转化与化归思想、分类讨论思想
数学四大思想
数学思想方法数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。
通常混称为“数学思想方法”。
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。
宇宙世界,充斥着等式和不等式。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
分类讨论思想转化与划归思想ppt课件
思想概述·应用点拨
热点聚焦·题型突破
归纳总结·思维升华
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
2.中学数学中可能引起分类讨论的因素: (1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的 定义、二次函数的定义、直线的倾斜角等. (2)由数学运算要求而引起的分类讨论:如除法运算中除数不为 零,偶次方根为非负数,对数运算中真数与底数的要求,指数 运算中底数的要求,不等式中两边同乘以一个正数、负数,三 角函数的定义域,等比数列{an}的前n项和公式等. (3)由性质、定理、公式的限制而引起的分类讨论:如函数的单 调性、基本不等式等.
思想概述·应用点拨
热点聚焦·题型突破
归纳总结·思维升华
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(0,x1) x1 (x1,x2) x2 (x2,+∞)
综上所述:当 m≥0 时,f(x)在(0,+∞)上单调递增.
当 m≤-1 时,f(x)在(0,+∞)上单调递减,当-1<m<0 时,f(x)
在 0,-1+m1-m2 和 -1-m1-m2,+∞ 上 单 调 递 减 , 在
三角函数中的数学思想
三角函数中的数学思想三角函数是中学数学的重要内容之一,符号与变元、集合与对应、数形结合等基本数学思想在研究三角函数时起着重要作用,分析、探索、化归、类比、平行移动、伸长和缩短这些常用的基本方法时隐时现。
这些数学思想方法为学生学习数学和应用数学提供了一个新的领域,教科书对此作了渗透,教学时应注意及时提醒或强调。
下面谈谈这些具体的数学思想和方法:一、数形结合思想数形结合思想是通过“以形助数”或“以数助形”,把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来解决问题的数学思想方法。
例1:已知0<θ<,求证sinθ<θ<tanθ。
分析:本题所要证明的不等式中各个部分的意义完全不同(分别是角θ的正弦值、角θ、角θ的正切值),因此,证明的关键是找到联系三者的纽带,这就是单位圆中的三角函数线。
评注:本题是一道新颖而别致的题目,此证法体现了数学中数与形的完美结合。
二、分类讨论思想数学基础知识(如法则、公式、定理、性质、基本方法等)的应用都有一定的条件,就是说只能在一定的范围内使用它们。
当在一个比它需要的条件更广的范围内求解问题时,要应用这些基础知识,就需要把这一更广的范围划分成几个较小的范围以适应基本知识所需的条件,在每一个较小的范围内都把问题解决掉。
通俗地讲,就是“化整为零、各个击破”,或者说不同的情况要采用不同的方法去对待。
这种处理问题的思想就是“分类讨论”的思想。
点评:已知α在第几象限,要确定(n∈N+,n≥2)所在的象限,常用的方法是分类讨论,并且按被n除所得的余数0、1、2、…、n-1分为n类。
三、函数思想函数的思想是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,使问题获得解决。
点评:本题若不注意考察题设特点用函数看问题,而是按照通常方法去括号、因式分解去证就比较繁琐。
高考数学复习 分类讨论思想、转化与化归思想
第2讲 分类讨论思想、转化与化归思想数学思想解读1.分类讨论的思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.2.转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.热点一 分类讨论思想的应用应用1 由概念、法则、公式、性质引起的分类讨论【例1】 (1)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________; (2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________. 解析 (1)若a >1,有a 2=4,a -1=m ,解得a =2,m =12. 此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意.(2)当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立.当q ≠1时,由a 3=32,S 3=92,∴⎩⎪⎨⎪⎧a 1q 2=32, ①a 1(1+q +q 2)=92, ②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0, 所以q =-12或q =1(舍去).当q =-12时,a 1=a 3q 2=6, 综上可知,a 1=32或a 1=6. 答案 (1)14 (2)32或6探究提高 1.指数函数、对数函数的单调性取决于底数a ,因此,当底数a 的大小不确定时,应分0<a <1,a >1两种情况讨论.2.利用等比数列的前n 项和公式时,若公比q 的大小不确定,应分q =1和q ≠1两种情况进行讨论,这是由等比数列的前n 项和公式决定的.【训练1】 (1)(2017·长沙一中质检)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A.8 B.10 C.16D.32(2)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0.若f (1)+f (a )=2,则a 的所有可能取值的集合是________.解析 (1)当n =1时,a 1=S 1=2a 1-2,解得a 1=2. 因为S n =2a n -2,当n ≥2时,S n -1=2a n -1-2,两式相减得,a n =2a n -2a n -1,即a n =2a n -1,则数列{a n }为首项为2,公比为2的等比数列, 则S 5-S 4=a 5=25=32. (2)f (1)=e 0=1,即f (1)=1. 由f (1)+f (a )=2,得f (a )=1.当a ≥0时,f (a )=1=e a -1,所以a =1. 当-1<a <0时,f (a )=sin(πa 2)=1, 所以πa 2=2k π+π2(k ∈Z ).所以a 2=2k +12(k ∈Z ),k 只能取0,此时a 2=12, 因为-1<a <0,所以a =-22. 则实数a取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1.答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1 应用2 由图形位置或形状引起的分类讨论【例2】 (1)(2017·昆明一中质检)已知双曲线的离心率为233,则其渐近线方程为________;(2)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________. 解析 (1)由于e =c a =233,∴c 2a 2=a 2+b 2a 2=43,则a 2=3b 2, 若双曲线焦点在x 轴上,渐近线方程y =±33x . 若双曲线焦点在y 轴上,渐近线方程y =±3x .(2)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0. 若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. 答案 (1)y =±3x ,或y =±33x (2)12或32探究提高 1.圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.2.相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.【训练2】 设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析 若∠PF 2F 1=90°.则|PF 1|2=|PF 2|2+|F 1F 2|2, 又因为|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,所以|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, 所以|PF 1|2+(6-|PF 1|)2=20, 所以|PF 1|=4,|PF 2|=2,所以|PF 1||PF 2|=2.综上知,|PF 1||PF 2|=72或2.答案 72或2应用3由变量或参数引起的分类讨论【例3】已知f(x)=x-a e x(a∈R,e为自然对数的底).(1)讨论函数f(x)的单调性;(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.解(1)f′(x)=1-a e x,当a≤0时,f′(x)>0,函数f(x)是(-∞,+∞)上的单调递增函数;当a>0时,由f′(x)=0得x=-ln a,所以函数f(x)在(-∞,-ln a)上的单调递增,在(-ln a,+∞)上的单调递减.(2)f(x)≤e2x⇔a≥xe x-ex,设g(x)=xe x-ex,则g′(x)=1-e2x-xe x.当x<0时,1-e2x>0,g′(x)>0,∴g(x)在(-∞,0)上单调递增.当x>0时,1-e2x<0,g′(x)<0,∴g(x)在(0,+∞)上单调递减.所以g(x)max=g(0)=-1,所以a≥-1.故a的取值范围是[-1,+∞).探究提高 1.(1)参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等.本题中参数a与自变量x的取值影响导数的符号应进行讨论.(2)解析几何中直线点斜式、斜截式方程要考虑斜率k存在或不存在,涉及直线与圆锥曲线位置关系要进行讨论.2.分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏”.【训练3】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1). 热点二 转化与化归思想 应用1 特殊与一般的转化【例4】 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( ) A.2a B.12a C.4aD.4a(2)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 (1)抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F ⎝ ⎛⎭⎪⎫0,14a .过焦点F 作直线垂直于y 轴,则|PF |=|QF |=12a ,∴1p +1q =4a .(2)由题意,不妨设b =(2,0),a =(cos θ,sin θ), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ=5+4cos θ+5-4cos θ,令y =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5. 答案 (1)C (2)4 2 5探究提高 1.一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.2.对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【训练4】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C =12+121+12×12=45.答案 45应用2 函数、方程、不等式之间的转化【例5】 已知函数f (x )=3e |x |,若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,试求m 的最大值. 解 ∵当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0, ∴f (x +t )≤3e x ⇔e x +t ≤e x ⇔t ≤1+ln x -x .∴原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (1≤x ≤m ). ∵h ′(x )=1x -1≤0,∴函数h (x )在[1,+∞)上为减函数, 又x ∈[1,m ],∴h (x )min =h (m )=1+ln m -m . ∴要使得对任意x ∈[1,m ],t 值恒存在, 只需1+ln m -m ≥-1.∵h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e =-1, h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e =-1,又函数h (x )在[1,+∞)上为减函数, ∴满足条件的最大整数m 的值为3.探究提高 1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.【训练5】 (2017·江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A → ·PB → ≤20,则点P 的横坐标的取值范围是________.解析 设点P (x ,y ),且A (-12,0),B (0,6).则P A → ·PB → =(-12-x ,-y )·(-x ,6-y )=x (12+x )+y (y -6)≤20, 又x 2+y 2=50, ∴2x -y +5≤0,则点P 在直线2x -y +5=0上方的圆弧上(含交点). 联立⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1,结合图形知,-52≤x ≤1.故点P 横坐标的取值范围是[-52,1]. 答案 [-52,1]应用3 正与反、主与次的转化【例6】 (1)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________;(2)对于满足0≤p ≤4的所有实数p ,不等式x 2+px >4x +p -3恒成立,则x 的取值范围是________.解析 (1)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数, 则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立. 由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x .当x ∈(t ,3)时恒成立,∴m +4≥2t -3t 恒成立, 则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x ,当x ∈(t ,3)时恒成立,则m +4≤23-9,即m ≤-373. ∴使函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5. (2)设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0.所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f (0)>0,f (4)>0,即⎩⎪⎨⎪⎧(x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1.答案 ⎝ ⎛⎭⎪⎫-373,-5 (2)(-∞,-1)∪(3,+∞)探究提高 1.第(1)题是正与反的转化,由于不为单调函数有多种情况,先求出其反面,体现“正难则反”的原则.题目若出现多种成立的情形,则不成立的情形相对很少,从后面考虑较简单,因此,间接法多用于含有“至多”“至少”及否定性命题情形的问题中.2.第(2)题是把关于x 的函数转化为在[0,4]内关于p 的一次函数大于0恒成立的问题.在处理多变元的数学问题时,我们可以选取其中的参数,将其看作是“主元”,而把其它变元看作是参数.【训练6】 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.解析 由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案 ⎝ ⎛⎭⎪⎫-23,11.分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思想,降低问题难度.常见的分类讨论问题:(1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论,函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论,对称轴位置的讨论,判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论.(4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论.(6)立体几何:点线面及图形位置关系的不确定性引起的讨论.(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论.(8)去绝对值时的讨论及分段函数的讨论等.2.转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而解决问题的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.。
第3讲 分类讨论思想、转化与化归思想1
A.-
3
3 2
B.
3
3 2
C.-
3
4 2
D.
3
4 2
关闭
若 q=1,则有 S3=3a1,S6=6a1,S9=9a1,但 a1≠0,即得 S3+S6≠2S9,与题设矛 盾,故 q≠1.又依题意 q3(2q6-q3-1)=0,即(2q3+1)· (q3-1)=0,因为 q≠1, 所以 q3-1≠0,则 2q3+1=0, 解得 q=- 2 . C
第一部分
应用一 应用二 应用三
一、分类讨论思想
思想方法诠释 思想分类应用 应用方法归纳
-14-
突破训练x 3若函数f(x)=aex-x-2a有两个零点 ,则实数a的取值范围 x 函数 f(x)=ae -x-2a 的导函数 f'(x)=ae -1, 是( ) 当 a≤0 时,f'(x)≤0 恒成立,函数 f(x)在 R 上单调,不可能有两个零点;
当 a>0 时,g(x)的对称轴 x=-2������<0,g(x)在(0,1)内单调递增,符合题 意, 当 a<0 时,需满足 g(x)的对称轴
1 x=-2������
≥1,解得
1 a≥-2,综上
1 a≥-2.
1 - ,+∞ 2
关闭
解析
答案
第一部分
应用一 应用二 应用三
一、分类讨论思想
思想方法诠释 思想分类应用 应用方法归纳
1
综上:①当 0<a< 时,f(x)在区间 1, , + ∞ 上单调递增;
1 1 1 1-2 ������ ������
上单调递减,在区间(0,1)和
②当 a=3时,f(x)在定义域(0,+∞)上单调递增; ③当3<a<2时,f(x)在区间
中学数学中常见的数学思想有哪些
中学数学中常见的数学思想有哪些答题内容:1、化归的思想方法:所谓化归思想方法又叫转换思想方法、也叫转换思想方法、也叫转化思想方法,是一种把未解决的问题或特解决的问题,通过某种方式的转化,归化到一类已经能解决或比较容易解决的问题,最终得原问题的解答的思想方法.化归思想方法的三要素:化归谁化归对象、化归到哪化归目标、怎样化归化归方法.常见的化归方式有:已知与未知的化归、特殊与一般的化归、动与静的化归、抽象与具体的化归等.化归思想方法的特点:是实际问题的规范化、简单化、熟悉化、模式化、直观化、正难侧反思化、以便应用已知的理论、方法和技巧到解决问题的目的.其形式如图所示:例如方程问题转化为不等式问题:已知关于,的方程组,的解满足,求的取值范围.解析:先解关于,的方程组,再把用表示的,的代数式代入不等式组中,解关于的不等式组.2、数形结合的思想方法所谓数形结合的思想方法是指把数学问题用数量关系与图形结合起来解答数学问题.数形结合的思想方法的特点:数→形→问题的解答;形→数→问题的解答;数形,问题的解答.例如:如图所示、在数轴上的位置,请化简+的结果是:3、分类讨论的思想方法所谓分类讨论的思想方法是指根据所研究的问题的某种相同性和差异性将它们分类来进行研究的思想方法.分类讨论的思想方法的特点:分类不能重复也不能遗漏;同一次分类时,标准须相同;分类须有一定的范围,不能超范围.例如:三角形按边分类方法:三角形可分为不等边三角形、等腰三角形,等腰三角形又可分为等边三角形、底边和腰不相等的等腰三角形.三角形按角分类方法:三角形可分为直角三角形、锐角三角形、钝角三角形.4、类比与归纳的思想方法所谓类比与归纳的思想方法是包括类比思想方法和归纳思想方法.类比思想方法是指不同的研究对象在某些方面有相似或相同之处,来联想、推导、猜想这些研究对象在其它方面也可能相同或相似,并作出某种判断的推理的思想方法.其特点是从特殊到特殊的推理方式.例如:从分数性质到分式性质;从全等三角形到相似三角形等.归纳思想方法是指由个别的、特殊的事例来推出同一类事物一般性的方法.其特点是由特殊至一般的推理方式.例如:1个点分割直线为2个部分,2个点分割直线为3个部分,3个点分割直线为4个部分,4个点分割直线为5个部分,5个点分割直线为6个部分,┉,n个点分割直线为1个部分.类比与归纳的思想方法活动过程如下:研究对象形成命题证明5、数学建模的思想方法所谓数学建模的思想方法是根据所研究问题的一些属性、关系,用形式化的数学语言表示的一种数学结构,中学数学中常用的数学模型有:图形、图象、表格和数学表达式,具体讲有方程模型、函数模型、几何模型、三角模型、不等式模型和统计模型.数学建模的思想方法一般原则:简化原则、可推演原则、反映性原则,其一般形式如图所示:例如:某公司计划购买若干台电脑,现从两家协力商厂了解到同一型号的电脑报价均为5000元,并且多买都有一定的优惠,A协力商厂优惠条件:第一台按原报价收款,共余每台优惠30%;B协力商厂优惠条件:每台优惠20%.如果你是老板,你该怎么考虑,如何选择分析:什么情况下,两家协力商厂收费相同;什么情况下,A协力商厂优惠;什么情况下,B协力商厂优惠;列不等式解决实际问题的数学建模的思想方法.解:设购买台电脑,如果到A协力厂更优惠,则移项且合并得,不等式两边同除以-500得.所以购买大于3台时A协力厂更优惠;购买小于3台时B协力厂更优惠;购买3台时两家协力商厂收费相同.6、整体的思想方法所谓整体的思想方法是指将有共同特征的某一类问题看成一个完整的整体,通过对其全面深刻的观察,着眼于问题的整体结构上,从整体上把握问题的内容和解决的方向和策略的思想方法.例如:已知二元一次方程组为,求=,=.分析:通过观察可知两式相减得,则=;两式相加得,则+=15,即得.7、方程的思想方法所谓方程的思想方法是指在研究数学问题时,从问题中的已知量和未知量之间的数量关系中找出相等关系,运用数学语言将这种相等关系列出方程组,然后解方程组,从而使这个数学问题得解.其特点是将繁琐的过程简单化,殊殊的问题一般化.例如:把一长为30米的绳子做成一个长方形,已知宽:长=1:2,求这个长方形的宽和长各是多少解析:宽和长总和为30米,其比为1:2,所以设方程解答.解:设宽为米,长为米.解得:答:长方形的宽为5 米,长为10 米.8、符号化的思想方法所谓符号化的思想方法:指用符号及符号组成的数学语言来表达数学的概念、运算和命题等的思想方法,是方程思想方法的基础.例如:∥、∠、≤、≥、=、、、%、{}、≠、∴、∵、⊙、⊥、△、、、、等等.9、统计思想方法所谓统计思想方法:是通过样本来推断总体,是关于如何收集数据、整体数据、描述数据、分析数据,如何解释数据统计结果的思想方法.例如:为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1000名中,随机抽查了100名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“世界环境日”约有名学生“不知道”.10、公理化的思想方法所谓公理化的思想方法:指从尽可能少的不加定义的原始概念和不加证明的原始命题即公理公设出发,按照逻辑规则推导出其他命题,建立起一个演绎科学理论系统的方法.例如:平行公理:经过直线外一点,有且只有一条直线与这条直线平行.11、函数的思想方法。
2020.2.8分类讨论、转化与化归思想
的取值范围是( D ).
( A) (, 1) (B) (0, 1) (C) (,0) (D) (0, )
e
e
例 2.( P8 例 3) 在△ABC 中,内角 A、B、C 所对的边分别为
a、b、c, 已知 a
5, △ABC
的面积 S△ABC
25 4
3
,
且 b2 c2 a2 ac cosC c2 cos A, 则 sin B sinC (C ).
3. 若关于 x 的方程 x2 1 x2 kx 0 在 (0, 2) 上有 两个不同的实数解,则实数 k 的取值范围为_(_1_,_72. )
4.( P5 对 2)已知抛物线 x2 2 y 上一点 P 到焦点 F 的距 离为 1, M、N 是直线 y 2 上的两点,且 MN 2 ,
分类讨论、转化与化归思想
专题点拔(3分钟)及学生练习(15分钟)
例1(7分钟)
例2(7分钟)
补充练习1,2,3,4
补充练习5,6,7
分类讨论、转化与化归思想
分类讨论,就是对研究对象进行分类讨论求解的思想。
转化与化归,就是利用各种转化处理问题的思想。
注:1.能不分类就不分;分类先易后难、标准统一、层次分明.
2.不通思变、化陌生为熟悉;能简则简、化难为易.
数学大师波利亚强调:“不断地变换你的问题”,“我们 必须一再变化它,重新叙述它,变换它,直到最后成功地找 到某些有用的东西为止”.
思考: P6 对 3、 P8 例 3
例 1.( P6 对 3) 若函数 f ( x) ae x x 2a 有两个零点,则实数 a
(D) 2 3 3
6.已知函数 f ( x) ( x 1)ln x a( x 1) . 2x y 2 0
江苏省2014年高考数学(文)二轮复习简易通配套课件:2-2 转化与化归思想、分类讨论思想
f(-α)=sin2α+sin2(α-β),f(-β)=sin2β+sin2(α-β).
2 2 2 2 sin α + sin β = 1 + cos α + cos β, 所以有 2 2 2 2 sin α + sin α - β = sin β + sin α-β,
类型四
由字母参数引起的分类讨论
【例4】 已知函数f(x)=x3+x2-ax(a∈R). (1)当a=0时,求与直线x-y-10=0平行,且与曲线y=f(x)相 切的直线方程; fx (2)求函数g(x)= x -aln x(x>1)的单调递增区间.
2 2 解 (1)设切点为T(x0,x3 + x ) , f ′ ( x ) = 3 x +2x. 0 0
1 2 由题意得3x0+2x0=1,解得x0=-1或 . 3 ∴切线的方程为x-y+1=0或27x-27y-5=0. a (2)g(x)=x +x-a-aln x(x>1),由g′(x)=2x+1-x >0得
2
2x2+x-a>0.令φ(x)=2x2+x-a(x>1), 由于φ(x)在(1,+∞)上是增函数.∴φ(x)>φ(1)=3-a.
解 (1)设数列{an}的公差为d,由已知,得
3a1+3d=6, 8a1+28d=-4, a1=3, 解得 d=-1.
故an=3-(n-1)=4-n. (2)由(1)可得bn=n· qn 1,于是
-
Sn=1· q0+2· q1+3· q2+…+n· qn-1. 若q≠1,将上式两边同乘q,得 qSn=1· q1+2· q2+…+(n-1)· qn 1+n· qn.
[类型讲解] 类型一 【例1】 数学概念与运算引起的分类讨论
2 sinπx ,-1<x<0, 函数f(x)= x-1 e ,x≥0.
数学解题黄金模板
数学解题黄金模板
一、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为数学模型,对方程进行变换求解,从而使问题得到解决。
二、数形结合思想
数形结合思想是指将数量关系和空间形式结合起来去分析问题、解决问题的一种思想方法。
三、分类讨论思想
分类讨论思想是以对数学对象的准确分类为基础,分别进行研究和推导,得出相应结果,达到解决问题的目的。
四、转化与化归思想
转化与化归思想是把待解决或难解决的问题,通过某种转化过程,归结到一类已经解决或比较容易解决的问题中去,以求得解决。
转化与化归是解决数
学问题的基本方法。
转化与化归的思想就是将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题,将繁琐的问题转化为简明的问题。
五、构造法
构造法是指通过构造一个与原问题性质不同的新模型,利用新模型去解决问题的一种方法。
构造法在解题中常常表现出奇妙的技巧,构造出一些特殊的函数、数列、图形等来解题。
六、反证法
反证法是一种间接证明方法,它先假设原命题不成立,然后推导出与已知条件或已知事实相矛盾的结果,从而证明原命题的正确性。
七、放缩法
放缩法是一种通过放大或缩小问题的规模来简化问题的方法。
在解决一些难以直接解决的问题时,可以通过适当的放缩,将问题转化为更容易解决的问题。
专题七讲分类讨论思想、转化与化归思想课件理
物理中的应用实例
分类讨论思想
在物理学中,分类讨论思想同样有着广泛的应用。例如,在研究物体的运动时, 可以根据物体的运动状态(静止、匀速直线运动、变速运动)进行分类讨论;在 研究电路时,可以根据电路的连接方式(串联、并联)进行分类讨论。
转化与化归思想
在物理学中,转化与化归思想的应用也很多。例如,在研究能量守恒定律时,可 以将复杂的能量转化过程转化为简单的能量计算;在研究力学问题时,可以将复 杂的受力分析转化为简单的力矩平衡问题。
在分类讨论中,需要明确分类的标准 和原则,将问题划分为具有相同性质 的子问题,然后逐一分析、解决。
分类讨论思想的重要性
分类讨论思想能够使问题更加清 晰、具体,有助于深入理解问题
的本质。
通过分类讨论,可以将复杂问题 分解为简单问题,降低问题的难
度,提高解决问题的效率。
分类讨论有助于发现新的解题思 路和方法,促进数学思维的发展
在物理、化学等学科中,转化与化归思想同样适用,如将复杂物理现象转化为数学 模型,化学反应方程式的配平等。
在生活中,转化与化归思想也有很多应用,如将复杂问题分解为多个简单问题,将 繁琐事务整理为有序的工作流程等。
如何培养转化与化归思想
培养转化与化归思想需要多做练习, 通过不断尝试和总结,提高自己的思 维能力和解决问题的能力。
04 分类讨论思想与转化与化 归思想的综合应用
综合应用的步骤和方法
明确问题
首先需要明确问题的类型和涉 及的知识点,确定是否需要采 用分类讨论或转化与化归思想
。
制定策略
根据问题的特点,制定合适的 分类标准或转化途径,将复杂 问题分解为若干个简单问题或 等价问题。
实施解决
对分类后的子问题进行逐一解 决,或对转化后的等价问题进 行求解,注意保持逻辑严密和 推理准确。
技法专题第2讲分类讨论思想、转化与化归思想
一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论思想在解题中的应用
1
由数学概念而引起的分类讨论:如绝对值的定义、不等式 的定义、二次函数的定义、直线的倾斜角等.
①当 m≤0 时,g′(x)≤0,则 g(x)的单调递减区间是(-∞,
+∞);
②当m>0时,令g′(x)<0,解得x<- 2m 或x> 2m ,则
g(x)的单调递减区间E是v(a-lu∞a,ti-on2omn) l,y.( 2m,+∞). ated w综i上th所A述s,pmos≤e0.S时l,idge(xs)的fo单r调.N递E减T区3间.5是C(-li∞en,t+P∞ro);file 5.2
Evaluation only. ated witfh(a)A=s-p3o,se则.Sf(l6i-deas)=for .NET 3.5 Client P(rofi)le 5.2
AC.o-p74yright 2019-201B9.A-sp54 ose Pty Ltd.
C.-34
D.-14
解析:由于 f(a)=-3,
综上知,||PPFF21||=72或 2.
[技法领悟]
(1)本题中直角顶点的位置不定,影响边长关系,需按
直角顶点不同的位E置v进a行lu讨at论io.n only. ated with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(2o)涉py及r几ig何h问t 2题0时19,-2由0于1几9 A何s元p素os的e形P状ty、L位t置d.变化
新数学二轮总复习第3讲分类讨论思想转化与化归思想学案含解析
第3讲分类讨论思想、转化与化归思想分类讨论思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题中发挥着重要作用,大大提高了学生的解题能力与速度.运用这种方法的关键是将题设条件研究透,并快速找准突破点.充分利用分类讨论思想将复杂问题分解成若干题目涉及的知识角度进行求解。
解题时要注意,按主元分类的结果应求并集,按参数分类的结果要分类给出.思想方法诠释1。
分类讨论的思想含义分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的结果.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略.2.分类讨论的原则(1)不重不漏;(2)标准要统一,层次要分明;(3)能不分类的要尽量避免,决不无原则地讨论.3。
分类讨论的常见类型(1)由数学概念而引起的分类讨论;(2)由数学运算要求而引起的分类讨论;(3)由性质、定理、公式的限制而引起的分类讨论;(4)由图形的不确定性而引起的分类讨论;(5)由参数的变化而引起的分类讨论;(6)由实际意义引起的讨论。
思想分类应用应用一 由数学的概念、定理、公式引起的分类讨论【例1】(1)(2020安徽合肥二模,文10)记F 1,F 2为椭圆C :x 2x+y 2=1的两个焦点,若C 上存在点M 满足xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,则实数m 的取值范围是( )A.(0,12]∪[2,+∞) B.[12,1)∪[2,+∞)C 。
(0,12]∪(1,2]D 。
[12,1)∪(1,2](2)设等比数列{a n }的公比为q ,前n 项和S n 〉0(n=1,2,3,…),则q 的取值范围是 。
思维升华1.在中学数学中,一次函数、二次函数、指数函数、对数函数的单调性,基本不等式,等比数列的求和公式等在不同的条件下有不同的结论,或者在一定的限制条件下才成立,应根据题目条件确定是否进行分类讨论.2。
数学思想有哪些
一、转化与化归思想转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。
转化与化归思想是在研究和解决数学问题时采用某种方式,如借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想。
转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。
常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。
二、数形结合思想在数学学习中,我们会运用到很多数学思想方法,其中数形结合是数学解题中最常用的思想方法之一。
运用数形结合的思想,我们可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质,这样很多问题便迎刃而解,且解法容易理解和消化。
数形结合思想当中“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。
数形结合思想在中学数学中占有非常重要的地位,我们在应用数形结合思想解决问题,应充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。
三、分类讨论思想分类讨论思想也是我们接触接触比较多的数学思想,它是根据所研究对象的性质差异,分各种不同的情况予以分析解决。
分类讨论思想方法我们在很多数学内容里都能找到它的影子,它依据一定的标准,对问题进行分类、求解。
分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论,分类讨论思想有利于学会完整地考虑问题,化整为零地解决问题。
高中数学6种数学思想
高中数学6种数学思想1.函数与方程思想函数与方程的思想是中学数学最基本的思想。
所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。
而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想数与形在一定的条件下可以转化。
如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。
因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。
原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型:类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
初中数学八大思想
初中数学八大思想一、整体思想整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,把某些式⼦或图形看成⼦个整体,把握它们之间的关联,进⼦有⼦的的、有意识的整体处理。
二、方程思想⼦程思想是指在确定变量后,找到它们之间的关系,将实际问题转化成⼦程或不等式,通过建⼦⼦程模型来解决实际问题,它可以让我们更加直观,清晰明了地了解题目。
三、函数思想函数的思想是⼦运动和变化的眼光,分析和研究数学中的数量关系,从⼦建⼦函数模型,如⼦次函数、反⼦例函数、⼦次函数等,解决实际问题。
比如当路程一定时,时间和速度成反比例关系;抛出的球时间和高度成二次函数关系,在解决一些问题时,借助函数图像,可以帮助我们快速地解决问题四、分类讨论思想分类讨论就是把研究对象按同⼦分类标准分成⼦个部分或⼦种情况,然后逐个解决,最后予以总结做出结论的思想⼦法,其实质是化整为零,各个击破,化⼦难为⼦难的策略,许多大题就会运用到这种思想比如这道题五、转换思想转化思想是指把我们遇到的问题由陌生知识转化为已学知识,化繁为简,化未知为已知,从而解决实际问题。
六、类比思想把两个(或两类)不同的数学对象进行对比,如果发现它们有共同特质,可以根据其中一个数学对象的特征来推出另一个对象的特征。
例如通过研究正比例函数的图象、性质及应用,类比研究反比例函数的图象、性质及应用。
七、分类讨论思想所谓分类讨论,就是当问题所给的对象不能进行统一研究时,需要对研究对象按某个标准分类,然后对每一类分别研究得出结论,最后整合结论得到完整解答。
分类时要做到不重不漏。
八、数形结合思想数形结合思想,其实质是将抽象的数学符号语言与直观图形结合起来。
可以“以形助数”,也可以“以数辅形”。
使代数问题和几何问题互化,达到精确和直观的统一。
九、方程与函数思想方程与函数是两种数学模型。
实际中的很多问题都可以用这两种模型加以解决。
十、转化与化归思想这是将待解决的问题通过变换使之转化为已解决的或更简单的问题,从而使问题得到解决。
高中数学:统计中的数学思想
高中数学:统计中的数学思想统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
进行统计分析数据时,往往蕴含着许多数学思想。
一、转化与化归思想统计的基本思想是用样本去估计总体,也就是用有代表性的一部分来估计整体的情况,再由分析得出的整体情况去解决问题。
这正体现了转化与化归的思想方法。
例1 北京市某机构要调查2008年北京市高考试题的解答情况,需要对所有参加高考的北京市考生一一进行分析吗?解:显然不是,因为考生太多,全部分析工作量大,费时长。
实际做法是抽取部分考生的解答情况(比如在各区或各类不同学校中抽取),然后估计所有考生的解答情况。
由此可见,从普查(整体)到抽样调查(部分)是社会生活中常用的、省时省力的有效办法,体现出由部分向整体转化的思想方法在统计领域中应用的普遍性。
[点评]在统计中,需要细致地研究样本数据的数字特征,以便对总体做准确的估计。
由于样本选取的随机性,会带来样本数据的随机性,但为了研究它,就要尽量的把它转化为确定的问题加以解决。
二、数形结合思想数形结合是统计内容的一个很突出的特点,获取了一个科学样本后,需要对样本数据进行整理分析,为了使样本的数据特征更直观,我们经常需要做图、读图。
通过图看出样本数据的分布状况、数据的变化趋势、变量间的关系,进而估计总体的状况。
例2 如下表中给出5组数据(x,y),从中选出4组使其线性相关系数最大,且保留第1组(-5,-3),那么,应去掉第___________组。
1 2 3 4 5-5 -4 -3 -2 4-3 -2 4 -1 6 解:画出散点图,如图所示,应去掉第3组。
[点评]解决此类问题直接从表中不容易观察到,而通过画散点图,借助于图形的直观性可简捷获解。
三、分类讨论思想分类讨论是解决统计问题的一种重要的数学思想,体现在进行抽样调查时,根据不同的样本数据抽取情况选择不同的抽样方法。
例3 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。
第2讲 解题有道——四大数学思想
第2讲 解题有道——四大数学思想思想概述 高考数学以能力立意,一是考查数学的基础知识、基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度.数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识、数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.类型一 函数与方程思想函数与方程思想的实质就是用联系和变化的观点,描述两个量之间的依赖关系,刻画数量之间的本质特征,在提出数学问题时,抛开一些非数学特征,抽象出数量特征,建立明确的函数关系,并运用函数的知识和方法解决问题.有时需要根据已知量和未知量之间的制约关系,列出方程(组),进而通过解方程(组)求得未知量.函数与方程思想是相互联系、互为所用的. 应用1 求解不等式、函数零点的问题【例1】 (1)设0<a <1,e 为自然对数的底数,则a ,a e ,e a -1的大小关系为( ) A.e a -1<a <a e B.a e <a <e a -1 C.a e <e a -1<aD.a <e a -1<a e(2)(2019·浙江新高考联盟考试)已知函数h (x )=x ln x 与函数g (x )=kx -1的图象在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不同的交点,则实数k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤1+1e ,e -1B.⎝ ⎛⎦⎥⎤1,1+1e C.(1,e -1]D.(1,+∞)解析 (1)设f (x )=e x -x -1,x >0, 则f ′(x )=e x -1>0,∴f (x )在(0,+∞)上是增函数,且f (0)=0,f (x )>0, ∴e x -1>x ,即e a -1>a .又y =a x (0<a <1)在R 上是减函数,得a >a e , 从而e a -1>a >a e .(2)令h (x )=g (x ),得x ln x +1=kx , 即1x +ln x =k .若方程x ln x -kx +1=0在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不等实根,则函数f (x )=ln x +1x 与y=k 在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不相同的交点,f ′(x )=1x -1x 2,令1x -1x 2=0可得x =1,当x ∈⎣⎢⎡⎭⎪⎫1e ,1时f ′(x )<0,函数是减函数;当x ∈(1,e]时,f ′(x )>0,函数是增函数,函数的极小值,也是最小值为f (1)=1,而f ⎝ ⎛⎭⎪⎫1e =-1+e ,f (e)=1+1e ,又-1+e>1+1e ,所以,函数的最大值为e -1.所以关于x 的方程x ln x -kx +1=0在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不等实根,则实数k 的取值范围是⎝ ⎛⎦⎥⎤1,1+1e .答案 (1)B (2)B探究提高 1.第(1)题构造函数,转化为判定函数值的大小,利用函数的单调性与不等式的性质求解.2.函数方程思想求解方程的根或图象交点问题(1)应用方程思想把函数图象交点问题转化为方程根的问题,应用函数思想把方程根的问题转化为函数零点问题.(2)含参数的方程问题一般通过直接构造函数或分离参数化为函数解决. 【训练1】 (1)设函数f (x )=x 2-cos x ,则方程f (x )=π4所有实根的和为( )A.0B.π4C.π2D.3π2(2)(2019·郑州模拟)已知函数f (x )=3x -13x +1+x +sin x ,若存在x ∈[-2,1],使得f (x 2+x )+f (x -k )<0成立,则实数k 的取值范围是( ) A.(-1,+∞) B.(3,+∞) C.(0,+∞)D.(-∞,-1)解析 (1)由f (x )=x 2-cos x =π4,得x 2-π4=cos x , 令y 1=x 2-π4,y 2=cos x .在同一坐标系内作出两函数图象,易知两图象只有一个交点⎝ ⎛⎭⎪⎫π2,0.∴方程f (x )=π4的实根之和为π2.(2)由题意知,函数f (x )的定义域为R ,且f (x )是奇函数.又f ′(x )=2ln 3·3x(3x +1)2+1+cos x >0在x ∈[-2,1]上恒成立,函数f (x )在x ∈[-2,1]上单调递增.若存在x ∈[-2,1],使得f (x 2+x )+f (x -k )<0成立, 则f (x 2+x )<-f (x -k )f (x 2+x )<f (k -x )x 2+x <k -x ,故问题转化为存在x ∈[-2,1],k >x 2+2x , 即k >(x 2+2x )min ,当x ∈[-2,1]时,y =x 2+2x =(x +1)2-1的最小值为-1. 故实数k 的取值范围是(-1,+∞). 答案 (1)C (2)A应用2 函数与方程思想在数列中的应用【例2】 设等差数列{a n }的前n 项和为S n ,若S 4=-2,S 5=0,S 6=3.(1)求数列{a n }的前n 项和S n ; (2)求nS n 的最小值.解 (1)∵S 4=-2,S 5=0,S 6=3, ∴a 5=S 5-S 4=2,a 6=S 6-S 5=3, 又{a n }是等差数列,则公差d =a 6-a 5=1, 由于S 5=5(a 1+a 5)2=0,所以a 1=-2,故S n =-2n +n (n -1)2=n 2-5n2.(2)由(1)知nS n =n 3-5n 22,设f (x )=x 3-5x 22, 则f ′(x )=32x 2-5x (x >0),令f ′(x )>0,得x >103;令f ′(x )<0,得0<x <103.∴f (x )在⎝ ⎛⎭⎪⎫103,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,103上单调递减,又f (3)=-9,f (4)=-8.∴当n =3时,nS n 取到最小值-9.探究提高 1.本题完美体现了函数与方程思想的应用,第(2)问利用数列前n 项和公式求出nS n ,构造函数,运用单调性求最值.2.数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式与前n 项和公式即为相应的解析式,但要注意数列问题中n 的取值为正整数,涉及的函数具有离散性特点.【训练2】 设等比数列{a n }的前n 项和为S n ,公比q >0,a 1+a 2=4,a 3-a 2=6. (1)求数列{a n }的通项公式;(2)若对任意n ∈N *,ka n ,S n ,-1成等差数列,求实数k 的值.解 (1)∵a 1+a 2=4,a 3-a 2=6, ∴⎩⎪⎨⎪⎧a 1(1+q )=4,a 1(q 2-q )=6,∵q >0,∴q =3,a 1=1,∴a n =1×3n -1=3n -1(n ∈N *), 故数列{a n }的通项公式为a n =3n -1.(2)由(1)知a n =3n -1,S n =1×(1-3n )1-3=3n -12,∵ka n ,S n ,-1成等差数列,∴2S n =ka n -1. 则2×3n -12=k ·3n -1-1,解得k =3.应用3 函数与方程思想在几何问题中的应用【例3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与线段AB 相交于点D ,与椭圆相交于E ,F 两点. (1)若ED→=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k2.①由ED →=6DF →知x 0-x 1=6(x 2-x 0),得x 0=17(6x 2+x 1)=57x 2=1071+4k2;由D 在AB 上知x 0+2kx 0=2, 得x 0=21+2k .所以21+2k =1071+4k2,化简得24k 2-25k +6=0,解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为 h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2),h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2).又|AB |=22+12=5,所以四边形AEBF 的面积为 S =12|AB |(h 1+h 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k 1+4k2=21+41k +4k≤22,当且仅当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,找准函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的求法来求解,这是求面积、线段长最值(范围)问题的基本方法.【训练3】 已知圆M :x 2+y 2=r 2(r >0)与直线l 1:x -3y +4=0相切,设点A 为圆上一动点,AB ⊥x 轴于点B ,且动点N 满足AB →=2NB →,设动点N 的轨迹为曲线C .(1)求曲线C 的方程.(2)直线l 与直线l 1垂直且与曲线C 交于P ,Q 两点,求△OPQ (O 为坐标原点)面积的最大值.解 (1)设动点N (x ,y ),A (x 0,y 0),因为AB ⊥x 轴于B ,所以B (x 0,0), 由已知得,r =|4|1+3=2,所以圆M 的方程为x 2+y 2=4. 因为AB→=2NB →, 所以(0,-y 0)=2(x 0-x ,-y ),即⎩⎪⎨⎪⎧x 0=x ,y 0=2y ,又A 点在圆上,所以x 20+y 20=4,即动点N 的轨迹方程为x 24+y 2=1.(2)由题意,设直线l :3x +y +m =0,P (x 1,y 1),Q (x 2,y 2), 联立直线l 与椭圆C 的方程⎩⎪⎨⎪⎧y =-3x -m ,x 2+4y 2=4,消去y ,得13x 2+83mx +4m 2-4=0,Δ=192m 2-4×13×(4m 2-4)=16(-m 2+13)>0, 解得m 2<13,x 1+x 2=-83m13,x 1·x 2=4(m 2-1)13,又点O 到直线l 的距离d =|m |2, |PQ |=2|x 1-x 2|=813-m 213, 所以S △OPQ =12·|m |2·813-m 213=2m 2(13-m 2)13≤113(m 2+13-m 2)=1,当且仅当m 2=13-m 2,即m =±262时,等号成立. 所以△OPQ 面积的最大值为1. 类型二 数形结合思想数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确. 应用1 数形结合思想在函数与方程中的应用【例4】 (1)记实数x 1,x 2,…,x n 中最小数为min{x 1,x 2,…,x n },则定义在区间[0,+∞)上的函数f (x )=min{x 2+1,x +3,13-x }的最大值为( ) A.5 B.6 C.8D.10(2)(2019·石家庄模拟)已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0, g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞)D.[1,+∞)解析 (1)在同一坐标系中作出三个函数y =x 2+1,y =x +3,y =13-x 的图象如图:由图可知,在实数集R 上,min{x 2+1,x +3,13-x }为y =x +3上A 点下方的射线,抛物线AB 之间的部分,线段BC ,与直线y =13-x 上点C 下方的部分的组合图.显然,在区间[0,+∞)上,在C 点时,y =min{x 2+1,x +3,13-x }取得最大值.解方程组⎩⎪⎨⎪⎧y =x +3,y =13-x得点C (5,8).所以f (x )max =8.(2)函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1.答案 (1)C (2)C探究提高 1.第(1)题利用函数的图象求最值,避免分段函数的讨论;第(2)题把函数的零点或方程的根转化为两函数图象的交点问题,利用几何直观求解. 2.探究方程解的问题应注意两点:(1)讨论方程的解(或函数的零点)一般可构造两个函数,使问题转化为讨论两曲线的交点问题.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则,不要刻意去用数形结合.【训练4】 已知函数f (x )=⎩⎪⎨⎪⎧(-x )12,x ≤0,log 5x ,x >0,函数g (x )是周期为2的偶函数且当x ∈[0,1]时,g (x )=2x -1,则函数y =f (x )-g (x )的零点个数是( ) A.5 B.6 C.7D.8解析 在同一坐标系中作出y =f (x )和y =g (x )的图象如图所示,由图象可知当x >0时,有4个零点,当x ≤0时,有2个零点,所以一共有6个零点. 答案 B应用2 数形结合求解不等式与平面向量问题【例5】 (1)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( ) A.-2 B.-32 C.-43D.-1(2)若实数x ,y 满足不等式组⎩⎨⎧x ≥1,x -y +1≤0,2x -y -2≤0,则x 2+y 2的最小值是()A.25B.5C.4D.1解析 (1)如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0).设P (x ,y ),则P A →=(-x ,3-y ),PB→=(-1-x ,-y ),PC →=(1-x ,-y ).所以P A →·(PB →+PC →)=(-x ,3-y)·(-2x ,-2y )=2x 2+2⎝ ⎛⎭⎪⎫y -322-32.当x =0,y =32时,P A →·(PB→+PC →)取得最小值-32.(2)作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y +1≤0,2x -y -2≤0表示的平面区域(如图阴影部分).x 2+y 2的最小值表示阴影部分(含边界)中的点到原点O (0,0)的距离的最小值的平方.由⎩⎪⎨⎪⎧x =1,x -y +1=0,得A (1,2). ∴(x 2+y 2)min =|OA |2=12+22=5. 答案 (1)B (2)B探究提高 1.平面向量中数形结合关注点:(1)能建系的优先根据目标条件建立适当的平面直角坐标系;(2)重视坐标运算、数量积及有关几何意义求解.2.求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化为数量关系解决问题.【训练5】 (1)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.(2)(2019·长沙调研)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A.1 B.2 C. 2D.22解析 (1)在同一坐标系中,作出y =|x -2a |和y =12x +a -1的简图.依题意可知2a ≤2-2a ,解得a ≤12.(2)因为(a -c )·(b -c )=0,所以(a -c )⊥(b -c ).如图所示,设OC→=c ,OA →=a ,OB →=b , 则CA →=a -c ,CB →=b -c , 所以AC →⊥BC →.又因为OA→⊥OB →,所以O ,A ,C ,B 四点共圆,当且仅当OC 为圆的直径时,|c |最大,且最大值为 2. 答案 (1)⎝ ⎛⎦⎥⎤-∞,12 (2)C应用3 圆锥曲线中的数形结合思想【例6】 已知抛物线的方程为x 2=8y ,点F 是其焦点,点A (-2,4),在此抛物线上求一点P ,使△APF 的周长最小,此时点P 的坐标为________.解析 因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部,如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,连接AQ .则△APF 的周长为|PF |+|P A |+|AF |=|PQ |+|P A |+|AF |≥|AQ |+|AF |≥|AB |+|AF |, 当且仅当P ,B ,A 三点共线时,△APF 的周长取得最小值,即|AB |+|AF |. 因为A (-2,4),所以不妨设△APF 的周长最小时,点P 的坐标为(-2,y 0),代入x 2=8y ,得y 0=12.故使△APF 的周长最小的点P 的坐标为⎝ ⎛⎭⎪⎫-2,12.答案 ⎝ ⎛⎭⎪⎫-2,12探究提高 1.对于几何图形中的动态问题,应分析各个变量的变化过程,找出其中的相互关系求解.2.应用几何意义法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.【训练6】 (2019·昆明诊断)设A ,B 在圆x 2+y 2=1上运动,且|AB |=3,点P 在直线l :3x +4y -12=0上运动,则|P A →+PB →|的最小值为( ) A.3 B.4 C.175D.195解析 设AB 的中点为D ,则P A →+PB→=2PD →,∴当且仅当O ,D ,P 三点共线且OP ⊥l 时,|P A →+PB →|取得最小值. ∵圆心到直线l 的距离为129+16=125,|OD |=1-34=12,∴|P A →+PB→|的最小值为2×⎝ ⎛⎭⎪⎫125-12=195.答案 D类型三 分类讨论思想分类讨论思想是当问题的对象不能进行统一研究时,需对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.应用1 由概念、法则、公式、性质引起的分类讨论【例7】 若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________. 解析 若a >1,有a 2=4,a -1=m . 解得a =2,m =12.此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意. 答案 14探究提高 指数函数、对数函数的单调性取决于底数a ,因此,当底数a 的大小不确定时,应分0<a <1,a >1两种情况讨论.【训练7】 (1)(2019·济南调研)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A.8 B.10 C.16D.32(2)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0.若f (1)+f (a )=2,则a 的取值集合是________.解析 (1)当n =1时,a 1=S 1=2a 1-2,解得a 1=2. 因为S n =2a n -2,当n ≥2时,S n -1=2a n -1-2,两式相减得,a n =2a n -2a n -1,即a n =2a n -1,则数列{a n }是首项为2,公比为2的等比数列,则a n =2n , 有S 5-S 4=a 5=25=32. (2)f (1)=e 0=1,即f (1)=1. 由f (1)+f (a )=2,得f (a )=1.当a ≥0时,f (a )=1=e a -1,所以a =1. 当-1<a <0时,f (a )=sin(πa 2)=1, 所以πa 2=2k π+π2(k ∈Z ).所以a 2=2k +12(k ∈Z ),k 只能取0,此时a 2=12, 因为-1<a <0,所以a =-22. 则实数a取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1. 答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1 应用2 由参数变化引起的分类讨论【例8】 (2018·北京卷)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x . (1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ; (2)若f (x )在x =1处取得极小值,求a 的取值范围. 解 (1)由f (x )=[ax 2-(3a +1)x +3a +2]e x , 得f ′(x )=[ax 2-(a +1)x +1]e x . f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).探究提高 1.若遇到题目中含有参数的问题,常常结合参数的意义及对结果的影响进行分类讨论.2.如果参数有明确的几何意义,在讨论时还应适当地运用数形结合思想.注意分类标准要明确统一,做到“不重不漏”.【训练8】 已知函数f (x )=mx 2-x +ln x .若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.解析 f ′(x )=2mx -1+1x =2mx 2-x +1x(x >0),即2mx 2-x +1<0在(0,+∞)上有解. 当m ≤0时显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故需且只需Δ>0,即1-8m >0,故m <18.综上所述,实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,18.答案 ⎝ ⎛⎭⎪⎫-∞,18应用3 由图形位置或形状引起的分类讨论【例9】 (1)已知变量x ,y 满足的不等式组⎩⎨⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k =( ) A.-12 B.12 C.0D.-12或0(2)设点A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析(1)不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示.由图可知,若要使不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有当直线kx -y +1=0与直线y 轴或y =2x 垂直时才满足.结合图形可知斜率k 的值为0或-12.(2)当0<m <3时,焦点在x 轴上,若曲线C 上存在点M 满足∠AMB =120°,则ab ≥tan 60°=3,即3m≥3,得0<m ≤1;当m >3时,焦点在y 轴上,依题设,则ab ≥tan 60°=3,即m3≥3,得m ≥9.故m 的取值范围为(0,1]∪[9,+∞),故选A. 答案 (1)D (2)A探究提高 1.相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.2.圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.【训练9】 (1)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________.(2)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2,则a 的值为________.解析 (1)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0. 若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. ∴曲线C 的离心率为12或32.(2)由三角形面积公式,得12×3×1×sin A =2, 故sin A =223.因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13.①当cos A =13时,由余弦定理,得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8, 所以a =2 2.②当cos A =-13时,由余弦定理,得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝ ⎛⎭⎪⎫-13=12,所以a =2 3.综上所述,a =22或2 3. 答案 (1)12或32 (2)22或23 类型四 转化与化归思想转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式. 应用1 特殊与一般的转化【例10】 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A.2aB.1 2aC.4aD.4 a(2)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是________,最大值是________.解析(1)抛物线y=ax2(a>0)的标准方程为x2=1a y(a>0),焦点F⎝⎛⎭⎪⎫0,14a.不妨设过焦点F作直线垂直于y轴,则|PF|=|QF|=12a ,∴1p+1q=4a.(2)由题意,不妨设b=(2,0),a=(cos θ,sin θ),则a+b=(2+cos θ,sin θ),a-b=(cos θ-2,sin θ).令y=|a+b|+|a-b|=(2+cos θ)2+sin2θ+(cos θ-2)2+sin2θ=5+4cos θ+5-4cos θ,则y2=10+225-16cos2θ∈[16,20].由此可得(|a+b|+|a-b|)max=20=25,(|a+b|+|a-b|)min=16=4,即|a+b|+|a-b|的最小值是4,最大值是2 5.答案(1)C(2)42 5探究提高 1.一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.2.对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【训练10】(1)如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,那么()A.a1a8>a4a5B.a1a8<a4a5C.a 1+a 8>a 4+a 5D.a 1a 8=a 4a 5(2)(2019·许昌模拟)在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tan A 2tan C 2的值为( )A.15B.14C.12D.23解析 (1)取特殊数列{a n },其中a n =n (n ∈N *).显然a 1·a 8=8<a 4·a 5=20.(2)令a =4,c =5,b =3,则符合题意(取满足条件的三边).则由∠C =90°,得tan C 2=1,由tan A =43,得tan A 2=12.所以tan A 2tan C 2=12×1=12.答案 (1)B (2)C应用2 正与反、常量与变量的转化【例11】 (1)设y =(log 2x )2+(t -2)log 2x -t +1,若t 在[-2,2]上变化时,y 恒取正值,则x 的取值范围是________.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________.解析 (1)设y =f (t )=(log 2x -1)t +(log 2x )2-2log 2x +1,则f (t )是一次函数,当t ∈[-2,2]时,f (t )>0恒成立,则⎩⎪⎨⎪⎧f (-2)>0,f (2)>0,即⎩⎪⎨⎪⎧(log 2x )2-4log 2x +3>0,(log 2x )2-1>0,解得log 2x <-1或log 2x >3,即0<x <12或x >8,故实数x 的取值范围是⎝ ⎛⎭⎪⎫0,12∪(8,+∞). (2)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数,则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x .当x ∈(t ,3)时恒成立,∴m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x ,当x ∈(t ,3)时恒成立,则m +4≤23-9,即m ≤-373.∴使函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围是⎝ ⎛⎭⎪⎫-373,-5. 答案 (1)⎝ ⎛⎭⎪⎫0,12∪(8,+∞) (2)⎝ ⎛⎭⎪⎫-373,-5 探究提高 1.第(1)题是把关于x 的函数转化为在[-2,2]内关于t 的一次函数大于0恒成立的问题.在处理多变元的数学问题时,我们可以巧妙选取其中的参数,将其看作是“主元”,而把其它变元看作是参数.2.第(2)题是正与反的转化,由于不为单调函数有多种情况,先求出其反面,体现“正难则反”的原则.【训练11】 (1)(2019·日照调研)由命题“存在x 0∈R ,使e |x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的取值是( )A.(-∞,1)B.(-∞,2)C.1D.2(2)已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________. 解析 (1)命题的否定:“任意x ∈R ,使e |x -1|-m >0”是真命题,∴m <e |x -1|恒成立,∴m 取值范围为(-∞,1).因此(-∞,1)与(-∞,a )相等,故a =1.(2)由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1. 故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案 (1)C (2)⎝ ⎛⎭⎪⎫-23,1 应用3 函数、方程、不等式之间的转化【例12】 已知函数f (x )=3e |x |.若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,试求m 的最大值.解 ∵当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0,∴f (x +t )≤3e x e x +t ≤e x t ≤1+ln x -x .∴原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (1≤x ≤m ).∵h ′(x )=1x -1≤0,∴函数h (x )在[1,+∞)上为减函数,又x ∈[1,m ],∴h (x )min =h (m )=1+ln m -m .∴要使得对任意x ∈[1,m ],t 值恒存在,只需1+ln m -m ≥-1.∵h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e=-1,h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e=-1,又函数h (x )在[1,+∞)上为减函数, ∴满足条件的最大整数m 的值为3. 探究提高 1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.【训练12】 已知e 为自然对数的底数,若对任意的x ∈⎣⎢⎡⎦⎥⎤1e ,1,总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤1e ,e B.⎝ ⎛⎦⎥⎤2e ,e C.⎝ ⎛⎭⎪⎫2e ,+∞ D.⎝ ⎛⎭⎪⎫2e ,e +1e 解析 设f (x )=ln x -x +1+a ,x ∈⎣⎢⎡⎦⎥⎤1e ,1, ∴f ′(x )=1x -1=1-x x ≥0,f (x )在⎣⎢⎡⎦⎥⎤1e ,1上是增函数, 因此a -1e =f ⎝ ⎛⎭⎪⎫1e ≤f (x )≤f (1)=a , 设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)上单调递减,在[0,1]上单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈⎣⎢⎡⎦⎥⎤1e ,1,存在唯一的y ∈[-1,1],使得f (x )=g (y )成立, 所以⎣⎢⎡⎦⎥⎤a -1e ,a ⎝ ⎛⎦⎥⎤1e ,e ,⎩⎨⎧a -1e >1e ,a ≤e ,解得2e<a≤e. 答案 B。
初中数学思想方式大全(供参考)
初中数学思想方式大全教学的本质究竟是什么?很显然,教学最本质的东西确实是教授知识,提高素养,培育能力。
那么,数学教学的本质又是什么呢?众所周知:“数学是思维的体操。
”数学思想方式是数学的精华,它是数学中最本质最有价值的东西。
它是知识转化为能力的桥梁。
因此从某种意义上说,数学教学的本质确实是数学思想方式的教学,在数学教学中,教师除基础知识和大体技术的教学外,更应重视数学思想方式的参透,注意对学生进行数学思想方式的培育。
一、数学思想方式是什么?数学思想方式是什么呢?其实它包换两个方面,即思想和方式。
所谓数学思想,是指人们对数学知识的本质熟悉,是从某些具体的数学内容和对数学的熟悉进程中提练上升的数学观点,它在熟悉活动中被反复运用,带有普遍的指导意义,是用数学解决问题的指导思想,它直接支配着数学的实践活动。
所谓数学方式,那么是在数学提出问题、解决问题(包括数学内部问题和实际问题)进程中,所采纳的各类方式、手腕、途径等。
它具有进程性、层次性和可操作性等特点。
数学思想是数学方式的灵魂,数学方式是数学思想的表现形式和得以实现的手腕,因此,人们把它们合称为数学思想方式。
因此,在数学教学中,教师除基础知识和大体技术的教学外,还应重视数学思想方式的渗透,注重对学生进行数学思想方式的培育,这对学生尔后的数学学习和数学知识的应用将产生深远的阻碍,使学生终生受益。
正如波利亚强调:在数学教学中“有利的试探方式、应有的思维适应”应放在教学的首位。
增强数学思想方式教学,必然对提高数学教学的质量起到相当重要的作用。
二、初中时期要紧的数学思想方式有哪些?纵观初中新课标教材,涉及到的数学思想方式大体可分为三种类型。
第一类是技术型思想方式(也称低层次数学思想方式),包括消元、降次、换元、配方、待定系数法等,这种方式具有必然的操作步骤。
比较容易为学生所同意。
第二类是逻辑型的思想方式(也称较高层次数学思想方式),包括类比、抽象、归纳、归纳、分析、综合、演绎、特殊化方式、反证法等,这种方式都具有确信的逻辑结构,是一般适用的逻辑推理论证模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、转化与化归思想
[思想概述] 转化化归思想的基本内涵是:人们在解决数学问题时,常 常将待解决的数学问题A,通过某种转化手段,归结为另一 问题B,而问题B是相对较容易解决的或已经有固定解决模
式的问题,且通过问题B的解决可以得到原问题A的解.用
框图可直观地表示为:
[规律方法] (1)根据问题的特点转化命题,使原问题转化为与之
相关,易于解决的新问题,是我们解决数学问题的常用思 路. (2)本题把立体几何问题转化为平面几何问题,三维降为二 维,难度降低,易于解答的数学问题分解(或分割)
成若干个基础性问题,通过对基础性问题的解答来实现解决原 问题的思想策略.对问题实行分类与整合,分类标准等于增加 一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论的常见类型:
(1)由数学概念引起的分类讨论:有的概念本身就是分类的,如 绝对值、直线斜率、指数函数、对数函数等.
(2)由性质、定理、公式的限制引起的分类讨论:有的定理、
公式、性质是分类给出的,在不同的条件下结论不一致,如 等比数列的前n项和公式、函数的单调性等. (3)由数学运算和字母参数变化引起分类;如偶次方根非负, 对数的底数与真数的限制,方程(不等式)的运算与根的大小比
难以入手,因此对参数θ取特殊值,进行推理求解.
(2)当问题难以入手时,可以先对特殊情况或简单情形进行 观察、分析,发现问题中特殊的数量或关系结构或部分元 素,然后推广到一般情形,并加以证明.
类型二
换元及常量与变量的转化
【例 2】 已知 f(x)为定义在实数集 R 上的奇函数,且 f(x)在[0,+ π ∞)上是增函数.当 0≤θ≤2时,是否存在这样的实数 m,使 f(cos 2θ-3)+f(4m-2mcos θ)>f(0)对所有的
【例 4】 已知函数 f(x)=x3+x2-ax(a∈R). (1)当 a=0 时,求与直线 x-y-10=0 平行,且与曲线 y=f(x) 相切的直线方程; f x (2)求函数 g(x)= x -aln x(x>1)的单调递增区间.
解
2 2 (1)设切点为 T(x0,x3 0+x0),f′(x)=3x +2x.
π θ∈0,2均成
立?若存在,求出所有适合条件的实数 m;若不存在,请说 明理由.
解
假设存在适合条件的 m,
由 f(x)是 R 上的奇函数可得 f(0)=0. 又在[0,+∞)上是增函数, 故 f(x)在 R 上为增函数. 由题设条件可得 f(cos 2θ-3)+f(4m-2mcos θ)>0. 又由 f(x)为奇函数,可得 f(cos 2θ-3)>f(2mcos θ-4m), ∴cos 2θ-3>2mcos θ-4m, 即 cos2θ-mcos θ+2m-2>0.
[规律方法] (1)本题正确求解的关键有三点:①去对应法则“f”,
②将“cos θ”用“t”代换,将较复杂的三角函数不等式化为
二次不等式,③分离参数,转化为求最值. (2)在求解过程中,①切记注意t∈[0,1],②分离参数注意不 等式的性质,不要弄错不等号的方向.对于形式较复杂的 式子,我们常通过更换某个(或某部分)变量的方法转化为相
[规律方法] (1)利用等比数列的前n项和公式时,需要分公比q= 1和q≠1两种情况进行讨论,这是由等比数列的前n项和公式 决定的.一般地,在应用带有限制条件的公式时要小心, 根据题目条件确定是否进行分类讨论.
(2)由性质、定理、公式等引起的讨论,主要是应用的范围
受限时,存在多种可能性.
类型四
由字母参数引起的分类讨论
较,含参数的取值不同会导致所得结果不同等.
(4)由图形的不确定性引起的分类:有的图形的形状、位置关 系需讨论,如二次函数图象的开口方向,点、线、面的位置 关系,曲线系方程中的参数与曲线类型等.
分类讨论思想,在近年高考试题中频繁出现,涉及各种题型, 已成为高考的热点.考查的重点是含参数函数性质、不等式(方 程)问题,与等比数列的前n项和有关的计算推理,点、线、面 的位置以及直线与圆锥曲线的位置关系不定问题等.
解 (1)设数列{an}的公差为 d,由已知,得
3a1+3d=6, 8a1+28d=-4, a1=3, 解得 d=-1.
故 an=3-(n-1)=4-n.
(2)由(1)可得 bn=n· qn 1,于是
-
Sn=1· q0+2· q1+3· q2+…+n· qn-1. 若 q≠1,将上式两边同乘 q,得 qSn=1· q1+2· q2+…+(n-1)· qn-1+n· qn . 两式相减,得(q-1)Sn=nqn-1-q1-q2-…-qn-1
∵点 D 是 BC 中点,点 E 是 A1B 中点, ∴DE∥A1C, ∵A1C⊄平面 AB1D, DE⊂平面 AB1D, ∴A1C∥平面 AB1D. (2)∵△ABC 是正三角形,点 D 是 BC 的中点, ∴AD⊥BC. ∵平面 ABC⊥平面 B1BCC1, 平面 ABC∩平面 B1BCC1=BC,AD⊂平面 ABC,
∴AD⊥平面 B1BCC1, ∵BC1⊂平面 B1BCC1,∴AD⊥BC1. ∵点 D 是 BC 的中点,BC= 2 2BB1,∴BD= 2 BB1.
2 BD CC1 ∵BB = BC = 2 ,∴Rt△B1BD∽Rt△BCC1. 1 ∴∠BDB1∠=BC1C. ∴∠FBD+∠BDF=∠C1BC+∠BC1C=90° , ∴BC1⊥B1D.∵B1D∩AD=D,∴BC1⊥平面 AB1D.
化:如解析几何中的斜率、函数中的单调性等;(3)数学各分支的
转化:函数与立体几何、向量与解析几何等的转化.
[类型讲解] 类型一 具体与抽象、特殊与一般的转化
【例1】 已知f(θ)=sin2θ+sin2(θ+α)+sin2(θ+β),问是否存在常
数α,β,满足0≤α<β≤π,使得f(θ)为与θ无关的定值.
[规律方法] (1)本题中直角顶点的位置不定,影响边长关系,需
按直角顶点不同的位置进行讨论.
(2)涉及几何问题时,由于几何元素的形状、位置变化的不 确定性,需要根据图形的特征进行分类讨论.
类型三 由定理、性质、公式等引起的分类讨论
【例3】 已知等差数列{an}的前3项和为6,前8项和为-4.
(1)求数列{an}的通项公式; (2)设bn=(4-an)qn-1(q≠0,n∈N*),求数列{bn}的前n项和Sn.
由题意得
3x2 0+2x0=1,解得
1 x0=-1 或3.
∴切线的方程为 x-y+1=0 或 27x-27y-5=0. a (2)g(x)=x +x-a-aln x(x>1), 由 g′(x)=2x+1-x >0 得 2x2+x
2
-a>0.令 φ(x)=2x2+x-a(x>1), 由于 φ(x)在(1,+∞)上是增函数.∴φ(x)>φ(1)=3-a. ①当 a≤3 时,φ(x)>0,则 g′(x)>0. ∴g(x)的单调增区间为(1,+∞),
π 令 cos θ=t,∵0≤θ≤2, ∴0≤t≤1. 于是问题转化为对一切 0≤t≤1, 不等式 t2-mt+2m-2>0 恒成立.
2 t -2 2 ∴t -2>m(t-2),即 m> 恒成立. t -2
t 2 -2 2 又∵ =(t-2)+ +4≤4-2 2, t -2 t-2 ∴m>4-2 2. ∴存在实数 m 满足题设的条件,m>4-2 2.
对简单易解的问题.
类型三
命题的等价转化与化归
【例 3】 (2011· 盐城模拟)如图所示,在正三棱柱 A1B1C1-ABC 中, 点 D 是 BC 的中点,BC= 2BB1,设 B1D∩BC1=F,求证: (1)A1C∥平面 AB1D; (2)BC1⊥平面 AB1D.
证明
(1)连接 A1B,设 A1B 与 AB1 交于 E,连接 DE.
cos 2α+cos 2β=-1, 化简整理得 2 2 sin α=sin β,
π 2 又因为 0≤α<β≤π,所以得 α=3,β=3π.
下面证明 f(θ)=sin θ+sin
2
2
π 2π 2 θ+ +sin θ+ 的值与 3 3
θ 无关.
2π 4π 1 f(θ)=21-cos 2θ+1-cos2θ+ 3 +1-cos2θ+ 3
2
1 1 2 ∴a =2k+2(k∈Z),k 只取 0,此时 a =2,
2
2 ∵-1<a<0,∴a=- 2 . 答案 2 1,- 2
[规律方法] (1)分段函数在自变量不同取值范围内,对应关系不
同,必需进行讨论.由数学定义引发的分类讨论一般由概
念内涵所决定,解决这类问题要求熟练掌握并理解概念的 内涵与外延. (2)在数学运算中,有时需对不同的情况作出解释,就需要 进行讨论,如解二次不等式涉及到两根的大小等.
转化有等价转化和非等价转化,等价转化前后是充要条件,所以尽 可能使转化具有等价性,等价转化策略就是把未知解的问题转化到 在已有知识范围内可解的问题的一种重要的思想方法.通过不断地
转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式
化、简单的问题.在不得已的情况下,进行不等价转化,应附加限 制条件,以保持等价性,或对所得结论进行必要的验证. 预测2014年高考对转化与化归思想的考查的基本类型和重点为:(1) 常量与变量的转化:如分离变量,求范围等;(2)数与形的互相转
[类型讲解] 类型一 数学概念与运算引起的分类讨论
2 sinπx ,-1<x<0, f(x)= x-1 e ,x≥0.
【例 1】 函数
若 f(1)+f(a)=2,则
a 的所有可能值为________. 解析 (1)f(1)=e0=1,即 f(1)=1.
由 f(1)+f(a)=2,得 f(a)=1. 当 a≥0 时,f(a)=1=ea-1,∴a=1. 当-1<a<0 时,f(a)=sin(πa2)=1, π ∴πa =2kπ+2(k∈Z).