数学七年级下人教新课标8.3实际问题与二元一次方程组同步测试题A
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题和二元一次方程组 同步练习(含答案
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.某校教师举行茶话会,若每桌坐12人,则空出一张桌子;若每桌坐10人,还有10人不能就坐,问:该校有多少名教师?共准备了多少张桌子?若设该校的教师有x人,共准备了y张桌子,则根据题意可列出方程组()A.B.C.D.2.把若干只鸡兔关在同一个笼子里,从上面数,有11个头;从下面数,有32条腿.则笼中的兔子共有()A.3只B.4只C.5只D.6只3.甲种物品每个1kg,乙种物品每个2.5kg,现购买甲种物品x个,乙种物品y个,共30kg.若两种物品都买,则所有可供购买方案的个数为()A.4B.5C.6D.74.一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个二位数是()A.36B.25C.61D.165.如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A.60cm B.120cm C.312cm D.576cm6.我国民间流传着许多趣味算题,他们多以顺口溜的形式表达,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?()A.3个老头4个梨B.4个老头3个梨C.5个老头6个梨D.7个老头8个梨7.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1B.1,-3C.-3,1D.-1,39.某同学上学时步行,回家时坐车,路上一共用90min,若往返都坐车,全部行程只需要30min,若往返都步行,全部行程需要(假定步行、坐车的平均速度不变)()A.100 min B.120 min C.150 min D.160 min10.已知某三种图书的价格分别为10元,15元,20元.某学校计划恰好用500元购买上述图书30本,每种图书至少一本,则不同的购书方案有()种.A.10B.9C.12D.1111.某果农要用绳子捆扎甘蔗,有三种规格的绳子可以使用:长绳子1米,每根能捆7根甘蔗;中等长度的绳子0.6米,每根能捆5根甘蔗;短绳子0.3米,每根能捆3根甘蔗.果农最后捆扎好了23根甘蔗,则果农总共最少使用多少米的绳子()A.2.9B.2.7C.2.4D.2.112.某体育文具用品店老板两次购进排球,篮球的个数和费用如表:已知店老板两次购进排球,篮球的单价一样,且一个排球和一个篮球的总价为100元,则b 的值是()A.224B.276C.280D.332二.填空题(共5小题)13.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.14.某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价为元,售价为元.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).17.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为元.三.解答题(共5小题)18.“春蕾”爱心社给甲、乙两所学校捐赠图书共5000本,已知捐给甲校的图书比捐给乙校的2倍少700本,求捐给甲、乙学校图书各多少本?19.为了防治“新型冠状病毒”,某市某小区购买了若干瓶消毒剂和若干支红外线测温枪,积极号召主动接受测温和各楼道做好消毒工作.其中,每瓶消毒剂5元,每支红外线测温枪560元,总共消费金额为3000元.问本次小区购买消毒剂的数量和测温枪的数量.20.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.21.某工厂去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为810万元,去年的总产值、总支出各是多少万元?22.滴滴快车是一种便捷的出行工具,计价规则如表:小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为元(用含x的代数式表示),小亮乘车费为元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的三分之一少2分钟,问他俩谁先出发?先出发多少分钟?参考答案1-5:ACBDB 6-10:ABACB 11-12:CB13\、14、200;30015、516、1017、4018、设捐给甲校图书x本,捐给乙校图书y本,依题意,得:解得:答:捐给甲校图书3100本,捐给乙校图书1900本.19、设本次小区购买消毒剂的数量和测温枪的数量分别为x和y,根据题意可得:5x+560y=3000,当y=1时,x=488,当y=2时,x=376,当y=3时,x=264,当y=4时,x=152,当y=5时,x=40,答:本次小区购买消毒剂的数量和测温枪的数量分别为488,1或376,2或264,3或152,4或40,5.20、买鹅的人数有9人,鹅的价格为70文21、设去年总产值为x万元,总支出为y万元,根据题意得:解得:答:去年的总产值、总支出各是1800万元、1500万元.22、:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x-y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为3(分钟),∴小明比小亮先出发,先出发的时间=15-6-3=6(分钟),答:明比小亮先出发,先出发6分钟。
人教版七年级数学下册8.3实际问题和二元一次方程组同步测试(包含答案)
绝密★启用前8.3 实际问题与二元一次方程组班级:姓名:一、单选题1.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy y-=⎧⎨-=⎩2.某校啦啦操运动员进行分组训练,若每组4人,余2人,若每组5人,则缺3人,设运动员人数为x人,组数为y,则根据题意所列方程组为()A.4253y xx x=+⎧⎨+=⎩B.4253y xy x=+⎧⎨-=⎩C.4253y xy x=-⎧⎨=+⎩D.4253y xy x=-⎧⎨=-⎩3.小明的外婆送来满满一篮鸡蛋,这只篮子最多只能装55只鸡蛋,小明3只一数,结果剩下1只,但忘了数了多少次,只好重数,他5只一数剩下2只,可又忘了数了多少次.他准备再数时,妈妈笑着说“不用数了,共有()只.A.54 B.52 C.48 D.504.某学校的篮球个数比足球个数的3倍多2,篮球个数的2倍与足球个数的差是49,设篮球有x个,足球有y个,可得方程组()A.32249x yy x=+⎧⎨-=⎩B.32249x yx y=+⎧⎨-=⎩C.23249x yx y=-⎧⎨=+⎩D.32249x yx y=-⎧⎨-=⎩5.某班同学参加运土劳动,一部分同学抬土,另一部分同学挑土.已知全班共用土筐64个,扁担41根,求抬土与挑土的各有多少人?如果设抬土的同学有x人,挑土的同学有y人,那么可得到的方程组应为()A.2642412yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2642412xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2642241xyx y⎧+=⎪⎨⎪+=⎩D.264241x yx y+=⎧⎨+=⎩6.甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒就能追上乙;如果甲让乙先跑2秒,那么甲跑4秒就能追上乙.若甲、乙每秒分别跑x y、米,则列出方程组应是()A.5105442x yx y+=⎧⎨-=⎩B.5510424x yx y=+⎧⎨-=⎩C.()551042x yx y y-=⎧⎨-=⎩D.()()51042x yx y⎧-=⎪⎨-=⎪⎩7.某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种8.如图,在长为12cm,宽为9cm的长方形空地上,沿平行于长方形各边的方向分割出三个形状、大小完全相同的小长方形花圃,则其中一个小长方形花圃的周长是()A.10 B.12 C.16 D.14二、填空题9.如图1,在第一个天平上,物块A的质量等于物块B加上物块C的质量;如图2,在第二个天平上,物块A加上物块B的质量等于3个物块C的质量.已知物块A的质量为10g.请你判断:1个物块B的质量是____________g.10.A、B两地相距20千米,甲乙两人分别从A、B两地相向而行,2小时后在途中相遇,然后甲立即返回A地,乙继续向A地走,当甲回到A地时,乙距离A地还有2千米,则甲的速度为____千米/时,乙的速度为_____千米/时.11.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________12.《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等。
8-3 实际问题与二元一次方程组 同步训练必刷题
8.3 实际问题与二元一次方程组一、单选题1.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,可列式为()A.B.C.D.2.“校长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了7场,以不败的战绩获得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()A.{x−y=7x+3y=17B.{x−y=73x+y=17C.{x+y=7x+3y=17D.{x+y=73x+y=173.小刚解出了方程组的解为,因不小心滴上了两滴墨水,则△、□分别为()A.17,9B.16,8C.23,15D.15,234.如图,长为y,宽为x的大长方形被分割为5小块,E外,其余3块都是正方形,下列说法中正确的是()①x的值为4;②若阴影D的周长为6,则正方形A的面积为1,则三个正方形周长的和为24.A.①②③B.①②C.①③D.②③5.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.106(10)102(10)y xy x+=+⎧⎨-=-⎩B.106(10)102(10)y xy x-=-⎧⎨+=+⎩C.106(10)102(10)y xy x-=+⎧⎨+=-⎩D.102(10)106(10)y xy x-=-⎧⎨+=+⎩6.某班有学生x人,准备分成y个组开展活动,若每个小组7人,则余3人;若每个小组8人,则差5人,根据题意,列方程组为()A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨=-⎩C.7385y xy x=+⎧⎨=+⎩D.7385y xy x=-⎧⎨=-⎩7.对于题目:“小丽同学带11元钱去买钢笔和笔记本(两种文具都买),钢笔每支3元,笔记本每本1元,那么钢笔能买多少支?”,甲同学的答案是1支,乙同学的答案是2支,丙同学的答案是3支,则正确的是()A.只有甲的答案对B.甲、乙答案合在一起才完整C.甲、乙、丙答案合在一起才完整D.甲、乙、丙答案合在一起也不完整8某中学组织师生共500人参加社会实践活动,有A,B两种型号的客车可供租用,两种客车载客量分别为40人、50人.要求每辆车必须满载.则师生一次性全部到达公园的乘车方案有( )A.1种B.2种C.3种D.4种9.长沙某学校为了响应“双减”政策,大力推行课后服务课程,丰富学生的课后生活,但是每位同学不能重复选择同一门课程.现对甲、乙、丙、丁、戊5位同学的选课情况进行统计发现,甲、乙、丙、丁、戊分别选了2、2、3、x、5门课程,那么x+y等于()A.5B.6C.7D.810.如图,用8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),则每块地砖的长和宽分别为()A.26cm和6cm B.24cm和8cm C.22cm和10cm D.20cm和12cm 二、填空题1.A,B两地相距80km.一艘船从A出发,顺水航行4h到B,而从B出发逆水航行5h到A,已知船顺水航行、逆水航行的速度分别是船在静水中的速度与水流速度的和与差,船在静水中的速度是__________km/h.2.若关于x,y的二元一次方程组5x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2324x y+=的解,则k的值为___________.3.《九章算术》记载了一个方程的问题,译文为:今有上禾6束,减损其中之“实”十八升,与下禾10束之“实“相当;下禾15束,减损其中之“实”五升,与上禾5束之“实”相当.问上、下禾每束之实各为多少升?设上、下禾每束之实各为x升和y升,则依题意可列方程组为__________.4.一个长方形的长减少7cm,宽增加3cm,就成为一个正方形,并且这两个图形的面积相等.则这个长方形的宽为______cm.5.顺风旅行社组织200人到花果岭和云水涧旅游,到花果岭的人数比到云水润的人数的2倍少1人,则到云水涧旅游的人数为______.6.甲、乙两块试验田去年春季共产小麦若干千克.改用良种后,去年秋季甲、乙的产量分别比去年春季增产了25%,20%,总产量比去年春季增产了22%;今年春季甲、乙的产量分别比去年春季增产了24%,22%,则今年春季总产量比去年春季总产量增加的百分率是.三、解答题1如图,8块相同的小长方形恰好拼成一个大的长方形,若小长方形的周长为16厘米.每块小长方形的长和宽分别是多少厘米?2.目前,新型冠状病毒在我国虽可控可防,但不可松懈.为防范疫情,已知购买3瓶甲和1瓶乙免洗手消毒液需要84元,购买2瓶甲和3瓶乙免洗手消毒液需要126元.(1)求甲、乙两种免洗手消毒液的价格为多少元/每瓶?(2)若初一年级师生共2000人,平均每人每天都需使用10ml的免洗手消毒液,若初一年级采购甲、乙两种免洗手消毒液共花费7200元3.如图(1),将边长为xcm的大正方形剪去一个边长为ycm的小正方形,剩余部分的面积为21cm2,并将剩余部分沿虚线剪开得到两个长方形,再将这两个长方形拼成如图(2),且宽为3cm的长方形4.某校组织学生参加数学知识竞赛,共设20道选择题,各题分值相同,下表是部分参赛者的得分统计表:参赛者答对题数答错题数得分于潇200100王晓林18288李毅101040…………(1)观察、分析表格提供的数据可知:答对1题得分,答错1题扣分;(2)若设答对题数是x,得分为y,请用含x的代数式表示y;(3)参赛者李小萌得了76分,求他答对了几道题;(4)参赛者马小虎说他得了80分,你认为可能吗?为什么?5.某工厂生产如图1所示的长方形和正方形纸板,做成如图2所示的竖式与横式两种长方体形状的无盖纸盒,其中竖式纸盒由4个长方形和1个正方形纸板做成(给定的长方形和正方形纸板都不用裁剪,也不考虑接缝).(1)现有长方形纸板340张,正方形纸板160张,做成上述两种纸盒,求两种纸盒生产个数.(2)纸板车间共有78名工人,每个工人一天能生产70张长方形纸板或者100张正方形纸板,已知一个竖式纸盒与一个横式纸盒配套,问纸板车间应该如何安排工人生产两种纸板?。
人教版七年级下册数学8.3实际问题与二元一次方程组--销售利润问题同步训练(word、含答案)
人教版七年级下册数学8.3 实际问题与二元一次方程组--销售利润问题同步训练一、单选题1.某商场购进商品后,加价40%作为销售价.某日商场搞优惠促销,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到七折和八折,共付款499元,两种商品原售价之和为590元,设两种商品的进价分别为x元和y元,根据题意所列方程组为()A.590,0.7 1.40.8 1.4499x yx y+=⎧⎨⨯+⨯=⎩B.499,0.7 1.40.8 1.4590x yx y+=⎧⎨⨯+⨯=⎩C.1.4 1.4590,0.7 1.40.8 1.4499x yx y+=⎧⎨⨯+⨯=⎩D.1.4 1.4499,0.7 1.40.8 1.4590x yx y+=⎧⎨⨯+⨯=⎩2.珠算发明者,我国明代数学家程大位的《算法统宗》中,有一首歌诀:“九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜.甜苦两果各几个?请君布算其迟疑!”大意是说,用999文钱共买了1000个甜果和苦果,其中4文钱可以买蓄果7个,11文钱可以买甜果9个,请问甜、苦果各买几个?若设买苦果x个,买甜果y个,可以列方程组为()A.999411100079x yx y+=⎧⎪⎨+=⎪⎩B.100041199979x yx y+=⎧⎪⎨+=⎪⎩C.100079999411x yx y+=⎧⎪⎨+=⎪⎩D.999791000411x yx y+=⎧⎪⎨+=⎪⎩3.某花店在母亲节的账目记录显示,5月7日卖出39支康乃馨和21支百合花,收入396元(记录正确);5月8号以同样的价格卖出同样的52支康乃馨和28支百合花,收入518元;对于5月8号的记录,下列说法正确的是()A.记录正确B.记录不正确,少记录了10元C.记录不正确,多记录了10元D.条件不足,无法判断4.某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是()A.95元,140元B.155元,200元C.100元,145元D.150元,195元5.端午节又称端阳节,是中华民族重要的传统节日,我国各地都有吃粽子的习俗.某超市以10元每袋的价格购进一批粽子,根据市场调查,售价定为每袋16元,每天可售出200袋:若售价每降低1元,则可多售出80袋,问此种粽子售价降低多少元时,超市每天售出此种粽子的利润可达到1440元?若设每袋粽子售价降低x 元,则可列方程为( )A .()()1610200801440x x --+=B .()()16200801440x x -+=C .()()1610200801440x --+=D .()()16200801440x -+=6.某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A .95元,180元B .155元,200元C .100元,120元D .150元,125元7.为迎接2022年北京冬奥会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )A .2种B .3种C .4种D .5种 8.开学后书店向学校推销两类素质教育书,如果原价买这两种书共需880元,书店推销时第一种书打了八折,第二种书打了七五折,结果两种书共少要了200元,则原来每种书需钱数为( ).A .400元,480元B .480元,400元C .360元,300元D .300元,360元二、填空题9.小慧去花店买鲜花,若买6支玫瑰和4支百合,则她所带的钱还剩11元;若买4支玫瑰和6支百合,则她所带的钱还缺5元.若她想购买10支百合,则她所带的钱还缺______元.10.某超市的账目记录显示,某天卖出13盒牙膏和7支牙刷,收入132元;另一天以同样的价格卖出同类的5盒牙膏和8支牙刷,收入72元,则该超市以同样的价格卖出同类的6盒牙膏和5支牙刷,可收入_______元.11.某公司用30 000元购进甲、乙两种货物,货物卖出后,甲种货物的利润率是10%,乙种货物的利润率是11%,共获得利润3 150元,则甲种货物的进货价为_________元,乙种货物的进货价为_________元.12.打折:卖货时,按照标价乘以________或________,则称将标价进行了几折(或理解为:销售价占标价的百分率).例如某种服装打8折即按标价的百分之八十出售.13.某种电器产品,每件若以原定价的8折销售,可获利120元;若以原定价的6折销售,则亏损20元,该种商品每件的进价为________ 元.14.五一期间,时代商场开展打折促销活动,某商品如果按原售价的八折出售,将盈利20元,而按原售价的六折出售,将亏损60元,则该商品的原售价为_____.15.有A,B两种医用外科口罩,2包A型口罩与3包B型口罩合计27元,7包A型口罩与8包B型口罩合计77元,则3包A型口罩与2包B型口罩合计________元.16.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有_________种.三、解答题17.某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场计划同时只购进其中两种不同型号的电视机,并且正好用完拨款.请你给出所有可行的采购方案.(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元.在以上的方案中,为使获利最多,你选择哪种进货方案?18.某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场计划同时只购进其中两种不同型号的电视机,并且正好用完拨款.请你给出所有可行的采购方案.(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元.在以上的方案中,为使获利最多,你选择哪种进货方案?19.在疫情防控期间,某中学为保障广大师生生命健康安全购进一批免洗手消毒液和84消毒液.如果购买100瓶免洗手消毒液和150瓶84消毒液,共需花费1500元;如果购买120瓶免洗手消毒液和160瓶84消毒液,共需花费1720元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)某药店出售免洗手消毒液,满150瓶免费赠送10瓶84消毒液.若学校从该药店购进免洗手消毒液150瓶和84消毒液60瓶,共需花费多少元?20.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B 商品用了840元.(1)打折前,买一件A商品和一件B商品各需多少元?(2)打折后,买500件A商品和500件B商品用了9600元,比不打折少花了多少钱?参考答案:1.C2.B3.B4.B5.A6.B7.B8.A9.3710.6811.15000,1500012.十分之几百分之几十13.44014.400元15.2316.217.(1)可选择方案:1、采购甲乙两种电视机各25台2、采购甲丙两种电视机分别35台和15台(2)选择方案2:采购甲丙两种电视机分别35台和15台,获利最大18.(1)可选择方案:1、采购甲乙两种电视机各25台2、采购甲丙两种电视机分别35台和15台(2)选择方案2:采购甲丙两种电视机分别35台和15台,获利最大19.(1)每瓶免洗手液的价格为9元,每瓶84消毒液4元(2)学校从该药店购进免洗手消毒液150瓶和84消毒液60瓶,共需花费1550元20.(1)买一件A商品需16元,一件B商品需4元(2)400元。
2020年春季人教版七年级下册:8.3 实际问题和二元一次方程组(附答案)
8.3 实际问题与二元一次方程组同步练习题一.选择题(共12小题)1.根据“x与y的差的2倍等于9”的数量关系可列方程为()A.2(x﹣y)=9B.x﹣2y=9C.2x﹣y=9D.x﹣y=9×22.一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程少40千米.如果设轿车平均速度为a千米/小时,卡车的平均速度为b千米/小时,则()A.2a=3b+40B.3b=2a﹣40C.2a=3b﹣40D.3b=40﹣2a 3.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.104.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心技墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A.B.C.D.5.学校八年级师生共468人准备到飞翔教育实践基地参加研学旅行,现已预备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.6.为安置200名因暴风雪受灾的灾民,需要同时搭建可容纳12人和8人的两种帐篷,则搭建方案共有()A.8种B.9种C.16种D.17种7.把12m长的彩绳截成2m或3m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1种B.2种C.3种D.4种8.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1B.2C.3D.49.郑奶奶提着篮子去农贸市场买鸡蛋,摊主按郑奶奶的要求,用电子秤称了5千克鸡蛋,郑奶奶怀疑重量不对,把鸡蛋放入自带的质量为0.6千克的篮子中(篮子质量准确),要求放在电子秤上再称一遍,称得为5.75千克,老板客气地说:“除去篮子后为5.15千克,老顾客啦,多0.15千克就算了”,郑奶奶高兴地付了钱,满意地回家了.以下说法正确的是()A.郑奶奶赚了,鸡蛋的实际质量为5.15千克B.郑奶奶亏了,鸡蛋的实际质量为4千克C.郑奶奶亏了,鸡蛋的实际质量为4.85千克D.郑奶奶不亏也不赚,鸡蛋的实际质量为5千克10.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20B.30和20C.40和35D.45和1511.如图,在3×3方格中做填字游戏,要求每行,每列及对角线上三个方格中的数字和都相等,则表格中x,y的值是()3x2y1﹣32yA.B.C.D.12.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()购票人数1~5051~100100以上门票价格13元/人11元/人9元/人A.20B.35C.30D.40二.填空题(共6小题)13.在幻方拓展课程探中,小明在如图的3×3方格内填入了一些表示数的代数式,若圈中各行、各列及对角线上的三个数之和都相等,则x﹣2y=.x2y﹣2y614.解古算题:今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.则甲带了钱.15.将一摞笔记本分给若干个同学,每个同学分8本,则差了7本.若设共有x个同学,y 本笔记本,则可列方程为.16.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是17.某公司向银行申请了甲、乙两种贷款,共计68万元,还贷期间每年需付出8.42万元利息.已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司乙种贷款的数额万元.18.《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同)乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).则黄金每枚重两,白银每枚重两.三.解答题(共6小题)19.某种合金是由A、B两种金属熔炼而成,根据不同用途的需要,两种金属原材料所选的比例也不相同,如果A、B两种原料按5:4配料,则该合金材料价格为5000元/吨,如果A、B两种原料按照3:2配料,则该合金材料价格为4860元/吨.问:A、B两种金属每吨的价格是多少元?20.2020年是全面建成小康社会收官之年,某扶贫帮扶小组积极响应,对农民实施精准扶贫.某农户老张家种植花椒和黑木耳两种干货共800千克,扶贫小组通过市场调研发现,花椒市场价60元/千克,黑木耳市场价48元/千克,老张全部售完可以收入4.2万元.已知老张种植花椒成本需25元/千克,种植木耳成本需35元/千克,根据脱贫目标任务要求,老张种植花椒和黑木耳的两种干货的纯收入(销售收入﹣种植成本)在2万元以上才可以顺利脱贫.请你分析一下扶贫帮扶小组是否能帮助老张顺利脱贫.21.郑州市自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.大桶小桶进价(元/个)185售价(元/个)208(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?22.某星期天,八(1)班开展社会实践活动,第一小组花90元从蔬菜批发市场批发了黄瓜和茄子共40kg,到蔬菜市场去卖,黄瓜和茄子当天的批发价与零售价如表所示:品名黄瓜茄子批发价/(元/kg) 2.42零售价/(元/kg) 3.6 2.8(1)黄瓜和茄子各批发了多少kg?(2)该小组当天卖完这些黄瓜和茄子可赚多少钱?23.某体育文化用品商店购进篮球和排球共200个,进价和售价如下表全部销售完后共获利润2600元.篮球排球类别价格进价(元/个)8050售价(元/个)9560(1)求商店购进篮球和排球各多少个?(2)王老师在元旦节这天到该体育文化用品商店为学校买篮球和排球各若干个(两种球都买了),商店在他的这笔交易中获利100元王老师有哪几种购买方案.24.(列二元一次方程组求解)班长安排小明购买运动会的奖品,下面对话是小明买回奖品时与班长的对话情境:小明说:“买了两种不同的笔记本共50本,单价分别是5元和9元,我给了400元,现在找回88元.”班长说:“你肯定搞错了.”小明说:“我把自己口袋里的18元一起当作找回的钱款了.”班长说:“这就对啦!”请根据上面的信息,求两种笔记本各买了多少本?参考答案一.选择题(共12小题)1.【解答】解:由文字表述列方程得,2(x﹣y)=9.故选:A.2.【解答】解:根据题意得:轿车行驶2小时的路程为:2a,卡车行驶3小时的路程为:3b,∵轿车行驶2小时的路程比卡车行驶3小时的路程少40千米,∴3b﹣2a=40,整理得:3b=2a+40,2a=3b﹣40,故选:C.3.【解答】解:设索长x尺,竿子长y尺,依题意,得:,解得:.故选:B.4.【解答】解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.5.【解答】解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.故选:B.6.【解答】解:设12人的帐篷有x顶,8人的帐篷有y顶,依题意,有:12x+8y=200,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去),即共有8种搭建方案.7.【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长12米时,不造成浪费,设截成2米长的彩绳x根,3米长的y根,由题意得,2x+3y=12,因为x,y都是非负整数,所以符合条件的解为:、、.则共有3种不同截法,故选:C.8.【解答】解:设截成2m的彩绳x根,截成1m的彩绳y根,依题意,得:2x+y=7,∴y=7﹣2x.又∵x,y均为非零整数,∴或或或,∴共有4种不同的截法.故选:D.9.【解答】解:设鸡蛋的实际质量为x千克,根据题意,得=解得x=4因为4<5.15所以郑奶奶亏了,鸡蛋的实际质量为4千克.故选:B.10.【解答】解:设每块地砖的长为xcm,宽为ycm,根据题意得,解这个方程组,得,答:每块地砖的长为45cm,宽为15cm,故选:D.11.【解答】解:依题意,得:,解得:.12.【解答】解:∵990不能被13整除,∴两个部门人数之和:a+b≥51,(1)若51≤a+b≤100,则11 (a+b)=990得:a+b=90,①由共需支付门票费为1290元可知,11a+13b=1290 ②解①②得:b=150,a=﹣60,不符合题意.(2)若a+b≥100,则9 (a+b)=990,得a+b=110 ③由共需支付门票费为1290元可知,1≤a≤50,51≤b≤100,得11a+13b=1290 ④,解③④得:a=70人,b=40人故两个部门的人数之差为70﹣40=30人,故选:C.二.填空题(共6小题)13.【解答】解:由题意可得:,解得:,则x﹣2y=8﹣4=4.故答案为:4.14.【解答】解:设甲原有的钱数为x,乙原有的钱数为y,根据题意,得,解得:故答案为:36.15.【解答】解:设共有x个同学,有y个笔记本,由题意,得y=8x﹣7.故答案是:y=8x﹣7.16.【解答】解:根据题意,得.故答案为:.17.【解答】解:设该公司甲种贷款的数额为x万元,乙种贷款的数额为y万元,依题意,得:,解得:.故答案为:26.18.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,解得.即每枚黄金重两,每枚白银重两.故答案是:;.三.解答题(共6小题)19.【解答】解:设A种金属每吨的价格为x元,B种金属每吨的价格为y元,依题意,得:,解得:.答:A种金属每吨的价格为3600元,B种金属每吨的价格为6750元.20.【解答】解:设老张种植花椒x千克,黑木耳y千克,依题意,得:,解得:,∵(60﹣25)×500+(48﹣35)×300=21700(元),21700>20000,∴扶贫帮扶小组能帮助老张顺利脱贫.21.【解答】解:(1)设购进大桶x个,小桶y个,依题意,得:,解得:.答:该超市购进大桶300个,小桶500个.(2)设小桶作为赠品送出m个,依题意,得:300×(20﹣18)+300×(8﹣5)+(500﹣300﹣m)(8﹣5﹣1)﹣5m=1550,解得:m=50.答:小桶作为赠品送出50个.22.【解答】解:(1)设黄瓜批发了xkg,茄子批发了ykg,根据题意,得,解得,答:黄瓜批发了25kg,茄子批发了15kg.(2)(3.6﹣2.4)×25+(2.8﹣2)×15=42(元).答:该小组当天卖完这些黄瓜和茄子可赚42元.23.【解答】解:(1)设商店购进篮球x个,排球y个,依题意,得:,解得:.答:商店购进篮球120个,排球80个.(2)设王老师购买篮球m个,排球n个,依题意,得:(95﹣80)m+(60﹣50)n=100,∴n=10﹣m.∵m,n均为正整数,∴m为偶数,∴当m=2时,n=7;当m=4时,n=4;当m=6时,n=1.答:王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4个,排球4个;方案3:购进篮球6个,排球1个.24.【解答】解:设两种笔记本各买x本、y本,根据题意,得解得答:两种笔记本各买30本,20本.。
人教版数学七年级下册 8.3实际问题与二元一次方程组同步测试试题(一)
实际问题与二元一次方程组同步测试试题(一)一.选择题1.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把6m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.2种B.3种C.4种D.5种2.“十一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.3.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种4.学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种5.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为()A.B.C.D.6.小方、小程两人相距6km,两人同时出发相向而行,1h相遇;同时出发同向而行,小方3h可追上小程.两人的平均速度各是多少?若设小方的平均速度是xkm/h,小程的平均速度是ykm/h,则下列方程组不正确的是()A.B.C.D.7.疫情期间,小明要用16元钱买A、B两种型号的口罩,两种型号的口罩必须都买,16元全部用完.若A型口罩每个3元,B型每个2元,则小明的购买方案有()A.2种B.3种C.4种D.5种8.班级为了奖励优秀学生花100元买甲乙两种奖品共24件,其中甲种奖品每件5元,乙种奖品每件3元,若设购买甲种奖品x件,乙种奖品y件,则所列方程组正确的是()A.B.C.D.9.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的三分之二,那么乙也共有钱50.问甲、乙两人共带了多少钱?设甲带钱为x,乙带钱为y,根据题意,可列方程组为()A.B.C.D.10.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18272415矿泉水(瓶)30454025总价(元)396585528330A.甲B.乙C.丙D.丁二.填空题11.甲、乙两厂生产同一种水泥,都计划把全年的水泥销往开州,这样两厂的水泥就能占有开州市场同类水泥的.然而实际情况并不理想,甲厂仅有的水泥、乙厂仅有的水泥销到了开州,两厂的水泥仅占了开州市场同类水泥的,则甲厂该水泥的年产量与乙厂该水泥的年产量的比为.12.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A和B,已知A和B的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额.于是小明又购买了A、B各一件,这样就能参加超市的促销活动,最后刚好付款1305元.小明经仔细计算发现前面粗略测算时把A和B的单价看反了,那么小明实际总共买了件年货.13.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是.14.在国新办4月2日举行的疫情期间中国海外留学人员安全问题新闻发布会上,外交部副部长马朝旭透露,3月份全球疫情加速扩散后,中国已经安排A与B两种型号的包机9架次,从伊朗、意大利等国接回包括留学人员在内的中国公民1457人.其中A型包机每架次坐满158人,B型包机每架次坐满163人,则A型包机有架,B型包机有架.15.在如图所示的广义三阶幻方中分别给出了3个数,试分别求出x,y的值为.三.解答题16.因“抗击疫情”需要,学校决定再次购进一批医用一次性口罩及KN95口罩共1000只,已知1只医用一次性口罩和10只KN95口罩共需113元;3只医用一次性口罩和5只KN95口罩共需64元.问:一只医用一次性口罩和一只KN95口罩的售价分别是多少元?17.安化风景优美,物产丰富,一外地游客到某特产专营店,准备购买黑茶和豆腐乳两种盒装特产.若购买3盒黑茶和2盒豆腐乳共需450元;购买1盒黑茶和3盒豆腐乳共需255元.(1)请分别求出每盒黑茶和每盒豆腐乳价格;(2)该游客购买了4盒黑茶和2盒豆腐乳,共需多少元?18.我国古代算书《四元玉鉴》记载“二果问价”问题:“九百九十九文钱,甜果苦果买一千;甜果九个十一文,苦果七个四文钱.试问甜苦果几个,又问各该几个钱?”其大意是:“现有九百九十九文钱,共买甜果和苦果一千个;九个甜果十一文钱,七个苦果四文钱.请问甜果和苦果各买多少个,各花多少文钱?”(1)每个甜果文钱,每个苦果文钱.(2)求甜果和苦果各买多少个,各花多少文钱?19.某水果店5月份购进甲、乙两种水果共花费1720元,其中甲种水果13元/千克,乙种水果16元千克;6月份,这两种水果的进价上调为:甲种水果15元/千克,乙种水果20元/千克,该店6月份购进这两种水果的数量与5月份都相同,却多支付货款280元.(1)求该店6月份购进甲、乙两种水果分别是多少千克?(2)该店6月份甲种水果售价为20元/千克,乙种水果售价为26元/千克,在甲种水果出售55千克、乙种水果全部售完后,商店决定对甲种水果打折处理,在售完全部水果后,获得的总利润为400元,问甲种水果打几折?参考答案与试题解析一.选择题1.【解答】解:设截成2m的彩绳x根,1m的彩绳y根,由题意可得2x+y=6,∵不造成浪费,∴x,y是正整数,∴或或或,则共有4种不同截法,故选:C.2.【解答】解:依题意,得:.故选:A.3.【解答】解:设可以购买x支康乃馨,y支百合,依题意,得:2x+3y=30,∴y=10﹣x.∵x,y均为正整数,∴,,,,∴小明有4种购买方案.故选:B.4.【解答】解:设购买了A种奖品x个,B种奖品y个,根据题意得:15x+25y=200,化简整理得:3x+5y=40,得y=8﹣x,∵x,y为正整数,∴,,∴有2种购买方案:方案1:购买了A种奖品5个,B种奖品5个;方案2:购买了A种奖品10个,B种奖品2个.故选:A.5.【解答】解:依题意得:,故选:A.6.【解答】解:依题意,得:,即或.故选:C.7.【解答】解:设可以购买x个A型口罩,y个B型口罩,依题意,得:3x+2y=16,∴y=8﹣x.又∵x,y均为正整数,∴,,∴小明有2种购买方案.故选:A.8.【解答】解:依题意,得:.故选:B.9.【解答】解:依题意,得:.故选:B.10.【解答】解:设红豆棒冰的单价为x元,矿泉水的单价为y元,依题意,得:18x+30y=396,∴3x+5y=66,∴27x+45y=9(3x+5y)=594,24x+40y=8(3x+5y)=528,15x+25y=5(3x+5y)=330,∴乙的总价算错了.故选:B.二.填空题(共5小题)11.【解答】解:设甲厂该水泥的年产量为a,乙厂该水泥的年产量b,(a+b)÷=(a+b)÷,解得,,即甲厂该水泥的年产量与乙厂该水泥的年产量的比为1:3,故答案为:1:3.12.【解答】解:1305+99=1404,设A的单价为x元,共买a件;B的单价为y元,共买b件,由题意得:,①+②得:(a+b﹣1)(x+y)=2709,∵2709=3×3×7×43,且已知A和B的单价总和是100到200之间的整数,∴x+y=3×43=129(元),∴a+b﹣1=2709÷129=21,∴a+b=22(件).故答案为:22.13.【解答】解:设1颗草莓味糖果m元,1颗牛奶味糖果n元,由题意得:10(0.4+m+n)×(1+30%)=23.4,解得:m+n=1.4,∴甲种糖果的成本价为:10×(0.4+1.4)=18(元),乙种糖果的成本价为:20×0.4+5(m+n)=8+5×1.4=15(元).设甲种糖果有x袋,乙种糖果有y袋,则:18x×30%+15y×20%=(18x+15y)×24%,解得:=.∴该公司销售甲、乙两种袋装糖果的数量之比是.故答案为:.14.【解答】解:设A型包机有x架,B型包机有y架,依题意,得:,解得:.故答案为:2;7.15.【解答】解:依题意,得:,解得:.故答案为:﹣1,2.三.解答题(共4小题)16.【解答】解:设一只医用一次性口罩售价为x元,一只KN95口罩的售价为y元,依题意,得:,解得:.答:一只医用一次性口罩售价为3元,一只KN95口罩的售价为11元.17.【解答】解:(1)设每盒黑茶x元,每盒豆腐乳y元,由题意得,,解得,答:每盒黑茶120元,每盒豆腐乳45元;(2)把每盒黑茶和豆腐乳的价格分别为120元,45元代入,可得:4×120+2×45=570(元),答:该游客购买了4盒黑茶和2盒豆腐乳,共需570元.18.【解答】解:(1)每个甜果的价格=(文),每个苦果的价格=(文),故答案为:,;(2)设甜果买x个,苦果买y个,根据题意,得,解得,∴(文),(文),答:甜果买了657个,花了803文钱,苦果买了343个,花了196文钱.19.【解答】解:(1)设该店6月份购进甲、乙两种水果分别是x千克,y千克,由题意可得,解得:,答:该店6月份购进甲、乙两种水果分别是120千克,10千克;(2)设甲种水果打m折,由题意可得:400=(26﹣20)×10+(20﹣15)×55+(20×﹣15)×(120﹣55),∴m=8,答:甲种水果打8折.。
人教版初中数学七年级下册第八章《8.3实际问题与二元一次方程组》同步练习题(含答案) (1)
《8.3实际问题与二元一次方程组》一、选择题(每小题只有一个正确答案)1.在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x名学生,列出方程组为()A. B. C. D.2.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D. 96mm23.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A. 14和6B. 24和16C. 28和12D. 30和104.某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A. 50、100B. 50、56C. 56、126D. 100、1265.我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100 匹马恰好拉了 100 片瓦,已知 1 匹大马能拉3 片瓦,3 匹小马能拉 1 片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. B. C. D.6.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x人,分成y个小组,则可得方程组()A.74{83x yx y+=-=B.7y4{83xy x=++=C.7y4{83xy x=-=+D.7y+4{83xy x==+7.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.42{43x yx y+==B.42{34x yx y+==C.42{1134x yx y-==D.42{43y xx y+==二、填空题8.某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。
2021-2022学年人教版七年级数学下册《8-3实际问题与二元一次方程组》同步练习题(附答案)
2021-2022学年人教版七年级数学下册《8-3实际问题与二元一次方程组》同步练习题(附答案)一.选择题1.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()A.B.C.D.2.我国古代数学名著《孙子算经》记载一道题,大意为:100个和尚吃了100个馒头,已知1个大和尚吃3个馒头,3个小和尚吃1个馒头,问有几个大和尚,几个小和尚?若设有m个大和尚,n个小和尚,那么可列方程组为()A.B.C.D.3.某年级学生共有246人,其中男生人数y比女生人数x的2倍多2人,则下面所列的方程组中符合题意的是()A.B.C.D.4.某学校的篮球个数比足球个数的3倍多2,篮球个数的2倍与足球个数的差是49,设篮球有x个,足球有y个,可得方程组()A.B.C.D.5.据《九章算术》中记载:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”,若设鸡x只,兔y只,则所列方程组是()A.B.C.D.6.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆,试求预定期限是多少天?计划生产多少辆汽车?()A.预定期限为6天,需要制造的汽车总数是200辆B.预定期限为6天,需要制造的汽车总数是220辆C.预定期限为7天,需要制造的汽车总数是220辆D.预定期限为7天,需要制造的汽车总数是200辆7.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是()A.150米B.200米C.300米D.400米8.《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.9.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A.B.C.D.二.填空题10.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x元,练习本每本y元,写出以x 和y为未知数的方程为.11.小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为.12.为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x瓶,购进84消毒液y瓶,则可列方程组为.13.某果园计划种植梨树和苹果树共1000株,实际上梨树种植量比计划增长10%,而苹果树种植量比计划减少5%.若设实际种植梨树x株,苹果树y株,列二元一次方程为.14.根据图中提供的信息,可知一个杯子的价格是元.三.解答题15.我国古代数学著作《孙子算经》中有“鸡兔同笼问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?你能用二元一次方程组表示题中的数量关系并解决问题吗?16.顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数是到云水洞的人数的2倍少1人,到两地旅游的人数各是多少?17.某学校为了增强学生体质开展“阳光大课间活动”,鼓励学生加强体育锻炼,决定让各班购买跳绳和键子作为活动器材,已知购买2根跳绳和5个键子共需32元;购买4根跳绳和3个键子共需36元.(1)求购买一根跳绳和一个键子分别需要多少元?(2)为了更好地开展好这个活动,该班需要购买18根跳绳和22个键子,请求出该班这次活动,购买的跳绳和键子共花费多少钱?18.某学校举行“疫情防控”宣传活动,故购买A、B两种奖品以鼓励积极参与的学生.经市场调查发现,若购买A种6件、B种1件,共需100元;若购买A种5件、B种2件,共需88元.(1)A、B两种奖品每件各多少元?(2)学校决定现要购买A种奖品8件、B种奖品15件,那么总费用是多少元?19.今年“五一”小长假期间,某市外来与外出旅游的总人数为287万人,分别比去年同期增长35%和25%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.20.某药店销售A、B两种型号的口罩,两天内共销售500个,销售收入900元,A型口罩每个2元,B型口罩每个1.5元,问A、B两种型号的口罩分别销售了多少个?21.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案,且分别求出m,n的值;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.22.为了防治“新型冠状病毒”,小王准备购买A,B两种型号的医用口罩,已知1只A型口罩和1只B型口罩共7元,3只A型口罩和1只B型口罩共13元;(1)A型和B型口罩的单价是多少?(2)现在小王同学计划用17元钱购买A,B两种型号的口罩,则A型,B型各能购买多少只?23.王阿姨和李奶奶一起去超市买水果,王阿姨买苹果2千克、香蕉1千克,一共花12.8元;李奶奶买苹果1千克,香蕉1.5千克,共花10.8元.求1千克苹果、1千克香蕉各多少元?24.某出租车公司有A、B两种不同型号的汽车,用两辆A型车和一辆B型车装满货物一次可运货10吨;用一辆A型车和两辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)一辆A型车和一辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请你帮该物流公司设计最省钱的租车方案,并求出最少租车费.参考答案一.选择题1.解:根据某年级学生共有246人,则x+y=246;男生人数y比女生人数x的2倍少2人,则2x=y+2.可列方程组为.故选:B.2.解:设有m个大和尚,n个小和尚,依题意得:.故选:D.3.解:由题意得:,故选:C.4.解:设篮球有x个,足球有y个,可得方程组:.故选:B.5.解:设鸡x只,兔y只,依题意,得:.故选:A.6.解:设预定期限为x天,需要制造的汽车总数为y辆,根据题意,得.解得,答:预定期限为6天,需要制造的汽车总数是220辆.故选:B.7.解:设每一块小矩形牧场的长为x米,宽为y米,,解得,每一块小矩形牧场的周长是:100+100+50+50=300(米),故选:C.8.解:由题意可得,,故选:C.9.解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:,故选:B.二.填空题10.解:铅笔每支x元,14支铅笔需14x元;练习本每本y元,6本练习本需付6y元,共用5.4元,可列方程为:14x+6y=5.4.11.解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得.故答案为:.12.解:设该校购进洗手液x瓶,该校购进84消毒液y瓶,根据题意可得:,故答案为:.13.解:设实际种植梨树x株,苹果树y株,列二元一次方程为:+=1000.故答案为:+=1000.14.解:设一盒杯子x元,一个暖瓶y元,可得:,解得:.答:一个杯子的价格是8元,故答案为:8.三.解答题15.解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.16.解:设到花果岭的旅游人数为x人,则到云水洞的人数为y人,根据题意得出:,解得:,答:到花果岭的旅游人数为133人,则到云水洞的人数为67人.17.解:(1)设购买一根跳绳需要x元,一个毽子需要y元,依题意得:,解得:.答:购买一根跳绳需要6元,一个毽子需要4元.(2)6×18+4×22=108+88=196(元).答:该班这次活动,购买的跳绳和键子共花费196元.18.解:(1)设A种奖品每件x元,B种奖品每件y元,依题意得:解得:,答:A种奖品每件16元,B种奖品每件4元;(2)由题意得:16×8+4×15=188(元),答:总费用是188元.19.解:设去年同期外来旅游的人数为x万人,外出旅游的人数为y万人,依题意得:,解得:,∴(1+35%)x=(1+35%)×120=162,(1+25%)y=(1+25%)×100=125.答:该市今年外来旅游的人数为162万人,外出旅游的人数为125万人.20.解:设A型口罩销售了x个,B型口罩销售了y个,依题意得:,解得:.答:A型口罩销售了300个,B型口罩销售了200个.21.解:(1)设一辆A型车装满货物可运货x吨,一辆B型车装满货物可运货y吨,根据题意,得:,解得:,答:一辆A型车装满货物可运货3吨,一辆B型车装满货物可运货4吨;(2)由题意得:3m+4n=31,∵m、n均为正整数,∴或或,∴该物流公司共有以下三种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一费用:100×1+120×7=940(元),方案二费用:100×5+120×4=980(元),方案三费用:100×9+120×1=1020(元),∵940<980<1020,∴方案一:租A型车1辆,B型车7辆,最省钱,最少租车费为940元.22.解:(1)设A型口罩的单价为x元,B型口罩的单价为y元,依题意得:,解得:.答:A型口罩的单价为3元,B型口罩的单价为4元.(2)设能购买m只A型口罩,n只B型口罩,依题意得:3m+4n=17,∴m=.又∵m,n均为正整数,∴.答:能购买3只A型口罩,2只B型口罩.23.解:设1千克苹果x元,1千克香蕉y元,依题意得:,解得:.答:1千克苹果4.2元,1千克香蕉4.4元.24.解:(1)设一辆A型车和一辆B型车都装满货物一次可分别运货x吨、y吨,由题意可得,,解得,答:一辆A型车和一辆B型车都装满货物一次可分别运货3吨,4吨;(2)由题意可得,3a+4b=31,∵a、b均为正整数,∴,或,∴该物流公司共有三种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆;(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一:租A型车1辆,B型车7辆,费用为200×1+240×7=200+1680=1880(元);方案二:租A型车5辆,B型车4辆,费用为200×5+240×4=1000+960=1960(元);方案三:租A型车9辆,B型车1辆,费用为200×9+240×1=1800+240=2040(元);∵1880<1960<2040,∴物流公司最省钱的租车方案是租A型车1辆,B型车7辆,最少租车费为1880元.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (110)
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩的解满足x <y ,试求a 的取值范围.【答案】a <﹣3. 【解析】 【分析】先把a 当作已知条件求出x 、y 的值,再根据x <y 即可求出a 的不等式,求出a 的取值范围即可.【详解】解方程组325x y a x y a -=+⎧⎨+=⎩得212x a y a =+⎧⎨=-⎩,∵x <y , ∴2a +1<a ﹣2, 解得a <﹣3.故a 的取值范围是a <﹣3. 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.52.满足方程组3512332x y k x y k +=+⎧⎨+=-⎩的x 和y 的值之和是2,求k 的值.【答案】k =35【解析】 【分析】方程组消去k 表示出x +y ,代入x +y =2中计算即可求出k 的值. 【详解】3512332x y k x y k +=+⎧⎨+=-⎩①②, ②×2﹣①得:x +y =5﹣5k , 代入x +y =2得:5﹣5k =2,解得:k =35.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.53.对于实数,规定新运算:x*y ax by =+,其中a 、b 是常数.已知2*17=,1*31-=.()1求a 、b 的值; ()2求1*5的值.【答案】()201?a 7=,9b 7=;()652?7. 【解析】 【分析】()1利用新定义和两组对应值得到27{31?a b a b +=-+=,然后利用加减法解方程组即可;()2由()1得新运算为:209x*y 77x y =+,然后把1x =,5y =代入计算即可.【详解】()1根据题意得2a b 7{a 3b 1?+=-+=,解得20a 7=,9b 7=; ()2由()1得209x*y x y 77=+,所以209651*515777=⨯+⨯=.【点睛】本题考查了解二元一次方程组:利用代入消元法或加减消元法解二元一次方程组.54.已知关于x 、y 的方程组35223x y k x y k +=+⎧⎨+=⎩,的解满足﹣2<x+y <5,求k 的取值范围.【答案】0<k <7. 【解析】 【分析】把k 看作常数,利用加减消元法解关于x 、y 的二元一次方程组,然后求出x +y ,再列出不等式组,求解即可.【详解】解方程组35223x y k x y k +=+⎧⎨+=⎩,得:264x k y k =-⎧⎨=-⎩,∴x+y =(2k ﹣6)+(﹣k+4)=k ﹣2, 又∵﹣2<x+y <5, ∴﹣2<k ﹣2<5, 解得:0<k <7. 【点睛】本题考查了二元一次方程组的解法,解一元一次不等式组,把k 看作常数求出x 、y 是解题的关键,也是本题的难点.55.解方程或方程组:(1)2-13x =+24x ﹣1;(2)已知二元一次方程:①x+y =4,①2x ﹣y =2,①x ﹣2y =1,请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【答案】(1)x=-25 ;(2)选①和②,31x y =⎧⎨=⎩ .【解析】 【分析】(1)根据一元一次方程的解法即可求答案. (2)根据二元一次方程组的解法即可求出答案. 【详解】(1)4(2x ﹣1)=3(x+2)﹣12 8x ﹣4﹣3x ﹣6=﹣12 5x =﹣2x =25-;(2)421x y x y +=⎧⎨-=⎩①②①﹣②得:3y =3 y =1将y =1代入①得:x =3∴方程组的解为31x y =⎧⎨=⎩【点睛】本题考查方程的解法,解题的关键是熟练运用方程的解法,本题属于基础题型.56.实践操作题 某班学生植树,若每人植7棵树,则剩5棵树;若每人植8棵树,则有1人少植1棵树,问有多少名学生植树,有多少棵树.(1)假设有x 名学生植树,有y 棵树,请列出关于这个问题的二元一次方程组;(2)用列表的方法求出有多少名学生植树,有多少棵树.【答案】(1)7581x y x y +=⎧⎨-=⎩;(2)有6名学生植树,有47棵树.【解析】 【分析】(1) 设有x 名学生植树,有y 棵树,根据每人植7棵树,剩5棵树可得75x y +=,根据每人植8棵树,则有1人少植1棵树可得:81x y -=,从而可得方程组; (2)通过列表,把满足方程75x y +=和81x y -=的解一一列举出来,找出满足两个方程的公共解.【详解】解:(1)根据题意,得:7581x y x y +=⎧⎨-=⎩; (2)根据方程组及x,y 都是正整数的特点,可列表如下:显然x =6,y =47满足这个方程组,即方程组的解是647x y =⎧⎨=⎩,答:有6名学生植树,有47棵树. 【点睛】本题主要考查二元一次方程组解决实际问题,解决本题的关键是要熟练找出题目中等量关系.57.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩ 的解为53x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()3()163()()0m a b a b a b n a b +--=⎧⎨+--=⎩的解是_____.【答案】41a b =⎧⎨=⎩【解析】 【分析】仿照已知方程组的解确定出所求方程组的解即可. 【详解】∵关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,∴关于a、b的二元一次方程组()()()()31630m a b a ba b n a b⎧+--=⎪⎨+--=⎪⎩的解是53a ba b+=⎧⎨-=⎩,即41ab=⎧⎨=⎩.故答案为41ab=⎧⎨=⎩【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.58.已知实数x,y()22350x y--=,求8x y-的平方根与立方根【答案】±3【解析】【分析】根据非负数的性质列出关于x、y的二元一次方程组,求解得到x、y的值,然后代入代数式进行计算求出的值,再根据平方根的定义解答.【详解】根据题意得230 2350 x yx y--=⎧⎨--=⎩,解得11 xy=⎧⎨=-⎩,x-8y=9,平方根=±3,立方根【点睛】本题考查了算术平方根非负数,平方数非负数的性质,解二元一次方程组,平方根的定义,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.59.某商店甲、乙两种商品三天销售情况的账目记录如下表:(1)财务主管在核查时发现:第一天的账目正确,但其他两天的账目有一天有误,请你判断第几天的账目有误,并说明理由;(2)求甲、乙两种商品的单价.【答案】(1)第二天的账目有误(2)甲、乙两种商品的单价分别为5元,6元【解析】【分析】(1)设甲、乙商品的单价分别为x,y元,根据题意列出方程组进行解答即可;(2)根据题意列出方程组进行解答即可.【详解】(1)第二天的账目有误,理由如下:设甲、乙两种商品的单价分别为x元,y元,根据题意可得:第一天:39x+21y=321①;第二天:26x+14y=204②;第三天:39x+25y=345③.由①÷3,得13x+7y=107,由②÷2,得13x+7y=102,∵第一天的账目正确,∴第二天的账目有误.(2)由(1)得第二天的账目有误,∴3921321 39+25y345x yx+=⎧⎨=⎩①③③-①,得y=6.把y=6代入①,得x=5,所以方程组的解为56xy=⎧⎨=⎩,答:甲、乙两种商品的单价分别为5元,6元.【点睛】本题考查了二元一次方程组的应用,解题的关键是根据题意列出方程组解答即可.60.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有4% 的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?【答案】(1)水果店第一次购进水果800元,第二次购进水果1200元;(2)水果每千克售价为10元【解析】 【分析】(1)设该水果店两次分别购买了x 元和y 元的水果.根据“购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,”、“两次购进水果共花去了2000元”列出方程组并解答;(2)设该水果每千克售价为m 元,,则由“售完这些水果获利不低于3780元”列出不等式并解答.【详解】(1)设水果店第一次购进水果x 元,第二次购进水果y 元由题意,得20002414x y y x +=⎧⎪⎨=⨯⎪⎩- 解之,得8001200x y =⎧⎨=⎩故水果店第一次购进水果800元,第二次购进水果1200元.(2)设该水果每千克售价为m 元,第一次购进水果8004=200÷ 千克,第二次购进水果12003=400÷ 千克,由题意()2001-30+4001-420003780m ⨯⨯⋅-≥⎡⎤⎣⎦%(%)解之,得10m故该水果每千克售价为10元.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于列出方程。
人教版数学七年级下册8.3实际问题与二元一次方程组同步练习(Word版 含答案)
2020-2021学年度初一数学第二学期人教(2012)七年级下册第八章二元一次方程组8.3实际问题与二元一次方程组同步练习一、选择题1.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y 斤,则可列方程组为( )A.56156x yx y y x+=⎧⎨-=-⎩B.65156x yx y y x+=⎧⎨+=+⎩C.56145x yx y y x+=⎧⎨+=+⎩D.65145x yx y y x+=⎧⎨-=-⎩2.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,503.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822y xx y+=⎧⎨⨯=⎩4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天5.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是()A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩6.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm27.如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列求出这两个角的度数的方程是()A.18010x yx y+=⎧⎨=-⎩B.180310x yx y+=⎧⎨=-⎩C.180+10x yx y+=⎧⎨=⎩D.3180310yx y=⎧⎨=-⎩8.如果│x+y-1│和2-2x+y-3-2互为相反数,那么x-y的值为(-A.12xy=⎧⎨=⎩B.12xy=-⎧⎨=-⎩C.21xy=⎧⎨=-⎩D.21xy=-⎧⎨=-⎩9.利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm10.某校运动员分组训练,若每组7人则余3人,若每组8人,则缺5人,设运动员的人数为x人,组数为y,则下列方程组正确的有()A.7385y xy x=+⎧⎨+=⎩B.7385x yx y+=⎧⎨-=⎩C.7385y xy x=-⎧⎨=+⎩D.7385y xy x=+⎧⎨+=⎩11.已知方程组35223x y kx y k+=+⎧⎨+=⎩,x与y的值之和等于2,则k的值等于()A.3B.4-C.4D.3-12.在一个3×3的方格中填写9个数,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图,方格中填写了一些数和字母,若它能构成一个三阶幻方,则m n+的值为()A.12B.14C.16D.18二、填空题13.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是.14.已知方程组2231y x my x m-=⎧⎨+=+⎩的解满足方程x+3y=3,则m的值是________.15.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需_____元.16.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.17.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.18.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有______种购买方案.三、解答题19.长沙市某公园的门票价格如下表所示:某校九年级甲、乙两个班共100-多人去该公园举行毕业联欢活动,-其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;-如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人20.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.21.已知21xy=⎧⎨=⎩是二元一次方程组8-1mx nynx my+=⎧⎨=⎩的解,求2m-n的算术平方根.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?参考答案1.C2.B3.A4.B5.A6.A7.B8.C9.D10.C11.C12.B 13.-214.115.110016.45 1017.2753x yx y+=⎧⎨=⎩18.两19.甲班有55人,乙班有48人.20.(1)1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)2160.21.222.(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元。
七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程组练习卷含解析新版新人教版
8.3 实际问题与二元一次方程组一.选择题(共5小题)1.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.2.甲乙两人在一环形跑道上同时从A点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的()倍.A.2 B.3 C.4 D.53.成书早于《九章算术》的江陵张家山竹简《算术》记载,“方程”是“程禾”算法发展而来的.在《九章算法》的方程章,有一道题,原文是:“今有甲乙二人持钱不计其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有里有多少钱.若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲有钱为x,乙有钱为y.依题意可列方程组为()A.B.C.D.4.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20 B.30和20 C.40和35 D.45和155.一个班级,若分成12个小组,则余3人,若每组人数增加2人,则可分成8组,仍余3人,这个班的人数是()A.39 B.43 C.51 D.59二.填空题(共5小题)6.小明的爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:0013:0014:30碑上的数是一个两位数,数字之和是6是一个两位数,十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是多少?设12:00时看到的两位数的个位数为y,十位数为x,列出的二元一次方程组为.7.在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为.8.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了道题.参赛者答对题数答错题数得分A200100B19194C146649.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶对.10.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有本.三.解答题(共10小题)11.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.12.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.13.(列二元一次方程组求解)一、二两班共有100名学生,他们的体育达标率(达到标准的百分率)为81%.如果一班学生的的体育达标率为87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?14.某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.15.某校规划在一块长AD为18m.宽AB为13m的长方形场地ABCD上,设计分别与AD、AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少.16.某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元,A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共花了7840元,请你计算A、B 商品打了多少折?17.某花店计划购进一批新的花束以满足市场需求,三款不同品种的花束,进价分别是A款180元/束,B款60元/束,C款120元/束.店铺在经销中,A款花束可赚20元/束,B款花束可赚10元/束,C款花束可赚12元/束.(1)若商场用6000元同时购进两种不同款式的花束共40束,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该店铺同时购进三款花束共20束,共用去1800元,问这次店铺共有几种可能的方案?利润最大是多少元?18.某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.(1)求甲,乙两木工组单独修理这批桌凳的天数;(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.19.甲、乙两人一起去检修300长的自来水管道,已知甲比乙每小时少修10m,两人从管道的两端同时开始检修,3小时后完成任务.问:甲、乙每小时各检修多少m?20.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,所用资金恰好为440元.在销售时,甲种道具的每件售价为10元,要使得这50件道具所获利润率为20%,乙道具的每件售价为多少元?人教新版七年级下学期《8.3 实际问题与二元一次方程组》2020年同步练习卷参考答案与试题解析一.选择题(共5小题)1.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.【分析】设小明和他妈妈现在分别是x岁和y岁,分别表示出十年前和十年后他们的年龄,根据题意列方程组即可.【解答】解:设小明和他妈妈现在分别是x岁和y岁.由题意得,,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.2.甲乙两人在一环形跑道上同时从A点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的()倍.A.2 B.3 C.4 D.5【分析】设乙的速度为x米/分钟,甲的速度为kx米/分钟,环形跑道的长为S 米,根据路程=速度×时间,即可得出关于k,x的二元一次方程组(S和x是设而不求),解之即可得出k值.【解答】解:设乙的速度为x米/分钟,甲的速度为kx米/分钟,环形跑道的长为S米,依题意,得:,解得:k=3.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.成书早于《九章算术》的江陵张家山竹简《算术》记载,“方程”是“程禾”算法发展而来的.在《九章算法》的方程章,有一道题,原文是:“今有甲乙二人持钱不计其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有里有多少钱.若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲有钱为x,乙有钱为y.依题意可列方程组为()A.B.C.D.【分析】设甲有钱为x,乙有钱为y.根据“若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲有钱为x,乙有钱为y.依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20 B.30和20 C.40和35 D.45和15【分析】设每块地砖的长为xcm,宽为ycm,根据图中关系可得x+y=60,x=3y,求两方程的解即可.【解答】解:设每块地砖的长为xcm,宽为ycm,根据题意得,解这个方程组,得,答:每块地砖的长为45cm,宽为15cm,故选:D.【点评】本题考查了二元一次方程的应用,正确理解图意并列出方程组是解题的关键.5.一个班级,若分成12个小组,则余3人,若每组人数增加2人,则可分成8组,仍余3人,这个班的人数是()A.39 B.43 C.51 D.59【分析】设这个班的人数是x,每组人数为y,根据题意列出方程解答即可.【解答】解:设这个班的人数是x,每组人数为y,可得:,解得:,故选:C.【点评】此题考查二元一次方程组的应用,关键是根据题意得出两个方程解答.二.填空题(共5小题)6.小明的爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:0013:0014:30碑上的数是一个两位数,数字之和是6是一个两位数,十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是多少?设12:00时看到的两位数的个位数为y,十位数为x,列出的二元一次方程组为.【分析】设12:00时看到的两位数的个位数为y,十位数为x,根据车的速度不变及12:00时看到的两位数的数字之和为6,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设12:00时看到的两位数的个位数为y,十位数为x,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为3x+(11﹣x)=23 .【分析】直接设A队胜了x场,则平(11﹣x)场,再利用胜一场得3分,平一场得1分,得出等式求出答案.【解答】解:设A队胜了x场,由题意可列方程为:3x+(11﹣x)=23.故答案为:3x+(11﹣x)=23.【点评】此题主要考查了由实际问题抽象出二元一次方程,正确得出等式是解题关键.8.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了17 道题.参赛者答对题数答错题数得分A200100B19194C14664【分析】设答对一题得a分,答错一题得b分,根据参赛者B,C的得分情况,可得出关于a,b的值,设参赛者D答对了x道题,则答错了(20﹣x)道题,根据参赛者D的得分=5×答对题目数﹣1×答错题目数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设答对一题得a分,答错一题得b分,依题意,得:,解得:.设参赛者D答对了x道题,则答错了(20﹣x)道题,依题意,得:5x﹣(20﹣x)=82,解得:x=17.故答案为:17.【点评】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.9.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶22 对.【分析】卖出物品的总售价等于所有货物总进价的90%,可列出方程,根据x、a 的取值范围分别讨论求适合题意的解即可.【解答】解:设购进暖瓶x对,则有2x只暖瓶,衬衫2x件,留下的17件物品中有a只暖瓶,(17﹣a)件衬衫,∵每件衬衣的进价是40元,每对暖瓶的进价是60元,商店将这批物品以高出进价10%的价格售出,∴暖瓶每只售价为30×(1+10%)=33(元),衬衫每件售价为40×(1+10%)=44(元),∴总售价为=33×(2x﹣a)+44(2x﹣17+a)=154x+11a﹣748(元),根据题意得:154x+11a﹣748=90%(40×2x+60x),整理得:28x+11a=748,∵a为偶数,且17﹣a≥0,∴a为2,4,6,8,10,12,14,16,当a=2,x的值为分数,不合题意;当a=4,x的值为分数,不合题意;当a=6,x的值为分数,不合题意;当a=8,x的值为分数,不合题意;当a=10,x的值为分数,不合题意;当a=12,x=22,当a=14,x的值为分数,不合题意;当a=16,x的值为分数,不合题意;∴即只有当a=12,x=22时符合题意.答:最初购进这批暖瓶22对,故答案为:22.【点评】本题考查了二元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再根据实际情况求解.10.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有42 本.【分析】设这箱书一共有x本,共y个同学参与分书,根据“若每人分5本,还剩12本;若每人分8本,还缺6本”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设这箱书一共有x本,共y个同学参与分书,依题意,得:,解得:.故答案为:42.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组解题的关键.三.解答题(共10小题)11.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.【分析】(1)设学校购进黑色文化衫x件,白色文化衫y件,根据购进黑、白两种颜色的文化衫100件共需2400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=每件的利润×数量,即可求出结论.【解答】解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.【分析】(1)由方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,求出空缺中的数字,补充完整方阵图即可得出结论.【解答】解:(1)根据题意得:,解得:.(2)∵x=﹣1,y=2,∴3+4+x=6,2y﹣x=5.∵每行的3个数、每列的3个数、斜对角的3个数之和均相等,∴6﹣(﹣2)﹣y=6;6﹣4﹣y=0;6﹣3﹣y=1.完成方阵图,如图所示.【点评】本题考查了二元一次方程组,根据方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,列出关于x、y的二元一次方程组是解题的关键.13.(列二元一次方程组求解)一、二两班共有100名学生,他们的体育达标率(达到标准的百分率)为81%.如果一班学生的的体育达标率为87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?【分析】设一班有x名同学,二班有y名同学,根据两班共100名学生且体育达标的同学有100×81%名,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设一班有x名同学,二班有y名同学,依题意,得:,解得:.答:一班有48名同学,二班有52名同学.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一个A型足球x元,一个B型足球y元,根据“一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元”列方程组求解即可;(2)设A型足球a个,总费用w元,可得w=6000﹣25a,由一次函数的性质可求解.【解答】解:(1)设一个A型足球x元,一个B型足球y元,根据题意可得:解得:答:一个A型足球50元,一个B型足球75元.(2)设A型足球a个,总费用w元,根据题意可得:w=50a+75(80﹣a)=6000﹣25a,且a≤60,∵﹣25<0,∴w随着z的增大而减小,∴当a=60时,w的最小值为4500元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键,难度不大.15.某校规划在一块长AD为18m.宽AB为13m的长方形场地ABCD上,设计分别与AD、AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少.【分析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD为18m,宽AB为13m得出等式求出即可.【解答】解:设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴.解得,答:通道的宽是1m.【点评】考查了二元一次方程组的应用,解题的关系是找到关键描述语,列出等量关系.16.某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元,A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共花了7840元,请你计算A、B 商品打了多少折?【分析】设打折前A商品的单价为x元/件,B商品的单价为y元/件,根据“在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B 商品共用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,利用总价=单价×数量可求出打折前购买500件A商品和450件B商品所需费用,再利用所打折扣=打折后的总价÷打折前的总价,即可求出结论.【解答】解:设打折前A商品的单价为x元/件,B商品的单价为y元/件,依题意,得:,解得:,16×500+4×450=9800(元),=0.8.答:A、B商品打了八折.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.某花店计划购进一批新的花束以满足市场需求,三款不同品种的花束,进价分别是A款180元/束,B款60元/束,C款120元/束.店铺在经销中,A款花束可赚20元/束,B款花束可赚10元/束,C款花束可赚12元/束.(1)若商场用6000元同时购进两种不同款式的花束共40束,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该店铺同时购进三款花束共20束,共用去1800元,问这次店铺共有几种可能的方案?利润最大是多少元?【分析】(1)设进货方案:A款a束,B款b束,C款c束,由题意列出方程组,解方程组即可;(2)求出两种进货方案的盈利,即可得出答案;(3)设购进三款花束A款x束,B款y束,C款z束,x、y、z为正整数,由题意列出方程组,解方程组即可.【解答】解:(1)设进货方案:A款a束,B款b束,C款c束,方案一:,解得:;方案二:,解得:;方案三:,解得:,不合题意舍去;∴进货方案为购进A款30束、B款10束或购进A款20束、C款20束;(2)购进A款30束、B款10束盈利:30×20+10×10=700(元),购进A款20束、C款20束盈利:20×20+20×12=640(元),∵700元>640元,∴盈利最多的进货方案为购进A款30束,B款10束;(3)设购进三款花束A款x束,B款y束,C款z束,x、y、z为正整数,则,当x=1时,y=11,z=8,利润:20+11×10+8×12=226;当x=2时,y=12,z=6,利润:2×20+12×10+6×12=232;当x=3时,y=13,z=4,利润:3×20+13×10+4×12=238;当x=4时,y=14,z=2,利润:4×20+14×10+2×12=224;当x≥5时,不合题意舍去;∴这次店铺共有4种可能的方案:方案1:购进三款花束A款1束,B款11束,C款8束;方案2:购进三款花束A款2束,B款12束,C款6束;方案3:购进三款花束A款3束,B款13束,C款4束;方案4:购进三款花束A款4束,B款14束,C款2束;利润最大为 238 元.【点评】本题考查了二元一次方程组的应用以及三元一次方程组的应用;由题意列出方程组是解题的关键.18.某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.(1)求甲,乙两木工组单独修理这批桌凳的天数;(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.【分析】(1)关键描述语为:“甲小组单独修理这批桌凳比乙小组多用20天”;等量关系为:甲小组单独修理这批桌凳的时间=乙小组单独修理这批桌凳的时间+20.(2)必须每种情况都考虑到,求出每种情况下实际花费,进行比较.【解答】解:(1)设甲甲木工组单独修理这批桌凳的天数为x天,则乙木工组单独修理这批桌凳的天数为(x﹣10)天;根据题意得,=×,解得:x=30,经检验:x=30是原方程的解.∴x﹣10=20.答:甲,乙两木工组单独修理这批桌凳的天数分别为30天,20天;(2)方案一:甲木工组单独修理这批桌凳的总费用:600×30=18000(元).方案二,乙小组单独修理,则需总费用:800×20=16000(元).方案三,甲,乙两个木工组共同合作修理需12(天)总费用:(600+800)×12=16800(元)通过比较看出:选择第二种方案学校付的修理费最少.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,根据题目中关键语句找出等量关系,再列出分式方程即可,关键是在解分式方程后不要忘记检验.19.甲、乙两人一起去检修300长的自来水管道,已知甲比乙每小时少修10m,两人从管道的两端同时开始检修,3小时后完成任务.问:甲、乙每小时各检修多少m?【分析】设甲每小时检修x米,乙每小时检修y米,根据题意列出x和y的二元一次方程组,解出x和y的值即可.【解答】解:设甲每小时检修x米,乙每小时检修y米,根据题意得:,解得:.答:甲每小时检修45米,乙每小时检修55米.【点评】本题主要考查二元一次方程组的应用的知识点,解答本题的关键是读懂题意,由题干条件列出二元一次方程组,此题难度一般.20.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?。
人教版七年级下册数学 8.3 实际问题与二元一次方程组 同步习题(含答案)
8.3 实际问题与二元一次方程组同步习题1.在社会主义新农村建设中,某村积极响应党的号召,大力发动农户扩大烟叶和蔬菜的种植面积,取得了较好的经济效益.今年该村的烟叶和蔬菜的种植面积比去年增加了800亩,其中烟叶种植面积增加了20%,蔬菜种植面积增加了30%,从而使该村的烟叶和蔬菜种植面积共达到了4 200亩.问该村去年种植烟叶和蔬菜的面积各是多少亩?2.在当地农业技术部门的指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.如图是小明、爸爸、妈妈的一段对话.请你用所学过的知识帮助小明算出他们家今年种植菠萝的收入.(收入-投资=净赚)3.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为多少元?4.某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?5.某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元.6.张文以两种形式分别储蓄了2 000元和1 000元,一年后全部取出,所得利息为64.8元,已知当时这两种储蓄方式年利率的和为4.23%.问这两种储蓄方式的年利率各是百分之几?(不计利息税)7.某村粮食专业队去年计划生产水稻和小麦共150 t,实际生产了170 t.其中水稻超产15%,小麦超产10%.问该专业队去年实际生产水稻、小麦各为多少吨?8.下面是某一周甲、乙两种股票每股每天的收盘价(单位:元).(收盘价:股票每天交易结束时的价格)(不计手续费、税费等),该人星期二这一天获利200元,星期三这一天获利1 300元,试问该人持有甲、乙股票分别为多少股?9.某地生产一种绿色蔬菜,若在市场上直接销售,每吨的利润为 1 000 元;经粗加工后销售,每吨的利润可达4 500 元;经精加工后销售,每吨的利润涨至7 500 元.当地一家农工商公司收购这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜处理完毕,为此公司研制了三种加工方案:方案1:将蔬菜全部进行粗加工;方案2:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上直接销售;方案3:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天之内完成. 你认为选择哪种方案获利最多?10.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表:(1)若租用甲、,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?11.张明沿公路匀速前进,每隔4 min就遇到迎面开来的一辆公共汽车,每隔6 min 就有一辆公共汽车从背后超过他.假定公共汽车的速度不变,而且迎面开来的相邻两车的距离和从背后开来的相邻两车的距离都是1 200 m,求张明前进的速度和公共汽车的速度.12.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m,下坡路每分钟走80 m,上坡路每分钟走40 m,则他从家里到学校需10 min,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?13.一列载客火车和一列运货火车分别在两条平行的铁轨上行驶,载客火车长150 m,运货火车长250 m.若两车相向而行.从车头相遇到车尾离开共需10 s;若载客火车从后面追赶运货火车,从车头追上运货火车车尾到完全超过运货火车共需100 s,试求两车的速度.14.甲、乙两地相距120 km,一艘船从甲地出发顺水航行6 h到达乙地,而从乙地出发逆水航行8 h到达甲地,已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.15.甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4 min两人首次相遇,此时乙还需要跑300 m才跑完第一圈,求甲、乙二人的速度及环形场地的周长.16.为了参加2015年国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600 m,跑步的平均速度为每分钟200 m,自行车路段和长跑路段共5 km,用时15 min.求自行车路段和长跑路段的长度.参考答案1.解:设该村去年种植烟叶和蔬菜的面积分别为x亩、y亩,依题意,得解这个方程组,得答:该村去年种植烟叶和蔬菜的面积分别是2 200亩、1 200亩.2.解:设小明家去年种植菠萝的收入为x元,投资为y元,依题意,得解得所以小明家今年种植菠萝的收入为(1+35%)×12 000=1.35×12 000=16 200(元).3.解:设该商品的进价为x元,标价为y元,由题意,得解得x=2 500,y=3750.则3 750×0.9-2 500=875(元).4.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意,得解得答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36-24)+200×(48-33)=3 600+3 000=6 600(元).答:该商场共获得利润6 600元.5.解:设甲种商品的进价为x元,乙种商品的进价为y元.根据题意,得化简,得解得答:甲种商品的进价为250元,乙种商品的进价为200元.6.解:设存 2 000元和 1 000元的年利率分别是x%,y%,由题意,得解得答:存2 000元和1 000元的年利率分别为2.25%,1.98%.7.解:设该专业队去年计划生产水稻为x t,小麦为y t,依题意,得解得答:该专业队去年实际生产水稻、小麦各为115 t,55 t.8.解:设该人持有甲、乙股票分别为x股、y股,由题意,得解得答:该人持有甲、乙股票分别为1 000股、1 500股.解:观察表格可知:星期二甲种股票每股获利为(12.5-12)元,乙种股票每股获利为+(13.3-13.5)×股(13.3-13.5)元,则星期二这一天总获利为[(12.5-12)×股数甲]元,同理可表示星期三这一天的获利.数乙9.解:方案1获利为4 500×140=630 000(元).方案2获利为7 500×6×15+1 000×(140-6×15)=675 000+50 000=725 000(元). 方案3:设将x t蔬菜进行精加工,y t蔬菜进行粗加工,根据题意,得解得所以方案3获利为7 500×60+4 500×80=810 000(元).因为630 000<725 000<810 000,所以选择方案3获利最多.解:分别计算三种方案的获利情况,然后做出决策.10.解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:解得答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.所以m=9-n.又因为m,n都是正整数,所以方程的解为当m=5,n=3时,支付租金:100×5+120×3=860(元)>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820(元)<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.11.解:设张明前进的速度是x m/min,公共汽车的速度是y m/min.根据题意,得解这个方程组,得答:张明前进的速度是50 m/min,公共汽车的速度是250 m/min.解:(1)“相向而遇”时,两者所走的路程之和等于两者原来的距离;(2)“同向追及”时,快者所走的路程减去慢者所走的路程等于两者原来的距离.12.解:设平路有x m,下坡路有y m,根据题意,得解得答:小华家到学校的平路和下坡路各为300 m,400 m.13.解:设载客火车的速度为x m/s,运货火车的速度为y m/s.由题意,得解得答:载客火车的速度是22 m/s,运货火车的速度是18 m/s.解:本题是一道特殊的相遇与追及结合的应用题.①两车相向而行是相遇问题,相遇时两车行驶的路程总和=两车车身长之和;②载客火车从后面追赶运货火车是追及问题,追上时两车所走的路程差=两车车身长之和.错车问题属于特殊的行程问题,它与行程问题的主要区别是:行程问题不考虑车本身的长,而错车问题要考虑车本身的长.与错车问题类似的还有过桥问题、过隧道问题等.14.解:设船在静水中的速度为x km/h,水流速度为y km/h,由题意,得解得答:船在静水中的速度为17.5 km/h,水流速度为2.5 km/h.15.解:设乙的速度为x m/min,环形场地的周长为y m,则甲的速度为2.5x m/min,由题意,得解得所以甲的速度为:2.5×150=375(m/min).答:甲的速度为375 m/min,乙的速度为150 m/min,环形场地的周长为900 m. 16.解:设自行车路段的长度为x m,长跑路段的长度为y m,则解得答:自行车路段的长度为3 000 m,长跑路段的长度为2 000 m.。
人教版七年级下册数学实际问题与二元一次方程组同步训练
人教版七年级下册数学8.3 实际问题与二元一次方程组同步训练一、单选题1.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .46383548x y x y -=⎧⎨+=⎩ B .46483538x y y x +=⎧⎨+=⎩ C .46485338x y x y +=⎧⎨+=⎩ D .46483538x y x y +=⎧⎨+=⎩2.《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为( )A .91191113x y x y y x =⎧⎨-=-+⎩B .91191113x y x y y x =⎧⎨-=--⎩C .91181013x y x y y x =⎧⎨+=++⎩D .91181013x y x y y x =⎧⎨+=+-⎩3.如图,宽为50cm 的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .2400cmB .2500cmC .2600cmD .2300cm4.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头.大和尚1人分3个馒头,小和尚3人分一个馒头,刚好分完.问大、小和尚各有多少人?若大和尚有m 人,小和尚有n 人.则方程组中正确的是( )A .10033100m n m n +=⎧⎨+=⎩B .1003100m n m n +=⎧⎨+=⎩C .1003100m n m n +=⎧⎨+=⎩D .10031003m n n m +=⎧⎪⎨+=⎪⎩ 5.春节将至,某超市准备用价格分别是36元/kg 和20元/kg 的两种糖果混合成100kg 的什锦糖出售,混合后什锦糖的价格是28元/kg .若设需要36元/kg 的糖果kg x ,20元/kg 的糖果kg y ,则下列方程组中能刻画这一问题中数量关系的是( )A .100362028x y x y +=⎧⎨+=⎩B .100362028100x y x y +=⎧⎨+=⨯⎩C .()10028281003620x y x y +=⎧⎨+=⨯+⎩D .100203628100x y x y +=⎧⎨+=⨯⎩6. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩ 7.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元购买A ,B 两种奖品(两种都要买),A 种每个15元,B 种每个25元,在钱全部用完的情况下,购买方案共有( )A .2种B .3种C .4种D .5种8.育才中学初一年级某班为奖励在校运动会上取得好成绩的同学,花了184元购买甲、乙两种奖品共20件.其中甲种奖品每件8元,乙种奖品每件6元,若设购买甲种奖品x 件,乙种奖品y 件,则所列方程组正确的是( ).A .2068184x y x y +=⎧⎨+=⎩B .2086184x y x y +=⎧⎨+=⎩C .6820184x y x y +=⎧⎨+=⎩D .8620184x y x y +=⎧⎨+=⎩9.如图,面积为64的正方形ABCD 被分成4个相同的长方形和1个面积为4的小正方形,则a ,b 的值分别是( )A .3,5B .5,3C .6.5,1.5D .1.5,6.510.我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y +=⎧⎪⎨+=⎪⎩D .305310x y x y +=⎧⎪⎨+=⎪⎩ 11.如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列求出这两个角的度数的方程是( )A.18010x yx y+=⎧⎨=-⎩B.180310x yx y+=⎧⎨=-⎩C.180+10x yx y+=⎧⎨=⎩D.3180310yx y=⎧⎨=-⎩二、填空题12.古代《张丘建算经》中有一个问题,意思是:甲、乙两人各有钱若干,如果甲得到乙的10个钱,那么甲所有的钱就比乙所剩的多4倍;如果乙得到甲的10个钱,那么两人所有的钱相等,甲原有钱_______个,乙原有钱_________个.13.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm,小红所搭的“小树”的高度为22 cm,设每块A型积木的高为x cm,每块B型积木的高为y cm,则x=__________,y=__________.14.在我国新冠疫情虽然得到了有效的控制,但防范意识仍不能松懈,小丽去药店购买口罩和酒精消毒湿巾,若买150只一次性口罩和10包酒精消毒湿巾,需付75元;若买200只一次性口罩和12包酒精消毒湿巾,需付96元.设一只一次性医用口罩x元,一包酒精消毒湿巾y元,根据题意可列二元一次方程组:___________.15.一轮船从甲地到乙地顺流航行需4小时,从乙地到平地逆流航行需6小时,则一木筏由甲地漂流到乙地的时间为__________.16.某铁路桥长1000米,一列火车从桥上匀速通过,从上桥到离开桥共用1分钟,整列火车全在桥上的时间为40秒钟,则火车的长度为_________,火车的速度为_________.17.两个两位数的差是20,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数,若这两个四位数的和是6060,求这两个两位数分别是多少?设较大的两位数为x,较小的两位数为y,根据题意列方程组为__________.18.如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,列出关于x、y的二元一次方程组____________.19.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组_________.20.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.三、解答题21.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?22.某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?23.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?24.小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数是多少?25.甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?26.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?27.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值.28.体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?。
2020-2021学年人教版七年级下册数学 8.3实际问题与二元一次方程组 同步习题(含答案)
8.3实际问题与二元一次方程组同步习题一.选择题1.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,商品的价格为y,依题意可列方程组为()A.B.C.D.2.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为()A.B.C.D.3.一行人去住店.如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有空客房x间,这一行人共有y人,下列方程组中正确的是()A.B.C.D.4.元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若设每个宫灯x元,每个纱灯为y元,由题可列二元一次方程组得()A.B.C.D.5.为保护生态环境,重庆市某县相应国家“退耕还林”号召,将部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的还要少1平分千米,求改变后林地面积和耕地面积各多少千米?若设改变后耕地面积为x平方千米,林地地面积为y 平方千米,根据题意,列出如下四个方程组,其中正确的是()A.B.C.D.6.明明家离学校1500米,其中有一段为上坡路.另一段为下坡路,某天他去学校共用了12分钟,假设明明上坡路的平均速度是5千米/时,下坡路的平均速度是8千米/时.若设明明上坡路用了x分钟,下坡路用了y分钟,根据题意可列方程组为()A.B.C.D.7.已知某种轮船的载重量为500吨,容积为2000立方米.现有甲、乙两种货物待装,甲种货物每吨5立方米,乙种货物每立方米0.5吨,求怎样装货,才能最大限度利用船的载重量和容积.设装甲、乙两种货物分别为x吨、y吨,于是有方程组()A.B.C.D.8.学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺;而教务处用掉了所有信笺,但余下50个信封.则两处所领的信笺张数、信封个数分别为()A.150,100B.125,75C.120,70D.100,1509.某初中学校现有学生500人,计划一年后男生增加5%,女生增加4%,这样总人数将增加4.5%,设该校现有男生x人,女生y人,可得方程组为()A.B.C.D.10.为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树1亩需资金200元,种草1亩需资金100元,某组农民计划在一年内完成2400亩绿化任务,在实施中由于实际情况所限,植树完成了计划的90%,但种草超额完成了计划的20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树x亩,种草y亩,则可列方程组为()A.B.C.D.二.填空题11.买7个本和2块橡皮用16.6元,买两个本比买3块橡皮多花1.6元,那么买一个本和一块橡皮共用元.12.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有本.13.学校为七年级艺术节获奖选手购买以下三种奖品,其中笔记本每本5元,文具盒每个6元,钢笔每支10元,购买的文具盒的数量是钢笔数量的2倍,共花费226元,则这奖品的购买总数量.14.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花了1250元.设其中有x张成人票,y张学生票,根据题意列方程组是.15.缤果奶茶店的一种饮品是由果汁原液和纯净水按一定比例配制而成,其中购买1吨果汁原液的钱可以购买20吨纯净水.由于今年果汁价格上涨30%,纯净水价格也上涨了10%,导致配制的这种饮品价格上涨26%,问这种饮品果汁与纯净水的配制比例是.三.解答题16.用二元一次方程组解应用题:某客运公司,有大小两种客车,已知3辆小客车和1辆大客车每次可运送105人,1辆小客车和2辆大客车每次可运送110人,问:每辆小客车和每辆大客车各能坐多少人?17.2019年8月,第二届全国青年运动会在山西太原举行,开幕式的门票价格如下表:等级A B C 票价(元/张)未知未知150小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.若小聪购买1张A等票6张B 等票和3张C等票共需花费多少元?18.某超市用3400元购进A、B两种文具盒共120个,这两种文具盒的进价、标价如下表:价格/类型A型B型进价(元/只)1535标价(元/只)2550(1)这两种文具盒各购进多少只?(2)若A型文具盒按标价的8折出售,B型文具盒按标价的9折出售,那么这批文具盒全部售出后,超市共获利多少元?参考答案一.选择题1.解:设有x人,商品的价格为y,依题意,得.故选:D.2.解:根据共有160张铁皮,得方程x+y=160;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×6x=20y.列方程组为.故选:A.3.解:设该店有客房x间,房客y人;根据题意得:,故选:A.4.解:设每个宫灯x元,每个纱灯y元,依题意,得:.故选:B.5.解:设改变后耕地面积为x平方千米,林地地面积为y平方千米,根据题意,得.故选:C.6.解:根据题意可列方程组:,整理,得:,故选:B.7.解:根据载重量为500吨,可列方程为x+y=500;根据容积为2000立方米,可列方程为5x+2y=2000.那么方程组可列为:.故选:B.8.解:设他们每人都领了y张信纸和x个信封,由题意,得,解得:.即:他们每人都领了150张信纸和100个信封.故选:A.9.解:设该校现有男生x人,女生y人,由题意得,.故选:B.10.解:设该组农民计划植树x亩,种草y亩,由题意得,.故选:D.二.填空题11.解:设每个本x元,每块橡皮y元,依题意,得:,①﹣②,得:5x+5y=15,∴x+y=3.故答案为:3.12.解:设这箱书一共有x本,共y个同学参与分书,依题意,得:,解得:.故答案为:42.13.解:设购买笔记本x本,文具盒y个,钢笔z支,则有5x+6y+10z=226,y=2z,易知0<x≤45,0<y≤37,0<z≤22,∴5x+12z+10z=226,5x+22z=226,即x=.∵x,y,z均为正整数,226﹣22z≥0,即0<z≤10,∴z只能取8,当z为8时,x==10,y=2z=16,x+y+z=34.购买的奖品总数为34.故答案为:34.14.解:设其中有x张成人票,y张儿童票,根据题意得:.故答案为:.15.解:设这种饮品果汁与纯净水的配制比例为a:b,购买一吨纯净水的价格是x,由题意,得=(1+26%),解得a:b=1:5.故答案为:1:5.三.解答题16.解:设每辆小客车能坐x人,每辆大客车能坐y人,依题意得:,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人.17.解:设A等票的票价为x元/张,B等票的票价为y元/张,依题意得:,解得:,∴x+6y+3×150=2750.答:小聪购买1张A等票6张B等票和3张C等票共需花费2750元.18.解:(1)设A型文具盒购进x只,B型文具盒购进y只,依题意得:,解得:.答:A型文具盒购进40只,B型文具盒购进80只.(2)(25×0.8﹣15)×40+(50×0.9﹣35)×80=1000(元).答:这批文具盒全部售出后,超市共获利1000元.。
8-3实际问题与二元一次方程组 同步练习
8.3实际问题与二元一次方程组姓名:得分:日期:一、选择题(本大题共12 小题)1、《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“今有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50钱;而甲把自己23的钱给乙,则乙的钱数也为50钱.问甲、乙各有多少钱?”设甲、乙原有钱数分别为x、y,下列所列方程组正确的是()A.12x+y=50x+23y=50B.x+12y=5023x+y=50C.x+12y=50x+23y=50D.12x+y=5023x+y=502、如图,用10块相同的小长方形纸板拼成一个大长方形,设小长方形纸板的长和宽分别为x cm 和y cm,则依题意列方程组正确的是A. B. C. D.3、某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组A. B. C. D.4、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A. 2种B. 3种C. 4种D. 5种5、为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种6、用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是( )A. 2013B. 2014C. 2015D. 20167、甲、乙两人从A地出发,沿同一方向练习跑步. 如果甲让乙先跑10米,则甲跑5秒就可追上乙;如果甲让乙先跑2秒,那么甲跑4秒就能追上乙. 设甲、乙每秒钟分别跑x米和y米,则可列方程组为A.5x=5y+104x−2=4yB.5x+10=5y4x−4y=2C.5(x−y)=104(x−y)=2D.5x−5y=104(x−y)=2y8、现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是( )A. {8x=22yx+2y=190B. {2×8x=22yx+y=190C. {2×8x=22yx+2y=190D. {2×22y=8xx+y=1909、七年级某班为奖励学习进步的学生,购买了两种文具:单价为6元/本的笔记本和单价为4元/支的水笔,正好花费60元,则购买方案共有( )A.3种B.4种C.5种D.6种10、已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为( )A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元11、为参加“纪念汤显祖逝世400周年”庆典活动,抚州市某学校组织师生共360人参加庆典活动,有A、B两种型号客车可供租用(两种车型中可只选用一种型号,也可选用两种型号),两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达抚州市政府的租车方案有( )A.3种B.4种C.5种D.6种12、十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元B.310元C.320元D.330元二、填空题(本大题共13 小题)13、中国传统数学最重要的著作《九章算术》中记载:“今有牛五、羊二,直金十两:牛二、羊五,直金八两.问牛、羊各直金几何?”其译文是:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两,问每头牛、每只羊各值金多少两?”现设每头牛值金x两,每只羊值金y两,则可列方程组为______ .14、某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是______.15、据据图中提供的信息,一个杯子的价格______ 元.16、列方程组解应用题某车间有660名工人,生产某种由一个螺栓两个螺母构成的配套产品,每人每天平均生产螺栓14个或螺母20个,应安排多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?17、一个大正方形和四个全等的小正方形接图①、②两种方两种方式摆放,则图②的大正方形中阴影部分的面积是______(用a、b的代数式表示).18、双层游轮的票价是上层票每张12元,下层票每张8元,现在游轮上共有游客150人,而且下层票的总票款比上层票的总票款多700元.那么这艘轮船上下两层游客的人数分别是多少?设这艘邮轮上层的游客x人,这艘油轮下层的游客y人,可列方程组为______.19、《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3x+2y=19x+4y=23..类似地,图2所示的算筹图我们可以表述为______.20、6月12日上午,智能高铁示范工程的京张高铁实现全线轨道贯通,预计于2019年12月31日正式开通运营,届时,从北京到张家口若乘高铁,运行时间为0.9小时,若乘坐京张铁路(詹天佑主持修建的我国第一条铁路)的直达列车,所用时间为3小时.已知直达列车的平均时速比高铁慢50公里,京张铁路比京张高铁全长多24公里,设京张铁路全长x公里,京张高铁全长y公里,依题意,可列方程组为______.21、用若干个形状和大小完全相同的长方形纸片围成正方形.如图①所示的大正方形是由四个长方形纸片围成的,其中阴影部分小正方形的面积为12;如图②所示的大正方形是由八个长方形纸片围成的,其中阴影部分小正方形的面积为8;如图③所示的大正方形是由十二个长方形纸片围成的,则其中阴影部分小正方形的面积为______.22、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为23、矩形ABCD中放置了6个形状、大小都相同的小矩形,所标尺寸如图所示,则图中阴影部分的面积是______cm2.24、现有50名同学参加夏令营活动,需要同时搭建可容纳3人和4人的两种帐篷,使帐篷恰好能容纳所有同学则有效搭建方案共有种.25、如图,若各行、各列、各条斜线上的三个数之和相等,求a的值为______________ 。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题和二元一次方程组 同步练习(含答案)
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问都多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为()A.B.C.D.2.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.103.《九章算术》中记载:“今有善田一亩,价三百+器田七亩,价五百.今并买一頃,价钱一万.问善、恶田各几何?”其大意是:今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好,坏田1顷(1顷=100亩),价线10000钱.问好、坏田各买了多少亩?设好田买了x南,坏田买了y亩,根意可列方程组为()A.B.C.D.4.某公司生产大、小两种礼盒装粽子,大礼盒内装有12枚粽子,小礼盒内装5枚粽子,端午将至,该公司赠送夕阳红养老院大、小礼盒各若干(礼盒的总数超过20盒),装有粽子共150枚,则该公司赠送了大、小礼盒总数共有()A.21盒B.22盒C.23盒D.24盒5.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?()A.6名,38个B.4名,28个C.5名,30个D.7名,40个6.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.27.小明打算购买气球装扮“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图,则第三束气球的价格为()A.16B.15C.14D.138.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm)所示.则桌子的高度h=()A.30cm B.35cm C.40cm D.45cm9.《九章算术》是中国古代数学专著在数学上有其独到的成就,不仅最早提到了分数问题,首先记录了“盈不足”等问题如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱又会缺16文钱,问买鸡的人数、鸡的价格各是多少?通过计算可得买鸡的人数是()A.6B.7C.8D.910.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()A.20B.35C.30D.4011.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3B.4C.5D.612.“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种儿童玩具赠送给某幼儿园,则可供小芳妈妈选择的购买方案有()A.4种B.5种C.6种D.7种二.填空题(共6小题)13.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为14.用16元钱买了80分、120分的两种邮票共17枚,则买了80分的邮票枚.15.小华同学生日的月数减去日数为9,月数的两倍和日数相加为27,则小强同学生日的月数和日数的和为16.鸡兔同笼问题是我国古代著名的数学趣题,出自《孙子算经》.原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?①今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?①今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?①今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是(填题目前的序号).17.某班对思想品德,历史,地理三门课程的选考情况进行调研,数据如下:其中思想品德、历史两门课程都选了的有3人,历史、地理两门课程都选了的有4人,则该班选了思想品德而没有选历史的有人;该班至少有学生人.18.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱:若每人出7钱,还差3钱.则合伙人数为人;羊价为钱.三.解答题(共6小题)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?请你建立适当的数学模型,解决上面问题.20.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.21.为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买10个排球和20个实心球需用960元,若购买20个排球和10个实心球需用1380元.(1)排球、实心球的单价各是多少元?(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买20个排球和20个实心球实际共需要花费多少元?22.中秋节临近,某商场决定开展“金秋十月,回馈顾客”的让利活动,对部分品牌月饼进行打折销售,其中甲品牌月饼打八折,乙品牌月饼打七五折.已知打折前,买6盒甲品牌月饼和3盒乙品牌月饼需660元;打折后买50盒甲品牌月饼和40盒乙品牌月饼需5200元.(1)打折前甲、乙两种品牌月饼每盒分别为多少元?(2)幸福敬老院需购买甲品牌月饼100盒,乙品牌月饼50盒,问打折后购买这批月饼比不打折节省了多少钱?23.高铁苏州北站已于几年前投入使用,计划在广场内种植A,B两种花木共10500棵,若B花木数量是A花木数量的一半多1500棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排27人同时种植这两种花木,每人每天能种植A花木50棵或B花木30棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?24.某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:若商场购进甲、乙两种型号的电视机共50台,用去9万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?参考答案1-5:BBBCA 6-10:ACCDC 11-12:BA13、14、1115、1516、①①17、16;1918、21;15019、买美酒0.25斗,普通酒1.75斗20、设平路有x千米,坡路有y千米,由题意可知,解得21、:(1)设排球的单价为x元,实心球的单价为y元,依题意,得:,解得:答:排球的单价为60元,实心球的单价为18元.(2)60×0.9×20+18×0.9×20=1404(元).答:购买20个排球和20个实心球实际共需要花费1404元.22、:(1)设打折前甲品牌月饼每盒x元,乙品牌月饼每盒y元,依题意,得:,解得:.答:打折前甲品牌月饼每盒70元,乙品牌月饼每盒80元.(2)70×100+80×50-70×0.8×100-80×0.75×50=2400(元).答:打折后购买这批月饼比不打折节省了2400元钱.23、:(1)设A花木的数量是x棵,则B花木的数量是y棵,根据题意可得:解得:答:A花木的数量是6000棵,B花木的数量是4500棵;(2)设安排a人种植A花木,则安排(27-a)人种植B花木,解得,a=12,经检验,a=12是原方程的解,①27-a=15,答:安排12人种植A花木,15人种植B花木,才能确保同时完成各自的任务24、:(1)设商场购进甲型号电视机x台,乙型号电视机y台,则解得答:商场购进甲型号电视机35台,乙型号电视机15台;(2)设甲种型号电视机打a折销售,依题意得:15×(3640×0.75-2500)+35×(2025×0.1a-1500)=(15×2500+35×1500)×8.5%解得a=8答:甲种型号电视机打8折销售。
人教版数学七年级下册 8.3 实际问题与二元一次方程组 练习(含答案)
8.3 实际问题与二元一次方程组 练习一、选择题1. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A. {x +y =3518x +24y =750B. {x +y =3524x +18y =750 C. {x −y =3524x −18y =750 D. {x −y =3518x −24y =750 2. 小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A. {x −y =y +4x −y =49+xB. {x −y =y +4x −y =49−x C. {x −y =y −4x −y =49+x D. {x −y =y −4x −y =49−x 3. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A. {7y =x +38y +5=xB. {7y =x −38y +5=xC. {7y =x +38y =x +5D. {7y =x −38y =x +5 4. 一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B 处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是( )A. {60y −x =2x =3−50yB. {60y −x =250y −x =3C. {60y =x +250y =x −3D. {60y =x −250y =x +3 5. 已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为( )A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元6. 已知某座桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是( )A. 20米/秒,200米B. 30米/秒,300米C. 15米/秒,180米D. 25米/秒,240米7. 用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A. {x +y =12040y =16xB. {x +y =12040y =32xC. {x +y =12040y =20xD. {x +y =12020y =40x 8. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. {x +y =1003x +3y =100B. {x +y =100x +3y =100C. {x +y =1003x +13y =100D. {x +y =1003x +y =1009.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A. 9天B. 11天C. 13天D. 22天10.初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A. 14B. 13C. 12D. 15二、填空题11.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,根据题意,得方程组______.12.某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;设火车的速度为xm/s,火车的长度为ym,根据题意列方程组为______.13.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组______.14.今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组______.15.某校为住校生分宿舍,若每间7人,则余下3人;若每间8人,则有5个空床位,设该校有住校生x人,宿舍y间,则可列出方程组为______.16.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人,根据题意,所列方程组是______.17.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为______ .三、计算题18.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?19.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款地点票价(2)若学生都去参观历史博物馆,则能节省票款多少元?20.某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?参考答案1.【答案】B2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】A7.【答案】C8.【答案】C9.【答案】B10.【答案】C11.【答案】{x +y =1110x +y −(10y +x)=6312.【答案】{80x =1750+y60x =1750−y13.【答案】{3x +13y =100x +y =10014.【答案】{3x +2y =165x +3y =25 15.【答案】{7y +3=x8y −5=x16.【答案】{x +y =303x +2y =7817.【答案】12,2018.【答案】解:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得{45y +15=x 60(y −1)=x, 解这个方程组,得{x =240y =5. 答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元), 租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元). 答:租用4辆60座客车更合算.19.【答案】解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50. 答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.20.【答案】解:(1)设每个篮球和每个足球的售价分别为x 元,y 元,根据题意得:{2x +y =3203x +2y =540,解得:{x =100y =120, 则每个篮球和每个足球的售价分别为100元,120元;(2)设足球购买a 个,则篮球购买(50−a)个, 根据题意得:120a +100(50−a)≤5500, 整理得:20a ≤500,解得:a ≤25,则最多可购买25个足球.。
8-3实际问题与二元一次方程组(和差倍分问题)训练题
人教版七年级下册数学8.3 实际问题与二元一次方程组(和差倍分问题)训练题一、单选题1.A和B同学每人都有若干本课外读物.A对B说:“你若给我2本书,我的书数将是你的n倍”;B对A说:“你若给我n本书,我的书数将是你的2倍”,其中n为正整数,则n的可能值的个数是()A.2B.4C.5D.62.一天,李明和孙帅两位同学一起到饭店吃早餐,李明买了4个包子、1根油条,共付4.2元;孙帅买了2个包子、3根油条,共付4.6元.设包子每个x元、油条每根y 元,则适合x、y的方程组是()A.4 4.2{6 4.6xyxy==B.4x 4.2{23 4.6yx y-=-=C.4x 4.2{23 4.6yx y+=+=D.4x 4.2x y){23 4.6()yx y x y+=++=+(3.用绳子测量水井的深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺,绳长、井深各是多少尺?().A.4811B.1148C.1247D.13464.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.901524x yx y+=⎧⎨=⎩B.9022415x yy x=-⎧⎨⨯=⎩C.9021524x yx y+=⎧⎨⨯=⎩D.9015242x yxy=+⎧⎪⎨=⎪⎩5.古代“绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.则绳索和竿长分别为()A.30尺和15尺B.25尺和20尺C.20尺和15尺D.15尺和10尺6.小林买了7本数学书和2本语文书共花了100元;小敏买了4本语文书和2本数学书共花了80元,则买2本数学书和1本语文书要花()A.25元B.30元C.35元D.45元7.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是A.x y10{y3x2+==+B.x y10{y3x2+==-C.x y10{x3y2+==+D.x y10{x3y2+==-8.一些2分与5分的硬币共299分,其中2分的个数是5分个数的4倍,5分的有________个.A.22B.23C.24D.25二、填空题9.街道为环卫工人发放口罩,如果每人发5个,还剩下3个,如果每人发6个,还缺5个,则一共有________名环卫工人.10.某班同学参加运土劳动,女同学抬土,每两人抬一筐;男同学挑土,每一人挑两筐.已知全班共用箩筐56只,扁担36根.设男生x人,女生y人,则可得方程组______.11.某班级为了奖励在期中考试中取得好成绩的同学,花了900元钱购买甲、乙两种奖品共50件其中甲种奖品每件15元,乙种奖品每件20元,则乙种奖品比甲种奖品多__________件.12.买一些4分与8分的邮票共花6元8角,已知8分的邮票比4分的多40张,那么8分的邮票有______张.13.为奖励期末考试中成绩优秀的同学,七年级某班级花62元钱购买了单价分别为9元、5元的A、B两种型号的黑色签字笔作为奖品,则共买了______支签字笔.14.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名.15.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,设小强同学生日的月数为x,日数为y,根据题意可列方程组为_____.16.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么竿子长为________尺.三、解答题17.港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55km,其中桥梁长度比隧道长度的9倍少5km,求港珠澳大桥的桥梁长度和隧道长度.18.某校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.19.某中学为了丰富学生的课外体育活动,准备购买一批新的篮球和足球总共160个.已知购买篮球的数量比足球的数量的2倍还多10个,求购买的篮球和足球的数量分别是多少个?20.北京冬奥会之所以能够开启全球冰雪运动新时代,关键在于中国通过筹办冬奥会和推广冬奥运动,让冰雪运动进入寻常百姓家.某校组建了一个滑雪队,现队长需要购买一些滑雪板,经了解,现有A、B两种滑雪板若购买2副A种滑雪板和1副B种滑雪板共需340元;若购买3副A种滑雪板和2副B种滑雪板共需570元.求1副A种滑雪板和1副B种滑雪板各是多少元?参考答案:1.B2.C3.A4.C5.C6.C7.C8.B9.810.125621362x yx y⎧+=⎪⎪⎨⎪+=⎪⎩11.10 12.70张13.10.14.2315.2 231 x yx y-=⎧⎨+=⎩16.1517.港珠澳大桥的桥梁长度49km,隧道长度6km 18.去年总收入为200万元,总支出为150万元19.110个,50个20.A种滑雪板每副110元,B种滑雪板每副120元.试卷第4页,共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:8.3实际问题与二元一次方程组同步测试题A (人教新课标七
年级下)
一、耐心填一填,一锤定音!(每小题6分,共30分) 1.在方程29x ay -=中,如果31
x y =⎧⎨
=⎩,
是它的一个解,那么a 的值为______.
2.大数和小数的差为12,这两个数的和为60,则大数是______,小数是______. 3.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x 元,练习本每本y 元,写出以x 和
y 为未知数的方程为______.
4.甲、乙两人速度之比是2:3,则他们在相同时间内走过的路程之比是______,他们在走
相同路程所需时间之比是______. 5.羊圈里白羊的只数比黑羊的脚数少2,黑羊的只数比白羊的脚数少187,则白羊有______只,黑羊有______只.
二、精心选一选,慧眼识金!(每小题5分,共15分) 1.既是方程23x y -=的解,又是方程3410x y +=的解是( )
A.1
2
x y =⎧⎨
=⎩
B.2
1
x y =⎧⎨
=⎩
C.4
3
x y =⎧⎨
=⎩
D.4
5
x y =-⎧⎨
=-⎩
2.甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x ,乙数为y ,则方程
组(1)1635x y x y +=⎧⎨=⎩,;(2)1653x y x y +=⎧⎨=⎩,;(3)16530x y y x -=⎧⎨-=⎩,;(4)1653
y x x y -=⎧⎪
⎨=⎪⎩,
中,正确的有
( )
A.1组 B.2组 C.3组 D.4组
3.某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,则不及格学生的人数为( ) A.49 B.101 C.40 D.110 三、用心做一做,马到成功!(本大题共20分) 1.(本题10分)根据下图提供的信息,求每件T 恤衫和每瓶矿泉水的价格.
2.(本题10分)小明到商店买东西,下面是他和售货员阿姨的对话:“我买这种牙膏3支,这种牙刷5把”.“一共15元6角”.付款后,小明说:“阿姨,这支牙膏我不要了,换一把牙刷吧!”“还需找你2元”.从他们的对话中你能知道牙刷、牙膏的单价吗?
四、综合运用,再接再厉!(本大题共35分) 1.(本题11分)如图,周长为68cm 的长方形ABCD 被分成7个相同的长方形,求长方形ABCD 的长和宽.
某校七年级甲、乙两班共多人去该公园举行联欢活动,其中甲班多人,乙班不足人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 3.(本题12分)(08聊城市)实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.
参考答案
一、1.3- 2.36,24 3.146 5.4x y += 4.2:3,3:2 5.50,13 二、1.B 2.C 3.D 三、1.20,2 2.1.2,3.2 四、1.20,14 2.55,48 3.【解】设捐10元的同学有x 人,捐20元的同学有y 人,根据题意,得
67551020303501180.x y x y +++=⎧⎨
+++=⎩
,
化简,得42280.
x y x y +=⎧⎨
+=⎩,
解这个方程组,得
4
38. x
y
=
⎧
⎨
=
⎩
,
答:捐款10元和20元的同学分别为4人和38人。