中考复习第20讲 多边形与平行四边形(含答案)
2021年全国中考数学真题分类汇编--四边形:多边形与平行四边形(答案版 )
2021全国中考真题分类汇编(四边形)----多边形与平行四边形一、选择题1. (2021•湖南省常德市)一个多边形的内角和是1800°,则这个多边形是( )边形.A. 9B. 10C. 11D. 12 【答案】D【解析】【分析】根据n 边形的内角和是(n ﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n 的方程,从而求出边数.【详解】根据题意得:(n ﹣2)×180=1800,解得:n =12.故选:D .2. (2021•株洲市)如图所示,在正六边形内,以为边作正五边形,则( )A.B. C. D.【答案】B 3. (2021•江苏省连云港)正五边形的内角和是( )A.B. C. D.【答案】D【解析】【分析】n 边形的内角和是 ,把多边形的边数代入公式,就得到多边形的内角︒︒︒︒ABCDEF AB ABGHI FAI ∠=10︒12︒14︒15︒360︒540︒720︒900︒()2180n -⋅︒和.详解】(7﹣2)×180°=900°.故选D .4. (2021•江苏省南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2 【答案】D【解析】【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误; B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误; C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误; D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .5. (2021•江苏省扬州) 如图,点A 、B 、C 、D 、E 在同一平面内,连接、、、、,若,则( )A.B. C. D.【答案】D【解析】 【分析】连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,【AB BC CD DE EA 100BCD ∠=︒A B D E ∠+∠+∠+∠=220︒240︒260︒280︒故选D .6. (2021•四川省眉山市)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:1【分析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【解答】解:这个八边形的内角和为:(8﹣2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D .7. (2021•四川省自贡市) 如图,AC 是正五边形ABCDE 的对角线,的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】 【分析】根据正五边形的性质可得,,根据等腰三角形的性质可得,利用角的和差即可求解.ACD∠108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒【详解】解:∵ABCDE 是正五边形,∴,,∴,∴,故选:A .8. (2021•北京市)下列多边形中,内角和最大的是( )DA.B .C .D . 9. (2021•福建省)如图,点F 在正ABCDE 五边形的内部,△ABF 为等边三角形,则∠AFC 等于( )CA .108°B .120°C .126°D .132° 10. (2021•云南省)一个10边形的内角和等于( )CA .1800°B .1660°C .1440°D .1200° 11. (2021•山东省济宁市)如图,正五边形ABCDE 中,∠CAD 的度数为( )A .72°B .45°C .36°D .35°【分析】首先可根据五边形内角和公式求出每个内角的度数,然后求出∠CAB 和∠DAE ,108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒1083672ACD ∠=︒-︒=︒即可求出∠CAD.【解答】解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°,故选:C.12.(2021•贵州省铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A. 等边三角形B. 正方形C. 正五边形D. 正六边形【答案】C13.(2021•襄阳市)正多边形的一个外角等于60°,这个多边形的边数是()A. 3B. 6C. 9D. 12【答案】B14.(2021•绥化市)已知一个多边形内角和是外角和的4倍,则这个多边形是()A. 八边形B. 九边形C. 十边形D. 十二边形【答案】C【解析】【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.15. (2021•河北省)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO =2,则S正六边边ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化【分析】正六边形ABCDEF的面积=S矩形AFDC+S△EFD+S△ABC,由正六边形每个边相等,每个角相等可得FD=AF,过E作FD垂线,垂足为M,利用解直角三角形可得△FED 的高,即可求出正六边形的面积.【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO +OD )×AF=FD ×AF=10,∴FD ×AF =20,DM =cos30°DE =x ,DF =2DM =x , EM =sin30°DE =,∴S 正六边形ABCDEF =S 矩形AFDC +S △EFD +S △ABC=AF ×FD +2S △EFD=x •x +2×x •x=x 2+x 2 =20+10=30,故选:B .16.(2021•株洲市) 如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )A. B. C. D.ABCD E BC 132DCE ∠=︒A ∠=38︒48︒58︒66︒【答案】B17.(2021•山东省泰安市)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:①AM=CN;②若MD=AM,∠A=90°,则BM=CM;③若MD=2AM,则S△MNC=S△BNE;④若AB=MN,则△MFN与△DFC全等.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,证明△MDB≌△NBD,从而判断①正确;若MD=AM,∠A=90°,则平行四边形ABCD为矩形,通过证明△BAM≌△CDM可以判断②;过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,通过三角形面积公式可以判断③;若AB=MN则四边形MNCD是等腰梯形,通过证明△MNC≌△DCN和△MFN≌△DFC即可判断④.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵E是BD的中点,∴BE=DE,在△MDB和△NBD中,,∴△MDB≌△NBD(ASA),∴DM=BN,∴AM=CN,故①正确;②若MD=AM,∠A=90°,则平行四边形ABCD为矩形,∴∠D=∠A=90°,在△BAM和△CDM中,,∴△BAM≌△CDM(SAS),∴BM=CM,故②正确;③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,由①可知四边形MBCD是平行四边形,E为BD中点,∴MG=2EH,又∵MD=2AM,BN=MD,AM=NC,∴S△ANC=NC•MG=•BN•2EH=BN•EH=S△BNE,故③正确;④∵AB=MN,AB=DC,∴MN=DC,∴四边形MNCD是等腰梯形,∴∠MNC=∠DCN,在△MNC和△DCN中,,∴△MNC≌△DCN(SAS),∴∠NMC=∠CDN,在△MFN和△DFC中,,∴△MFN≌△DFC(AAS),故④正确.∴正确的个数是4个,故选:D.18.(2021•陕西省)在菱形ABCD中,∠ABC=60°,连接AC、BD,则( )A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,∠ABD=,∵tan∠ABD=,∴,故选:D.19.(2021•河北省)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【分析】方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN⊥B,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.20.(2021•泸州市)如图,在平行四边形ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是()A. 61°B. 109°C. 119°D. 122°【答案】C【解析】 【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出,根据角平分线的性质得:AE 平分∠BAD 求,再根据平行线的性质得,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形∴,∴∵AE 平分∠BAD∴ ∵∴故选C .21. (2021•四川省南充市)如图,点O 是▱ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是( )A .OE =OFB .AE =BFC .∠DOC =∠OCD D .∠CFE =∠DEF【分析】证△AOE ≌△COF (ASA ),得OE =OF ,AE =CF ,∠CFE =∠AEF ,进而得出结论.【解答】解:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,180122BAD D ∠=︒-∠=︒DAE ∠AEC ∠//AB CD //AD BC 180********BAD D ∠=︒-∠=︒-︒=︒111226122DAE BAD ∠=∠=⨯︒=︒//AD BC 180********AEC DAE ∠=︒-∠=︒-︒=︒∴∠EAO =∠FCO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确,故选:A .22. (2021•天津市)如图,的顶点A ,B ,C 的坐标分别是,则顶点D 的坐标是( )A.B. C. D.【答案】C【解析】 【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .23. (2021•湖北省恩施州)如图,在▱ABCD 中,AB =13,AD =5,AC ⊥BC ,则▱ABCD ABCD Y ()()()2,0,1,2,2,2---()4,1-()4,2-()4,1()2,1是的面积为( )A.30B.60C.65D.【分析】根据平行四边形的性质以及勾股定理求出四边形ABCD的底边BC和其对角线AC的值,然后根据平行四边形的面积计算公式求解.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD=5.∵AC⊥BC,∴△ACB是直角三角形.∴AC===12.∴S▱ABCD=BC•AC=5×12=60.故选:B.24.(2021•湖北省荆门市)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.65°C.75°D.85°【分析】根据等腰直角三角形的性质求出∠FHE=45°,求出∠NHB=∠FHE=45°,根据三角形内角和定理求出∠HNB=105°,根据平行四边形的性质得出CD∥AB,根据平行线的性质得出∠2+∠HNB=180°,带哦求出答案即可.【解答】解:延长EH交AB于N,∵△EFH 是等腰直角三角形,∴∠FHE =45°,∴∠NHB =∠FHE =45°,∵∠1=30°,∴∠HNB =180°﹣∠1﹣∠NHB =105°,∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠2+∠HNB =180°,∴∠2=75°,故选:C .25.(2021•山东省威海市) 如图,在平行四边形ABCD 中,AD-3,CD=2.连接AC ,过点B 作BE ∥AC ,交DC 的延长线于点E ,连接AE ,交BC 于点F .若∠AFC=2∠D ,则四边形ABEC 的面积为( )B.C. 6D.【答案】B【解析】 【分析】先证明四边形ABEC 为矩形,再求出AC ,即可求出四边形ABEC 的面积.【详解】解:∵四边形ABCD 平行四边形,∴AB ∥CD ,AB =CD =2,BC =AD =3,∠D =∠ABC ,∵,是//BE AC∴四边形ABEC 为平行四边形,∵,∴,∵∠AFC =∠ABF +∠BAF ,∴∠ABF =∠BAF ,∴AF =BF ,∴2AF =2BF ,即BC =AE ,∴平行四边形ABEC 是矩形,∴∠BAC =90°,∴,∴矩形ABEC 的面积为故选:B26.(2021•浙江省衢州卷)如图,在中,,,,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A. 6B. 9C. 12D. 15【答案】B27.(2021•贵州省贵阳市)如图,在▱ABCD 中,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,若AB =3,AD =4,则EF 的长是( )2AFC D ∠=∠2AFC ABC ∠=∠AC ===AB AC =g ABC V 4AB =5AC =6BC =A .1B .2C .2.5D .3【分析】根据平行四边形的性质证明DF =CD ,AE =AB ,进而可得AF 和ED 的长,然后可得答案.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB =CD =3,AD =BC =5,∴∠DFC =∠FCB ,又∵CF 平分∠BCD ,∴∠DCF =∠FCB ,∴∠DFC =∠DCF ,∴DF =DC =3,同理可证:AE =AB =3,∵AD =4,∴AF =5﹣4=1,DE =4﹣3=1,∴EF =4﹣1﹣1=2.故选:B .28.(2021•湖南省娄底市)如图,点在矩形的对角线所在的直线上,,则四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形 【答案】A【解析】【分析】利用三角形全等的性质得,对应边相等及对应角相等,得出一组对边平行且相等,即可判断出形状. ,E F ABCD BD BE DFAECF【详解】解:由题意:,,又,,,,四边形为平行四边形,故选:A .二.填空题1. (2021•湖北省黄冈市)正五边形的一个内角是 108 度.【分析】因为n 边形的内角和是(n ﹣2)•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.【解答】解:(5﹣2)•180=540°,540÷4=108°.2. (2021•陕西省)正九边形一个内角的度数为 140° .【分析】先根据多边形内角和定理:180°•(n ﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.3. (2021•上海市)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.//,AD BC ADB CBD ∴∠=∠ FDA EBC ∴∠=∠,AD BC BE DF == ()ADF CBE SAS ∴V V ≌AF EC ∴=,//AFD CEB AF EC ∴∠=∠∴∴AECF 30°【解析】【分析】由六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF 中,∵直角三角板的最短边为1,∴正六边形ABCDEF 为1,∴△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形, ∵∠ABC =∠CDE =∠EFA =120︒,AB =BC = CD =DE = EF =FA =1,∴∠BAG =∠BCG =∠DCE =∠DEC =∠FAE =∠FEA =30︒,∴BG =DI = FH =, ∴由勾股定理得:AG =CG = CI = EI = EH = AH ∴AC =AE =,∴由勾股定理得:AI=, ∴S = 30°1232111332222⨯+=4. (2021•新疆) 四边形的外角和等于_______.【答案】360°.5. (2021•浙江省湖州市)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A ,B ,C,D ,E 是正五边形的五个顶点),则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式,求出每个内角的度数为108°,即∠ABC =∠BAE =108°,那么等腰△ABC 的底角∠BAC =36°,同理可求得∠DAE =36°,故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°,可以作为一个常识直接记住.6. (2021•江苏省盐城市)若一个多边形的每个外角均为40°,则这个多边形的边数为 9 .【分析】一个多边形的外角和为360°,而每个外角为40°,进而求出外角的个数,即为多边形的边数.【解答】解:360°÷40°=9,故答案为:9.7. (2021•广西玉林市)如图、在正六边形中,连接线,,,,,与交于点,与交于点为,与交于点,分别延长,于点,设.有以下结论:①;②;③重心、内心及外心均是点;④四边形绕点逆时针旋转与四边形重合.则所有正确结论的序号是______.ABCDEF AD AE AC DF DB AC BD M AE DF N MN AD O AB DC G 3AB =MN AD ⊥MN =DAG △的M FACD O 30°ABDE【答案】①②③8. (2021•浙江省衢州卷)如图,在正五边形ABCDE 中,连结AC ,BD 交于点F ,则的度数为________.【答案】9. (2021•江苏省扬州)如图,在中,点E 在上,且平分,若,,则的面积为________.【答案】50【解析】【分析】过点E 作EF ⊥BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∠BCE =∠BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ⊥BC ,垂足为F ,∵∠EBC =30°,BE =10,AFB∠72︒ABCD Y AD EC BED ∠30EBC ∠=︒10BE =ABCDY∴EF =BE =5, ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DEC =∠BCE ,又EC 平分∠BED ,即∠BEC =∠DEC ,∴∠BCE =∠BEC ,∴BE =BC =10,∴四边形ABCD 的面积===50,故答案为:50.10.(2021•山东省临沂市)在平面直角坐标系中,平行四边形ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是 (4,﹣1) .【分析】由题意A ,C 关于原点对称,求出点C 的坐标,再利用平移的性质求出点C 1的坐标可得结论.【解答】解:∵平行四边形ABCD 的对称中心是坐标原点,∴点A ,点C 关于原点对称,∵A (﹣1,1),∴C (1,﹣1),∴将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是(4,﹣1),故答案为:(4,﹣1).11.(2021•山东省菏泽市)如图,在Rt △ABC 中,∠C =30°,D 、E 分别为AC 、BC 的中点,DE =2,过点B 作BF ∥AC ,交DE 的延长线于点F ,则四边形ABFD 的面积为 8 .12BC EF ⨯105⨯【分析】由三角形的中位线定理证得DE∥AB,AB=2DE=4,进而证得四边形ABFD是平行四边形,在Rt△ABC中,根据勾股定理求出BC=4,得到BE=2,根据平行四边形的面积公式即可求出四边形ABFD的面积.【解答】解:∵D、E分别为AC、BC的中点,∵DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.12. 6.(2021•浙江省丽水市)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是__________.【答案】6或7【解析】【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.13.(2021•青海省)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AD与BC之间的距离为 6cm .【分析】设AB与CD之间的距离为h,由条件可知▱ABCD的面积是△ABD的面积的2倍,可求得▱ABCD的面积,再S四边形ABCD=BC•h,可求得h的长.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,在△ABD和△BCD中∴△ABD≌△BCD(SSS),∵AE⊥BD,AE=3cm,BD=8cm,∴S△ABD=BD•AE=×8×3=12(cm2),∴S四边形ABCD=2S△ABD=24cm2,设AD与BC之间的距离为h,∵BC=4cm,∴S四边形ABCD=AD•h=4h,∴4h=24,解得h=6cm,故答案为:6cm.14.(2021•浙江省嘉兴市)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .【分析】在Rt△ABC和Rt△OAB中,分别利用勾股定理可求出BC和OB的长,又AH⊥OB ,可利用等面积法求出AH 的长.【解答】解:如图,∵AB ⊥AC ,AB =2,BC =2, ∴AC ==2,在▱ABCD 中,OA =OC ,OB =OD ,∴OA =OC =,在Rt △OAB 中,OB ==,又AH ⊥BD ,∴OB •AH =OA •AB ,即=, 解得AH =. 故答案为:. 15.(2021•黑龙江省龙东地区)如图,在平行四边形中,对角线、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形是矩形..【答案】【解析】【分析】根据矩形的判定方法即可得出答案.【详解】解:∵四边形ABCD 为平行四边形,∴当时,四边形ABCD 为矩形.故答案为:.三、解答题1.(2021•湖北省武汉市)如图,AB ∥CD ,∠B =∠D ,BC 的延长线分别交于点E ,F,求ABCD AC BDABCD 90ABC ∠=︒90ABC ∠=︒90ABC ∠=︒证:∠DEF=∠F.【分析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD∥BC,根据平行线的性质即可得到结论.【解答】证明:∵AB∥CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD∥BC,∴∠DEF=∠F.2.(2021•怀化市)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.【分析】(1)根据平行四边形的性质,可以得到DA=BC,DA∥BC,然后即可得到∠EAD =∠FCB,再根据SAS即可证明△ADE≌△CBF;(2)根据(1)中的结论和全等三角形的性质,可以得到∠E=∠F,从而可以得到ED∥BF.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DA=BC,DA∥BC,∴∠DAC=∠BCA,∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB,在△ADE和△CBF中,,∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF ,∴∠E =∠F ,∴ED ∥BF .3. 如(2021•岳阳市)图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.【答案】(1)(答案不唯一,符合题意即可);(2)见解析4. (2021•宿迁市)在①AE=CF ;②OE=OF ;③BE ∥DF 这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,点E 、F 在AC 上,(填写序号).求证:BE=DF .注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【解析】ABCD AE BD ⊥CF BD ⊥EF AECF AECF //AFCE【分析】若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF 后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.【详解】解:若选②,即OE=OF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选①,即AE=CF;证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴OE=OF,又∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选③,即BE∥DF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵BE∥DF;∴∠BEO=∠DFO,又∠BOE=∠DOF,∴△BOE≌△DOF(AAS),∴BE =DF ;5. (2021•山东省聊城市) 如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明,得到OD =OE ,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB =BC ,AO =CO ,可证明BD 为AC 的中垂线,从而推出四边形AECD 为菱形,然后根据条件求出DE 的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE 和△COD 中,∴.∴OD =OE .又∵AO =CO ,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴BO 为AC 的垂直平分线,.∴平行四边形 AECD 是菱形.∵AC =8,.AOE COD V V ≌EAO DCO AO COAOE COD ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COD ASA V V ≌BO AC ⊥142CO AC ∴==在 Rt △COD 中,CD =5,,∴,, ∴四边形 AECD 的面积为24.6. (2021•湖南省永州市)如图,已知点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,AE ∥BF .(1)求证:△AEC ≌△BFD .(2)判断四边形DECF 的形状,并证明.7.(2021•四川省广元市)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:BC=CF ;(2)连接AC 和相交于点为G ,若△GEC 的面积为2,求平行四边形ABCD 的面积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)根据E 是边DC 的中点,可以得到,再根据四边形ABCD 是平行四边形,可以得到,再根据,即可得到,则答案可证;3OD ∴===26DE OD ==11682422AECD S DE AC ∴=⋅=⨯⨯=菱形BE DE CE =ADE ECF ∠∠=AED CEF ∠=∠ADE ECF V V ≌(2)先证明,根据相似三角形的性质得出,,进而得出,由得,则答案可解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,,∴,∵点E 为DC 的中点,∴,在和中∴,∴,∴;(2)∵四边形ABCD 是平行四边形,点E 为DC 的中点,∴,,∴,,∴,∵的面积为2, ∴,即, ∵ ∴, ∴, ∴,∴.CEG ABG V :V 8ABG S =V 12AG AB GC CE ==4BGC S =V ABC ABG BCG S S S =+V V V 12ABC S =△//B AD C AD BC =ADE ECF ∠∠=DE CE =ADE V ECF △ADE ECF DE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ADE ECF ASA V V ≌AD CF =BC CF =//AB DC 2AB EC =GEC ABG ∠=∠GCE GAB ∠=∠CEG ABG V :V GEC V 221124ABG CEG S AB S CE ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V 4428ABG CEG S S ==⨯=V V CEG ABG V :V 12AG AB GC CE ==118422BGC ABG S S ==⨯=V V 8412ABC ABG BCG S S S =+=+=V V V 221224ABCD ABC S S ==⨯=Y V8. (2021•新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且.求证:(1);(2)四边形AEFD 是平行四边形.【答案】(1)证明过程见解析;(2)证明过程见解析.9.(2021•浙江省绍兴市)问题:如图,在▱ABCD 中,AB =8,∠DAB ,∠ABC 的平分线AE ,F ,求EF 的长.答案:EF =2.探究:(1)把“问题”中的条件“AB =8”去掉,其余条件不变.①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“AB =8,AD =5”去掉,其余条件不变,D ,E ,F 相邻两点间的距离相等时,求的值.【分析】(1)①证∠DEA =∠DAE ,得DE =AD =5,同理BC =CF =5,即可求解; ②由题意得DE =DC =5,再由CF =BC =5,即可求解;(2)分三种情况,由(1)的结果结合点C ,D ,E ,F 相邻两点间的距离相等,分别求解即可.【解答】解:(1)①如图1所示:BE CF ABE DCF △≌△∵四边形ABCD是平行四边形,∴CD=AB=8,BC=AD=5,∴∠DEA=∠BAE,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD=5,同理:BC=CF=5,∵点E与点F重合,∴AB=CD=DE+CF=10;②如图3所示:∵点E与点C重合,∴DE=DC=5,∵CF=BC=5,∴点F与点D重合,∴EF=DC=5;(2)分三种情况:①如图3所示:同(1)得:AD=DE,∵点C,D,E,F相邻两点间的距离相等,∴AD=DE=EF=CF,∴=;②如图4所示:同(1)得:AD=DE=CF,∵DF=FE=CE,∴=;③如图5所示:同(1)得:AD=DE=CF,∵DF=DC=CE,∴=2;综上所述,的值为或.。
中考数学复习《多边形与平行四边形》
证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.
2022中考数学试题分类多边形与平行四边形(含解析)
2022中考数学试题分类多边形与平行四边形(含解析)多边形与平行四边形1.(2022衡阳,第9题3分)下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形考点:命题与定理.专题:计算题.分析:根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.解答:解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.(2022宜昌,第8题3分)下列图形具有稳定性的是()A.正方形B.矩形C.平行四边形D.直角三角形考点:三角形的稳定性;多边形..分析:根据三角形具有稳定性,四边形具有不稳定性进行判断.解答:解:直角三角形具有稳定性.故选:D.点评:此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.4.(2022江苏常州第5题2分)如图,□ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是AOBDA.AO=ODB.AO⊥ODC.AO=OCD.AO⊥AB5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形CC.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.8.(2022怀化,第6题4分)一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定考点:多边形内角与外角.分析:本题根据多边形的内角和定理和多边形的内角和等于360°,列出方程,解出即可.解答:解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:B.点评:本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.9.(2022娄底,第5题3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.(2022长沙,第5题3分)下列命题中,为真命题的是()A.六边形的内角和为360度B.多边形的外角和与边数有关C.矩形的对角线互相垂直D.三角形两边的和大于第三边考点:命题与定理.分析:根据六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系判断即可.解答:解:A、六边形的内角和为720°,错误;B、多边形的外角和与边数无关,都等于360°,错误;C、矩形的对角线相等,错误;D、三角形的两边之和大于第三边,正确;故选D.点评:本题考查命题的真假性,是易错题.注意对六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系的准确掌握11.(2022本溪,第8题3分)如图,ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cmB.8cmC.6cmD.4cm考点:平行四边形的性质..分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=某cm,则AD=BC=(某+2)cm,得出方程某+某+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=某cm,则AD=BC=(某+2)cm,∵ABCD的周长为20cm,∴某+某+2=10,解得:某=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(2022营口,第4题3分)ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61°B.63°C.65°D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.13.(2022年浙江衢州第4题3分)如图,在YABCD中,已知AD12cm,AB8cm,AE平分BAD交BC于点E,则CE的长等于【】A.8cmB.6cmC.4cmD.2cm【答案】C.【考点】平行线分线段成比例的性质.【分析】∵四边形ABCD是平行四边形,∴AD//BC,ADBC.∴DAEAEB.又∵AE平分BAD,∴DAEEAB.∴EABAEB.∴ABBE.∵AD12cm,AB8cm,∴BC12cm,BE8cm.∴CEBCCE4cm.故选C.5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.3.(2022江苏镇江,第8题,2分)如图,ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则ABCD的面积等于4.考点:平行四边形的性质;全等三角形的判定与性质..分析:通过△ABE≌△DFE求得△ABE的面积为1,通过△FBC∽△FED,求得四边形BCDE的面积为3,然后根据ABCD的面积=四边形BCDE的面积+△ABE的面积即可求得.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AB∥CD,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∵△DEF的面积为1,∴△ABE的面积为1,∵AD∥BC,∴△FBC∽△FED,∴=()2∵AE=ED=AD.∴ED=BC,∴=,∴四边形BCDE的面积为3,∴ABCD的面积=四边形BCDE的面积+△ABE的面积=4.故答案为4.点评:本题考查了平行四边形的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握三角形全等的性质和三角形相似的性质是解题的关键.24.(2022营口,第14题3分)圆内接正六边形的边心距为2,则这个正六边形的面积为24cm.考点:正多边形和圆.分析:根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.解答:解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OAco30°,∴OA===4,∴这个正六边形的面积为6某某4某2=24cm.2故答案为:24.点评:此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质即锐角三角函数的定义解答即可.5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.14.(2022湖北,第17题3分)在ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.考点:平行四边形的性质.分析:首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.解答:解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=70°=35°.故答案为:55°或35°.点评:此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.解答:解:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE=则S△BMC=BCAE=24;=4,故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BEtan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得co∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,co∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,222在Rt△BOQ中,根据勾股定理得:OQ+6=(4﹣OQ),解得:OQ=∴OB=,,=,∴co∠BPC=co∠BOQ=则此时co∠BPC的值为.点评:此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.3、(2022年四川省广元市中考,5,3分)一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.8考点:多边形内角与外角..分析:多边形的外角和是360°,则内角和是2某360=720°.设这个多边形是n边形,内角和是(n﹣2)180°,这样就得到一个关于n的方程组,从而求出边数n的值.解答:解:设这个多边形是n边形,根据题意,得(n﹣2)某180°=2某360,解得:n=6.即这个多边形为六边形.故选:B.点评:本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4、(2022年四川省广元市中考,18,7分)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).考点:平行四边形的性质;全等三角形的判定与性质..专题:证明题.分析:首先根据题意画出图形,再写出命题的已知和求证,最后通过证明三角形全等即可证明命题是正确的.解答:已知:平行四边形ABCD的对角线AC,BD相交于点O,求证:OA=OC,OB=OD证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,在△AOD和△COB中,∴△AOD≌△COB(AAS),∴OA=OC,OB=OD.点评:此题主要考查了平行四边形的性质以及全等三角形的判定和性质,解题的关键是熟记平行四边形的各种性质以及全等三角形的各种判定的各种方法.5、(2022年浙江省义乌市中考,24,14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在某轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。
中考数学平行四边形(讲义及答案)含答案
中考数学平行四边形(讲义及答案)含答案一、解答题1.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.2.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..3.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .4.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.5.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.6.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE =.7.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.8.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.9.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.10.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)四边形BECD 是菱形,理由见解析;(2)45︒【分析】(1)先证明//AC DE ,得出四边形BECD 是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD BD =,得出四边形BECD 是菱形;(2)先求出45ABC ∠=︒,再根据菱形的性质求出90DBE ∠=︒,即可证出结论.【详解】解:当点D 是AB 的中点时,四边形BECD 是菱形;理由如下:∵DE BC ⊥,90DFE ∴∠=︒,∵90ACB ∠=︒,ACB DFB ∴∠=∠,//AC DE ∴,∵//MN AB ,即//CE AD ,∴四边形ADEC 是平行四边形,CE AD ∴=; D 为AB 中点,AD BD ∴=,BD CE ∴=,∵//BD CE ,∴四边形BECD 是平行四边形,∵90ACB ∠=︒,D 为AB 中点,12CD AB BD ∴==, ∴四边形BECD 是菱形;(2)当45A ∠=︒时,四边形BECD 是正方形;理由如下:∵90ACB ∠=︒,45A ∠=︒,45ABC ∴∠=︒,∵四边形BECD 是菱形,12ABC DBE ∴∠=∠, 90DBE ∴∠=︒,∴四边形BECD 是正方形.故答案为:45︒.【点睛】本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.2.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC ∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥ ∴116322BH HC BC ===⨯= ∴325HD HC CD =+=+=∵22236927AH AB BH =-=-= ∴222725213AD AH DH ++=∴132221321326322AFD ADEF S S ∆==⨯⨯=菱形 【点睛】此题属于四边形综合题,主要考查了全等三角形的判定和性质,菱形的性质,等边三角形的判定和性质的综合运用,利用已知条件判定△DAB ≌△FAC 是解本题的关键.3.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,∴∠CDE =180°﹣∠BAE =110°,∴∠DEC =180°﹣∠DCE ﹣∠CDE =50°;(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠BAE =∠BCD ,∵BF =BE ,CG =CE ,∴BC 是△EFG 的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.4.(1)见解析;(23;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE,BF=DF,可得∠EBD=∠EDB,∠FBD=∠FDB,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF,可证BE∥DF,DE∥BF,可得四边形DEBF是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF的长;(3)过点D作BC的垂线,垂足为H,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵EF垂直平分BD,∴BE=DE,BF=DF,∵∠EBD=∠EDB,∠FBD=∠FDB,∴∠EBD=∠BDF,∠EDB=∠DBF,∴BE∥DF,DE∥BF,∴四边形DEBF是平行四边形,且BE=DE,∴四边形BEDF是菱形;(2)过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,FH=3DH=3,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴FC=FH+CH=3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.5.(1)详见解析;(2)2BH AE =,理由详见解析【分析】1)如图1,连接DF ,根据对称得:△ADE ≌△FDE ,再由HL 证明Rt △DFG ≌Rt △DCG ,可得结论;(2)如图2,作辅助线,构建AM=AE ,先证明∠EDG=45°,得DE=EH ,证明△DME ≌△EBH ,则EM=BH ,根据等腰直角△AEM 得:2EM AE =,得结论;【详解】证明:(1)如图1,连接DF ,∵四边形ABCD 是正方形,∴DA DC =,90A C ∠=∠=︒,∵点A 关于直线DE 的对称点为F ,∴ADE ∆≌FDE ∆,∴DA DF DC ==,90DFE A ∠=∠=︒,∴90DFG ∠=︒,在Rt DFG ∆和Rt DCG ∆中,∵DF DCDG DG =⎧⎨=⎩∴Rt DFG ∆≌Rt DCG ∆(HL ),∴GF GC =;(2)2BH AE =,理由是:如图2,在线段AD 上截取AM ,使AM AE =,∵AD AB =,∴DM BE =,由(1)知:12∠=∠,34∠=∠,∵90ADC ∠=︒,∴123490∠+∠+∠+∠=︒,∴222390∠+∠=︒,∴2345∠+∠=︒,即45EDG ∠=︒,∵EH DE ⊥,∴90DEH ∠=︒,DEH ∆是等腰直角三角形,∴190AED BEH AED ∠+∠=∠+∠=︒,DE EH =,∴1BEH ∠=∠,在DME ∆和EBH ∆中,1DM BE BEH DE EH =⎧⎪∠=∠⎨⎪=⎩∴DME ∆≌EBH ∆∴EM BH =,Rt AEM ∆中,90A ∠=︒,AM AE =,∴EM =,∴BH ;【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.6.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得α=∠DCE =30°.(2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH .从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE =CD ,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE =60°.又∵∠BCD =90°,∴α=∠DCE =30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE =CD ,∴∠CED =∠CDE =1809022︒-αα︒-, 在△CEB 中,CE =CB ,∠BCE =90α︒-,∴∠CEB =∠CBE =1804522BCE α︒-∠=︒+, ∴∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过点A 作AG ∥DF 与BF 的延长线交于点G ,过点A 作AH ∥GF 与DF 交于点H ,过点C 作CI ⊥DF 于点I易知四边形AGFH 是平行四边形,又∵BF ⊥DF ,∴平行四边形AGFH 是矩形.∵∠BAD =∠BGF =90°,∠BPF =∠APD ,∴∠ABG =∠ADH .又∵∠AGB =∠AHD =90°,AB =AD ,∴△ABG ≌△ADH .∴AG =AH ,∴矩形AGFH 是正方形.∴∠AFH =∠FAH =45°,∴AH =AF∵∠DAH +∠ADH =∠CDI +∠ADH =90°∴∠DAH =∠CDI又∵∠AHD =∠DIC =90°,AD =DC ,∴△AHD ≌△DIC∴AH =DI ,∵DE =2DI ,∴DE =2AH AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.【分析】(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题.(2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1).(3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1).【详解】解:(1)探究问题:结论:AD=AB+DC.理由:如图①中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.故答案为AD=AB+DC.(2)方法迁移:结论:AB=AF+CF.证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC∴△AEB≌△GEC(AAS)∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG,∵∠BAG∠G,∴∠FAG=∠G,∴FA=FG,∵CG=CF+FG,∴AB=AF+CF.(3)联想拓展:结论;AB=DF+CF.证明:如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥CF,∴∠BAE=∠G,在△AEB和△GEC中,BAE G AEB GEC BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△GEC ,∴AB =GC ,∵∠EDF =∠BAE ,∴∠FDG =∠G ,∴FD =FG ,∴AB =DF+CF .【点睛】本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.(1)①D 、E ,②A ,理由见解析;(2)①作图见解析;②BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.(2)①以C 为圆心,CB 为半径画弧交AD 于F ,连接CF ,作∠BCF 的角平分线交AB 于E ,点E ,点F 即为所求.②分四种情形:如图①中,当BE AF =时;如图②中,当BE AF =时;如图③中,当BE BC AF ==时,此时点F 与D 重合;如图④中,当BE CB AF ==时,点F 与点D 重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:①点A 与点D 和E 关于BC 互为顶针点;②点D 与点A 关于BC 互为勾股顶针点,理由:如图2中,∵△BDC 是等边三角形,∴∠D =60°,∵AB =AC ,∠ABC =30°,∴∠ABC =∠ACB =30°,∴∠BAC =120°,∴∠A +∠D =180°,∴点D 与点A 关于BC 互为勾股顶针点,故答案为:D 和E ,A .(2)①如图,点E 、F 即为所求(本质就是点B 关于CE 的对称点为F ,相当于折叠).②BE 与AF 可能相等,情况如下:情况一:如图①,由上一问易知,,BE EP BC PC ==,当BE AF =时,设AE x =,连接EF ,∵,,90BE EP AF EF EF EAF FPE ===∠=∠=︒,∴()EAF FPE HL ∆∆≌,∴AE PF x ==,在Rt CDF ∆中,()1082DF AD AF x x =-=--=+,10CF PC PF x =-=-,∴2228(2)(10)x x ++=-, 解得43x =,即43AE =; 情况二:如图②当BE AF =时,设AE x =,同法可得PF AE x ==,则8BE AF x ==-,FP FG GP EG AG AE x =+=+==,则18DF x =-,10CF x =+,在Rt CDF ∆中,则有2228(18)(10)x x +-=+,解得:367x =; 情况三:如图③,当BE BC AF ==时,此时点D 与F 重合,可得1082AE BE AB =-=-=; 情况四:如图④,当BE CB AF ==时,此时点D 与F 重合,可得18AE AB BE AB BC =+=+=. 综上所述,BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【点睛】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.9.(1)证明见解析;(2)①AF 2AE =②422【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】 ()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=,AB AC =,AC DF ∴=,DE EC =,AE EF ∴=,DEC AEF 90∠∠==,AEF ∴是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=,EKF ADE ∠∠∴=,DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩, EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF2AE ∴=. ②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,如图④中当AD AC =时,四边形ABFD 是菱形,易知AE AH EH 32222=-=-=,综上所述,满足条件的AE 的长为4222【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.10.(1)见解析;(2)①2ABE BFC ∠=∠;②见解析;③732 【分析】(1)证明()BAE BCF ASA ∆≅∆可得结论.(2)①结论:2ABE BFC ∠=∠.如图2中,设EBC x ∠=,BFC y ∠=,则2ABF x ∠=,利用三角形内角和定理结合已知条件即可解决问题.②将ABE ∆绕BE 翻折得到BEH ∆,延长BH 交CD 于T ,连接ET .设2AB CD k ==,则3AD BC k ==,利用全等三角形的性质解决问题即可. ③求出CF ,利用三角形的面积公式,矩形的面积公式即可解决问题.【详解】解:(1)证明:如图1中,四边形ABCD 是矩形,90ABC BCD BCF ∴∠=∠=∠=︒,60EBC =︒∠,12CBE ABF ∠=∠, 120ABF ∴∠=︒,906030ABE ︒∴-︒∠==︒,1209030CBF ∠=︒-︒=︒,ABE CBF ∴∠=∠,AB BC =,()BAE BCF ASA ∴∆≅∆,BE BF ∴=.(2)①结论:290EBC BFC ∠+∠=︒.理由:如图2中,设EBC x ∠=,BFC y ∠=,则2ABF x ∠=,90BCF ∠=︒,90FBC y ∴∠=︒-,=2ABE FBC ABF EBC x x x ∠+∠=∠-∠-=,(90)ABE x y ∴∠=-︒-,90ABE EBC ∠+∠=︒,(90)90x y x ∴-︒-+=︒,2180x y ∴+=︒,2180EBC BFC ∴∠+∠=︒,()290180ABE BFC ∴︒-∠+∠=︒,2ABE BFC ∴∠=∠.②证明:将ABE ∆绕BE 翻折得到BEH ∆,延长BH 交CD 于T ,连接ET .设2AB CD k ==,则3AD BC k ==,ABE EBH ∠=∠,12EBC ABF ∠=∠, FBC CBT ∴∠=∠,90FBC F CBT BTC ∠+∠=∠+∠=︒, F BTC ∴∠=∠,BF BT ∴=,CT CF =,DE AE EH ==,ET ET =,90D EHT ∠=∠=︒,Rt ETD Rt ETH(HL)∴∆≅∆,DT TH ∴=,在Rt BCT ∆中,则有222(2)(3)(2)k x k k x +=+-,解得98x k =, 2BF CF BT CT BH TH CT BH TD TC BH CD AB ∴+=+=++=++=+=.③由②可知,3BC k =,97288CF CR k k k ==-=, ∴2173728632BCFABCD k k S S k ∆⋅⋅==矩形. 【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.。
多边形与平行四边形(共27题)(解析版)--2023年中考数学真题分项汇编(全国通用)
多边形与平行四边形(27题)一、单选题1(2023·湖南·统考中考真题)如图,在四边形ABCD中,BC∥AD,添加下列条件,不能判定四边形ABCD是平行四边形的是()A.AB=CDB.AB∥CDC.∠A=∠CD.BC=AD【答案】A【分析】依据平行四边形的判定,依次分析判断即可得出结果.【详解】解:A、当BC∥AD,AB=CD时,不能判定四边形ABCD是平行四边形,故此选项符合题意;B、当AB∥CD,BC∥AD时,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;C、当BC∥AD,∠A=∠C时,可推出AB∥DC,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;D、当BC∥AD,BC=AD时,依据一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;故选:A.【点睛】此题考查了平行四边形的判定,解决问题的关键要熟记平行四边形的判定方法.2(2023·湖南永州·统考中考真题)下列多边形中,内角和等于360°的是()A. B.C. D.【答案】B【分析】根据n边形内角和公式n-2⋅180°分别求解后,即可得到答案【详解】解:A.三角形内角和是180°,故选项不符合题意;B.四边形内角和为4-2×180°=360°,故选项符合题意;C.五边形内角和为5-2×180°=540°,故选项不符合题意;D.六边形内角和为6-2×180°=720°,故选项不符合题意.故选:B.【点睛】此题考查了n边形内角和,熟记n边形内角和公式n-2⋅180°是解题的关键.3(2023·湖南·统考中考真题)如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平形四边形,则下列正确的是()A.AD=BCB.∠ABD=∠BDCC.AB=ADD.∠A=∠C【答案】D【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】解:A.根据AB∥CD,AD=BC,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意;B.∵AB∥CD,∴∠ABD=∠BDC,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意;C.根据AB∥CD,AB=AD,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意; D.∵AB∥CD,∴∠ABC+∠C=180°,∵∠A=∠C∴∠ABC+∠A=180°,∴AD∥BC∴四边形ABCD为平形四边形,故该选项正确,符合题意;故选:D.【点睛】本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.4(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S=ah时,若△ABE平移到△DCF,a=4,h=3,则△ABE的平移距离为()A.3B.4C.5D.12【答案】B【分析】根据平移的方向可得,△ABE平移到△DCF,则点A与点D重合,故△ABE的平移距离为AD的长.【详解】解:用平移方法说明平行四边形的面积公式S=ah时,将△ABE平移到△DCF,故平移后点A与点D重合,则△ABE的平移距离为AD=a=4,故选:B.【点睛】本题考查了平移的性质,熟练掌握平移的性质是解题的关键.5(2023·四川泸州·统考中考真题)如图,▱ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD中点,若AD=4,CD=6,则EO的长为()A.1B.2C.3D.4【答案】A【分析】根据平行四边形的性质、平行线的性质、角平分线的定义以及等腰三角形的判定可得AP=AD= 4,进而可得BP=2,再根据三角形的中位线解答即可.【详解】解:∵四边形ABCD是平行四边形,CD=6,∴AB∥CD,AB=CD=6,DO=BO,∴∠CDP=∠APD,∵PD平分∠ADC,∴∠ADP=∠CDP,∴∠ADP=∠APD,∴AP=AD=4,∴BP=AB-AP=6-4=2,∵E是PD中点,BP=1;∴OE=12故选:A.【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定以及三角形的中位线定理等知识,熟练掌握相关图形的判定与性质是解题的关键.6(2023·四川成都·统考中考真题)如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BDB.OA=OCC.AC⊥BDD.∠ADC=∠BCD【答案】B【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∵四边形ABCD是平行四边形,对角线AC与BD相交于点O,A. AC=BD,不一定成立,故该选项不正确,不符合题意;B. OA=OC,故该选项正确,符合题意;C. AC⊥BD,不一定成立,故该选项不正确,不符合题意;D. ∠ADC=∠BCD,不一定成立,故该选项不正确,不符合题意;故选:B.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.7(2023·安徽·统考中考真题)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°【答案】D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵∠BAE=180°-360°5,∠COD=360°5,∴∠BAE-∠COD=180°-360°5-360°5=36°,故选D.【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.二、填空题8(2023·云南·统考中考真题)五边形的内角和是度.【答案】540【分析】根据n边形内角和为n-2×180°求解即可.【详解】五边形的内角和是5-2×180°=540°.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n边形内角和为n-2×180°是解题关键.9(2023·新疆·统考中考真题)若正多边形的一个内角等于144°,则这个正多边形的边数是.【答案】10【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n边形,根据题意得:n-2×180°÷n=144°,解得:n=10.故答案为:10.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.10(2023·上海·统考中考真题)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.【答案】18【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【详解】根据正n边形的中心角的度数为360°÷n,则n=360÷20=18,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.11(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.【答案】6【详解】解:根据多边形的外角和等于360°和正多边形的每一个外角都相等,得多边形的边数为360°÷60°=6.故答案为:6.12(2023·山东临沂·统考中考真题)如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC 平行的方向,从靠近A的AB边的三等分点剪去两个角,得到的平行四边形纸片的周长是.【答案】14【分析】由平行四边形的性质推出DF∥BC,DE∥AC,得到△ADF∽△ABC,△BDE∽△BAC,利用相似三角形的性质求解即可.【详解】解:如图,由题意得ADAB=13,四边形DECF是平行四边形,∴DF∥BC,DE∥AC,∴△ADF∽△ABC,△BDE∽△BAC,∴DF BC =ADAB=13,DEAC=BDAB=23,∵AC=6,BC=9,∴DF=3,DE=4,∵四边形DECF平行四边形,∴平行四边形DECF纸片的周长是23+4=14,故答案为:14.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.13(2023·湖南·统考中考真题)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.【答案】2【分析】根据平行四边形的性质可得AD∥BC,则∠AEB=∠CBE,再由角平分线的定义可得∠ABE=∠CBE,从而求得∠AEB=∠ABE,则AE=AB,从而求得结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2,故答案为:2.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定,掌握平行四边形的性质是解题的关键.14(2023·重庆·统考中考真题)如图,在正五边形ABCDE中,连接AC,则∠BAC的度数为.【答案】36°【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.【详解】正五边形内角和:(5-2)×180°=3×180°=540°∴∠B=540°5=108°,∴∠BAC=180°-∠B2=180°-108°2=36° .故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.15(2023·湖北黄冈·统考中考真题)若正n边形的一个外角为72°,则n=.【答案】5【分析】正多边形的外角和为360°,每一个外角都相等,由此计算即可.【详解】解:由题意知,n=36072=5,故答案为:5.【点睛】本题考查正多边形的外角问题,解题的关键是掌握正n边形的外角和为360°,每一个外角的度数均为360°n.16(2023·福建·统考中考真题)如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD 于点E,F.若AE=10,则CF的长为.【答案】10【分析】由平行四边形的性质可得DC∥AB,DC=AB即∠OFD=∠OEB,∠ODF=∠EBO,再结合OD =OB可得△DOF≌△BOE AAS可得DF=EB,最进一步说明FC=AE=10即可解答.【详解】解:∵ABCD中,∴DC∥AB,DC=AB,∴∠OFD=∠OEB,∠ODF=∠EBO,∵OD=OB,∴△DOF≌△BOE AAS,∴DF=EB,∴DC-DF=AB-BE,即FC=AE=10.故答案为:10.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定与性质等知识点,证明三角形全等是解答本题的关键.17(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是边形.【答案】5【详解】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.18(2023·甘肃兰州·统考中考真题)如图,在▱ABCD中,BD=CD,AE⊥BD于点E,若∠C=70°,则∠BAE=°.【答案】50【分析】证明∠DBC=∠C=70°,∠BDC=180°-2×70°=40°,由AB∥CD,可得∠ABE=∠BDC=40°,结合AE⊥BD,可得∠BAE=90°-40°=50°.【详解】解:∵BD=CD,∠C=70°,∴∠DBC=∠C=70°,∠BDC=180°-2×70°=40°,∵▱ABCD,∴AB∥CD,∴∠ABE=∠BDC=40°,∵AE⊥BD,∴∠BAE=90°-40°=50°;故答案为:50【点睛】本题考查的是等腰三角形的性质,平行四边形的性质,三角形的内角和定理的应用,熟记基本几何图形的性质是解本题的关键.19(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,则∠AFB 的大小为度.【答案】45【分析】根据题意求得正五边形的每一个内角为155-2×180°=108°,根据折叠的性质求得∠BAM,∠FAB ,在△AFB 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为155-2×180°=108°,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,则∠BAM=12∠BAE=12×108°=54°,∵将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,∴∠FAB =12∠BAM=12×54°=27°,∠AB F=∠B=108°,在△AFB 中,∠AFB =180°-∠B-∠FAB =180°-108°-27°=45°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.20(2023·重庆·统考中考真题)若七边形的内角中有一个角为100°,则其余六个内角之和为.【答案】800°/800度【分析】根据多边形的内角和公式180°n-2即可得.【详解】解:∵七边形的内角中有一个角为100°,∴其余六个内角之和为180°×7-2-100°=800°,故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.三、解答题21(2023·四川自贡·统考中考真题)在平行四边形ABCD中,点E、F分别在边AD和BC上,且DE =BF.求证:AF=CE.【答案】见解析【分析】平行四边形的性质得到AD=BC,AD∥BC,进而推出AE=CF,得到四边形AECF是平行四边形,即可得到AF=EC.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AE=CF,∴AE=CF,AE∥CF∴四边形AECF是平行四边形,∴AF=CE.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法,是解题的关键.22(2023·湖南·统考中考真题)如图所示,在△ABC中,点D、E分别为AB、AC的中点,点H在线段CE上,连接BH,点G、F分别为BH、CH的中点.(1)求证:四边形DEFG为平行四边形(2)DG⊥BH,BD=3,EF=2,求线段BG的长度.【答案】(1)见解析(2)5【分析】(1)由三角形中位线定理得到DE∥BC,DE=12BC,GF∥BC,GF=12BC,得到GF∥DE,GF=DE,即可证明四边形DEFG为平行四边形;(2)由四边形DEFG为平行四边形得到DG=EF=2,由DG⊥BH得到∠DGB=90°,由勾股定理即可得到线段BG的长度.【详解】(1)解:∵点D、E分别为AB、AC的中点,∴DE∥BC,DE=12BC,∵点G、F分别为BH、CH的中点.∴GF∥BC,GF=12BC,∴GF∥DE,GF=DE,∴四边形DEFG为平行四边形;(2)∵四边形DEFG为平行四边形,∴DG=EF=2,∵DG ⊥BH ,∴∠DGB =90°,∵BD =3,∴BG =BD 2-DG 2=32-22=5.【点睛】此题考查了中位线定理、平行四边形的判定和性质、勾股定理等知识,证明四边形DEFG 为平行四边形和利用勾股定理计算是解题的关键.23(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE =EF =FD ,连接AE ,EC ,CF ,FA .(1)求证:四边形AECF 是平行四边形.(2)若△ABE 的面积等于2,求△CFO 的面积.【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得OA =OC ,OB =OD ,结合BE =FD 可得OE =OF ,即可证明四边形AECF 是平行四边形;(2)根据等底等高的三角形面积相等可得S △AEF =S △ABE =2,再根据平行四边形的性质可得S △CFO =12S △CEF =12S △AEF =12×2=1.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =FD ,∴OB -BE =OD -FD ,∴OE =OF ,又∵OA =OC ,∴四边形AECF 是平行四边形.(2)解:∵S △ABE =2,BE =EF ,∴S △AEF =S △ABE =2,∵四边形AECF 是平行四边形,∴S △CFO =12S △CEF =12S △AEF =12×2=1.【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分.24(2023·山东·统考中考真题)如图,在▱ABCD 中,AE 平分∠BAD ,交BC 于点E ;CF 平分∠BCD ,交AD 于点F .求证:AE =CF .【答案】证明见解析【分析】由平行四边形的性质得∠B =∠D ,AB =CD ,AD ∥BC ,由平行线的性质和角平分线的性质得出∠BAE =∠DCF ,可证△BAE ≌△DCF ,即可得出AE =CF .【详解】证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,AB =CD ,∠BAD =∠DCB ,AD ∥BC ,∵AE 平分∠BAD ,CF 平分∠BCD ,∴∠BAE =∠DAE =∠BCF =∠DCF ,在△BAE 和△DCF 中,∠B =∠DAB =CD∠BAE =∠DCF∴△BAE ≌△DCF ASA ∴AE =CF .【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键.25(2023·重庆·统考中考真题)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE =OF .证明:∵四边形ABCD 是平行四边形,∴DC ∥AB .∴∠ECO =①.∵EF 垂直平分AC ,∴②.又∠EOC =_③.∴ΔCOE ≅ΔAOF ASA .∴OE =OF .小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;∠FAO;AO=CO;∠FOA;被平行四边形一组对边所截,截得的线段被对角线中点平分【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴AO=CO.又∠EOC=∠FOA.∴△COE≅△AOF ASA.∴OE=OF.故答案为:∠FAO;AO=CO;∠FOA;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.26(2023·四川南充·统考中考真题)如图,在▱ABCD中,点E,F在对角线AC上,∠CBE=∠ADF.求证:(1)AE=CF;(2)BE∥DF.【答案】见解析【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等,再利用已知条件求证∠ABE=∠CDF,最后证明△ABE≌△CDF ASA即可求出答案.(2)根据三角形全等证明角度相等,再利用邻补角定义推出∠BEF=∠EFD即可证明两直线平行.【详解】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∠ABC=∠ADC,∴∠BAE=∠FCD.∵∠CBE=∠ADF,∠ABC=∠ADC,∴∠ABE=∠CDF.∴△ABE≌△CDF ASA.∴AE=CF.(2)证明:由(1)得△ABE≌△CDF ASA,∴∠AEB=∠CFD.∵∠AEB+∠BEF=180°,∠CFD+∠EFD=180°,∴∠BEF=∠EFD.∴BE∥DF.【点睛】本题考查了平行四边形的性质,邻补角定义,三角形全等,平行线的判定,解题的关键在于熟练掌握平行四边形的性质.27(2023·四川广安·统考中考真题)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF ⊥AC,垂足分别为点E、F,且AF=CE,∠BAC=∠DCA.求证:四边形ABCD是平行四边形.【答案】见详解【分析】先证明△AEB≌△CFD(ASA),再证明AB=CD,AB∥CD,再由平行四边形的判定即可得出结论.【详解】证明:∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°,∵AF=CE,AE=AF-EF,CF=CE-EF,∴AE=CF,又∵∠BAC=∠DCA,∴△AEB≌△CFD(ASA),∴AB=CD,∵∠BAC=∠ACD,∴AB∥CD,四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质等知识,熟练掌握平行四边形的判定,证明三角形全等是解题的关键.。
【精编版】2020年部分省市中考数学试题分类汇编多边形与平行四边形(含详解答案)doc初中数学
【精编版】2020年部分省市中考数学试题分类汇编多边形与平行四边形(含详解答案)doc 初中数学多边形与平行四边形一、选择题1. (2018年四川眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,那么∠ABC 的度数为〔 〕A .90°B .60°C .45°D .30°【答案】C2.〔2018福建龙岩〕以下图形中,单独选用一种图形不能进行平面镶嵌的图形是〔 〕A. 正三角形B. 正方形C. 正五边形D. 正六边形 【答案】C 3.〔2018年北京顺义〕假设一个正多边形的一个内角是120°,那么那个正多边形的边数是A .9B .8C .6D .4 【答案】C4. 〔2018年台湾省〕 图(十)为一个平行四边形ABCD ,其中H 、G 两点分不在BC 、 CD 上,AH ⊥BC ,AG ⊥CD ,且AH 、AC 、AG 将∠BAD 分成 ∠1、∠2、∠3、∠4四个角。
假设AH =5,AG =6,那么以下关系何者 正确? (A) ∠1=∠2 (B) ∠3=∠4 (C) BH =GD (D) HC =CG 【关键词】平行四边形【答案】A二、填空题1.〔2018年福建福州〕14.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,假设AC=14,BD=8,AB=10,那么△OAB 的周长为 . 【答案】212.〔2018年福建宁德〕如图,在□ABCD 中,AE =EB ,AF =2, 那么FC 等于_____. 【答案43.(2018年山东滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分不在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,那么EF 的长为ABC EFAB CD G H 123 4图(十)FEDC BA【答案】4.〔2018年福建宁德〕如图,在△ABC 中,点E 、F 分不为AB 、AC 的中点.假设EF 的长为2,那么BC 的长为___________. 【答案】4三、解答题1. (2018年福建晋江)如图,请在以下四个关系中,选出两个恰...当.的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.〔写出一种即可〕关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B .:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.解::①③,①④,②④,③④均可,其余均不能够. 〔解法一〕:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………〔2分〕 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ………………………………………〔5分〕 ∵C A ∠=∠,∴D B ∠=∠∴四边形ABCD 是平行四边形…………………………………………………〔8分〕 〔解法二〕:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .………………〔2分〕ABCD第4题图FA E BCD求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………〔5分〕 又∵AD ∥BC∴四边形ABCD 是平行四边形.…………………………………………………〔8分〕 〔解法三〕:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B .………………〔2分〕 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………〔5分〕 又∵CD AB =∴四边形ABCD 是平行四边形.…………………………………………………〔8分〕 〔解法四〕:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B .………………〔2分〕 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………〔4分〕 ∴︒=∠+∠180D A ………………………………………………………………〔6分〕 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形.…………………………………………………〔8分〕2. (2018年浙江衢州):如图,E ,F 分不是ABCD 的边AD ,BC 的中点.求证:AF =CE .证明:方法1:∵ 四边形ABCD 是平行四边形,且E ,F 分不是AD ,BC 的中点,∴ AE= CF . ……2分又 ∵ 四边形ABCD 是平行四边形,∴ AD ∥BC ,即AE ∥CF .∴ 四边形AFCE 是平行四边形. ……3分 ∴ AF =CE .……1分方法2:A D EB CA D EBC (第19题)∵ 四边形ABCD 是平行四边形,且E ,F 分不是AD ,BC 的中点, ∴ BF =DE . ……2分又 ∵ 四边形ABCD 是平行四边形, ∴ ∠B =∠D ,AB =CD . ∴ △ABF ≌△CDE . ……3分∴ AF =CE .……1分3.〔2018浙江省嘉兴〕如图,在□ABCD 中,点E 在AB 上,点F 在CD 上且AE =CF .〔1〕求证:DE =BF ;〔2〕连结BD ,并写出图中所有的全等三角形.〔不要求证明〕 【关键词】平行四边形的判定与性质、全等三角形 【答案】〔1〕在□ABCD 中,AB //CD ,AB =CD .∵AE =CF ,∴BE =DF ,且BE //DF . ∴四边形BFDE 是平行四边形. ∴BF DE . …5分 〔2〕连结BD ,如图, 图中有三对全等三角形: △ADE ≌△CBF , △BDE ≌△DBF ,△ABD ≌△CDB . …3分4. (2018年山东滨州)如图,四边形ABCD 中,E 、F 、G 、H 分不是AB 、BC 、CD 、DA 的中点. (1)请判定四边形EFGH 的形状?并讲明什么缘故.(2)假设使四边形EFGH 为正方形,那么四边形ABCD 的对角线应具有如何样的性质?解:(1) 四边形EFGH 为平行四边形,连接AC ∵E 、F 分不是AB 、BC 的中点,EF ∥AC ,EF=21AC. 同理HG ∥AC ,HG=21AC. ∴EF ∥HG, EF=HG.∴四边形EFGH 是平行四边形(2) 四边形ABCD 的对角线垂直且相等.5.〔2018年江苏泰州〕如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.BD EF 〔第3题〕AB CD(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判定四边形BCEF 的形状,并讲明理由.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB , ∴∠DCA =∠EDC ,∴AC ∥DE ; ⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°, 又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE , ∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF , ∵在矩形ABCD 中,AD ∥BC 且AD =BC , ∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【关键词】矩形的性质 平行四边形的判定 全等三角形的判定6.〔2018年福建晋江〕如图,请在以下四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.〔写出一种即可〕关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . :在四边形ABCD 中, , ; 求证:四边形ABCD 是. 【关键词】平行四边形的判定【答案】:①③,①④,②④,③④均可,其余均不能够. 〔解法一〕:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………〔2分〕 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ∵C A ∠=∠,∴D B ∠=∠ ∴四边形ABCD 是平行四边形 〔解法二〕:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B , ∴AB ∥CD 又∵AD ∥BC∴四边形ABCD 是平行四边形. 〔解法三〕:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B . 求证:四边形ABCD 是平行四边形. 证明:∵︒=∠+∠180C B , ∴AB ∥CD 又 ∵CD AB =∴四边形ABCD 是平行四边形. 〔解法四〕:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B . 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B , ∴AB ∥CD∴︒=∠+∠180D A 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形. 7.〔2018年贵州毕节地区〕如图,: ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F,交AD 于G .求证:AE DG =.【关键词】平行四边形、角平分线【答案】证明:∵ 四边形ABCD 是平行四边形〔〕,AD BC ∴∥,AB CD =〔平行四边形的对边平行,对边相等〕GBC BGA ∴∠=∠,BCE CED ∠=∠〔两直线平行,内错角相等〕 又∵ BG 平分ABC ∠,CE 平分BCD ∠〔〕ABG GBC ∴∠=∠,BCE ECD ∠=∠〔角平分线定义〕 ABG GBA ∴∠=∠,ECD CED ∠=∠.AB AG ∴=,CE DE =〔在同一个三角形中,等角对等边〕 AG DE ∴=AG EG DE EG ∴-=-,即AE DG =. 分7.〔2018年重庆市潼南县〕如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分不在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. 〔1〕证明:△AB E ≌△DAF ; A B CE FG〔2〕假设∠AGB =30°,求EF 的长.【关键词】全等三角形 【答案】解:〔1〕∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF -----------------------4分〔2〕∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分 在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =1----------------------------------------8分 由(1)得△ABE ≌△ADF ∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分8.〔2018年江苏宿迁〕如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .【关键词】平行四边形 【答案】证明:连接BD 交AC 于O 点 …… 1分∵四边形ABCD 是平行四边形∴OA=OC ,OB=OD ………………3分 又∵AE=CF ∴OE=OF∴四边形BEDF 是平行四边形 …… 6分 ∴∠EBF=∠EDF …………… 8分9.〔2018年浙江宁波〕如图1,有一张菱形纸片ABCD ,8=AC ,6=BD .〔1〕请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;假设沿着BD 剪开, 请在图3中用实线画出拼成的平行四边形;并直截了当写出这两个平行四边 形的周长。
2020-2021学年九年级中考专题复习:多边形与平行四边形(含答案)
2020-2021中考专题复习:多边形与平行四边形一、选择题1. (2020·温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为A.40°B.50°C.60°D.70°2. 如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A. 10B. 14C. 20D. 223. 将一个n边形变成(n+2)边形,内角和将()A.减少180°B.增加180°C.减少360°D.增加360°4. 对于任意的矩形,下列说法一定正确的是A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形5. 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形6. (2020·海南)如图,在□ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为( )A .16B .17C .24D .257. 如图,在平行四边ABCD 中,AC 、BD 为对角线,6BC =,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .248. 已知四边形的四条边长分别是a b c d,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+ 则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形二、填空题9. 若一个多边形的内角和与外角和之和是900°,则该多边形的边数是__________.10. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.11. 如图,在平行四边形ABCD 中,EF BC GH AB EF ∥,∥,与GH 相交于点O ,图中共有 个平行四边形12. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.13. 如图所示,x 的值为________.(1)DBO HGF EDC BA14. (2020·武汉)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是□ABCD的对角线,点E 在AC 上,AD =AE =BE ,∠D =102°,则∠BAC 的大小是____________.15. 今年暑假,实验中学安排全校师生假期进行社会实践活动,将每班分成三个组,每组派一名教师作为指导老师.为了加强同学间的协作,学校要求各班每两人之间(包括指导教师)每周至少通一次电话,现知该校八年级(5)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n 与每周至少通电话次数S 之间的关系用下列模型表示,如图根据小明设计的模型,可知该班师生之间每周至少要通电话的次数为________.16. (2020·扬州)如图,在▱ABCD中,∠B =60° ,AB =10,BC =8,点E为边AB上的一个动点,连接ED 并延长至点F,使得DF=14DE ,以EC 、EF 为邻边构造▱EFGC ,连接EG ,则EG 的最小值为 .三、解答题 17. (2020·黄冈)如图,在四边形ABCD 中,AD ∥BC ,∠B =∠C .E 使边BC 上一点,且DE =DC .求证:AD =BE .DAECB18. 已知:AC 是ABCD 的对角线.(1)用直尺和圆规作出线段AC 的垂直平分线,与AD 相交于点E ,连接CE .(保留作图痕迹,不写作法);(2)在(1)的条件下,若35AB BC ==,,求DCE △的周长.19. 如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE PF =,且AP AE CP CF +=+.求证:四边形ABCD 是平行四边形.20. 如图,已知平行四边形ABCD 中,AB=5,BC=3,AC=2√13.(1)求平行四边形ABCD 的面积; (2)求证:BD ⊥BC.APFE DBANMAEDPC FB21. 如图,ABC 中,D 是AB 的中点,E 是AC 上任意一点,EF ∥AB ,DF ∥BE .求证:DF与AE 互相平分.22. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .2020-2021中考专题复习:多边形与平行四边形-答案一、选择题 1. 【答案】D【解析】本题考查了等腰三角形的性质以及平行四边形的性质,由∠A =40°,AB =AC ,求得∠C =70°,又因为四边形BCDE 是平行四边形,所以∠E =∠C =70°,因此本题选D .2. 【答案】B 【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .由AC +BD =16可得OA +OB =8,又∵AB =CD =6,∴△ABO 的周长为OA +OB +AB =8+6=14.3. 【答案】D[解析] (n +2)边形的内角和比n 边形的内角和大n·180°-(n -2)·180°=360°.4. 【答案】C【解析】A .矩形的对角线相等,但不垂直,故此选项错误;FEDCB AFEDCB ADPCBAB.矩形的邻边都互相垂直,对边互相平行,故此选项错误;C.矩形的四个角都相等,正确;D.矩形是轴对称图形,也是中心对称图形,故此选项错误.故选C.5. 【答案】A[解析] 剪去一个角的方法有三种:经过两个顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.所以一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.6. 【答案】A【解析】在R t△ABG中,AG=6.∵四边形ABCD是平行四边形,AE平分∠BAD,∴∠BAE=∠ADE=∠AEB,∴AB=BE,则CE=BC-BE=15-10=5.又∵BG⊥AE,∴AE=2AG=12,则△ABE的周长为32.∵AB∥DF,∴△ABE∽△CFE,∴△ABE的周长:△CEF的周长=BE:CE=2:1,∴△CEF的周长为16.7. 【答案】C8. 【答案】B二、填空题9. 【答案】5【解析】∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故答案为:5.10. 【答案】50°【解析】在平行四边形ABCD中,AB∥CD,AD∥BC,∴∠FBA=∠C=40°,∵FD⊥AD,∴∠ADF=90°,∵AD∥BC,∴∠F=∠ADF=90°,∴∠BEF=180°-90°-40°=50°.11. 【答案】9个12. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.13. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x +2x =360°,解得x =55°.14. 【答案】26°【解析】本题考查了等腰三角形性质,平行四边形性质等,∵□ABCD ,∴AD =BC ,AD ∥BC ,DC ∥AB ,又∵AD =AE =BE ,∴BC =AE =BE ,∴∠BAC =∠EBA ,∠BEC =∠BCE ,∵AD ∥BC ,DC ∥AB ,∴∠DCB =78°,∠BAC =∠DCA ,∵∠BEC =∠BAC +∠EBA ,∴∠BCE =2∠BAC ,∴3∠BAC =78°,解得∠BAC =26°,因此本题答案为26°.15. 【答案】1378[解析] 将八年级(5)班师生共53人看作五十三边形的53个顶点,由多边形对角线条数公式可得对角线为53×(53-3)2=1325(条),1325+53=1378(次).因此该班师生之间每周至少要通1378次电话.[点评] 本题的数学模型实质上是n 个人之间彼此握一次手,求握手总次数的问题,其次数为n +12(n -3)·n =12n(n -1).△EHD ∽△GHC ,∴5HC CG HG ===,∵CD=AB=10是定长,故不管动点E 在AB 上如何运动,H 始终是定点,H 又在EG 上,它到AB 的最短距离就是HN ,S ▱ABCD =AM BC HN AB ⨯=⨯,∴810AM BC NH AB ⨯===E 运动到与N 重合(见答图2),EG 最短,此时,HG =54NH =,∴EG 的最小值= HG +NH =.因此本题答案为.(答图1) (答图2)三、解答题17. 【答案】解:∵□ABCD ,∴∠AD =∠BC ,∴∠C =∠DAO . ∵点O 为CD 的中点,∴DO =∠CO .又∵∠AOD=∠EOC ,∴△AOD ≌△EOC .∴AD =CE .18. 【答案】(1)如图,CE 为所作.(2)∵四边形ABCD 为平行四边形,∴53AD BC CD AB ====,, ∵点E 在线段AC 的垂直平分线上, ∴EA EC =,∴DCE △的周长538CE DE CD EA DE CD AD CD =++=++=+=+=.19. 【答案】延长PA 、PC ,使AM AE =、CF CN =.连结MF 、EN .∵AP AE CP CF +=+ ∴PM PN =∴四边形MFNE 是平行四边形. ∴ME NF =,M N ∠=∠ ∵AE AM =,CN CF = ∴AME CNF ∆∆≌ ∴AM CN =∴AP CP =,PAD PCB ∠=∠ ∴APD NCPB ∆≌ ∴PD PB =∴四边形ABCD 是平行四边形.20. 【答案】解:(1)作CE ⊥AB 交AB 的延长线于点E ,如图.设BE=x ,CE=h , 在Rt △CEB 中:x 2+h 2=9①, 在Rt △CEA 中:(5+x )2+h 2=52②, 联立①②解得:x=95,h=125,∴平行四边形ABCD 的面积=AB ·h=12. (2)证明:作DF ⊥AB ,垂足为F , ∴∠DF A=∠CEB=90°, ∵平行四边形ABCD , ∴AD=BC ,AD ∥BC , ∴∠DAF=∠CBE , 又∵∠DF A=∠CEB=90°, ∴△ADF ≌△BCE (AAS),∴AF=BE=95,BF=5-95=165,DF=CE=125, 在Rt △DFB 中,BD 2=DF 2+BF 2=1252+1652=16,∴BD=4, ∵BC=3,DC=5, ∴CD 2=DB 2+BC 2, ∴BD ⊥BC.21. 【答案】连结AF 、DE .∵EF ∥AB ,DF ∥BE ,∴四边形BDFE 是平行四边形 ∴EF BD =∵AD BD =,∴AD EF =∵AD ∥EF ,∴四边形ADEF 是平行四边形 ∴DF 与AE 互相平分22. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA。
中考数学备考专题复习 多边形与平行四边形(含解析)
多边形与平行四边形一、单选题(共12题;共24分)1、下列说法正确的是()A、同位角相等B、过一点有且只有一条直线与已知直线平行C、过一点有且只有一条直线与已知直线垂直D、只用一种图形进行镶嵌,三角形、四边形、六边形都可以镶嵌2、下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A、正方形B、正五边形C、正六边形D、正八边形3、下列图形中,不能镶嵌成平面图案的是 ( )A、正三角形B、正四边形C、正五边形D、正六边形4、梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )A 、B 、C 、D 、5、如图,在梯形ABCD中,AD//BC,∠B=70°∠C=40°,DE//AB交BC于点E.若AD=3,BC=10,则CD的长是()A、7B、10C、13D、14 6、如图,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有()A、2个B、3个C、4个D、5个7、正六边形的边心距为,这个正六边形的面积为()A、2B、4C、6D、128、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A、90°B、84°C、72°D、88°9、(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A、4B、61C、8D、1010、(2015•德阳)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A、150°B、160°C、130°D、60°11、(2016•义乌)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A、①,②B、①,④C、③,④D、②,③12、如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A、(3,-1)B、(-1,-1)C、(1,1)D、(-2,-1)二、填空题(共5题;共5分)13、(2015•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是________.14、现有一个正六边形的纸片,该纸片的边长为20cm,张萌想用一张圆形纸片将该正六边形纸片完全覆盖住,则圆形纸片的直径不能小于________ cm.15、如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=________°.16、如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=________17、如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有________个三、综合题(共5题;共63分)18、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.19、(2016•滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.20、(2016•安徽)如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.21、(2016•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.22、(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.(3)图1、图2中的“叠弦角”的度数分别为________,________;(4)图n中,“叠弦三角形”________等边三角形(填“是”或“不是”)3(5)图n中,“叠弦角”的度数为________(用含n的式子表示)答案解析部分一、单选题【答案】C【考点】垂线,同位角、内错角、同旁内角,平面镶嵌(密铺)【解析】【分析】A、只有一条直线截2条平行线得到的同位角才相等,故错误,不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故错误,不符合题意;C、过直线上或直线外一点均有且只有一条直线与已知直线垂直,正确,符合题意;D、只用一种图形进行镶嵌,三角形、四边形都可以镶嵌,六边形不一定能组成镶嵌,故错误,不符合题意;故选C.【答案】B【考点】正多边形的定义【解析】【解答】解:A、正方形的最小旋转角度为90°,故本选项错误;B、正五边形的最小旋转角度为=72°,故本选项正确;C、正六边形的最小旋转角度为=60°,故本选项错误;D、正八边形的最小旋转角度为=45°,故本选项错误;故选B.【分析】求出各个选项图形的最小旋转角度,即可做出判断.【答案】C【考点】平面镶嵌(密铺)【解析】【解答】∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选C.【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.【答案】B【考点】等边三角形的判定与性质,平行四边形的判定与性质,等腰梯形的判定【解析】【分析】画出草图分析,作AE∥CD于E点,则AECD是平行四边形,△ABE是等边三角形,据此易求BC的长.【解答】如图所示:作AE∥CD于E点,∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AE=CD=2,EC=AD=2又AB=CD,∠B=60°,∴△ABE是等边三角形,BE=2,∴BC=4.故选B.【点评】此题考查了梯形中常作的辅助线:平移腰,把梯形转化为平行四边形和三角形求解,体现了数学的化归思想.【答案】A【考点】三角形内角和定理,等腰三角形的判定与性质,平行四边形的判定与性质,梯形【解析】【解答】∵DE//AB,∠B=70°,∴∠DEC=∠B=70°.又∵∠C=40°,∴∠CDE=70°.∴CD=CE.∵AD//BC,DE//AB,∴四边形ABED是平行四边形.∴BE=AD=3.∴CD=CE=BC-BE=BC-AD=10-3=7.故选A.【分析】根据平行线的性质,得∠DEC=∠B=70°,根据三角形的内角和定理,得∠CDE=70°,再根据等角对等边,得CD=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则BE=AD=3,从而求解.【答案】D【考点】角平分线的定义,对顶角、邻补角,平行线的性质,平行四边形的性质,平行四边形的判定【解析】【解答】由AB∥CD∥EF,根据两直线平行,同位角相等,内错角相等,可得:∠AOE=∠OAB=∠ACD,又由AC平分∠BAD与BC∥AD,可得:∠DAC=∠ACB,又由对顶角相等,可得5与∠AOE(∠AOE除外)相等的角有5个。
中考数学复习·多边形与四边形(平行四边形、矩形、菱形、正方形、梯形等)名校名师全解全练精品课件
上一页
下一页
宇轩图书
中考典例精析
首页
【点拨】平行四边形的对角线互相平分,本题(2)问可以画出草图借 助图形的变化求点D的坐标. 3 【解答】(1)(2, ) (2)设点 D 的坐标为(x,y),当 AB 为一条对角 2
3 x+1 y+4 3 线时,AB 的中点坐标为(1, ),则 = 1, = ,解得 x=1,y= 2 2 2 2 -1,此时点 D 的坐标为(1,-1).当 AC 为一条对角线时,AC 的中点坐 x+3 y+1 标为(0,3),则 =0 , =3,解得 x=-3,y=5,此时点 D 的坐标 2 2 5 x-1 为(-3,5)当 BC 为一条对角线时,BC 的中点坐标为(2, ),则 = 2, 2 2 y+2 5 = ,解得 x=5,y=3,此时点 D 的坐标为(5,3). 2 2
宇轩图书
考点知识精讲
温馨提示:
首页
能密铺的图形在一个拼接点处的特点:几个图形的内角拼接在一起
时,其和等于360°,并使相等的边互相重合.
上一页
下一页
宇轩图书
考点知识精讲
考点三 平行四边形的定义、性质与判定 1.定义:两组对边 分别平行 的四边形是平行四边形. 2.性质:(1)平行四边形的对边 平行且相等 ; (2)平行四边形的对角 相等 ,邻角 互补 (3)平行四边形的对角线 互相平分 ; ;
目录
第五章 四边形 第20讲 多边形与平行四边形
考点知识精讲
中考典例精析
举一反三
考点训练
宇轩图书
考点知识精讲
考点一 多边形
首页
1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次 相接所组成的封闭图形叫做多边形. 多边形的对角线是连接多边形 不相邻 的两个顶点的线段. 注意:从 n 边形的一个顶点出发可以引出(n -3) 条对角线,共有 n(n-3)/2 条对角线,把多边形分成了(n-2)个三角形.
中考数学 专题20 多边形与平行四边形(解析版)
中考数学复习资料
【2019 年题组】
一、选择题
1.(2019 北京,第 3 题,2 分)正十边形的外角和为( ) A.180° B.360° C.720° D.1440° 【答案】B. 【分析】根据多边的外角和定理进行选择. 【详解】因为任意多边形的外角和都等于 360°,所以正十边形的外角和等于 360°. 故选 B. 【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于 360 度. 考点:多边形内角与外角. 2.(2019 广西梧州市,第 7 题,3 分)正九边形的一个内角的度数是( ) A.108° B.120° C.135° D.140° 【答案】D. 【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.
【例 2】一个多边形切去一个角后,形成的另一个多边形的内角和为 1080°,那么原多边形的边数为
( ) A.7 B.7 或 8 C.8 或 9 D.7 或 8 或 9 【答案】D. 【分析】首先求得内角和为 1080°的多边形的边数,即可确定原多边形的边数. 【详解】设内角和为 1080°的多边形的边数是 n,则(n﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为 7 或 8 或 9.故选 D. 【点睛】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加 1,可能减少 1, 或不变. 考点:多边形内角与外角.
A.360° B.540° C.630° D.720° 【答案】C. 【分析】根据多边形内角和定理:(n﹣2)•180°,无论分成两个几边形,其内角和都能被 180 整除,所 以不可能的是,不能被 180 整除的. 【详解】一条直线将该矩形 ABCD 分割成两个多边形,每一个多边形的内角和都是 180°的倍数,都能被 180 整除,分析四个答案,只有 630 不能被 180 整除,所以 a+b 不可能是 630°. 故选 C. 【点睛】本题考查了多边形内角和定理,题目比较简单.(n﹣2)•180°,无论分成两个几边形,其内角
(完整版)2019年中考数学专题复习第二十讲多边形与平行四边形(含详细参考答案)
2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n 边形的每个外角的度数是,每个内角的度数是。
3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n 边形的一个顶点出发有条对角线,将多边形分成个三角形,一个n 边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n 边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间、地铺成一起,这就是平面图形的密铺,又称作平面图形的。
2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两种正多边形密铺,组合方式有:和、和、和等几种【名师提醒:能密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD 可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2018•铜仁市)如果一个多边形的内角和是外角和的3 倍,则这个多边形的边数是()A.8 B.9C.10 D.11【思路分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.考点二:平行四边形的性质例2 (2018•青岛)已知:如图,平行四边形ABCD,对角线AC 与BD 相交于点E,点G 为AD 的中点,连接CG,CG 的延长线交BA 的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.【思路分析】(1)只要证明AB=CD,AF=CD 即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF 是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG 是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF 是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.考点三:平行四边形的判定例3 (2018•东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F,AB=BF.添加一个条件使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BFC.∠A=∠C D.∠F=∠CDF【思路分析】正确选项是D.想办法证明CD=AB,CD∥AB 即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD 是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【备考真题过关】一、选择题1.(2018•北京)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°2.(2018•乌鲁木齐)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5C.6 D.73.(2018•济宁)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.50°B.55°C.60°D.65°4.(2018•台州)正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°5.(2018•宁波)如图,在▱ABCD 中,对角线AC 与BD 相交于点O,E 是边CD 的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1 的度数为()A.50°B.40°C.30°D.20°6.(2018•黔南州)如图在▱ABCD 中,已知AC=4cm,若△ACD 的周长为13cm,则▱ABCD 的周长为()A.26cm B.24cmC.20cm D.18cm7.(2018•泸州)如图,▱ABCD 的对角线AC,BD 相交于点O,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为()A.20 B.16C.12 D.88.(2018•玉林)在四边形ABCD 中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有()A.3 种B.4 种C.5 种D.6 种9.(2018•呼和浩特)顺次连接平面上A、B、C、D 四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有()A.5 种B.4 种C.3 种D.1 种10.(2018•眉山)如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()DEBCA.1 个B.2 个C.3 个二、填空题11.(2018•宿迁)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是.12. (2018•山西)图1 是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2 是从图1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13. (2018•抚顺)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .14.(2018•十堰)如图,已知▱ABCD 的对角线AC,BD 交于点O,且AC=8,BD=10,AB=5,则△OCD 的周长为.215.(2018•株洲)如图,在平行四边形ABCD 中,连接BD,且BD=CD,过点A 作AM⊥BD 于点M,过点D 作DN⊥AB 于点N,且DN=3 ,在DB 的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP= .16.(2018•泰州)如图,▱ABCD 中,AC、BD 相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为.17.(2018•无锡)如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC⊥OY 于点C,以AC 为一边在∠XOY 内作等边三角形ABC,点P 是△ ABC 围成的区域(包括各边)内的一点,过点P 作PD∥OY 交OX 于点D,作PE∥OX 交OY 于点E.设OD=a,OE=b,则a+2b 的取值范围是.三、解答题18.(2018•岳阳)如图,在平行四边形ABCD 中,AE=CF,求证:四边形BFDE 是平行四边形.19.(2018•宿迁)如图,在▱ABCD 中,点E、F 分别在边CB、AD 的延长线上,且BE=DF,EF 分别与AB、CD 交于点G、H.求证:AG=CH.20.(2018•临安区)已知:如图,E、F 是平行四边形ABCD 的对角线AC 上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.(2018•福建)如图,▱ABCD 的对角线AC,BD 相交于点O,EF 过点O 且与AD,BC 分别相交于点E,F.求证:OE=OF.22.(2018•大庆)如图,在Rt△ABC 中,∠ACB=90°,D、E 分别是AB、AC 的中点,连接CD,过 E 作EF∥DC 交BC 的延长线于F.(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25cm,AC 的长为5cm,求线段AB 的长度.23. (2018•永州)如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F.(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形BCFD 的面积.2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形参考答案【备考真题过关】一、选择题1.【思路分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2 倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6-2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.2.【思路分析】根据内角和定理180°•(n-2)即可求得.【解答】解:∵多边形的内角和公式为(n-2)•180°,∴(n-2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n-2),难度适中.3.【思路分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P 的度数.【解答】解:如图,∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180(n≥3 且n 为整数).4.【思路分析】利用正十边形的外角和是360 度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°-36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360 度.多边形的内角与它的外角互为邻补角.5.【思路分析】直接利用三角形内角和定理得出∠BCA 的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°-60°-80°=40°,∵对角线AC 与BD 相交于点O,E 是边CD 的中点,∴EO 是△DBC 的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO 是△DBC 的中位线是解题关键.6.【思路分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【解答】解:∵AC=4cm,若△ADC 的周长为13cm,∴AD+DC=13-4=9(cm).又∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选:D.【点评】本题考查了平行四边形的性质.此题利用了“平行四边形的对边相等”的性质.7.【思路分析】首先证明:1,由AE+EO=4,推出AB+BC=8 即可解决问题;OE= BC2【解答】解:∵四边形ABCD 是平行四边形,∴OA=OC,∵AE=EB,∴1OE= BC,2∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD 的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.【思路分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4 种,分别是:①②、③④、①③、③④.故选:B.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3 种来判定.9.【思路分析】根据平行四边形的判定定理可得出答案.【解答】解;当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.10.【思路分析】如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH 是菱形即可解决问题;【解答】解:如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S 四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH 是平行四边形,∵CF=BC,∴四边形BCFH 是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题11.【思路分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n-2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.12.【思路分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.【思路分析】直接利用三角形内角和定理得出∠6+∠7 的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,2 2 2 ∴∠5=180°-(∠6+∠7)=40°. 故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解 题关键.14. 【思路分析】根据平行四边形的性质即可解决问题;【解答】解:∵四边形 ABCD 是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD 的周长=5+4+5=14,故答案为 14.【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟 练掌握平行四边形的性质,属于中考基础题.15. 【思路分析】根据 BD=CD ,AB=CD ,可得 BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到 DN=AM=3 ,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到 AP= AM=6.【解答】解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴DN=AM=3 ,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM ,∴△APM 是等腰直角三角形,2∴AP= AM=6,故答案为:6.【点评】本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.16.【思路分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD 是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC 的周长=BC+OB+OC=6+8=14,故答案为14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【思路分析】作辅助线,构建30 度的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a,在Rt△HEP 中,∠EPH=30°,可得EH 的长,计算a+2b=2OH,确认OH 最大和最小值的位置,可得结论.【解答】解:过P 作PH⊥OY 交于点H,∵PD∥OY,PE∥OX,∴四边形EODP 是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt △HEP 中,∠EPH=30°,∴ 1 1 EH= EP= a , 2 2 ∴a+2b=2( 1 a+b )=2(EH+EO )=2OH , 2 当 P 在 AC 边上时,H 与 C 重合,此时 OH 的最小值 1,即 a+2b 的 最小值是 2; 当 P 在点 B 时,OH 的最大值是:1+ 3 2 =OC= OA=1 2= 5 ,即(a+2b )的最大值是 5, 2∴2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形 30 度角的性质、平行四边形的判定和性质,有难度,掌握确认 a+2b 的最值就是确认 OH 最值的范围.三、解答题18. 【思路分析】首先根据四边形 ABCD 是平行四边形,判断出 AB ∥CD ,且AB=CD ,然后根据 AE=CF ,判断出 BE=DF ,即可推得四边形 BFDE 是平行四边形.【解答】证明:∵四边形 ABCD 是平行四边形,∴AB ∥CD ,且 AB=CD ,又∵AE=CF ,∴BE=DF ,∴BE ∥DF 且 BE=DF ,∴四边形 BFDE 是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理 1:SSS--三条边分别对应相等的两个三角形全等.②判定定理 2:SAS--两边及其夹角分别对应相等的两个三角形全等.③ 判定定理 3:ASA--两角及其夹边分别对应相等的两个三角形全等.④判定定理⎨ ⎩4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理 5:HL--斜边与直角边对应相等的两个直角三角形全等.19. 【思路分析】利用平行四边形的性质得出 AF=EC ,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形 ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AD ∥BC ,∴∠E=∠F ,∵BE=DF ,∴AF=EC ,⎧∠A =∠C 在△AGF 和△CHE 中⎪ AF =EC , ⎪∠F =∠E ∴△AGF ≌△CHE (ASA ),∴AG=CH .【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.20. 【思路分析】(1)要证△ADF ≌△CBE ,因为 AE=CF ,则两边同时加上EF ,得到 AF=CE ,又因为 ABCD 是平行四边形,得出AD=CB ,∠DAF=∠BCE ,从而根据 SAS 推出两三角形全等;(2)由全等可得到∠DFA=∠BEC ,所以得到 DF ∥EB .【解答】证明:(1)∵AE=CF ,∴AE+EF=CF+FE ,即 AF=CE .又 ABCD 是平行四边形,∴AD=CB ,AD ∥BC .∴∠DAF=∠BCE.在△ADF 与△CBE中AF=CE∠DAF=∠BCEAD=CB,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.【思路分析】由四边形ABCD 是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD 是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE 和△OCF 中,∠OAE=∠OCFOA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.22.【思路分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE 的周长=AB+BC,故BC=25-AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E 分别是AB、AC 的中点,F 是BC 延长线上的一点,∴ED 是Rt△ABC 的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC=EF,∵DC 是Rt△ABC 斜边AB 上的中线,∴AB=2DC,∴四边形DCFE 的周长=AB+BC,∵四边形DCFE 的周长为25cm,AC 的长5cm,∴BC=25-AB,∵在Rt△ABC 中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23.【思路分析】(1)在Rt△ABC 中,E 为AB 的中点,则1 1CE= AB,BE= AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得2 2∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60 度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD 是平行四边形.(2)在Rt△ABC 中,求出BC,AC 即可解决问题;【解答】(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E 为AB 的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC 中,∠ACB=90°,E 为AB 的中点,3 3 3 3 ∴ 1 1 CE= AB ,BE= AB .2 2∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC ∥BD .又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即 FD ∥BC .∴四边形 BCFD 是平行四边形.(2)解:在 Rt △ABC 中,∵∠BAC=30°,AB=6, ∴ 1 BC= AB=3,AC= BC=3 , 2∴S 平行四边形 BCFD =3×3 =9 .【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等 三角形解决问题,属于中考常考题型.。
中考数学专题复习_第二十讲__多边形与平行四边形(含详细参考答案)
第五章四边形第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n边形的每个外角的度数是,每个内角的度数是。
3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n边形的一个顶点出发有条对角线,将多边形分成个三角形,一个n边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n 边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间、地铺成一起,这就是平面图形的密铺,又称作平面图形的。
2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两种正多边形密铺,组合方式有:和、和、和等几种【名师提醒:能密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6思路分析:由于任何一个多边形的外角和为360°,由题意知此多边形的内角和小于360°.又根据多边形的内角和定理可知任何一个多边形的内角和必定是180°的整数倍,则此多边形的内角和等于180°.由此可以得出这个多边形的边数.解:设边数为n,根据题意得(n-2)•180°<360°解之得n<4.∵n为正整数,且n≥3,∴n=3.故选A.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.对应训练1.(2013•长沙)下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形1.A考点二:平面图形的密铺例2 (2013•漳州)用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形思路分析:根据平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能,即可得出答案.解:∵用一种正多边形镶嵌,只有正方形,正六边形,等边三角形三种正多边形能镶嵌成一个平面图案.∴不能铺满地面的是正十边形;故选B.点评:此题考查了平面镶嵌,用到的知识点是只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.对应训练2.(2013•呼和浩特)只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形2.C考点三:平行四边形的性质例3 (2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD思路分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解:∵在平行四边形ABCD 中,∴AB ∥CD ,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD ,AB=CD ,故B ,C 选项正确,不合题意;无法得出AC ⊥BD ,故此选项错误,符合题意.故选D .点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.例4 (2013•泸州)如图,已知▱ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E .求证:AB=BE .思路分析:根据平行四边形性质得出AB=DC ,AB ∥CD ,推出∠C=∠FBE ,∠CDF=∠E ,证△CDF ≌△BEF ,推出BE=DC 即可. 证明:∵F 是BC 边的中点,∴BF=CF ,∵四边形ABCD 是平行四边形,∴AB=DC ,AB ∥CD ,∴∠C=∠FBE ,∠CDF=∠E ,∵在△CDF 和△BEF 中C FBE CDF E CF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BEF (AAS ),∴BE=DC ,∵AB=DC ,∴AB=BE .点评:本题考查了平行四边形性质,全等三角形的性质和判定,平行线的性质的应用,关键是推出△CDF ≌△BEF对应训练3.(2013•黔西南州)已知▱ABCD 中,∠A+∠C=200°,则∠B 的度数是( )A .100°B .160°C .80°D .60°3.C4.(2013•长春)在△ABC 中,AB=AC ,点D 、E 、F 分别是AC 、BC 、BA 延长线上的点,四边形ADEF 为平行四边形.求证:AD=BF .4.证明:∵四边形ADEF 为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.考点四:平行四边形的判定例5 (2013•荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种思路分析:根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;故选:B.点评:此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.对应训练5.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC5.D【聚焦山东中考】1.(2013•烟台)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或71.D2.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.B.C.4 D.82.B3.(2013•莱芜)正十二边形每个内角的度数为.3.150°4.(2013•菏泽)如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.4【备考真题过关】一、选择题1.(2013•资阳)一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十1.C2.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.B3.(2013•六盘水)下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形B.正六边形C.正方形D.正五边形3.D4.(2013•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.464.C5.(2013•湘西州)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD 延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:55.A6.(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形6.A7.(2013•无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B C D.7.D二、填空题8.(2013•无锡)六边形的外角和等于度.8.3609.(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是.9.910.(2013•三明)如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是.10.答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等11.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= .11.225°12.(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.12.25°13.(2013•安徽)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2= .15.1三、解答题16.(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.16.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∵AE=CF ,∴DE=BF ,DE ∥BF ,∴四边形DEBF 是平行四边形,∴BE=DF .17.(2013•郴州)如图,已知BE ∥DF ,∠ADF=∠CBE ,AF=CE ,求证:四边形DEBF 是平行四边形.17.证明:∵BE ∥DF ,∴∠BEC=∠DFA ,在△ADF 和△CBE 中ADF CBE AFD CEB AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CBE (AAS ),∴BE=DF ,又∵BE ∥DF ,∴四边形DEBF 是平行四边形.18.(2013•广安)如图,在平行四边形ABCD 中,AE ∥CF ,求证:△ABE ≌△CDF .18.证明:∵四边形ABCD 是平行四边形,∴AE ∥CF ,AD=BC ,AB=CD ,∵AE ∥CF ,∴四边形AECF 是平行四边形,∴AE=CF ,AF=CF ,∴BE=DE ,在△ABE 和△CDF 中,AB CD BE DF AE CF =⎧⎪=⎨⎪=⎩,∴△ABE ≌△CDF (SSS ).19.(2013•鞍山)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形.19.证明:(1)∵DF ∥BE ,∴∠DFE=∠BEF .又∵AF=CE ,DF=BE ,∴△AFD ≌△CEB (SAS ).(2)由(1)知△AFD ≌△CEB ,∴∠DAC=∠BCA ,AD=BC ,∴AD ∥BC .∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).20.(2013•台州)如图,在▱ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在B′,C′处,线段EC′与线段AF 交于点G ,连接DG ,B′G .求证:(1)∠1=∠2;(2)DG=B′G .20.证明:(1)∵在平行四边形ABCD 中,DC ∥AB ,∴∠2=∠FEC ,由折叠得:∠1=∠FEC ,∴∠1=∠2;(2)∵∠1=∠2,∴EG=GF ,∵AB ∥DC ,∴∠DEG=∠EGF ,由折叠得:EC′∥B′F ,。
【九年级语文】2018中考数学第20讲多边形与平行四边形课后练习(浙江省有答案)
2018中考数学第20讲多边形与平行四边形课后练习(浙江
省有答案)
5 后练习20 多边形与平行四边形
A组
1.下列多边形中,内角和与外角和相等的是( )
A.四边形 B.五边形 c.六边形 D.八边形
2.如图,在 ABcD中,∠DA=90°,Ac=10c,BD=6c,则AD 的长为( )
A.4c B.5c c.6c D.8c
第2题图
3.如图,在 ABcD中,Ac,BD为对角线,Bc=6,Bc边上的高为4,则阴影部分的面积为( )
A.3 B.6 c.12 D.24
第3题图
4.如图,在 ABcD中,∠A=70°,将 ABcD折叠,使点D,c分别落在点F,E处(点F,E都在AB所在的直线上),折痕为N,则∠AF 等于( )
A.70° B.40° c.30° D.20°
第4题图
5.能伸缩的校门,它利用了四边形的一个性质是____________________.
第5题图
6.(2018 宁波模拟)如图,BD是平行四边形ABcD的对角线,点E、F在BD上,要使四边形AEcF是平行四边形,还需要增加的一个条是____________________.(填一个即可)。
2020年九年级中考数学 三轮题型汇编 平行四边形与多边形(含答案)
2020中考数学 三轮题型汇编 平行四边形与多边形(含答案)1.下列说法错误..的是( ) A . 对角线互相平分的四边形是平行四边形B . 两组对边分别相等的四边形是平行四边形C . 一组对边平行且相等的四边形是平行四边形D . 一组对边相等,另一组对边平行的四边形是平行四边形2. 如图,平行四边ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )第2题图A . 3 cmB . 4 cmC . 5 cmD . 8 cm3.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°第3题图第4题图4.已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE5.由多边形的一个顶点出发的所有对角线把多边形分成8个三角形,那么这个多边形的边数是( )A . 8B . 9C . 10D . 116.如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.7.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.第6题图第7题图8.如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E,若BE=CE,则∠DAE=________度.9.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________.第8题图第9题图10.如图,在▱ABCD中,AB=213 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________cm.第10题图第12题图11.如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为________.12.如图,正十二边形A1A2…A12,连接A3A7、A7A10,则∠A3A7A10=________°.13.如图,▱ABCD的对角线AC,BD交于点O,EF过点O且与BC,AD分别交于点E,F.试猜想线段AE,CF的关系,并说明理由.第13题图14.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=23,求▱ABCD的面积.第14题图15.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.第15题图1. D2. B3. C4. D5. C6. AD ∥BC (答案不唯一)7. 110°8. 509. 55°10. 4 11. 1800°12. 75 13. 解:AE =CF 且AE ∥CF .理由如下:∵ ▱ABCD 的对角线AC ,BD 交于点O ,EF 过点O 且与BC ,AD 分别交于点E 、F , ∴∠AOF =∠COE ,OA =OC ,∵AF ∥CE ,∴∠AFO =∠CEO ,∴△AOF ≌△COE ,∴OF =OE ,又∵OA =OC ,∴四边形AECF 两条对角线互相平分,∴四边形AECF 是平行四边形,故AE =CF 且AE ∥CF .14. 解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCA =∠DAC ,又∠BAC =∠DAC .∴∠BCA =∠BAC ,∴AB =BC ;第14题解图(2)∵AB =BC ,∴▱ABCD 是菱形,如解图,连接BD 交AC 于点O ,则∠AOB =90°,∴AO =12AC =3,在Rt △AOB 中,BO =22-(3)2=1, ∴BD =2,∴S ▱ABCD =12AC ·BD =12×23×2=2 3. 15. 解:(1)证明:∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴AE ∥CD ,∠AOB =90°,又∵DE ⊥BD ,即∠EDB =90°,∴∠AOB =∠EDB ,∴DE ∥AC ,∴四边形ACDE 是平行四边形;(2)∵四边形ABCD 是菱形,AC =8,BD =6,∴AO=4,DO=3,AD=CD=5,又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.。
最新中考数学 真题精选 专题试卷 多边形与平行四边形(含答案解析) (含答案解析)
多边形与平行四边形一.选择题1.(,广东)下列所述图形中,既是中心对称图形,又是轴对称图形地是A.矩形B.平行四边形C.正五边形D.正三角形答案:A.分析:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
2.(,湖北孝感)已知一个正多边形地每个外角等于60,则这个正多边形是A.正五边形B.正六边形C.正七边形D.正八边形考点:多边形内角与外角..分析:多边形地外角和等于360°,因为所给多边形地每个外角均相等,故又可表示成60°n,列方程可求解.解答:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形地边数是6.故选B.点评:本题考查根据多边形地外角和求多边形地边数,解答时要会根据公式进行正确运算、变形和数据处理.3.(•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB地中点,对下列各值:①线段MN地长;②△PAB地周长;③△PMN地面积;④直线MN,AB之间地距离;⑤∠APB 地大小.其中会随点P地移动而变化地是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间地距离.分析:根据三角形地中位线平行于第三边并且等于第三边地一半可得MN=AB,从而判断出①不变;再根据三角形地周长地定义判断出②是变化地;确定出点P到MN地距离不变,然后根据等底等高地三角形地面积相等确定出③不变;根据平行线间地距离相等判断出④不变;根据角地定义判断出⑤变化.解答:∵点A,B为定点,点M,N分别为PA,PB地中点,∴MN是△PAB地中位线,∴MN=AB,即线段MN地长度不变,故①错误;PA、PB地长度随点P地移动而变化,所以,△PAB地周长会随点P地移动而变化,故②正确;∵MN地长度不变,点P到MN地距离等于l与AB地距离地一半,∴△PMN地面积不变,故③错误;直线MN,AB之间地距离不随点P地移动而变化,故④错误;∠APB地大小点P地移动而变化,故⑤正确.综上所述,会随点P地移动而变化地是②⑤.故选B.点评:本题考查了三角形地中位线平行于第三边并且等于第三边地一半,等底等高地三角形地面积相等,平行线间地距离地定义,熟记定理是解题地关键.4.(•山西)如图,在△ABC中,点D、E分别是边AB,BC地中点.若△DBE地周长是6,则△ABC 地周长是()A. 8 B. 10 C. 12 D. 14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC地中点,可得DE是三角形BC地中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长地含义,判断出△ABC地周长和△DBE 地周长地关系,再结合△DBE地周长是6,即可求出△ABC地周长是多少.解答:解:∵点D、E分别是边AB,BC地中点,∴DE是三角形BC地中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC地周长是△DBE地周长地2倍,∵△DBE地周长是6,∴△ABC地周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理地应用,要熟练掌握,解答此题地关键是要明确:三角形地中位线平行于第三边,并且等于第三边地一半.(2)此题还考查了三角形地周长和含义地求法,要熟练掌握.5.(•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确地是()A. DE=DF B. EF=AB C. S△ABD=S△ACD D. AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项地思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理地运用,解题地根据是熟记其定理:三角形地中位线平行于第三边,并且等于第三边地一半.6.(•安顺)如图,在▱ABCD中,点E是边AD地中点,EC交对角线BD于点F,则EF:FC等于()A. 3:2 B. 3:1 C. 1:1 D. 1:2考点:平行四边形地性质;相似三角形地判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD地中点得出答案即可.解答:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD地中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形地性质以及相似三角形地判定与性质等知识,得出△DEF∽△BCF是解题关键.7.(•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE地长等于()A. 8cm B. 6cm C. 4cm D. 2cm考点:平行四边形地性质.分析:由平行四边形地性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE地长.解答:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形地性质、等腰三角形地判定;熟练掌握平行四边形地性质,并能进行推理计算是解决问题地关键.8.(•玉林)如图,在▱ABCD中,BM是∠ABC地平分线交CD于点M,且MC=2,▱ABCD地周长是在14,则DM等于()A. 1 B. 2 C. 3 D. 4考点:平行四边形地性质.分析:根据BM是∠ABC地平分线和AB∥CD,求出BC=MC=2,根据▱ABCD地周长是14,求出CD=5,得到DM地长.解答:解:∵BM是∠ABC地平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD地周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查地是平行四边形地性质和角平分线地定义,根据平行四边形地对边相等求出BC+CD是解题地关键,注意等腰三角形地性质地正确运用.9.(•绥化)如图,▱ABCD地对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立地个数有()A. 1个 B. 2个 C. 3个 D. 4个考点:平行四边形地性质;等腰三角形地判定与性质;等边三角形地判定与性质;含30度角地直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形地中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形地性质,等边三角形地判定和性质,直角三角形地性质,平行四边形地面积公式,熟练掌握性质定理和判定定理是解题地关键.(•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD地平分线AG交BC于点E.若BF=6,AB=5, 10.则AE地长为()A. 4 B. 6 C. 8 D. 10考点:平行四边形地性质;等腰三角形地判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形地性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形地性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形地判定得AB=EB,然后再根据等腰三角形地性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE地长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形地性质:平行四边形地对边相等;平行四边形地对角相等;平行四边形地对角线互相平分.也考查了等腰三角形地判定与性质和基本作图.11.(•本溪)如图,▱ABCD地周长为20cm,AE平分∠BAD,若CE=2cm,则AB地长度是()A. 10cm B. 8cm C. 6cm D. 4cm考点:平行四边形地性质.分析:根据平行四边形地性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程地解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD地周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形地在,平行线地性质,等腰三角形地判定地应用,解此题地关键是能推出AB=BE,题目比较好,难度适中.12.(•福建)如图,在▱ABCD中,O是对角线AC,BD地交点,下列结论错误地是()A. AB∥CD B. AB=CD C. AC=BD D. OA=OC考点:平行四边形地性质.分析:根据平行四边形地性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形地性质地应用,能熟记平行四边形地性质是解此题地关键,注意:平行四边形地对边相等且平行,平行四边形地对角线互相平分.13.(•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A. 61° B. 63° C. 65° D. 67°考点:平行四边形地性质.分析:由平行四边形地性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD地度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形地性质以及三角形地外角和定理,题目比较简单,解题地关键是灵活运用平行四边形地性质,将四边形地问题转化为三角形问题.14.(•巴彦淖尔)如图,P为平行四边形ABCD地边AD上地一点,E,F分别为PB,PC地中点,△PEF,△PDC,△PAB地面积分别为S,S1,S2.若S=3,则S1+S2地值为()A. 24 B. 12 C. 6 D. 3考点:平行四边形地性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC地中位线,利用中位线定理得到EF为BC地一半,且EF平行于BC,得出△PEF与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC地面积,而△PBC面积=△CPQ面积+△PBQ 面积,即为△PDC面积+△PAB面积,即为平行四边形面积地一半,即可求出所求地面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB地中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形地性质,相似三角形地判定与性质,熟练掌握平行四边形地判定与性质是解本题地关键.15.(•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上地点,若四边形AECF为正方形,则AE地长为()A. 7 B. 4或10 C. 5或9 D. 6或8考点:平行四边形地性质;勾股定理;正方形地性质.专题:分类讨论.分析:设AE地长为x,根据正方形地性质可得BE=14﹣x,根据勾股定理得到关于x地方程,解方程即可得到AE地长.解答:解:如图:设AE地长为x,根据正方形地性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE地长为6或8.故选:D.点评:考查了平行四边形地性质,正方形地性质,勾股定理,关键是根据勾股定理得到关于AE地方程.16.(•常州)如图,▱ABCD地对角线AC、BD相交于点O,则下列说法一定正确地是()A. AO=OD B. AO⊥OD C. AO=OC D. AO⊥AB考点:平行四边形地性质.分析:根据平行四边形地性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形地性质,掌握平行四边形地对边平行且相等,对角线互相平分是解题地关键.17.(•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B地对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A. 4个 B. 3个 C. 2个 D. 1个考点:平行四边形地性质;等边三角形地判定;翻折变换(折叠问题).分析:根据折叠地性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形地性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形地性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B地对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形地性质、折叠地性质以及等边三角形地判定和性质,解题地关键是熟记等边三角形地各种判定方法特别是经常用到地判定方法:三个角都相等地三角形是等边三角形.18.(•连云港)已知四边形ABCD,下列说法正确地是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形地判定;矩形地判定;正方形地判定.分析:由平行四边形地判定方法得出A不正确、B正确;由矩形和正方形地判定方法得出C、D不正确.解答:解:∵一组对边平行且相等地四边形是平行四边形,∴A不正确;∵两组对边分别相等地四边形是平行四边形,∴B正确;∵对角线互相平分且相等地四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等地四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形地判定、矩形地判定、正方形地判定;熟练掌握平行四边形、矩形、正方形地判定方法是解决问题地关键.19.(•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD地面积为()A. 6 B. 12 C. 20 D. 24考点:平行四边形地判定与性质;全等三角形地判定与性质;勾股定理.分析:根据勾股定理,可得EC地长,根据平行四边形地判定,可得四边形ABCD地形状,根据平行四边形地面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD地面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形地判定与性质,利用了勾股定理得出CE地长,又利用对角线互相平分地四边形是平行四边形,最后利用了平行四边形地面积公式.二.填空题1. (广东)正五边形地外角和等于(度).【答案】360.【解析】n边形地外角和都等于360度。
第20讲多边形与平行四边形(含答案)
第五早四边形第一节多边形与平行四边形会根据条件选择适当方法判定平行四边形例2 . (2005年山东省)如图,在|_1 ABCD 中,对角线AC 上的两点,当E 、F 满足下列哪个条件时,四边形A . 0E=0FB . DE=BFC . / ADE 玄 CBF 【分析】虽然判别平行四边形可从“边、角、对角线” 角度来考虑,但此例图中已有对角线,所以最适当方法应是“对角线互相平分的四边形为平行四边形” .能利用平行四边形的性质进行计算例3. (2005年西宁市)如图,在|_1 ABCD 中,已知对角线 AC 和 周长为15, AB=6,那么对角线 AC+BD= ____________【分析】本例解题依据是:平行四边形的对角线互相平分,先求出 A0+B0=9 ?再求得 AC+BD=18【考点精练】一、基础训练1如图1该多边形的内角和为【回顾与思考】 =丰富情境匸定一 内角和外角和I rfir n 性1 【例题经典】利用平行四边形的性质求面积 例1 . (2006年河南省)如图,在长线于点F ,求证: 【解析】•••四边形 ••• E 是DC 的中点, •••△ AED^A FEC S ^AED =S A FEC . • - S ^ABF =S 四边形 ABCE +S A CEF =S 四边形 ABCE +S A AED =S I ABCD □ ABCD 中,E 为CD 的中点,连结 AE 并延长交BC 的延$△ ABF =S I ABCD . ABCD 为平行四边形,••• AD// BC. ••• DE=CE AC BD 相交于点O, E 、F?是对角线 DEBF 不 一定是平行四边形( ) D . / ABE=/ CDF 三个度.C(1) (2) 2•如图2, E 、F 是U ABCD 对角线BD 上的两点,请你添加一个适当的条件: _________________ 使四边形AECF 是平行四边形. 3. (2006年长沙市)如图 3,四边形ABCD 中, AB// CD,要使四边形 ABCD 为平行四边形, 则应添加的条件是 ____________ (添加一个条件即可). 4. (2006年扬州市)LI ABCD 勺对角线交于点 0,下列结论错误的是() A . LI ABCD 是中心对称图形 B . △ AOB^A CODC . △ AOD^A BOCD . △ AOB 与△ BOC 的面积相等 5. (2005年天津市)如图 4,在U ABCD 中, EF// AB GH/ AD, EF 与GH 交于点O,则该图 中的平行四边形的个数共有( ) A . 7个 B . 8个 C . 9个6. (2006年广东省)如图 5所示, 定成立的是() A . ACIBD B . OA=OC D . 11 个 在LI ABCD 中,对角线 AC BD 交于点O 下列式子中 C . AC=BD D . AO=OD rZ > A El ----- 1 (4) (5)7. (2006年淄博市)如图 6,在^ MBN 中,BM=6点A , C, D 分别在 MB NB MN 上,?四 边形ABCD 为平行四边形,/ NDC2 MDA 则U ABCD 勺周长是( ) A . 24 B . 18 C . 16 D . 12&( 2006年怀化市)如图7, AB=AC AD 丄BC, AD=BC 若用剪刀沿 AD 剪开,?则最多能拼 出不同形状的四边形个数是( )A . 2个B . 3个C . 4个D . 5个 9.如图 值为 A . 8, LI ABCD 中,点E 、F 分别是 AD AB 的中点,EF 交AC 于点G,那么AG: GC 勺 1: 3 c (7) 10. ( 2006年南通市)为()A . 6mB . (8) 如图9, LI (9) ABCD 勺周长是28cm, △ ABC 的周长是22cm,则AC 的长 12cm C . 4cmD . 8cm二、能力提升11.如图,在 □ ABCD 中, E 、F 是对角线 AC 上的两点,AE=CF 求证:BE=DF114.如图,DB// AC,且 DB=—AC, E 是 AC 的中点,求证:BC=DE2三、应用与探究12.( 2006年德阳市)如图,已知点 M N 分别是U ABCD 的边AB/ DAN2 BCM13. (2006年临安市)已知:如图,E 、F 是平行四边形 ABCD?勺对角线 求证:(1 )△ ADF^A CBE (2) EB// DF.ACT 上 的两点,AE=CF DC 的中点,?求证:?15. ( 2006年江阴市)已知平行四边形ABCD中,点E、F分别在边AB BC上. (1 )若AB=10, AB与CD间距离为8, AE=EB BF=FC 求^ DEF的面积.(2)若^ ADE △ BEF △ CDF的面积分别为5、3、4,求^ DEF的面积.答案:例题经典例2. B考点精练I.900 2 .答案不唯一,女0 BE=DF等3 .答案不唯一,女0 AB=C[等?4. D 5 . C 6 . C 7 . D 8 . D 9 . B 10 . DII.证^ ABE^A CDF( SAS ,即可得到BE=?DF12.证^ BCM2A DAN( SAS ,即可得/ DAN玄BCM13.(1)根据(?SAS ?证^ ADFT^A CBE(2)连接BF、DE DB ?根据对角线互相平分的四边形是平行四边形. 证四边形BEDF是平行四边形即可14.证四边形BCED是平行四边形即可15. (1) S A DEF =30 (2) S A DEF =68。
2020年九年级中考数学考点难点突破: 平行四边形与多边形(含答案)
2020年九年级中考数学考点难点突破:平行四边形与多边形1.下列说法错误..的是()A. 对角线互相平分的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边相等,另一组对边平行的四边形是平行四边形2. 如图,平行四边ABCD的周长是26 cm,对角线AC与BD交于点O,AC⊥AB,E 是BC中点,△AOD的周长比△AOB的周长多3 cm,则AE的长度为()第2题图A. 3 cmB. 4 cmC. 5 cmD. 8 cm3.如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B 为()A. 66°B. 104°C. 114°D. 124°第3题图第4题图4.已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OCC . ∠BOE =∠OBAD . ∠OBE =∠OCE5.由多边形的一个顶点出发的所有对角线把多边形分成8个三角形,那么这个多边形的边数是( )A . 8B . 9C . 10D . 116.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件________(写一个即可),使四边形ABCD是平行四边形.7.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.第6题图第7题图8.如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E,若BE=CE,则∠DAE=________度.9.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________.第8题图第9题图10.如图,在▱ABCD中,AB=213 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________cm.第10题图第12题图11.如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为________.12.如图,正十二边形A1A2…A12,连接A3A7、A7A10,则∠A3A7A10=________°.13.如图,▱ABCD的对角线AC,BD交于点O,EF过点O且与BC,AD分别交于点E,F.试猜想线段AE,CF的关系,并说明理由.第13题图14.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=23,求▱ABCD的面积.第14题图15.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.第15题图1. D2. B3. C4. D5. C6. AD∥BC(答案不唯一)7. 110°8. 509. 55°10. 411. 1800°12. 7513. 解:AE=CF且AE∥CF.理由如下:∵▱ABCD的对角线AC,BD交于点O,EF过点O且与BC,AD分别交于点E、F,∴∠AOF=∠COE,OA=OC,∵AF∥CE,∴∠AFO=∠CEO,∴△AOF≌△COE,∴OF=OE,又∵OA=OC,∴四边形AECF两条对角线互相平分,∴四边形AECF是平行四边形,故AE =CF 且AE ∥CF .14. 解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠BCA =∠DAC ,又∠BAC =∠DAC . ∴∠BCA =∠BAC , ∴AB =BC ;第14题解图(2)∵AB =BC , ∴▱ABCD 是菱形,如解图,连接BD 交AC 于点O ,则∠AOB =90°,∴AO =12AC =3,在Rt △AOB 中,BO =22-(3)2=1,∴BD =2,∴S ▱ABCD =12AC ·BD =12×23×2=2 3.15. 解:(1)证明:∵四边形ABCD 是菱形, ∴AB ∥CD ,AC ⊥BD , ∴AE ∥CD ,∠AOB =90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20讲多边形与平行四边形
【回顾与思考】
【例题经典】
一.利用平行四边形的性质求面积
例1.(2006年河南省)如图,在 ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F,求证:S△ABF=S ABCD.
【解析】∵四边形ABCD为平行四边形,∴AD∥BC.
∵E是DC的中点,∴DE=CE.
∴△AED≌△FEC.
∴S△AED =S△FEC.
∴S△ABF =S四边形ABCE+S△CEF =S四边形ABCE+S△AED =S ABCD
二.会根据条件选择适当方法判定平行四边形
例2.(2005年山东省)如图,在 ABCD中,对角线AC、BD相交于点O,E、F•是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF
【分析】虽然判别平行四边形可从“边、角、对角线”三个
角度来考虑,但此例图中已有对角线,所以最适当方法应是“对
角线互相平分的四边形为平行四边形”.
三.能利用平行四边形的性质进行计算
例3.(2005年西宁市)如图,在 ABCD中,已知对角线AC和BD相交于点O,△AOB•的周长为15,AB=6,那么对角线AC+BD=_______.
【分析】本例解题依据是:平行四边形的对角线互相平分,先
求出AO+BO=9,•再求得AC+BD=18.
基础训练
1.如图1,该多边形的内角和为_______度.
(1) (2) (3) 2.如图2,E、F是 ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.
3.(2006年长沙市)如图3,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可).
4.(2006年扬州市) ABCD的对角线交于点O,下列结论错误的是()
A. ABCD是中心对称图形 B.△AOB≌△COD
C.△AOD≌△BOC D.△AOB与△BOC的面积相等
5.(2005年天津市)如图4,在 ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有()
A.7个 B.8个 C.9个 D.11个
6.(2006年广东省)如图5所示,在 ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()
A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD
(4) (5) (6)
7.(2006年淄博市)如图6,在△MBN中,BM=6,点A,C,D分别在MB,NB,MN•上,•四边形ABCD为平行四边形,∠NDC=∠MDA,则 ABCD的周长是()
A.24 B.18 C.16 D.12
8.(2006年怀化市)如图7,AB=AC,AD⊥BC,AD=BC,若用剪刀沿AD剪开,•则最多能拼出不同形状的四边形个数是()
A.2个 B.3个 C.4个 D.5个
9.如图8, ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值为(• )
A.1:2 B.1:3 C.1:4 D.2:3
(7) (8) (9) 10.(2006年南通市)如图9, ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()
A.6m B.12cm C.4cm D.8cm
能力提升
11.如图,在
ABCD 中,E 、F 是对角线AC 上的两点,AE=CF ,求证:BE=DF .
12.(2006年德阳市)如图,已知点M 、N 分别是
ABCD 的边AB 、DC 的中点,•求证:•
∠DAN=∠BCM .
13.(2006年临安市)已知:如图,E 、F 是平行四边形ABCD•的对角线AC•上的两点,AE=CF .
求证:(1)△ADF ≌△CBE ;(2)EB ∥DF .
14.如图,DB ∥AC ,且DB=
1
2
AC ,E 是AC 的中点,求证:BC=DE .
应用与探究
15.(2006年江阴市)已知平行四边形ABCD 中,点E 、F 分别在边AB 、BC 上. (1)若AB=10,AB 与CD 间距离为8,AE=EB ,BF=FC ,求△DEF 的面积. (2)若△ADE 、△BEF 、△CDF 的面积分别为5、3、4,求△DEF 的面积.
答案与参考
例题经典
例2.B
考点精练
1.900 2.答案不唯一,如BE=DF等 3.答案不唯一,如AB=CD等 • 4.D 5.C 6.C 7.D 8.D 9.B 10.D
11.证△ABE≌△CDF(SAS),即可得到BE=•DF
12.证△BCM≌△DAN(SAS),即可得∠DAN=∠BCM
13.(1)根据(•SAS)•证△ADF•≌△CBE
(2)连接BF、DE、DB,•根据对角线互相平分的四边形是平行四边形.证四边形BEDF是平行四边形即可
14.证四边形BCED是平行四边形即可
15.(1)S△DEF =30 (2)S△DEF =68。