在△ACB中, ∠A=90°,所以AC2+AB2=BC2.即202+(10+x)2=(30-x)2,解得 x=5,所以x+10=5+10=15,即这棵树高为15 m
结论4: 等腰三角形腰上的高线与底边的夹角等于顶 角的一半.
结论5:等腰三角形底边上的任意一点到两腰的距离 之和等于一腰上的高.

北师大版八年级上册1.3勾股定理的应用 课件(共15张ppt)

北师大版八年级上册1.3勾股定理的应用 课件(共15张ppt)
勾股定理的逆定理应用于根据三边的长度判断 三角形的形状。
试一试
中国人民的聪明智 慧真的让人叹服!
例3 在我国古代数学著作《九章算术》中记载 了一道有趣的问题,“今有池方一丈,葭生其中央, 出水一尺。引葭赴岸,适与岸齐。问水深、葭长各 几何?”这个问题的意思是:有一个水池,水面是 一个边长为10尺的正方形.在水池正中央有一根新生 的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向 岸边,它的顶端恰好到达岸边的水面.请问这个水池 的深度和这根芦苇的长度各为多少?
解:设水池的深度为x尺,则芦苇的长度为
x+1尺。由勾股定理得
5
x2 +52=(x+1)2 x2 +25= x2+2x+1
x x+1
24= 2x
x=12
x+1=13(尺)
答:水池的深度为12尺,芦苇的长度为13尺
小试牛刀
练习2
如图是一个滑梯示意图,若将滑道AC水 平放置,则刚好与AB一样长。已知滑梯 的高度CE=3m,CD=1m,试求滑 道AC的长
(2)量得AD长是30厘米,AB 长是40厘米,BD长是50厘米。 AD边垂直于AB边吗?
(3)如果李叔叔随身只有一个长 度为20厘米的刻度尺,能有办法 检验AD边是否垂直于AB边吗? 边BC与边AB呢?
议一议
勾股定理与它的逆定理在应用上有什么区别?
勾股定理主要应用于在直角三角形中求线段 的长度,甚至周长或面积。
如果将圆柱侧面剪开展开成 一个长方形,从A点到B 点的最短路 线是什么?你画对了吗?
例题解析
h 12
C
B
A
解:由题意得展开图,知AB即为最短路径,其中 AC 12, BC 1 18 9 2 在RtABC 中,有 AC2+BC2=122+92=225=AB2 AB=15 故最短路径是15cm。

2024-2025学年北师版中学数学八年级上册1.1探索勾股定理(第2课时)教学课件

2024-2025学年北师版中学数学八年级上册1.1探索勾股定理(第2课时)教学课件

400 m
500 m
解:由勾股定理,
得BC 2 =AB2 - AC 2 =5002 - 4002 =90 000,
即BC=300 m.汽车10 s行驶300 m,那么它1 h行驶的距离为:
300 × 3 600=10 80(0 m)=10(8 km /h). 10 答:敌方汽车速度为108 km /h.
15
10
152 x2 102 (25 x)2
C
解得:x 10
D
答:E站应建在距A站10千米处.
你是如何做的? 与同伴交流.
活动1:小明的证明思路如下图,想一想:小明是怎样对 大正方形进行割补的?
D
A C
B

你能将所有三角形和正方形的面积用含a,b,c的关系式表 示出来吗?
毕达哥拉斯证法
a+b
大正方形ABCD的面积可以表示为:
____4_×__12_a_b_+_c2__或者__(_a__+__b_)2__
可得等式_4_×__12_a_b_+_c2_=_(_a+_b_)_2 ____
你能用右图验证勾股定理吗?
证明:∵S正方形ABCD =4
1 ×
2
ab+c 2,
又∵S正方形ABCD =(a+b)2,
∴4 × 1 ab+c2 =(a+b)2. 2
∴2ab+c2 =a2 +2ab+b2.
∴a2 +b2 =c2.
当堂检测
1.如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线 MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、 B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最 短距离和.

第一章 勾股定理 思维图解+综合实践(课件)北师大版数学八年级上册

第一章 勾股定理 思维图解+综合实践(课件)北师大版数学八年级上册
第一章 勾股定理
课标领航·核心素养学段目标
探索勾股定理及其逆定理,并能运用它们解决一些简单
的实际问题.
第一章 勾股定理
本章内容要点
1 个关键概念:勾股数
2 个重要定理:勾股定理,勾股定理的逆定理
1 个重要证明:勾股定理的证明
2 种重要应用:求几何体表面上的最短路线长,判定直
角三角形
4 个核心素养:抽象能力,运算能力,推理能力,模型
观念
第一章 勾股定理






直角三角形两直角边的平方和
等于斜边的平方.如果用 a,b
和c 分别表示直角三角形的两
直角边和斜边,那么 a2+b2=c2








已知两边求第三边
基本
应用 已知一边和另两边的关系,求第三边
已知一边和一特殊角,求第三边
第一章 勾股定理






方位角问题








最短路线问题
折叠问题
其他问题
第一章 勾股定理


















a,b,c满足
内容 如果三角形的三边长
a2+b2=c2,那么这个三角形是直角三角形
实质
勾股数
应用
由“数”到“形”
满足 a2+b2=c2 的三个正整数称为
勾股数,每组勾股数的正整数倍

北师大版数学八年级上册勾股定理的应用课件

北师大版数学八年级上册勾股定理的应用课件

思路点拨:解题的关键是根据题设信息构造直角三角形并求出边 上进行判断.
举一反三
4. “中华人民共和国道路交通管理条例”规定:小汽车在城 街路上行驶速度不得超过70 km/h.如图1-3-7,一辆小汽车在一 条城市街道上直道行驶,某一时刻刚好行驶到路对面车速检测仪 A的正前方60 m处的C点,过了5 s后,测得小汽车所在的B点与车 速检测仪A之间的距离为100 m. (1)求B,C间的距离; (2)这辆小汽车超速了吗?请 说明理由.
谢谢
解:将曲面沿AB展开,如答图1-3-3,过点C作CE⊥AB于点E,连接 CF. 在Rt△CEF中,∠CEF=90°,EF=18-1-1=16(cm), CE= ×60=30(cm), 由勾股定理,得CF2= CE2+EF2=302+162=342. 所以CF=34(cm). 答:蜘蛛所走的最短路线的长度是34 cm.
典例精析 【例3】如图1-3-4所示是一个三级台阶,它的每一级的长、宽和 高分别为5 dm,3 dm和1 dm,A和B是这个台阶两个相对的端点, 点A处有一只蚂蚁,想到点B处吃可口的食物.请你想一想,这只 蚂蚁从点A出发,沿着台阶面爬到点B的最短路程是多少?
解:如答图1-3-1,将台阶展开成平面图形后,可知AC=5 dm,BC =3×(3+1)=12(dm),∠C=90°,AB即为最短路程. 在Rt△ABC中,因为AB2=AC2+BC2, 所以AB2=52+122=132. 所以AB=13(dm). 答:这只蚂蚁从点A出发,沿着台阶面 爬到点B的最短路程是13 dm.
第一章 勾股定理
3 勾股定理的应用
目录
01 本课目标 02 课堂演练
本课目标
1. 能够运用勾股定理解决实际问题,体会把立体图形转化为平面 图形,解决“最短路径”的问题,树立转化思想. 2. 会运用勾股定理的逆定理解决实际问题. 3. 利用数学中的“建模思想”构造直角三角形,利用勾股定理及 其逆定理解决实际问题.

北师大版数学八年级上册1.3《勾股定理的应用》课件 (共19张PPT)

北师大版数学八年级上册1.3《勾股定理的应用》课件 (共19张PPT)
一、情景导入
从行政 楼A点走 到教学 楼B点怎 样走最 近? 你能说出 这样走的 理由吗?
行政楼 A 教 学 楼
B
在同一平面内,两点之间,线段最短 在同一平面内,
在一个圆柱石凳上,若小明在
吃东西时留下了一点食物在B处,
恰好一只在A处的蚂蚁捕捉到这一 信息,于是它想从A 处爬向B处, 你们想一想,蚂蚁怎么走最近?
A
解:设水池的水深AC为x,则这根芦苇长AD=AB=(x+1),
在直角三角形ABC中,BC=5 由勾股定理得,BC2+AC2=AB2

52+ x2= (x+1)2 25+ x2= x2+2x+1, 2 x=24,
∴ x=12, x+1=13 答:水池的水深12尺,这根芦苇长13尺.
小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他们把绳 子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮 他们把旗杆的高度和绳子的长度计算出来吗?请你与同伴交流并回 答用的是什么方法.
AB 12 (3 3) AB 15
2 2 2
A

3
O
B
侧面展开图
A’
12

B
12
A
A
你学会了吗?
例1 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好A 点的正上方B点,问梯子最短需多少米?(已知:油罐的底面半 径是2 m,高AB是5 m,π 取3) B B B'
A
A
A'
解:圆柱形油罐的展开图如图,则AB'为梯子的 最短距离.AA'=12, A'B'=5,所以AB '=13.
B
A
B

北师大版八年级数学上册课件 第1章 第3节 勾股定理的应用(共15张PPT)

北师大版八年级数学上册课件 第1章 第3节 勾股定理的应用(共15张PPT)
1.3 勾股定理的应用
复习回顾
1、勾股定理的内容是什么? 2、如何判断一个三角形是直角三角形? 到目前学习了几种方法?
有一个圆柱,它的高等于
B
12厘米,底面半径等于3
厘米,在圆柱下底面上的 A点有一只蚂蚁,它想从 点A爬到点B , 蚂蚁沿着
我怎么走 会最近呢?
圆柱侧面爬行的最短路 A
程是多少? (π的值取3)
A 2 D A 2 B 3 2 0 4 2 0 2500
BD2 2500 A2 D A2B B2 D
∴AD和AB垂直
李叔叔想要检测雕塑底座正 面的AD边和BC边是否分别垂直于 底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务 吗? (2)李叔叔量得AD长是30厘米, AB长是40厘米,BD长是50厘米, AD边垂直于AB边吗?为什么?
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

李叔叔想要检测雕塑底座正 面的AD边和BC边是否分别垂直于 底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务 吗? (2)李叔叔量得AD长是30厘米, AB长是40厘米,BD长是50厘米, AD边垂直于AB边吗?为什么?
A2B 122 (3 3 )214 84 1 22
AB15
A 3O
B

A’ 3π
B
12
12 侧面展开图
A
A
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 12:41:26 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021

北师大版八上数学第1章勾股定理:全章热门考点整合应用课件

北师大版八上数学第1章勾股定理:全章热门考点整合应用课件

13.求下列图形中阴影部分的面积. (1)如图①,BA⊥CA,AB=8,AC=6;
解:因为AB=8,AC=6,BA⊥AC, 所以BC2=AB2+AC2=100.所以BC=10.所以BO=5. 因为 S△ABC=12AB×AC=12×8×6=24,S 半圆=12π×52=252π, 所以 S 阴影=252π-24.
n2
3
4
5…
a 22-1 32-1 42-1 52-1 …
b4
6
8
10 …
c 22+1 32+1 42+1 52+1 …
(2)猜想以a,b,c为边长的三角形是否为直角三角形,并说
明你的理由.
解:是直角三角形.理由如下:因为a2+b2=(n2-1)2+(2n)2
=n4+2n2+1,c2=(n2+1)2=n4+2n2+1,所以a2+b2=c2.
解:如图,△PQC是直角三角形.理由如下: 由PA∶PB∶PC=3∶4∶5, 可设PA=3a,PB=4a,PC=5a, 因为△PBQ为等边三角形,所以PQ=PB=4a. 在△PQC中,因为CQ=AP=3a, 所以PQ2+CQ2=16a2+9a2=25a2=PC2,所以△PQC是直角 三角形.
8.如图,在△ABC中,AB=13,BC=10,BC边上的中线 AD=12.求:
7.如图,P是等边三角形ABC内的一点,连接PA,PB,PC, 以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(2)若PA∶PB∶PC=3∶4∶5,连接PQ,且△PBQ是等边三 角形,试判断△PQC的形状,并说明理由.
【点拨】说明一个三角形是直角三角形的方法较 多,但在已知三角形各边长度或各边长度之间的关 系时,利用直角三角形的判定方法判断这个三角形 是否为直角三角形,是比较常用且比较方便的方 法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档