4.3正比例函数的图象与性质

合集下载

八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计 (新版北师大版)

八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计 (新版北师大版)

八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计(新版北师大版)一. 教材分析《八年级数学上册4.3一次函数的图象》这一节,主要介绍了一次函数的图象和性质。

其中,正比例函数是特殊的一次函数,它的图象是一条通过原点的直线。

本节内容是学生学习一次函数的基础,对于学生理解和掌握一次函数的图象和性质,以及后续学习其他类型的函数具有重要意义。

二. 学情分析八年级的学生已经学习了代数基础知识,对于函数的概念有一定的理解。

但是,对于函数的图象和性质,特别是正比例函数的图象和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生通过实际操作,观察和分析正比例函数的图象和性质,从而加深对一次函数的理解。

三. 教学目标1.理解正比例函数的图象是一条通过原点的直线。

2.掌握正比例函数的性质,即当x增大或减小时,y的值也按比例增大或减小。

3.能够通过观察图象,分析正比例函数的性质。

四. 教学重难点1.重难点:正比例函数的图象和性质。

2.难点:如何引导学生通过观察图象,分析正比例函数的性质。

五. 教学方法采用问题驱动的教学方法,引导学生通过观察和操作,发现正比例函数的图象和性质。

同时,结合小组合作学习,让学生在讨论中加深对一次函数的理解。

六. 教学准备1.准备正比例函数的图象和性质的相关教学材料。

2.准备计算机和投影仪,用于展示图象和讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出正比例函数的概念,并提出问题:“正比例函数的图象是什么样的?”2.呈现(10分钟)利用计算机和投影仪,展示正比例函数的图象,并引导学生观察和分析。

3.操练(10分钟)让学生分组进行实际操作,通过改变x的值,观察y的变化,从而深入理解正比例函数的性质。

4.巩固(5分钟)通过一些练习题,让学生巩固对正比例函数图象和性质的理解。

5.拓展(5分钟)引导学生思考:除了正比例函数,还有其他类型的函数图象和性质是什么?6.小结(5分钟)对本节课的内容进行小结,强调正比例函数的图象是一条通过原点的直线,性质是当x增大或减小时,y的值也按比例增大或减小。

4.3.1 正比例函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3.1 正比例函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3 一次函数的图象1 正比例函数的图象和性质要点感知1画函数图象的步骤:(1)__________;(2)__________:建立直角坐标系,以__________为横坐标,__________为纵坐标,确定点的坐标;(3)__________.预习练习1-1下面所给点的坐标满足y=-2x的是( )A.(2,-1)B.(-1,2)C.(1,2)D.(2,1)要点感知2 正比例函数y=kx(k为常数,k≠0)的图象是一条__________,因此画正比例函数图象时,只要描出图象上的__________,然后过两点作一条直线即可,这条直线叫作“直线__________”.预习练习2-1 如图,某正比例函数的图象过点M(-2,1),则此正比例函数表达式为( )A.y=-xB.y=xC.y=-2xD.y=2x要点感知3 正比例函数图象的性质:直线y=kx(k≠0)是一条经过________的直线.当k>0时,直线y=kx经过第_______象限,从左到右,y随x的增大而________;当k<0时,直线y=kx经过第_____象限,从左到右,y随x的增大而________.知识点1 画正比例函数的图象1.正比例函数y=3x的大致图像是( )2.已知正比例函数y=x,请在平面直角坐标系中画出这个函数的图象.知识点2 正比例函数的图象与性质3.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( )A.其函数图象是一条直线B.其函数图象过点(,-k)C.其函数图象经过一、三象限D.y随着x增大而减小5.正比例函数y=-x的图象平分( )A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限6.函数y=-5x的图象在第__________象限内,y随x的增大而__________.知识点3 实际问题中的正比例函数7.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )8.小明用16元零花钱购买水果,已知水果单价是每千克4元,设买水果x千克用去的钱为y元,(1)求买水果用去的钱y(元)随买水果的数量x(千克)而变化的函数表达式;(2)画出这个函数的图象.9.已知正比例函数y=kx(k≠0),当x=1时,y=-2,则它的图象大致是( )10.已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是( )A.k<0B.k>0C.k<D.k>11.若点A(-2,m)在正比例函数y=-x的图象上,则m的值是( )A. B.- C.1 D.-112.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<013.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是( )A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多14.写出一个图像经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):_______________.15.当m=__________时,函数y=mx3m+4是正比例函数,此函数y随x的增大而__________.16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.17.已知正比例函数y=(k-2)x.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)若函数图象经过第一、三象限,则k的范围是什么?18.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.19.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.参考答案要点感知1(1)列表(2)描点自变量值相应的函数值(3)连线预习练习1-1B要点感知2 直线两点y=kx预习练习2-1A要点感知3 原点一、三上升增大二、四下降减少1.B2.图略.3.B4.C5.D6.二、四减小7.A8.(1)根据题意可得y=4x(0≤x≤4).(2)当x=0时,y=0;当x=4时,y=16.在平面直角坐标系中画出两点O(0,0),A(4,16),过这两点作线段OA,线段OA即函数y=4x(0≤x≤4)的图象,如图.9.A 10.D 11.C 12.C 13.B 14.y=3x(答案不唯一) 15.-1减小16.k>m>n 17.(1)k-2<0,∴k<2;(2)k-2>0,∴k>2.18.(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).19.(1)∵点A的横坐标为3,且△AOH的面积为3,∴点A的纵坐标为-2,点A的坐标为(3,-2).∵正比例函数y=kx经过点A,∴3k=-2.解得k=-.∴正比例函数的表达式是y=-x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.∴点P的坐标为(5,0)或(-5,0).。

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿一. 教材分析湘教版八下数学4.3一次函数的图象第1课时,主要介绍正比例函数的图象和性质。

在这一课时中,学生将学习正比例函数的定义、图象特点以及如何绘制正比例函数的图象。

教材通过丰富的实例和练习题,帮助学生理解和掌握正比例函数的知识。

二. 学情分析在学习本课时,学生已经掌握了函数的基本概念和一次函数的定义,对函数的图象有一定的了解。

但学生对正比例函数的图象和性质的认识还不够深入,需要通过本节课的学习来进一步理解和掌握。

此外,学生可能对如何绘制正比例函数的图象存在一定的困惑,需要教师的引导和讲解。

三. 说教学目标1.知识与技能目标:学生能够理解正比例函数的定义,掌握正比例函数的图象特点,学会绘制正比例函数的图象。

2.过程与方法目标:通过观察、分析和实践,学生能够培养数形结合的思维方式,提高解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学习的兴趣和自信心。

四. 说教学重难点1.教学重点:正比例函数的定义,正比例函数的图象特点,绘制正比例函数的图象。

2.教学难点:如何引导学生理解正比例函数的图象与性质之间的关系,以及如何绘制正比例函数的图象。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作学习法等,激发学生的学习兴趣,引导学生主动参与课堂讨论和实践活动。

2.教学手段:利用多媒体课件、实物模型、练习题等,辅助教学,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个实际问题,引出正比例函数的概念,激发学生的兴趣。

2.新课导入:介绍正比例函数的定义和图象特点,引导学生观察和分析正比例函数的图象。

3.实例讲解:通过具体的例子,讲解如何绘制正比例函数的图象,让学生动手实践。

4.课堂练习:设计一些练习题,让学生巩固所学知识,并及时给予解答和反馈。

5.总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的思考。

正比例函数图像及性质

正比例函数图像及性质

正比例函数的图像和性质知识精要1.正比例函数的图像一般地,正比例函数y=kx(k是常数,k0≠)的图像是经过原点O(0,0)和点M(1,k)的一条直线。

我们把正比例函数y=kx的图像叫做直线y=kx。

2.正比例函数性质精讲名题例1.若函数y=(m-1)3-mx是正比例函数,则m= ,函数的图像经过象限。

解:m=4,图像经过第一、三象限。

例2.已知y-1与2x成正比例,当x=-1时,y=5,求y与x的函数解析式。

解:∵y-1与2x成正比例∴设y-1=k·2x (k0≠)把x=-1,y=5代入,得k=-2,∴y-1=-2·2x∴y=-4x+1例3.已知y与x的正比例函数,且当x=6时y=-2(1)求出这个函数的解析式;(2)在直角坐标平面内画出这个函数的图像;(3)如果点P (a ,4)在这个函数的图像上,求a 的值;(4)试问,点A (-6,2)关于原点对称的点B 是否也在这个图像上?解:(1) 设y=k ·x (k 0≠)当x=6时,y=-2∴-2=6k ∴31-=k ∴这个函数的解析式为x y 31-=(2) x y 31-=的定义域是一切实数,图像如图所示:(3)如果点P (a ,4)在这个函数的图像上,∴a 314-=,∴a=-12(4)点A (-6,2)关于原点对称的点B 的坐标(6,-2),当x=6时,y=2631-=⨯- 因此,点B 也在直线x y 31-=上例4.已知点(11,y x ),(22,y x )在正比例函数y=(k-2)x 的图像上,当21x x >时,21y y <,那么k 的取值范围是多少?解:由题意,得函数y 随x 的值增大而减小,∴k-2<0,∴k<2例5.(1)已知y=ax 是经过第二、四象限的直线,且3+a 在实数范围内有意义,求a 的取值范围。

(2)已知函数y=(2m+1)x 的值随自变量x 的值增大而增大,且函数y=(3m+1)x 的值随自变量x 的增大而减小,求m 的取值范围。

正比例函数的图象和性质2【公开课教案】(含反思)

 正比例函数的图象和性质2【公开课教案】(含反思)

4.3 一次函数的图象第1课时正比例函数的图象和性质一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.4.理解一次函数的代数表达式与图象之间的一一对应关系.教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线.教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系.三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置.第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

4.3.1正比例函数的图象和性质

4.3.1正比例函数的图象和性质

y=3x;
【教材P85 习题4.3 第5题】
6. 小明是这样理解“函数y=x的图象是一条经过原点的直线”
的:如图,当x=0时,y=0,所以原点(0,0)在函数y=x的图
象上;当x=t时,y=t,即 MN=ON,∠MON=45°,而这个结论
对任意的 t 值都正确,所以函数 y = x 的图象是一条经过原点、与
以表中各组对应值作为点的坐标,在直角坐标
系中描出相应的各点
按照横坐标由小到大的顺序把这些点顺次
连接起来
知识点2
正比例函数的图象
正比例函数的图象:正比例函数 y=kx(k≠0)的图象是一条经过原点(0,0)
的直线,我们称它为直线 y=kx.
y=2x
例1 画出正比例函数 y=2x 的图象.
在所画的图象上任意取几个点,找出它们的横坐标
y=2x
第二象限
第一象限
第三象限
第四象限
正比例函数y=kx(k≠0)的图
原点(0,0)
象是一条经过_____________
直线
的______.
知道了正比例函数图象的特点,有没有更简
便的正比例函数图象的绘制方法?
两点作图法
正比例函数 y=kx(k≠0)的图象是一条经过原
点(0,0)的直线,只要再确定一个点即可确定函数
观察比较,两个函数的图象
有什么相同点,有什么不同点?
不同点
相同点
y=﹣3x
y=2x
第二象限
第一象限
①函数图象都经过原点(0,0) 第三象限
第四象限
① y =2x 经过一、三象限,
② y =﹣3x 经过二、四象限.
②函数图象都是一条直线.
y=﹣3x

(完整版)正比例函数图像及性质

(完整版)正比例函数图像及性质

正比例函数的图像和性质知识精要1.正比例函数的图像一般地,正比例函数y=kx(k是常数,k0≠)的图像是经过原点O(0,0)和点M(1,k)的一条直线。

我们把正比例函数y=kx的图像叫做直线y=kx。

2.正比例函数性质精讲名题例1.若函数y=(m-1)3-mx是正比例函数,则m= ,函数的图像经过象限。

解:m=4,图像经过第一、三象限。

例2.已知y-1与2x成正比例,当x=-1时,y=5,求y与x的函数解析式。

解:∵y-1与2x成正比例∴设y-1=k·2x (k0≠)把x=-1,y=5代入,得k=-2,∴y-1=-2·2x∴y=-4x+1例3.已知y与x的正比例函数,且当x=6时y=-2(1)求出这个函数的解析式;(2)在直角坐标平面内画出这个函数的图像;(3)如果点P (a ,4)在这个函数的图像上,求a 的值;(4)试问,点A (-6,2)关于原点对称的点B 是否也在这个图像上?解:(1) 设y=k ·x (k 0≠)当x=6时,y=-2∴-2=6k ∴31-=k ∴这个函数的解析式为x y 31-=(2) x y 31-=的定义域是一切实数,图像如图所示:(3)如果点P (a ,4)在这个函数的图像上,∴a 314-=,∴a=-12(4)点A (-6,2)关于原点对称的点B 的坐标(6,-2),当x=6时,y=2631-=⨯- 因此,点B 也在直线x y 31-=上例4.已知点(11,y x ),(22,y x )在正比例函数y=(k-2)x 的图像上,当21x x >时,21y y <,那么k 的取值范围是多少?解:由题意,得函数y 随x 的值增大而减小,∴k-2<0,∴k<2例5.(1)已知y=ax 是经过第二、四象限的直线,且3+a 在实数范围内有意义,求a 的取值范围。

(2)已知函数y=(2m+1)x 的值随自变量x 的值增大而增大,且函数y=(3m+1)x 的值随自变量x 的增大而减小,求m 的取值范围。

4.3正比例函数的图象与性质课件

4.3正比例函数的图象与性质课件

1
x
结论
正比例函数图象经过点(0,0)和点(1,k)
y
k y= kx (k>0)
y= kx (k<0)
y
0 1
x
0
k
1
x
总结:如何画正比例函数的图像?
因为正比例函数的图像是一条直线, 而两点确定一条直线
画正比例函数的图像时,只需 描两个点,然后过这两个点画一条 直线
点(0,0)和点(1,k)
例2、在同一平面直角坐标系内,分别画出下列正比例函数的图象:
-4 -3 -2 -1
o•
-1 -2 -3
x
• •
-4
-5
一般地,正比例函数y=kx的图象是经过• (0,0),(1,k)这两点的直线,我 们把正比例函数y=kx的图象叫做直线y=kx。
-6
思考
通过以上学习,画正比例函数图象 有无简便的办法?
y
1 2 y= 1 x 2 y= 1x 2
y
0 1
x
0
1 2
练一练:
1,下列函数中,正比例函数是( ) A. y=-8x B. C. y=8x² +1 D.
y=-8x+1 y=-8/x
2,已知正比例函数y=kx(k≠0)的图象经过第二,四 象限,那么( ) A,k>0 B,k<0 C k>2 D,k<-2
3.下列图像哪个可能是函数y=-8x 的图像( B )
A
B
C
D
看谁反应快
2.填空 (1)正比例函数 y=kx(k≠0) 的图像是 一条直线它一定经过点 (0,0) 和 (1,k) .
(2)函数 y=4x 经过 第一、三 象 限,y 随 x 的减小而 减小 . y x 的增大而增大

正比例函数的图象与性质课件

正比例函数的图象与性质课件

THANKS
感谢观看
函数值的变化规律
总结词
正比例函数值随自变量的变化而变化
详细描述
对于正比例函数$y=kx$,当自变量 $x$增大或减小时,函数值$y$也会等 比例地增大或减小。
函数的极限状态
总结词
正比例函数的极限状态取决于函数的斜率
详细描述
正比例函数的极限状态是指当自变量$x$趋于无穷大或无穷小时,函数值$y$的极限状态。当$k>0$时,$y$的极 限为无穷大;当$k<0$时,$y$的极限为无穷小。
05
实例分析
实际应用场景
物理学中的速度与时间关系
正比例函数可以描述物体在恒定加速度下速度与时间的关系,即$v = v_0 + at$,其中$v_0$ 是初速度,$a$是加速度,$t$是时间。
经济学中的收入与工作时间关系
在经济学中,正比例函数可以用来描述收入与工作时间的关系,即$y = kx$,其中$y$是收 入,$k$是每小时的工资率,$x$是工作时间。
伸缩变换
正比例函数的图象可以在x轴和y轴方向上进行伸缩,但伸缩 不改变函数的性质。
04
正比例函数的性质
函数的增减性
总结词
正比例函数在定义域内具有单调性
详细描述
正比例函数是指形如$y=kx$($k neq 0$)的函数,当$k>0$时,函数在定义域内 单调递增;当$k<0$时,函数在定义域内单调递减。
正比例函数的图象与性质 课件
• 引言 • 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 实例分析 • 练习与思考
01
引言
主题简介
01
正比例函数是数学中一种基本的 函数类型,它描述了当一个变量 增加时,另一个变量按固定比例 增加的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-5
O
1
2
5
3
4
-1
x
-2
-3 -4
-5
(2)当k<0时,作y=kx的图象.
y
观察可知y=kx(k为常数且k<0)的图象
5
y 3x
是一条经过原点的直线.
y x y 2x 4
1
3
y x
直线y=kx(k<0)经过第二、四象限且
2 1
2
y x
1
从左到右下降,y随x的增大而减小.
3
-4
-3
-2
-1
-5
1、什么是正比例函数?请举几个实例。
一般地,形如 y=kx(k是常数, k≠0)的函数,叫做正比例函数 , 其中k叫做比例系数.
2、 函数关系的三种表达方式是什么?
列表法、 公式法、图象法
画正比例函数 y =2x 的图象
解:1. 列表
y
x … -2 -1 0 1 2 …
y … -4 -2 0 2 4 …
O
1
2
5
3
4
-1
x
-2
-3
-4
-5
y 4
3
2
1
y 4
3
2
1
-4 -3 -2 -1
O1 2 3 4
-1
x
-2
-3 (k>0)
-4
-4 -3 -2 -1 O 1 2 3 4
-1
x
-2
(k<0) -3
-4
正比例函数y kx(k 0)的性质:
(1) 当k>0时,正比例函数的图像经过第 一、三 象限, 自变量x逐渐增大时,y的值也随着逐渐 增大 。图象从
用两点法作图时,如何取点 更简单?
由于两点确定一条直线,画正比例 函数y= kx (k≠0)的图象时,我们只需 描点(0,0)和点 (1,k),连线即可.
合作探究
在平面直角坐标系中(如图),
y
5
任意画一个正比例函数y=kx(k
4
3
为常数,k≠0)的图象,它是
2
1
经过原点的一条直线吗?
-4
-3
-2
-1
预习检测 1.画函数图象的一般步骤是什么?
① 列表 ② 描点 ③ 连线
2.正比例函数的图象是什么?
是一条过原点(0,0)的直线
y
【例1】画出正比例函数y=-2x的图象.
6
解:当x=0时, y=0;
5
y=-2x 4
3
当x=1时, y=-2.
2
在平面直角坐标系中描出两点O (0,0),A(1,-2),过这两 点作直线,则这条直线是
1
-3 -2 -1O 1 2 3 x
-1
-2
A
-3
y=-2x的图象,如图所示.
-4
-5
-6
思考?
3
分别指出其经过哪些象限.
y
5
y 3x
4
答案:如图所示. 第一个函数的图象经过第二、四象 限; 第二个函数的图象经过第一、三象 限.
3
1
y x
2
3
1
-4
-3
-2
-1
-5
O
1
2
5
3
4
-1
-2
-3 -4
x
-5
2.已知矩形的长为6cm,宽为xcm.
(1)求矩形的面积y(cm2)随宽x(cm)而变化的函数表达式;
必做题:书本P124练习1、2 选做题:已知正比例函数y=(2m+4)x,
(1)若函数图象经过第二、四象限,则m的取值范围 是什么? (2)若y随x的增大而增大,则m的取值范围是什么? (3)若点(1,3)在函数图象上,则m的值是什么?
学习目标
1、学会选择特殊的点,用两点法 画出正比例函数的图象
2、了解正比例函数图象的性质
左向右 上升,
(2) 当k<0时,正比例函数的图像经过第 二、四 象限, 自变量x逐渐增大时,y的值则随着逐渐 减小。图象从
左向右 下降
【例2】某国家森林公园的一个旅游景点的电梯运行
时,以3m/s的速度上升,运行总高度为300m.
(1)求电梯运行高度h(m)随运行时间t(s)而变
化的函数表达式;(2)画出这个函数的图象.
(2)当t=0时,h=0; 当t=100时,h=300,
h/m
在平面直角坐标系中描出两 300
270
点O(0,0),A(100,300)240 过这两点作线段OA,线段OA 210
即函数h=3t(0≤t≤100)的图 180
象,如图.
150
120
90
60
30
h=3t A
O 10 20 30 40 50 60 70 80 90 100 t/s
-5
O
1
2
5
3
4
-1
-2
-3 -4
-5
x
(1)当k>0时,作y=kx的图象.
观察可知y=kx(k为常数且k>0)的图象 是一条经过原点的直线. 直线y=kx(k>0)经过第一、三象限且 从左到右上升,y随x的增大而增大.
y
5
y 3x
4
y 2x y x
3
1
y x
2
2
1
1
y x
3
-4
-3
-2
-1
12 3 456
我要看到棒棒哒的你哦!
1. 正比例函数y= 4 x的图象经过第( )象限
答案:一、三
返回
巩固练习
我要看到棒棒哒的你哦!
2. 正比例函数y=-5x的图象经过点 (1, )
答案:-5
返回
巩固练习
我要看到棒棒哒的你哦!
3. A(-3,m),B(2,n)是正比例函数 y=2x图象上的两点,则m( )n.
(2)画出该函数的图象;
(3)当x=3,4,5时,y是多少?
答案:(1)矩形的面积y(cm2)随宽x(cm)而变化的函 数表达式是:y=6x. (2)函数的图象略. (3)当x=3时,y=18;当x=4时,y=24;当x=5时,y=30.
通过这节课的学习活 动你有哪些收获?
你还有什么想法吗?
课后作业
5 4
3
2. 描点
2
1
3. 连线
-3 -2 -1 0
(在图形旁写上函数表达式)
-1
-2
-3
-4
y=2x
x
1 23
类似地,数学上已经证明:正比例函数y=kx(k为常 数,k≠0)的图象是一条直线.由于两点确定一条直线, 因此画正比例函数的图象,只要描出图象上的两个点, 然后过这两点作一条直线即可.我们常常把这条直线 叫作“直线y=kx”.
解 (1)由路程=速度×时间, 可知
h=3t
0≤t≤100.
(2)当t=0时,h=0;当t=100时,h=300, 在平面直角坐标系中描出两点O(0,0),A
(100,300).过这两点作线段OA,线段OA
即函数h=3t(0≤t≤100)的图象,如图.
解 (1)由路程=速度×时间, 可知
h=3t
0≤t≤100.
答案 :﹤
返回
巩固练习
我要看到棒棒哒的你哦!
4、正比例函数y=(m+5)x,且y 随x的增大而减小,则m的取值 范围是( )
答案:m﹤-5
返回
5. 正比例函数y=kx(k≠0)的图象 经过第二、四象限,则y随x的增大 而( )
答案:减小
返回
亲,.画出正比例函数y= 1 x ,y=3x的图象,并
相关文档
最新文档