重庆南开中学2020级高三第三次教学质量检测考试理数答案
重庆2020届高三调研测试数学(理)试题Word版含答案及解析
重庆2020届高三调研测试数学(理)试题满分150分。
考试时间120分钟★祝考试顺利★注意事项:1.答题前,请考生认真阅读答题卡上的注意事项。
务必将自己的姓名、考号填写在答题卡上指定位置,贴好考号条形码或将考号对应数字涂黑。
用2B铅笔将试卷类型A填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择答题用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的清洁。
考试结束后,监考人员将答题卡和试卷一并收回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,复数满足,则()A. B. C. 1 D.2.已知集合,,则()A. B.C. D.3.设,,,则的大小关系为()A. B.C. D.4.设等比数列的前项和为,已知,且与的等差中项为20,则()A. 127B. 64C. 63D. 325.已知为两条不同的直线,为两个不同的平面,则下列命题中正确的是()A. 若,,则B. 若,,且,则C. 若,,且,,则D. 若直线与平面所成角相等,则6.函数的图像大致为()A. B.C. D.7.运行如图所示的程序框图,则输出的值为()A. 9B. 10C. 11D. 128.设函数的一条对称轴为直线,将曲线向右平移个单位后得到曲线,则在下列区间中,函数为增函数的是()A. B.C. D.9.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A. B. C. D.10.已知双曲线的一条渐近线方程为,左焦点为,当点在双曲线右支上,点在圆上运动时,则的最小值为( )A. 9B. 7C. 6D. 5 11.已知三棱锥各顶点均在球上,为球的直径,若,,三棱锥的体积为4,则球的表面积为( )A.B.C.D.12.已知是函数(其中常数)图像上的两个动点,点,若的最小值为0,则函数的最小值为( ) A.B.C.D.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若实数x ,y 满足00320x y x y x y -≥⎧⎪+≥⎨⎪+-≤⎩,则2z x y =-+的最小值为______.14.住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图.为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一只被选为组长的概率为______.15.记n S 为数列{}n a 的前n 项和,若23S =,()*11n n a S n N +=+∈,则通项公式n a =______.16.已知双曲线C :()222210,0x y a b a b -=>>的左、右焦点为1F 、2F ,过1F的直线l 与C 的一条渐近线在第一象限相交于A 点,若21AF AF ⊥,则该双曲线的离心率为______.三、解答题:共70分。
重庆南开中学2020学年度高2020级高三数学理科半期考试卷
重庆南开中学2020学年度高2020级半期考试数学试题(理科)一、选择题(每小题5分,共50分) 1.已知函数xx f -=21)(,其图象是下图中的 ( )2.不等式0)3)(2)(1(2>+-+x x x 的解集是 ( )A .}21|{<<-x xB .φC .RD .}12|{-<>x x x 或3.若1||||,>+∈b a R b a ,则使成立的充分不必要条件是( ) A .1||≥+b a B .21||21||≥≥b a 且C .1||≥aD .b<-14.若△ABC 的内角A 满足sinA+cosA>0, tanA -sinA<0,则角A 的取值范围是 ( )A .)4,0(π B .)1,0[ C .)43,2(ππ D .),4(ππ5.已知b a ,是非零向量且满足b a b a b a b a 与,则⊥-⊥-)2(,)2(的夹角是 ( )A .6πB .3π C .32π D .65π 6.数列1,n ++++++ΛΛ211,,3211,211的前n 项和为 ( )A .122+n nB .12+n nC .12++n nD .12+n n7.在直线y=-2上有一点P ,它到点A (-3,1)和点B (5,-1)的距离之和最小,则点P 的坐标是 ( )A .(3,-2)B .(1,-2)C .(419,-2) D .(9,-2) 8.实数x ,y 满足不等式1102200+-=⎪⎩⎪⎨⎧≥--≥-≥x y y x y x y ω,则的取值范围是( )A .[-1,31] B .]31,21[-C .),21[+∞-D .)1,21[-9.对于0<a<1,给出下列四个不等式:(1))11(log )1(log aa a a +<+ (2)a a aa a a a a a aaa 111111)4(;)3();11(log )1(log ++++><+>+其中成立的是 ( )A .(1)和(3)B .(1)和(4)C .(2)和(3)D .(2)和(4)10.已知xy y x N y x ,则,且19939319*,≤+∈的最大值是 ( )A .559B .560C .561D .562二、填空题(每题4分,共24分)11.函数)23(log 221+-=x x y 的递增区间为12.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项是1,公比为3的等比数列,则a n = 13.函数]2,0[|,sin |3sin )(π∈+=x x x x f 的图象与直线y=m 有且仅有两个不同的交点,则m 的取值范围是14.已知圆的方程为1)1(22=++y x ,如果直线0=++a y x 与该圆无公共点,那么实数a 的取值范围是15.方程6log 71)sin(21<<--=x x 在π的条件下解有 个.16.点O 在△ABC 内部,且满足22=++,则△ABC 面积与凹四边形ABOC的面积之比为三、解答题(共76分) 17.(13分)解关于x 的不等式:)0(,113)1(><--+a x x a18.(13分)圆822=+y x 内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A ,B 两点.(1)求当43πα=时,弦AB 的长; (2)当弦AB 被点P 平分时,求直线l 的方程.19.(13分)已知△ABC 的面积为3, 且满足60≤⋅≤AC AB ,设AC AB 和的夹角θ. (1)求θ的取值范围; (2)求函数θθπθ2cos 3)4(sin 2)(2-+=f 的最大值与最小值.20.(13分)已知数列{a n }的前n 项和为S n ,a 1=2,na n+1=S n +n (n+1)(n *N ∈). (1)求数列{a n }的通项公式; (2)设n nn s b 2=,如果对一切正整数n 都有t b n ≤,求t 的最小值.21.(12分)在沙坪坝交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离m (米)与车速v (千米/小时)须遵守的关系是225001kv m ≥(其中k (米)是车身长,常数),同时规定.2k m ≥ (1)当m=2k时,求机动车的速度变化范围; (2)设机动车每小时流量2250011000kv m m k v P =+=,此时,应规定怎样的车速,每小时的机动车流量P 最大?22.(12分)数列{a n },a 1=1,*)(3221N n n n a a n n ∈+-=+,(1)求a 2,a 3的值;(2)是否存在常数μλ,,使得数列}{2n n a n μλ++是等比数列,若存在,求出μλ,的值;若不存在,说明理由;(3)设n n n n n b b b b S n a b ++++=-+=-Λ3211,21, 证明:当.35)12)(1(62<<++≥n S n n n n 时,参考答案一、选择题(每小题5分,共60分)1—5 BADCB 6—10 BADDC 选解:10.22)21993()29319(9319*,≤+≤⋅⇒∈y x y x N y x 561*,561]93195.996[93195.99622≤⇒∈=⨯⨯≤∴xy N y x xy ,又,而而561=3×11×17=33×17=51×11,20,100≤≤y x⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==∴115111511733y x y x y x ,经检验或满足题意,故5611151=⨯=xy 二、填空题(每小题4分,共16分) 11.(2,4) 12.)1,(-∞ 13.)13(21-n14.),21()21,(+∞+--∞Y 15.64 16.5:4三、解答题(共74分) 17.解:0)1)(2(012113)1(<--⇔<--⇔<--+x ax x ax x x a①当,时,1220><<a a 不等式的解为)2,1(ax ∈ ②当a=2时,a 2=1,不等式的解集为φ; ③当a>2时,a 2<1,不等式的解为)1,2(ax ∈时综上,不等式的解为:①0<a<2时,)2,1(a x ∈;②a=2时,φ∈x ;③a>2时,)1,2(ax ∈.18.解:(1)当43πα=时,直线AB 方程为:01=-+y x ,圆心到直线AB 的距离为222|100|=-+,∴弦AB 的长为:30)22(822=-(2)当弦AB 被点P 平分时,PO ⊥AB ,直线l 的斜率为21,其方程为052=+-y x 19.解:(1)设△ABC 中角A ,B ,C 的对边分别为a ,b ,c 则由,,可得,1cot 06cos 03sin 21≤≤≤≤=θθθbc bc ∴]2,4[ππθ∈ (2)θθπθθπθ2cos 3)]22cos(1[2cos 3)4(sin 2)(2-+-=-+=f .1)32sin(212cos 32sin 2cos 3)2sin 1(+-=+-=-+=πθθθθθ31)32sin(22],32,6[32]2,4[≤+-≤∴∈-∈πθπππθππθ,Θ 即当.2)(4;3)(125min max ====θπθθπθf f 时,当时,20.解:(1)由 )1()1( )1(11n n S a n n n s na n n n n -+=-⇒++=-+两式作差得:2n;2,2 2111=∴=+=+=++n n n n n a a a a n na na ,又即 (2)由(1)易得n n n n n n n S b n n S 2)1(2)1(+==⇒+=, ∴112)2)(1(-+-+=-n n n n n b b ∴b 1<b 2=b 3>b 4>……,∴b n 最大值23,32即b b ,对一切正整数n 都有,t b n ≤即t 大于或等于b n 的最大值,∴t 的最小值是23. 21.解(1)2252500122≤∴≥=Θv kv k m ,故当22502≤<=v km 时,(千米/小时) (2)当231000225k vP v =≤时,P 是v 的一次函数,v=225,P 最大为k3250000,当k v v k kvk v P v 25000|25001|1000250010002252≤+=+=>时,, 当且仅当v=50时,P 最大为k25000, kk 325000025000>Θ∴当v=50(千米/小时)时,每小时机动车流量P 最大. 22.解:(1)10,432==a a(2)设)(2)1()1(3222121n n a n n a n n a a n n n n μλμλ++=+++++-=++可化为,即 μλλμλ---++=+n n a a n n )2(221故 ⎩⎨⎧=-=⎪⎩⎪⎨⎧=--=--=110321μλμλλμλ解得∴)(2)1()1(3222121n n a n n a n n a a n n n n +-=+++-+-=++可化为 又1,1 01121=-=≠+-μλ故存在a 使得数列 }{2n n a n μλ++是等比数列 (3)证明:由(1)得12122)11(-⋅+-=+-n n a n n a ∴n n a n n -+=-212故21121n n a b n n n =-+=-∵122122144441222+--=-<==n n n n n b n ∴)122122()7252()5232(12321+--++-+-+<++++=≥n n L b L b b b S n n n 时,35122321<+-+=n 现证)2()12)(1(6≥++>n n n nS n当n=2时,5445545312)12)(1(64541121>=⨯=++=+=+=,,而n n n b b S n , 故n=2时不等式成立, 当111)1(1132+-=+>=≥n n n n n b n n 时,由得 1261 6121111 )111()4131()3121()211(321+>>++=+-=+-+Λ+-+-+->+Λ+++=n n n n n n n b b b b S n n 得,且由∵)12)(1(61++>+>n n n n n S n。
2020届重庆市南开中学高三下学期3月月考数学(理)试题解析
绝密★启用前2020届重庆市南开中学高三下学期3月月考数学(理)试题学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题 1.如果复数12aii-+(a R ∈,i 为虚数单位)的实部与虚部相等,则a 的值为( ) A .1 B .-1C .3D .-3D由复数的除法运算化简得到实部和虚部,令其相等即可得解. 解:()()()()()1221212225ai i a a iai i i i ----+-==++-, 由题意知:21255a a-+=-,解得3a =-. 故选D. 点评:本题主要考查了复数的除法运算及实部和虚部的定义,属于基础题. 2.若{0,1,2}A =,{|2,}aB x x a A ==∈,则A B =U ( ) A .{0,1,2} B .{0,1,2,3}C .{0,1,2,4}D .{1,2,4}C先求出集合B ,再求并集即可. 解:由{}0,1,2A =,得{}{}|2,1,2,4a B x x a A ==∈=.{}0,1,2,4A B ⋃=.故选C. 点评:本题主要考查了集合的描述法及并集的运算,属于基础题.3.向量(2,)a t =v,(1,3)b =-v,若a v ,b v的夹角为钝角,则t 的范围是( ) A .23t < B .23t >C .23t <且6t ≠- D .6t <-若a v ,b v 的夹角为钝角,则0a b v n v <且不反向共线,进而利用坐标运算即可得解.解:若a v,b v的夹角为钝角,则0a b v n v<且不反向共线,230a b t =-+<vv n ,得23t <.向量()2,a t =v ,()1,3b =-v 共线时,23t ⨯=-,得6t =-.此时2a b v v =-.所以23t <且6t ≠-. 故选C. 点评:本题主要考查了利用数量积研究向量的夹角,当为钝角时,数量积为0,容易忽视反向共线时,属于易错题.4.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( ) (参考数据:2 1.414,3 1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米B由题分析出“弓”所在弧长,结合弧长公式得出这段弧所对圆心角,双手之间距离即是这段弧所对弦长.由题:“弓”所在弧长54488 lππππ=++=,其所对圆心角58524ππα==,两手之间距离2 1.25 1.768d=⨯≈.故选:B点评:此题考查扇形的圆心角和半径与弧长关系的基本计算,关键在于读懂题目,提取有效信息.5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有A.60种B.70种C.75种D.150种C试题分析:因,故应选C.【考点】排列数组合数公式及运用.6.已知某个几何体的三视图如图,根据图中标出的尺寸,可得这个几何体的表面积是( )A.162+B.122226+C.1822+D.1622+B如图所示,还原几何体,证明CD CP⊥,计算表面积得到答案.解:还原几何体,如图所示:连接AC简单计算得到22AC CD ==4=AD ,故AC CD ⊥,PA ⊥平面ABCD ,故PA CD ⊥.故CD CP ⊥,23PC =表面积为:()111112422242222222322222S =⨯+⨯+⨯⨯+⨯⨯+⨯⨯⨯122226=+故选:B 点评:本题考查了三视图,表面积的计算,还原几何体是解题的关键. 7.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 26y x π⎛⎫=-⎪⎝⎭ C .2sin 23x y π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=-⎪⎝⎭B首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 解:先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值为0,3,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 点评:8.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .20i <,1S S i=-,2i i = B .20i ≤,1S S i=-,2i i = C .20i <,2SS =,1i i =+ D .20i ≤,2SS =,1i i =+ D先由第一天剩余的情况确定循环体,再由结束条件确定循环条件即可. 解:根据题意可知,第一天12S =,所以满足2S S =,不满足1S S i =-,故排除AB ,由框图可知,计算第二十天的剩余时,有2SS =,且21i =,所以循环条件应该是20i ≤.故选D. 点评:本题考查了程序框图的实际应用问题,把握好循环体与循环条件是解决此题的关键,属于中档题.9.已知α是第二象限角,且3sin()5πα+=-,则tan2α的值为( ) A .45B .237-C .247-D .249-C根据诱导公式得sin α,进而由同角三角函数的关系及角所在象限得tan α,再利用正切的二倍角公式可得解.由()3sin 5πα+=-,得3sin 5α=. 因为α是第二象限角,所以4cos 5α=-. 34sin tan cos ααα==-. 232tan 242tan291tan 7116ααα-===---. 故选C. 点评:本题主要考查了同角三角函数的关系及正切的二倍角公式,属于基础题.10.己知函数()ln 1f x x x kx =-+在区间1,e e ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数k 的取值范围是( )A .{|1k k =或1}k e >-B .1{|11k k e≤≤+或1}k e >- C .1{|11k k e e +<≤-或1}k e >- D .1{|11k k e e+<≤-或1}k = D构造函数()1ln g x x x=+,利用导数得出其单调性,将零点问题,转化为函数的交点问题,即可得出答案. 解:解:令ln 10x x kx -+=,则1ln k x x =+;.令()1ln g x x x=+;()22111x g x x x x-'=-=; ∴当1,1x e ⎡⎫∈⎪⎢⎣⎭时,()0g x ¢<,()g x 单调递减;当[]1,x e ∈时,()0g x ¢>,()g x 单调递增;∴当1x =时,有()min 1g x =,又∵11g e e ⎛⎫=- ⎪⎝⎭,()11g e e =+,∴()1g e g e ⎛⎫< ⎪⎝⎭∵()f x 在1,e e⎡⎤⎢⎥⎣⎦上只有一个零点,∴()g x k =只有一个解;∴1k =或111k e e+<≤-.。
2020年重庆市高考数学三模试卷2 (含答案解析)
2020年重庆市高考数学三模试卷2一、选择题(本大题共12小题,共60.0分)1.已知i是虚数单位,复数z满足z⋅i=2+i,则复数z等于()A. 1−2iB. −2−iC. −1+2iD. 1+2i2.设x∈R,则“|x−1|≤1”成立的必要不充分条件是A. 0≤x≤2B. x≤2C. 0<x<2D. x>03.等差数列{a n}的前n项和为S n,若S5=32,则a3=()A. 325B. 2 C. 4√2 D. 5324.已知双曲线kx2−y2=1(k>0)的一条渐近线与直线x−2y−3=0平行,则双曲线的离心率是()A. √52B. √3C. 4√3D. √55.(x−1x+1)5展开式中的常数项为()A. 1B. 11C. −19D. 516.已知单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角为60°,则向量e2⃗⃗⃗ −2e1⃗⃗⃗ 在e1⃗⃗⃗ +e2⃗⃗⃗ 方向上的投影是()A. √32B. −√32C. 12D. −127.执行如图的程序框图,若输出的S的值为55,则判断框内应填入()A. n≥6?B. n≤6?C. n≥5?D. n≥7?8.定义在R上的奇函数f(x),若f(x+1)为偶函数,且f(−1)=2,则f(12)+f(13)的值等于()A. 2B. 1C. −1D. −29.已知tanθ=3,则cos2θ=()A. 3√1010B. √1010C. 910D. 11010.已知直线l:mx+ny=0,当m,n∈{1,2,3,4,5,6}时,所得到的不同直线的条数是()A. 22B. 23C. 24D. 2511.在三棱锥S−ABC中,侧棱SC⊥平面ABC,SA⊥BC,SC=1,AC=2,BC=3,则此三棱锥的外接球的表面积为()A. 14πB. 12πC. 10πD. 8π12.已知函数f(x)={−x 2+4x−3,x≤1lnx,x>1,若|f(x)|+a≥ax,则a的取值范围是()A. [−2,0]B. [−2,1]C. (−∞,−2]D. (−∞,0]二、填空题(本大题共4小题,共20.0分)13.已知随机变量ξ服从正态分布N(0,σ2).若P(ξ>2)=0.023,则P(−2≤ξ≤2)=______.14.若存在过点(1,0)的直线与曲线y=x3和y=ax2+154x−9都相切,则a的值为________.15.已知实数x,y满足{x≤3x−2y−2≥02x+y≥4,则z=3x+y的最大值为________.16.抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的坐标为________.三、解答题(本大题共7小题,共82.0分)17.己知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π2)的最小正周期为万,点(5π24,0)为它的图象的一个对称中心.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC,a,b,c分别为角A,B,C的对应边,若f(−A2)=√2,a=3,求b+c的最大值.18.如图,四边形ABCD是矩形,四边形ABEF是梯形,∠EFA=∠FAB=90°,平面ABCD⊥平面ABEF,EF=FA=AD=12AB=1,点M是DF的中点.(1)求证:BF//平面AMC;(2)求二面角C−AE−B的余弦值.19.为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:年龄[20,30)[30,40)[40,50)[50,60)[60,70)[70,80]频数102030201010支持“新农村建设”311261262(1)根据上述统计数据填下面的2×2列联表,并判断是否有95%的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;年龄低于50岁的人数年龄不低于50岁的人数合计支持不支持合计(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为ξ,试求随机变量ξ的分布列和数学期望.参考数据:P(K2≥k)0.1500.1000.0500.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.20.已知椭圆E:x2a2+y2b2=1(a>b>0),其短轴为2,离心率为√22.(Ⅰ)求椭圆E的方程;(Ⅱ)设椭圆E的右焦点为F,过点G(2,0)作斜率不为0的直线交椭圆E于M,N两点,设直线FM和FN的斜率为k1,k2,试判断k1+k2是否为定值,若是定值,求出该定值;若不是定值,请说明理由.21.已知函数f(x)=e x+ax2(a∈R,e为自然对数的底数).(Ⅰ)当a=−e2时,求函数f(x)的单调区间;(Ⅱ)若f(x)≥x+1在x≥0时恒成立,求实数a的取值范围.22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =cost,y =2sint,(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy 有相同的长度单位,直线l 的直角坐标方程为y =√3x . (1)求曲线C 1的极坐标方程;(2)若曲线C 2的极坐标方程为ρ+8cosθ=0,与直线l 在第三象限交于A 点,直线l 与C 1在第一象限的交点为B ,求|AB|.23. 已知函数f(x)=|x −1|−2|x +1|的最大值为t .(1)求实数t 的值;(2)若g(x)=f(x)+2|x +1|,设m >0,n >0,且满足1m +12n =t ,求证:g(m +2)+g(2n)⩾2.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查复数的四则运算,属于基础题.根据复数的四则运算求解即可.【解答】解:因为z⋅i=2+i,所以z=2+ii =−i(2+i)−i2=1−2i.故选A.2.答案:B解析:【分析】根据充分条件和必要条件的定义转化为集合关系进行转化求解即可.本题主要考查充分条件和必要条件的判断,结合集合关系进行转化是解决本题的关键.解析:解:由|x−1|≤1得−1≤x−1≤1,即0≤x≤2,对应集合为[0,2],则“|x−1|≤1”成立的必要不充分条件对应的集合A⊋[0,2],则x≤2满足条件.故选:B.3.答案:A解析:【分析】根据等差数列的性质,S5=5a3,即可得出.本题考查了等差数列的通项公式及其性质、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.【解答】解:根据等差数列的性质,S5=5(a1+a5)2=5a3,∴a3=S55=325.故选:A .4.答案:A解析: 【分析】利用已知条件求出双曲线方程中k 的值,然后求解离心率即可,本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力. 【解答】解:双曲线kx 2−y 2=1(k >0)的一条渐近线与直线x −2y −3=0平行, 可得双曲线的渐近线的斜率为:±12,即±√k =±12,解得k =14, 双曲线kx 2−y 2=1为:x 24−y 2=1,得a =2,b =1,c =√5,∴双曲线的离心率为:√52. 故选:A .5.答案:B解析: 【分析】本题考查二项式系数的性质,属于基础题. 类比二项展开式的通项处理即可. 【解答】解:依题意,(x −1x +1)5展开式中r 个因式选择x ,s 个因式选择−1x ,则展开项为:T =C 5r x r C 5−r s (−1)s x −s =C 5r C 5−r s (−1)s x r−s ,要使该项为常数,则r =1, ①当r =s =0时,对应常数为1;②当r =s =1时,对应常数为−C 51×C 41=−20; ③当r =s =2时,对应常数为C 52×C 32=30; 所以展开式的常数项为1−20+30=11. 故选B .6.答案:B解析:解:∵单位向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 的夹角为60°, ∴e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ =12,∴(e 2⃗⃗⃗ −2e 1⃗⃗⃗ )⋅(e 1⃗⃗⃗ +e 2⃗⃗⃗ )=−e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ +e 2⃗⃗⃗ 2−2e 1⃗⃗⃗ 2=−32,|e1⃗⃗⃗ +e2⃗⃗⃗ |=√12=√3∴向量e2⃗⃗⃗ −2e1⃗⃗⃗ 在e1⃗⃗⃗ +e2⃗⃗⃗ 方向上的投影是−32√3=−√32故选:B.根据向量积的定义及向量投影的定义,代入即可求解.本题主要考查了平面向量的数量积的性质的简单应用,属于基础试题.7.答案:A解析:【分析】本题考查程序框图,考查循环结构,属于基础题.根据程序框图,写出运行结果,根据程序输出的结果是S=55,可得判断框内应填入的条件.【解答】解:模拟程序的运行,可得:n=1,S=0,执行循环体,S=1,n=2,不满足条件,执行循环体,S=5,n=3,不满足条件,执行循环体,S=14,n=4,不满足条件,执行循环体,S=30,n=5,不满足条件,执行循环体,S=55,n=6,由题意,此时满足条件,退出循环,输出的S结果为55,则判断框内应填入n≥6?.故选A.8.答案:D解析:【分析】本题考查抽象函数的求值,注意分析函数的周期性,属于中档题.根据f(x+1)为偶函数,及函数的奇偶性可得函数f(x)为周期为4的周期函数;由此分析f(12)与f(13)的值,相加即可得答案.【解答】解:根据题意,若f(x+1)为偶函数,则f(x+1)=f(−x+1),即f(−x)=f(x+2),又由函数f(x)为奇函数,则f(−x)=−f(x),则有f(x+2)=−f(x),则f(x+4)=−f(x+2)=f(x),即函数f(x)为周期为4的周期函数,又由f(x)为定义在R上的奇函数,则f(0)=0,则f(12)=f(0)=0,f(13)=f(1)=−f(−1)=−2,则f(12)+f(13)=0+(−2)=−2,故选D.9.答案:D解析:【分析】本题主要考查了同角三角函数基本关系式,降幂公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.【解答】解:tanθ=sinθcosθ=3,⇒sinθ=3cosθ,⇒sin2θ=9cos2θ,⇒1−cos2θ=9cos2θ,⇒cos2θ=110,故选D.10.答案:B解析:【分析】本题主要考查古典概型的概率的计算,根据古典概型的概率公式求出相应事件的个数,即可得到结论.注意分类讨论,当m,n相等,与不相等时的两种情况.【解答】解:当m,n相等时,有1种情况.当m,n不相等时,有A62=6×5=30种情况,又12=24=36,21=42=63,23=46,13=26,32=64,31=62,因此可得到1+30−8=23条不同的直线.故选B.11.答案:A解析:【分析】本题考查三棱锥的外接球的表面积,考查学生的计算能力,证明SC,AC,BC两两垂直是关键.证明SC,AC,BC两两垂直,将三棱锥S−ABC扩充为长方体,对角线为三棱锥的外接球的直径,求出对角线长,可得三棱锥的外接球的半径,即可求出三棱锥的外接球的表面积.【解答】由题意,侧棱SC⊥平面ABC,BC⊂平面ABC,∴SC⊥BC,∵SA⊥BC,SA∩SC=S,∴BC⊥平面SAC,∴SC,AC,BC两两垂直,将三棱锥S−ABC扩充为长方体,则对角线长为√1+4+9=√14,∴三棱锥的外接球的半径为√14,2∴三棱锥的外接球的表面积为4π⋅(√14)2=14π,2故选A.12.答案:A解析:解:|f(x)|+a≥ax即为|f(x)|≥a(x−1),作出函数y=|f(x)|的图象和直线y=a(x−1),直线恒过定点(1,0),当a=0时,直线为y=0,即有y=|f(x)|的图象恒在直线的上方;当a<0,且直线和y=|f(x)|的图象相切时,由y=a(x−1)和y=x2−4x+3(x<1),联立,可得x2−(4+a)x+3+a=0,由△=0,即(4+a)2−4(3+a)=0,解得a=−2.由图象即可得到−2≤a<0.综上可得a的范围是[−2,0].故选:A.由题意可得|f(x)|≥a(x−1),作出函数y=|f(x)|的图象和直线y=a(x−1),直线恒过定点(1,0),讨论a=0,a<0时,直线与抛物线相切的条件:判别式为0,解方程可得a=−2,通过图象即可得到所求范围.本题考查分段函数的图象和运用,考查数形结合的思想方法,同时考查直线和抛物线相切的条件:判别式为0,以及运算能力,属于中档题.13.答案:0.954解析:【分析】本题考查正态分布曲线的特点及曲线所表示的意义、正态曲线的对称性及对称区间的概率相等,属于基础题,根据随机变量ξ服从正态分布N(0,σ2),得到正态曲线关于x =0对称,根据P(ξ>2)=0.023,得到对称区间上的概率,从而可求P(−2≤ξ≤2). 【解答】解:∵随机变量ξ服从正态分布N(0,σ2), ∴正态曲线关于x =0对称, ∵P(ξ>2)=0.023, ∴P(ξ<−2)=0.023∴P(−2≤ξ≤2)=1−0.023−0.023=0.954, 故答案为0.954.14.答案:−2564或−1解析: 【分析】本题主要考查了导数的几何意义,以及利用导数求曲线上过某点切线方程的斜率,会根据一点坐标和斜率写出直线的方程,是一道综合题. 【解答】解:设直线与曲线y =x 3的切点坐标为(x 0,y 0), 则{y 0=x 03y 0x 0−1=3x 02,则切线的斜率k =3x 02=0或k =274, 若k =0,此时切线的方程为y =0, 由{y =0y =ax 2+154x −9, 消去y ,可得ax 2+154x −9=0,其中△=0,即(154)2+36a =0, 解可得a =−2564;若k =274,其切线方程为y =274(x −1),由{y =274(x −1)y =ax 2+154x −9 消去y 可得ax 2−3x −94=0, 又由△=0,即9+9a =0, 解可得a =−1. 故a =−2564或−1, 故答案为−2564或−1.15.答案:192解析: 【分析】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,属于基础题.作出满足约束条件的可行域,判断使目标函数取得最大值的点,然后求解目标函数的最大值即可. 【解答】解:作出可行域如图,由图可知平移直线至A 点时,z =3x +y 有最大值, 联立{x =3x −2y −2=0,解得x =3,y =12,∴A(3,12),此时z max=3×3+12=192.16.答案:(4,0)解析:【分析】本题考查抛物线的定义、方程和性质,主要考查抛物线的准线方程的运用,同时考查直线和抛物线方程联立,运用判别式和韦达定理,考查两直线垂直的条件和中点坐标公式的运用,属于中档题.设AB的中点为H,求出准线方程,设A,B,H在准线上的射影分别为A′,B′,H′,运用抛物线的定义可得H的横坐标为2,设出直线AB的方程,联立抛物线方程,运用韦达定理和判别式大于0,求得k的范围,由中点坐标公式解得k=−2,再求直线AB的中垂线方程,令y=0,即可得到所求值.【解答】解:设AB的中点为H,抛物线y2=4x的焦点为F(1,0),准线为x=−1,设A,B,H在准线上的射影分别为A′,B′,H′,则|HH′|=12(|AA′|+|BB′|),由抛物线的定义可得,|AF|=|AA′|,|BF|=|BB′|,|AF|+|BF|=6,即为|AA′|+|BB′|=6,|HH′|=12×6=3,即有H的横坐标为2,设直线AB:y=kx+3,代入抛物线方程,可得k2x2+(6k−4)x+9=0,即有判别式(6k−4)2−36k2>0,解得k<13且k≠0,又x1+x2=4−6k2k2=4,解得k=−2或12(舍去),则直线AB:y=−2x+3,AB的中点为(2,−1),AB的中垂线方程为y+1=12(x−2),令y=0,解得x=4,故答案为(4,0).17.答案:解:(Ⅰ)∵f(x)的最小正周期T=π,∴ω=2,∵(5π24,0)为f(x)的图象的对称中心,∴2×5π24+φ=kπ+π2 且0<φ<π2∴φ=π12∴f(x)=2cos(2x+π12),…(4分)∴令2kπ−π≤2x+π12≤2kπ,可解得:kπ−13π24≤x≤kπ−π24,k∈Z.故f(x)单调递增区间为:[kπ−13π24,kπ−π24]k∈Z.…(6分)(Ⅱ)∵f(−A2)=2cos(A−π12)=√2∴cos(A−π12)=√22,∵−π12<A−π12<11π12 ∴A−π12=π4∴A=π3,…(9分)∵a2=b2+c2−2bccosA=(b+c)2−3bc,∴(b+c)2=9+3bc≤9+3(b+c2)2,∴b+c≤6,当且仅当b=c=3时取等号.故b+c的最大值为6…(12分)解析:(Ⅰ)由已知及周期公式可求ω,由(5π24,0)为f(x)的图象的对称中心,且0<φ<π2可求φ,可得函数解析式,令2kπ−π≤2x+π12≤2kπ,即可解得f(x)的单调递增区间(Ⅱ)由f(−A2)=√2结合A的范围可求得A的值,由余弦定理可求得:a2=(b+c)2−3bc,从而有(b+c)2=9+3bc≤9+ 3(b+c2)2,利用基本不等式即可求得b+c的最大值.本题主要考查了余弦定理,基本不等式的应用,考查了三角函数的图象和性质,属于基本知识的考查.18.答案:(1)证明:连接BD,交AC于点G,∴点G是BD的中点.∵点M是DF的中点,∴MG是△BDF的中位线.又∵MG ⊂平面AMC ,BF ⊄平面AMC , ∴BF//平面AMC ;(2)解:∵四边形ABEF 是梯形,∠EFA =∠FAB =90°,∴AB ⊥AF . 又四边形ABCD 是矩形,∴AD ⊥AB ,∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB , ∴AD ⊥平面ABEF .以A 为原点,以AF 、AB 、AD 分别为x 、y 、z 轴建立空间直角坐标系,∴A(0,0,0),C(0,2,1),E(1,1,0),D(0,0,1), ∴AC ⃗⃗⃗⃗⃗ =(0,2,1),AE ⃗⃗⃗⃗⃗ =(1,1,0),AD ⃗⃗⃗⃗⃗⃗ =(0,0,1). 设平面ACE 的法向量n⃗ =(x,y,z), 由{n ⃗ ⋅AC⃗⃗⃗⃗⃗ =2y +z =0n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =x +y =0,令x =1,则n⃗ =(1,−1,2). 又AD⃗⃗⃗⃗⃗⃗ =(0,0,1)是平面ABE 的一个法向量, ∴cos <n ⃗ ,AD ⃗⃗⃗⃗⃗⃗ >=n ⃗⃗ ⋅AD⃗⃗⃗⃗⃗⃗|n ⃗⃗ |⋅|AD⃗⃗⃗⃗⃗⃗ |=√6×1=√63. 由图可知,二面角C −AE −B 为锐角. ∴二面角C −AE −B 的余弦值是√63.解析:本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解二面角的平面角,是中档题.(1)连接BD ,交AC 于点G ,由点G 是BD 的中点,可得BF//MG ,再由线面平行的判定定理可得BF//平面AMC ;(2)由四边形ABEF 是梯形,∠EFA =∠FAB =90°,得AB ⊥AF ,又四边形ABCD 是矩形,得AD ⊥AB ,由面面垂直的性质可得AD ⊥平面ABEF.则可以以A 为原点,以AF 、AB 、AD 分别为x 、y 、z 轴建立空间直角坐标系,分别求出平面ACE 与平面ABE 的一个法向量,由两法向量所成角的余弦值可得二面角C −AE −B 的余弦值.19.答案:解:(1)2×2列联表K 2=60×40×60×40≈2.778<3.841,所以没有95%的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异.(2)由题可知,ξ所有可能取值有0,1,2,3,4.且观众支持“新农村建设”的概率为60100=35,因此ξ~B(4,35),P(ξ=0)=C 40(25)4=16625,P(ξ=1)=C 41(35)1(25)3, P(ξ=2)=C 42(35)2(25)2=216625,P(ξ=3)=C 43(35)3(25)1=216625,P(ξ=4)=C 44(35)4(35)4=81625,所以ξ的分布列是:所以ξ的数学期望为E(ξ)=4×55.解析:本题考查独立性检验、期望和方差及离散型随机变量及其分布列,属于一般难度题. (1)代入公式即可.(2)由题可知,ξ所有可能取值有0,1,2,3,4.且观众支持“新农村建设”的概率为60100=35,因此ξ~B(4,35),分别求出概率,得出分布列.20.答案:解:(Ⅰ)由题意可知:2b =2,b =1,椭圆的离心率e =c a =√1−b 2a 2=√22,则a =√2, ∴椭圆的标准方程:x 22+y 2=1;(Ⅱ)设直线MN 的方程为y =k(x −2)(k ≠0).{y =k (x −2)x 22+y 2=1,消去y 整理得:(1+2k 2)x 2−8k 2x +8k 2−2=0.设M(x 1,y 1),N(x 2,y 2), 则x 1+x 2=8k 21+2k2,x 1x 2=8k 2−21+2k 2,k 1+k 2=y 1x 1−1+y 2x 2−1=k (x 1−2)x 1−1+k (x 2−2)x 2−1=k [2−x 1+x 2−2x 1x 2−(x 1+x 2)+1]=k [2−8k 21+2k 2−28k 2−21+2k 2−8k 21+2k 2+1]=0,∴k 1+k 2=0为定值.解析:(Ⅰ)由椭圆的性质2b =2,离心率e =ca=√1−b 2a 2=√22,求得a ,求得椭圆方程;(Ⅱ)设直线方程,代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得k 1+k 2的值. 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,韦达定理及直线的斜率公式,考查计算能力,属于中档题.21.答案:解:(Ⅰ)当a =−e 2时,f(x)=e x −e2x 2,故f′(x)=e x −ex ,设g(x)=f′(x)=e x −ex ,则g′(x)=e x −e , 当x <1时,e x <e ,故g′(x)<0,g(x)递减, 当x >1时,e x >e ,故g′(x)>0,g(x)递增, 故g(x)≥g(1)=e −e =0,即f′(x)≥0恒成立,故f(x)在R 递增, 函数f(x)在E 递增,无递减区间;(Ⅱ)令ℎ(x)=f(x)−(x +1)=e x +ax 2−x −1(x ≥0), 则ℎ′(x)=e x +2ax −1,且ℎ(0)=ℎ′(0)=0, 记p(x)=e x +2ax −1,(x ≥0),则p′(x)=e x +2a , ①当2a ≥−1,即a ≥−12时,p′(x)≥p′(0)≥0恒成立, 故函数p(x)在[0,+∞)递增,即函数ℎ′(x)在[0,+∞)递增, 故ℎ′(x)≥ℎ′(0)=0,ℎ(x)递增,故ℎ(x)≥ℎ(0)=0,即f(x)≥x +1恒成立; ②当2a <−1即a <−12时, 由p′(x)<0,得x <ln(−2a), 故函数p(x)在(0,ln(−2a))递减, 即函数ℎ′(x)在(0,ln(−2a))递减, 故ℎ′(x)<ℎ′(0)=0,故函数ℎ(x)在(0,ln(−2a))递减,故当x ∈(0,ln(−2a))时,ℎ(x)<ℎ(0)=0, 显然f(x)≥x +1不能恒成立, 综上,a 的范围是[−12,+∞).解析:(Ⅰ)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (Ⅱ)令ℎ(x)=f(x)−(x +1)=e x +ax 2−x −1(x ≥0),求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而确定a 的范围即可.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.答案:解:(1)由C 1的参数方程为{x =costy =2sint (t 为参数),得x 2+y 24=1,则ρ2cos 2θ+ρ2sin 2θ4=1,即1ρ2=cos 2θ+sin 2θ4;(2)由题意,C 2:ρ=−8cosθ,l :θ=π3. 得ρA =−8cos π3=−4,由1ρB2=cos 2π3+14sin 2π3=716,得ρB =√7,∴|AB|=4√77+4.解析:(1)化参数方程为普通方程,再化直角坐标方程为极坐标方程;(2)化直线l 的直角坐标方程为极坐标方程,分别代入曲线C 2与C 1的极坐标方程,求解ρA ,ρB 的值,则|AB|可求.本题考查参数方程化普通方程,直角坐标方程化极坐标方程,考查计算能力,是中档题. 23.答案:解:(1)∵f (x )={−x −3, x ≥1−3x −1, −1<x <1x +3, x ≤−1,∴f (x )的最大值为f (−1)=2,因此t =2. (2)∵g (x )=|x −1|,1m +12n =2,则g(m +2)+g(2n)=|m +1|+|2n −1|≥|m +1+2n −1|=|m +2n |=|12(m +2n )(1m +12n )|=|12(2+2n m +m 2n)| ≥|12(2+2√2n m·m 2n)|=|12×4|=2,当且仅当2nm =m2n ,即m 2=4n 2又1m +12n =2,即m =2,n =1时取等号. ∴g(m +2)+g(2n)⩾2.解析:本题考查绝对值不等式,属于中档题.(1)由已知可得f(x)={−x−3, x≥1−3x−1, −1<x<1x+3, x≤−1,利用一次函数的单调性即可得出.(2)由(1)得g(x)=|x−1|,1m +12n=2,则g(m+2)+g(2n)=|m+1|+|2n−1|≥|m+1+2n−1|=|m+2n|,而|m+2n|=|12(m+2n)(1m+12n)|=|12(2+2nm+m2n)|,再利用基本不等式的性质即可得出.。
【精准解析】重庆市南开中学2020届高三第三次教学质量检测考试理科数学
aa122qq2
0 6a2
a2q
,即
q 0 q2 q
6
0
,解得
q
2
,
因此
S4 S3
1 q4 1 q3
1 16 18
15 9
5 3
.
故选 B
【点睛】本题主要考查等比数列前 n 项和的基本量运算,熟记等比数列的通项公式与求和公式
即可,属于常考题型.
6.已知非零平面向量 a,b 满足
6a
【详解】因为平面向量 a m,1,b 8,m 2 ,若 m 4 ,则 a 4,1,b 8,2 ,所
以 b 2a ,因此 a / /b ;即“ m 4 ”是“ a / /b ”的充分条件
若
a
/
/b
,则
m(m
2)
8
0
,解得
m
4
或
m
2
;所以“
m
4
”不是“
a
/
/b
”的必
要条件;
综上,“ m 4 ”是“ a / /b ”的充分不必要条件.
2 2
2
2
所以 6a b a b 6 a 5a b b 0 ,因此 6 a 5a b 16 a 0 ,
-3-
即 a b 2 a
2
,所以
cos
a,
b
a b ab
2 2 a
2 4a
1, 2
因此 a
与b
的夹角为
2 3
.
故选:C
【点睛】本题主要考查向量的夹角运算,熟记平面向量数量积的运算法则即可,属于常考题
综上,不等式 f x 0 的解集为 ,0 1,2 .
故选 D 【点睛】本题主要考查解不等式,熟记一次函数单调性,以及函数解析式的求法即可,属于 常考题型. 8.明代数学家程大位在《算法统宗》中提出如下问题“九百九十六斤绵,赠分八子做盘缠, 次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意思是将 996 斤绵
2020年重庆市南开中学高三下学期3月月考理科数学试题及答案
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.
将 个金属片从1号针移到3号针最少需要移动的次数记为 ,则 __________.
【答案】2n-1;
【解析】【详解】
设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数
n=1时,h(1)=1;
8.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()
A. , , B. , ,
C. , , D. , ,
n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即h(2)=3=22-1;
n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱,[用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成],
h(3)=h(2)×h(2)+1=3×2+1=7=23-1,
h(4)=h(3)×h(3)+1=7×2+1=15=24-1,
∵ 在 上只有一个零点,∴ 只有一个解;∴ 或 .
【点睛】
本题主要考查了已知函数的零点个数求参数范围,属于中档题.
11.在 中, ,且 所在平面内存在一点 使得 ,则 面积的最大值为()
A. B. C. D.
【答案】B
【解析】以 的中点为坐标原点,建立直角坐标系,写出 三点的坐标,利用两点间距离公式,以及圆与圆的位置关系,解不等式,得出 的范围,再由三角形的面积公式以及二次函数的性质,即可得出 面积的最大值.
重庆市南开中学高2020级高三下学期期中考试数学(理)试题及答案
重庆南开中学高2020级高三下学期期中考试数学(理科)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知()(2)a i i +-为纯虚数,则实数a 的值是( ) A .1- B .12-C .12D .1 2.已知集合{1,2,3}A =,{|,}B a b a A b A =+∈∈,则集合B 的子集个数为( ) A .8B .16C .32D .643.已知曲线2()ln f x a x x =+在点(1,1)处的切线与直线0x y +=平行,则实数a 的值为( ) A .3-B .1C .2D .34.已知等差数列{}n a 的前n 项和为n S ,若612S =,25a =,则5a =( ) A .3- B .1- C .1D .35.已知0.31.2a =,0,3log 1.2b =, 1.2log 3c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .b a c <<6.已知某几何体的三视图如图所示,则该几何体中最.长的棱长为( )A .1B 5C 6D .227.函数2()sin cos cos 22f x x x x π⎛⎫=-- ⎪⎝⎭的最小值为( ) A .2- B .1- C .0D .128.抛物线2:2(0)C y px p =>的焦点为F ,,A B 是抛物线C 上两点,且||||10AF BF +=,O 为坐标原点,若OAB △的重心为F ,则p =( )A .1B .2C .3D .49.执行如图所示的程序框图,若输入的3ε=,则输出的结果为( )A .511B .1022C .1023D .204610.我们知道,在n 次独立重复试验(即伯努利试验)中,每次试验中事件A 发生的概率为p ,则事件A 发生的次数X 服从二项分布(,)B n p ,事实上,在无限次伯努利试验中,另一个随机变量的实际应用也很广泛,即事件A 首次发生时试验进行的次数Y ,显1()(1)k P Y k p p -==-,1,2,3k =,…,我们称Y 服从“几何分布”,经计算得1()E Y p=.由此推广,在无限次伯努利试验中,试验进行到事件A 和A 都发生后停止此时所进行的试验次数记为Z ,则11()(1)(1)k k P Z k p p p p --==-+-,2,3k =,…,那么()E Z =( )A .11(1)p p -- B .21p C .11(1)p p +- D .21(1)p -1l .已知双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12,F F ,过1F 的直线l 与双曲线C 的两支分别交于,A B 两点,290AF B ∠=︒,||4AB a =,则双曲线C 的离心率为( )A 2B 3C .2D .32212.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( )A .32πB .2πC .94πD .83π二、填空题:本大题共4小题,每小题5分,共20分.13.已知,a b r r 均为单位向量,且(3)(2)a b a b +⊥-r r r r ,则向量a r 与b r夹角的余弦值为______.14.已知()*nx n N x ⎛-∈ ⎪⎝⎭的展开式中第3项与第6项的二项式系数相等,则展开式中x 的系数为_____.15.正三棱柱111ABC A B C -中,2AB =,122AA =,D 为棱11A B 的中点,则异面直线AD 与1CB 所成角的大小为______.16.已知定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈-时1||()2x f x e-=-,则关于函数()f x 有如下四个结论:①()f x 为偶函数;②()f x 的图象关于直线2x =对称;③方程()1||f x x =-有两个不等实根;④12223f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;其中所有正确结论的编号______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答微博橙子辅导. (一)必考题:共60分. 17.如图,在ABC △中,1sin 3B =,点D 在边AB 上.(1)若sin()1C A -=,求sin A 的值;(2)若90CDA ∠=︒,4BD DA =,求sin ACB ∠的值.18.如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,AB CD P ,且22CD AB ==,22BC =90ABC ∠=︒,M 为BC 的中点.(1)求证:平面PDM ⊥平面PAM ;(2)若二面角P DM A --为30︒,求直线PC 与平面PDM 成角的正弦值.19.新型冠状病毒肺炎19COVID -疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,每个国家在疫情发生初期,由于认识不足和措施不到位,感染确诊人数都会出现加速增长.下表是小王同学记录的某国从第一例新型冠状病毒感染确诊之日开始,微博橙子辅导连续⑧天每日新型冠状病毒感染确诊的累计人数. 日期代码x 1 2 3 4 5 6 7 8 累计确诊人数y481631517197122为了分析该国累计感染确诊人数的变化趋势,小王同学分别用两种模型:①$2y bx a =+,②$y dx c =+对变量x 和y 的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差$i i i e y y =-), 且经过计算得()()()8182117.3iii i i xxy y x x==--≈-∑∑,()()()818211.9iii i i zzy y z z==--≈-∑∑,其中2i i z x =,8118i i z z ==∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由; (2)根据(1)中选定的模型求出相应的回归方程;(3)如果第9天该国仍未釆取有效的防疫措施,试根据(2)中所求的回归方程估计该国第9天新型冠状病毒感染确诊的累计人数.(结果保留为整数)附:回归直线的斜率和截距的最小二乘估计公式分别为:()() ()81821ˆi iiiix x y ybx x==--=-∑∑,$a y bx=-$.20.已知函数()3(1)lnf x x a x=-+,2()4g x x ax=-+.(1)若函数()()y f x g x=+在其定义域内单调递增,求实数a的取值范围;(2)是否存在实数a,使得函数()()y f x g x=-的图像与x轴相切?若存在,求满足条件的a的个数,请说明理由.21.已知椭圆2222:1(0)x ya ba bΓ+=>>的离心率为22,过椭圆Γ的焦点且垂直于x轴的直线被椭圆Γ2.(1)求椭圆Γ的方程;(2)设点,A B均在椭圆Γ上,点C在抛物线212y x=上,若ABC△的重心为坐标原点O,且ABC△的面积为364,求点C的坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程]在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系.已知直线l的极坐标方程为sin24πρθ⎛⎫-=⎪⎝⎭C的极坐标方程为2sin cosρθθ=.(1)写出直线l和曲线C的的直角坐标方程;(2)过动点()()20000,P x y y x<且平行于l的直线交曲线C于,A B两点,若||||2PA PB⋅=,求动点P 到直线l 的最近距离. 23.[选修4—5:不等式选讲]已知函数()|1||1|2|2|f x x x x =++---.(1)若关于x 的不等式()f x a …有解,求实数a 的取值范围;(2)若不等式()||4f x x b --…对任意x R ∈成立,求实数b 的取值范围.重庆南开中学高2020级高三下学期期中考试数学(理科)答案一、选择题B C A B D C A D B A B C 二、填空题15560 30︒ ①②③ 三、解答题17.解:(1)由sin()1C A -=得2C A π-=,1sin sin()sin 2cos223B A C A A π⎛⎫=+=+== ⎪⎝⎭,由2112sin 3A -=得sin A =;(2)设4DB m =,DA m =,由1sin 3B =得CD =,BC =,AC = ABC △中,sin sin AC ABB ACB=∠,sin ACB ∠=.18.证明:(1)易知:tan tan 1CD BM DMC MAB DMC MAB CM BA ==⇒∠=∠⇒∠=∠, 90DMC AMB DM AM ∴∠+∠=⇒⊥︒①又PA ⊥Q 平面ABCD PA DM ⇒⊥② ∴由①②可得DM ⊥平面PAM ⇒平面PAM ⊥平面PDM ;(2)由(1)知二面角P MD A --的平面角即为30PMA ∠=︒,13PA MA ∴==. 取CD 中的N ,连接AN ,易得AN CD ⊥,∴直线PA NA BA 、、两两垂直, 以A 为原点,AN AB AP 、、分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则(0,0,1)P,1,0)D -,C,M,(1,1)CP =--u u ur 2,0)MD =-u u u ur (1,1)MP =-u u u r,设平面PMD 的法向量为(,,)m x y z =u r,则由0m MP m m MD ⎧⋅=⎪⇒=⎨⋅=⎪⎩u r u u u ru r u r u u u u r,设直线PC 与平面PMD 所成角为θ,则sin 30||||CP m CP m θ⋅===⋅u u u r u r u u u r u r ,∴直线PC 与平面PMD所成角的正弦值为30. 19解:(1)选择模型①.理由如下:根据残差图可以看出,模型①的估计值和真实值相对比较接近,模型②的残差相对较大一些,所以模型①的拟合效果相对较好;(2)由(1),知y 关于x 的回归方程为$2y bx a =+,令2z x =,则$y bz a =+,由题知 1.9b ≈$, 又1(1491625364964)25.58z =+++++++=,1(481631517197122)508y =+++++++=,$ 1.55a y bz ∴=-≈$,y ∴关于x 的回归方程为$21.9 1.55y x =+;(3)估计该国第9天新型冠状病毒感染确诊的累计人数为$21.99 1.55155.45155y =⨯+=≈(人).20.解:(1)1()()32a y f x g x y x a x+'=+⇒=-+-,由()()y f x g x =+单增得0y '≥恒成立,分离参数得2132321111x x x x a x x+-+-≤=++恒成立,令2321()1x x m x x +-=+,(0)x >,则22244()(1)x x m x x ++'=+,()0m x '∴>,()m x 在(0,)+∞上单调递增,()(0)1m x m >=-,1a ∴≤-;(2)设2()()()3(1)ln 4n x f x g x x a x x ax =-=-+-+-,则1()32a n x x a x+'=--+, 设函数()y n x =的图像与x 轴相切于0x x =处,则()()2000000003(1)ln 401320n x x a x x ax a n x x a x ⎧=-+-+-=⎪+⎨'=--+=⎪⎩①②由②得:[]000002(1)(1)13201x a x a x a x x x -+-+--+=-=⇒=或012a x +=,当01x =时,由①得:2a =③;当012a x +=时,由①得:2000022ln 40x x x x ---=,令2()22ln 4h x x x x x =+--,则:()2(ln )h x x x '=-,2(1)()x h x x-''=, ()h x '∴在(0,1)单调递减,在(1,)+∞单调递增,min ()(1)20h x h '==>, ()h x ∴在(0,)+∞单调递增,又(1)50h =-<Q ,()()222640h e e e =-->, ()0h x ∴=只有一解0x ,且()201,x e ∈,()20211,21a x e =-∈-④,由③④可知:满足条件的实数a 有两个:12a =,()221,21a e ∈-.21解:(1)由题意易知:2212a a b b a=⎧=⎪⎪⇒⇒⎨⎨=⎪⎩⎪=⎪⎩椭圆22:12x y Γ+=; (2)()22222122202:x y m y mty t AB x my t⎧+=⎪⇒+++-=⎨⎪=+⎩设,()22820m t ∆=-+>①设()11,A x y ,()22,B x y ,则由题知()12222C mty y y m ∴=-+=+,()()12122422C tx x x m y y t m -=-+=-++=⎡⎤⎣⎦+ 由C 点在抛物线212y x =上得:2222214222221mt t m m m t -⎛⎫=⋅⇒=- ⎪+++⎝⎭②12t ⎛⎫<- ⎪⎝⎭ ()()()12211221123333222ABC ABO S S x y x y my t y my t y t y y ==-=+-+=+△△==⇒=③ 将②代入③整理得:2[(21)]4(21)301t t t t t +-++=⇒=-或32-,相应的22m =或1,所以1,2C ⎛⎫±⎪⎝⎭或(2,1)C ±. 22.解:(1)直线:2l y x =+,曲线2:C y x =;(2)过P 平行于l 的直线的参数方程为002222x x t y y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数) 联立曲线2:C y x =得:22000122022t y t y x ⎛⎫+-+-= ⎪⎭,001220(*)2x y ∆=-+>,所以()22212000000||||2221PA PB t t y x x y y x ⋅==-=-=⇒=-,∴点P 的到直线l 的距离:2000032112822y y x y d -+-+==≥, 当005412x y ⎧=⎪⎪⎨⎪=⎪⎩,(满足(*)式)时取“=”∴点P 的到直线l 的最近距离为1128.23.解,(1)4,244,12()22,114,1x x x f x x x x ≥⎧⎪-≤<⎪=⎨--≤<⎪⎪-<-⎩min ()4f x ∴=-,即4a ≥-(2)由(1)可得()y f x =的图象如下要使()||4f x x b ≤--恒成立,当函数||4y x b =--的一段经过点(2,4)时满足要求, 此时6b =-,结合图象可知,当6b ≤-时满足条件.。
重庆市南开中学2020届高三数学第三次教学质量检测考试试题 理(含解析)
重庆南开中学2020届高三第三次教学质量检测考试数学(理科)2020.4第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.()A. B. C. D.【答案】D【解析】【分析】利用复数的除法的运算法则化简复数为的形式即可.【详解】复数.故选:D【点睛】本题主要考查复数的除法运算,意在考查学生对该知识的理解掌握水平和分析推理计算能力.2.设集合,,则()A. B. C. D.【答案】C【解析】【分析】先化简集合A和B,再求得解.【详解】由题得A=[-4,1],B=(0,1 ],所以.故选:C【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.等差数列的前7项和为28,,则()A. 6B. 7C. 9D. 14【答案】A【解析】【分析】先根据已知得到关于的方程组,解方程组得的值,再求的值.【详解】由题得.故选:A【点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列的前n项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.若双曲线的一条渐近线方程为,则()A. B. 1 C. 2 D. -8【答案】A【解析】【分析】先根据已知求出a,b,再由题得,解方程即得m的值.【详解】由题得,所以.故选:A【点睛】本题主要考查双曲线的简单几何性质,考查双曲线的渐近线方程,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 42B. 45C. 46D. 48【答案】C【解析】【分析】先通过三视图找到几何体原图,再求几何体的体积.【详解】由三视图可知原几何体为如图所示的多面体ABEHM-CDGF,所以该几何体的体积为.故选:C【点睛】本题主要考查三视图找几何体原图,考查几何体的体积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.重庆奉节县柑桔栽培始于汉代,历史悠久.奉节脐橙果皮中厚、脆而易剥,酸甜适度,汁多爽口,余味清香,荣获农业部优质水果、中国国际农业博览会金奖等荣誉.据统计,奉节脐橙的果实横径(单位:)服从正态分布,则果实横径在的概率为()附:若,则;;A. 0.6826B. 0.8413C. 0.8185D. 0.9544 【答案】C【解析】【分析】先计算出和,再求果实横径在的概率.【详解】由题得=5,由题得,所以,由题得,所以,所以P(85<X<90=,所以果实横径在的概率为+0.1359=0.8185.故选:C【点睛】本题主要考查正态分布,考查指定区间概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.7.设,满足约束条件,则的最小值是()A. 4B. 5C. 8D. 9【答案】A【解析】【分析】先作出不等式组对应的可行域,再利用数形结合分析得解.【详解】由题得不等式组对应的可行域为如图所示的△ABC,由题得y=-2x+z,当直线经过点A时,直线的纵截距最小,z最小.联立得A(1,2),所以的最小值是2×1+2=4.故选:A【点睛】本题主要考查利用线性规划求最值,意在考查学生对该知识的理解掌握水平和数形结合分析推理能力.8.如图,给出的是求的值的一个程序框图,则判断框内填入的条件是()A. B. C. D.【答案】D【解析】【分析】由已知中程序的功能是计算的值,根据已知中的程序框图,我们易分析出进行循环体的条件,进而得到答案.【详解】模拟程序的运行,可知程序的功能是计算的值,即,时,进入循环,当时,退出循环,则判断框内填入的条件是.故选:.【点睛】本题考查的知识点是循环结构的程序框图的应用,解答本题的关键是根据程序的功能判断出最后一次进入循环的条件,属于基础题.9.记,则()A. 81B. 365C. 481D. 728 【答案】B【解析】【分析】令x=0得求出的值,令x=-2得的值,再求的值.【详解】令x=0得1=,令x=-2得,所以.故选:B【点睛】本题主要考查二项式定理展开式的系数和求值问题,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.10.已知函数的最小正周期为,且是函数图象的一条对称轴,则的最大值为()A. 1B.C.D. 2【答案】D【解析】【分析】利用辅助角公式化简,根据最小正周期为,可得的值,一条对称轴是建立关系即可求解.【详解】由题得函数,其中.最小正周期为,即.那么.一条对称轴是,可得:则.即..的最大值为.故选:.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知函数,若不等式对任意上恒成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】【分析】对x分三种情况讨论,当x∈(0,1时,求得;当x∈时,求得;当x∈时,求得a≥3,综合即得解.【详解】由题得,取特值代入上面的不等式得a≥3,所以,(1)在x∈(0,1上,0<x≤1<,恒有a≤3+2x-lnx成立,记g(x)=2x-lnx+3(0<x≤1)所以,所以所以.(2)在x∈上,,恒有,所以x∈上恒成立,又在x∈上,的最小值为5,所以.(3)在x∈时,x≥,恒有.综上.故选:C【点睛】本题主要考查分段函数和不等式的恒成立问题,考查绝对值不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.如图,抛物线:,圆:,过焦点的直线从上至下依次交,于点,,,.若,为坐标原点,则()A. -2B. 1C. 4D.【答案】B【解析】【分析】由题可设A,其中a>0,d<0.根据得,再利用平面向量的数量积运算化简得解.【详解】由题可设A,其中a>0,d<0.又焦点F(1,0),所以|FD|=1+,所以|AB|=|FA|-|OB|=,由题得.所以,所以1.故选:B【点睛】本题主要考查抛物线的简单几何性质和定义,考查平面向量的数量积的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卡相应的位置.13.已知向量,且,则实数__________.【答案】-2【解析】14.已知函数,则不等式的解集为__________.【答案】【解析】【分析】先求出函数的奇偶性和单调性,再利用函数的奇偶性和单调性解不等式得解.【详解】由题得函数的定义域为R,由题得=-f(x),所以函数f(x)是奇函数,因为,所以函数f(x)是定义域上的增函数,所以=f(x-4),所以2x+1<x-4,所以x<-5.故答案:【点睛】本题主要考查函数的奇偶性和单调性的判断和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.在正三棱柱中,,,分别为,的中点,则异面直线与所成角的余弦值为__________.【答案】【解析】【分析】如图,连接,则所以异面直线与所成的角就是直线和所成锐角或直角.再解三角形利用余弦定理求出异面直线与所成角的余弦值.【详解】如图,连接,则所以异面直线与所成的角就是直线和所成锐角或直角.由题得,在△中,由余弦定理得.所以异面直线与所成角的余弦值为.故答案为:【点睛】本题主要考查异面直线所成的角的计算,考查空间几何体的性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.16.在正项递增等比数列中,,记,,则使得成立的最大正整数为__________.【答案】9【解析】【分析】先化简得,再根据得到,再解不等式得解.【详解】由题得,因为数列是正项递增等比数,所以,所以.因为,所以,所以.所以使得成立的最大正整数为9.故答案为:9【点睛】本题主要考查等比数列的前n项和,考查等比数列的通项,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共6小题,共计70分.解答应写出必要的文字说明、证明过程或演算步骤.17.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.【答案】(1);(2).【解析】【分析】(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.随着电子商务的兴起,网上销售为人们带来了诸多便利.商务部预计,到2020年,网络销售占比将达到.网购的发展同时促进了快递业的发展,现有甲、乙两个快递公司,每位打包工平均每天打包数量在范围内.为扩展业务,现招聘打包工.两公司提供的工资方案如下:甲公司打包工每天基础工资64元,且每天每打包一件快递另赚1元;乙公司打包工无基础工资,如果每天打包量不超过240件,则每打包一件快递可赚1.2元;如果当天打包量超过240件,则超出的部分每件赚1.8元.下图为随机抽取的打包工每天需要打包数量的频率分布直方图,以打包量的频率作为各打包量发生的概率.(同一组中的数据用该组区间的中间值作代表).(1)(i)以每天打包量为自变量,写出乙公司打包工的收入函数;(ii)若打包工小李是乙公司员工,求小李一天收入不低于324元的概率;(2)某打包工在甲、乙两个快递公司中选择一个公司工作,如果仅从日平均收入的角度考虑,请利用所学的统计学知识为该打包工作出选择,并说明理由.【答案】(1)(i);(ii)0.4;(2)建议该打包工去甲快递公司工作.【解析】【分析】(1)(i)乙公司打包工的收入函数;(ii)由,解得,再求小李一天收入不低于324元的概率;(2)设打包工在甲、乙两个快递公司工作的日平均收入为,,先列出打包工在甲、乙两个快递公司工作的收入情况表,再求,,比较它们的大小即得解.【详解】解:(1)(i)当时,y=1.2x当时,y=12×240+(x-240)×1.8=1.8x-144所以,(ii)由,解得,∴小李一天收入不低于324元的概率为.(2)设打包工在甲、乙两个快递公司工作的日平均收入为,,用频率估计概率,则打包工在甲、乙两个快递公司工作的收入情况为故,.因为,故从日平均收入的角度考虑,建议该打包工去甲快递公司工作.【点睛】本题主要考查函数解析式的求法,考查平均值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知,是椭圆:上两点.(1)求椭圆的标准方程;(2)设为坐标原点,为椭圆上一动点,点,线段的垂直平分线交轴于点,求的最小值.【答案】(1);(2).【解析】【分析】(1)代点A,B的坐标到椭圆的方程,得到关于a,b的方程组,解方程组即得椭圆的标准方程;(2)设坐标为,求出,再利用基本不等式求得的最小值为.【详解】解:(1)代入,两点:,,,所以椭圆的标准方程为:.(2)设坐标为,则①线段的中点,,所以:.令,并结合①式得,,当且仅当,时取等,所以的最小值为.【点睛】本题主要考查椭圆的标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的最值问题和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.如图,在四棱锥中,底面为菱形,顶点在底面的射影恰好是菱形对角线的交点,且,,,,其中.(1)当时,求证:;(2)当与平面所成角的正弦值为时,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】(1)先证明面,再证明;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,由与面所成角的正弦值为得到.再利用向量法求二面角的余弦值.【详解】解:(1)∵顶点在底面的射影是,∴面,由面,∴.∵,,,连,∴,,,,∴,则,∴.由,,∴面,由面,∴,∵菱形,,∴.(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,则,,,,∵,则,∴.∵,则,∴,设面的法向量为,由,解得.由与面所成角的正弦值为,即有,解得.设面的法向量为,由,解得.∴二面角的余弦值.【点睛】本题主要考查空间几何元素的垂直关系,考查空间线面角和二面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知函数,其中.(1)若函数仅在处取得极值,求实数的取值范围;(2)若函数有三个极值点,,,求证:.【答案】(1);(2)详见解析.【解析】【分析】(1),因为仅在处取得极值,则.再对a 分类讨论,利用数形结合分析得到a的取值范围;(2)由题得,由题意则有三个根,则有两个零点,有一个零点,,再利用分析法证明.【详解】解:(1)由,得,由仅在处取得极值,则,即.令,则,当单调递减,单调递增,则,∴当时,,此时仅一个零点,则仅一个为极值点,当时,与在同一处取得零点,此时,,,,∴仅一个零点,则仅一个为极值点,所以a=e.当a>e时,显然与已知不相符合.∴.(2)由,则.由题意则有三个根,则有两个零点,有一个零点,,令,则,∴当时取极值,时单调递增,∴,则时有两零点,,且,若证:,即证:,由,,则,即证:,由在上单调递增,即证:,又,则证,令,,∴.∴恒成立,则为增函数,∴当时,,∴得证.【点睛】本题主要考查利用导数研究函数的极值问题,考查分析法证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.在直角坐标系中,直线的参数方程为(为参数,),以原点为极点,轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为:.(1)求曲线的直角坐标方程;(2)设直线与曲线相交于,两点,当到直线的距离最大时,求.【答案】(1);(2)16.【解析】【分析】(1)直接利用极坐标和直角坐标互化的公式求曲线的直角坐标方程;(2)设,当到直线的距离最大时,得到,故.再利用直线的参数方程的弦长公式求.【详解】解:(1)曲线:,即:.∴曲线的标准方程为:.(2)设,当到直线的距离最大时,,故.∴的参数方程为(为参数),将直线的参数方程代入得:.∴,∴.【点睛】本题主要考查极坐标方程与直角方程坐标的互化,考查直线参数方程t的几何意义的应用,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.23.已知函数的最小值为.(1)求;(2)若正实数,,满足,求证:.【答案】(1);(2)详见解析.【解析】【分析】(1)先化简函数的解析式,再通过函数的图像得到当时,取得最小值;(2)由题得,再利用均值不等式证明不等式.【详解】解:(1),由于函数y=,减函数,y=,是减函数,y=,是增函数,故当时,取得最小值(2).【点睛】本题主要考查分段函数的图像和性质,考查分段函数的最值和不等式的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
2020届重庆市高考数学三模试卷(理科)(有答案)(加精)
重庆市高考数学三模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U=R,集合M={x|y=},N={y|y=3﹣2x},则图中阴影部分表示的集合是()A.{x|<x≤3} B.{x|<x<3}C.{x|≤x<2}D.{x|<x<2}2.已知复数z=1+,则1+z+z2+…+z2016为()A.1+i B.1﹣i C.i D.13.(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=()A.1024 B.243 C.32 D.244.若某程序框图如图所示,则输出的n的值是()A.43 B.44 C.45 D.465.给出下列四个结论:①“若am2<bm2,则a<b”的逆命题是真命题;②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.2.其中正确的结论是()A.①②B.①③C.②③D.③④6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1 D.7.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.2169.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A. B. C.或D.或10.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.11.已知双曲线的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为()A.a,a B.a,C.D.12.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+在区间[1,4]上存在次不动点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.[,+∞)D.(﹣∞,]二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=.14.设等差数列{a n}的前n项和为S n,若,则=.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知=,A+3C=B,(1)求cosC的值;(2)若b=3,求△ABC的面积.18.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士﹣﹣12369”的绿色环保活动小组对2014年1月﹣2014年12月(一月)内空气质量指数API进行监测,如表是在这一年随机抽取的100天的统计结果:指数API [0,50](50,100](100,150](150,200](200,250](250,300]>300空气质量优良轻微污染轻度污染中度污染中重度污染重度污染天数 4 13 18 30 9 11 15(Ⅰ)若市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数API(记为t)的关系为:,在这一年内随机抽取一天,估计该天经济损失P∈若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2×2列联表,并判断是否有95%的把握认为A市本年度空气重度污染与供暖有关?非重度污染重度污染合计供暖季非供暖季合计100下面临界值表功参考.P(K2≥k)0.15 0.10 0.05 0.010 0.005 0.001k 2.072 2.706 3.841 6.635 7.879 10.828参考公式:.19.在四棱锥P﹣ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2(1)求证:平面PBC⊥平面PBD;(2)设Q为棱PC上一点,=λ,试确定λ的值使得二面角Q﹣BD﹣P为60°.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,且交椭圆C于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点A作垂直于y轴的直线l1,设直线l1与定直线l2:x=4交于点P,试探索当m变化时,直线BP 是否过定点?21.已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣4|+|x+5|.(Ⅰ)试求使等式f(x)=|2x+1|成立的x的取值范围;(Ⅱ)若关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.重庆市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U=R,集合M={x|y=},N={y|y=3﹣2x},则图中阴影部分表示的集合是()A.{x|<x≤3} B.{x|<x<3}C.{x|≤x<2}D.{x|<x<2}【考点】V enn图表达集合的关系及运算.【分析】首先化简集合A和B,然后根据V enn图求出结果.【解答】解:∵M={x|y=}={x|x≤}N={y|y=3﹣2x}={y|y<3}图中的阴影部分表示集合N去掉集合M∴图中阴影部分表示的集合{x|<x<3}故选:B.2.已知复数z=1+,则1+z+z2+…+z2016为()A.1+i B.1﹣i C.i D.1【考点】复数代数形式的混合运算.【分析】化简复数,然后利用复数单位的幂运算求解即可.【解答】解:复数z=1+=1+=i.1+z+z2+…+z2016=1+i+i2+…+i2016=1.故选:D.3.(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=()A.1024 B.243 C.32 D.24【考点】二项式系数的性质.【分析】由于|a0|+|a1|+|a2|+|a3|+|a4|+|a5|正好等于(1+3x)5的各项系数和,故在(1+3x)5的展开式中,令x=1,即可求得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|的值.【解答】解:由题意(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5可得,|a0|+|a1|+|a2|+|a3|+|a4|+|a5|正好等于(1+3x)5的各项系数和,故在(1+3x)5的展开式中,令x=1可得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=45=1024,故选:A.4.若某程序框图如图所示,则输出的n的值是()A.43 B.44 C.45 D.46【考点】程序框图.【分析】框图首先给循环变量n赋值1,给累加变量p赋值1,然后执行运算n=n+1,p=p+2n﹣1,然后判断p>2016是否成立,不成立循环执行n=n+1,p=p+2n﹣1,成立时算法结束,输出n的值.且由框图可知,程序执行的是求等差数列的前n项和问题.当前n项和大于2016时,输出n的值.【解答】解:框图首先给循环变量n赋值1,给累加变量p赋值1,执行n=1+1=2,p=1+(2×2﹣1)=1+3=4;判断4>2016不成立,执行n=2+1=3,p=1+3+(2×3﹣1)=1+3+5=9;判断9>2016不成立,执行n=3+1=4,p=1+3+5+(2×4﹣1)=1+3+5+7=16;…由上可知,程序运行的是求首项为1,公差为2的等差数列的前n项和,由p=>2016,且n∈N*,得n=45.故选:C.5.给出下列四个结论:①“若am2<bm2,则a<b”的逆命题是真命题;②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.2.其中正确的结论是()A.①②B.①③C.②③D.③④【考点】命题的真假判断与应用.【分析】逐一分析四个结论的真假,综合讨论结果,可得答案.【解答】解:①“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,当m=0时不成立,故为假命题,故错误;②若x,y∈R,当“x≥2或y≥2”时,“x2+y2≥4”成立,当“x2+y2≥4”时,“x≥2或y≥2”不一定成立,故“x ≥2或y≥2”是“x2+y2≥4”的充分不必要条件,故正确;③当x=0时,y=log a(x+1)+1=1恒成立,故函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1),故正确;④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.1,故错误;故选:C6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1 D.【考点】由三视图求面积、体积.【分析】由三视图知几何体的直观图是半个圆锥,再根据其中正视图是腰长为2的等腰三角形,我们易得圆锥的底面直径为2,母线为为2,故圆锥的底面半径为1,高为,进而可得其侧视图的面积.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.7.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)【考点】简单线性规划.【分析】由约束条件作出可行域如图,令u=2x﹣2y﹣1,由线性规划知识求出u的最值,取绝对值求得z=|u|的取值范围.【解答】解:由约束条件作可行域如图,联立,解得,∴A(2,﹣1),联立,解得,∴.令u=2x﹣2y﹣1,则,由图可知,当经过点A(2,﹣1)时,直线在y轴上的截距最小,u最大,最大值为u=2×2﹣2×(﹣1)﹣1=5;当经过点时,直线在y轴上的截距最大,u最小,最小值为u=.∴,∴z=|u|∈[0,5).故选:C.8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.216【考点】计数原理的应用.【分析】根据题意,分析可得,必有2人参加同一个社团,分2步讨论,首先分析甲,因为甲不参加“围棋苑”,则其有3种情况,再分析其他4人,此时分甲单独参加一个社团与甲与另外1人参加同一个社团,2种情况讨论,由加法原理,可得第二步的情况数目,进而由乘法原理,计算可得答案.【解答】解:根据题意,分析可得,必有2人参加同一个社团,首先分析甲,甲不参加“围棋苑”,则其有3种情况,再分析其他4人,若甲与另外1人参加同一个社团,则有A44=24种情况,若甲是1个人参加一个社团,则有C42•A33=36种情况,则除甲外的4人有24+36=60种情况;故不同的参加方法的种数为3×60=180种;故选C.9.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A. B. C.或D.或【考点】两角和与差的正弦函数;二倍角的正弦.【分析】依题意,可求得α∈[,],2α∈[,π],进一步可知β﹣α∈[,π],于是可求得cos (β﹣α)与cos2α的值,再利用两角和的余弦及余弦函数的单调性即可求得答案.【解答】解:∵α∈[,π],β∈[π,],∴2α∈[,2π],又sin2α=>0,∴2α∈[,π],cos2α=﹣=﹣;又sin(β﹣α)=,β﹣α∈[,π],∴cos(β﹣α)=﹣=﹣,∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣sin2αsin(β﹣α)=﹣×(﹣)﹣×=.又α∈[,],β∈[π,],∴(α+β)∈[,2π],∴α+β=,故选:A.10.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.【考点】导数在最大值、最小值问题中的应用.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D11.已知双曲线的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为()A.a,a B.a,C.D.【考点】双曲线的简单性质.【分析】利用切线长定理,结合双曲线的定义,把|PF1|﹣|PF2|=2a,转化为|AF1|﹣|AF2|=2a,从而求得点A的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在△F1CF2中,利用中位线定理得出OB,从而解决问题.【解答】解:根据题意得F1(﹣c,0),F2(c,0),设△PF1F2的内切圆分别与PF1,PF2切于点A1,B1,与F1F2切于点A,则|PA1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,又点P在双曲线右支上,∴|PF1|﹣|PF2|=2a,∴|F1A|﹣|F2A|=2a,而|F1A|+|F2A|=2c,设A点坐标为(x,0),则由|F1A|﹣|F2A|=2a,得(x+c)﹣(c﹣x)=2a,解得x=a,∵|OA|=a,∴在△F1CF2中,OB=CF1=(PF1﹣PC)=(PF1﹣PF2)==a,∴|OA|与|OB|的长度依次为a,a.故选:A.12.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+在区间[1,4]上存在次不动点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.[,+∞)D.(﹣∞,]【考点】二次函数的性质.【分析】根据“f(x)在区间D上有次不动点”当且仅当“F(x)=f(x)+x在区间D上有零点”,依题意,存在x∈[1,4],使F(x)=f(x)+x=ax2﹣2x﹣a+=0,讨论将a分离出来,利用导数研究出等式另一侧函数的取值范围即可求出a的范围.【解答】解:依题意,存在x∈[1,4],使F(x)=f(x)+x=ax2﹣2x﹣a+=0,当x=1时,使F(1)=≠0;当x≠1时,解得a=,∴a′==0,得x=2或x=,(<1,舍去),x (1,2) 2 (2,4)a′+0 ﹣a ↗最大值↘∴当x=2时,a最大==,所以常数a的取值范围是(﹣∞,],故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=9.【考点】平面向量数量积的运算.【分析】由已知结合平面向量是数量积运算求得答案.【解答】解:由⊥,得•=0,即•()=0,∵||=3,∴.故答案为:9.14.设等差数列{a n}的前n项和为S n,若,则=9.【考点】等差数列的性质;定积分的简单应用.【分析】先利用定积分求得,再根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵=(x2+x)|02=5,∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为8千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)【考点】线性回归方程.【分析】利用已知条件求出,样本中心坐标,利用参考公式求出b,a,然后求出线性回归方程y=bx+a,通过x=2,利用回归直线方程,推测该家庭的月储蓄.【解答】解:(1)由题意知,n=10,==8,=y i=2,b===0.3,a=﹣b=2﹣0.3×8=﹣0.4,∴线性回归方程为y=0.3x﹣0.4,当y=2时,x=8,故答案为:8.16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为2.【考点】直线与圆的位置关系.【分析】把两个圆的方程相减与圆O1联立可得x2+y2=9,令4y﹣3x=t,则y=,代入可得25x2+6tx+t2﹣144=0,由△≥0,可得﹣15≤t≤15,再利用P到直线l的距离为=,即可求出点P与直线l上任意一点M之间的距离的最小值.【解答】解:∵ac=8,=,∴=,故两圆的圆心O1(a,b)、圆心O2(c,d)、原点O三点共线,不妨设==k,则c=,b=ka,d=kc=.把圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1相减,可得公共弦的方程为(2c﹣2a)x+(2d﹣2b)y=c2﹣a2,即(﹣2a)x+(﹣2•ka)y=﹣a2,即2(﹣a)x+2k(﹣a)y=(+a)(﹣a),当a≠±2时,﹣a≠0,公共弦的方程为:2x+2ky=+a,即:2ax+2kay=a2+8,即:2ax+2by=a2+8.O1:(x﹣a)2+(y﹣b)2=b2+1,即x2+y2=2ax+2by﹣a2+1,再把公共弦的方程代入圆O1的方程可得x2+y2=9 ①.令4y﹣3x=t,代入①可得25x2+6tx+t2﹣144=0.再根据此方程的判别式△=36t2﹣100(t2﹣144)≥0,求得﹣15≤t≤15.点P到直线l:3x﹣4y﹣25=0的距离为==,故当4y﹣3x=t=﹣15时,点P到直线l:3x﹣4y﹣25=0的距离取得最小值为2.当a=±2时,由条件可得a=c,b=d,此时,两圆重合,不合题意.故答案为:2.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知=,A+3C=B,(1)求cosC的值;(2)若b=3,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)把A+3C=B代入A+B+C=π得B=+C,可得sinB=cosC>0,由条件和正弦定理化简后,利用平方关系求出cosC的值;(2)由条件求出边c的值,由(1)和平方关系求出cosB和sinC的值,利用两角和的正弦公式求出sinA 的值,代入三角形的面积公式求解即可.【解答】解:(1)由题意得A+3C=B,则A=B﹣3C,代入A+B+C=π得,B=+C,所以sinB=cosC>0,∵,∴由正弦定理得,,则,①又sin2C+cos2C=1,②由①②得,cos2C=,则cosC=;(2)∵,b=3,∴c=,由(1)知sinB=cosC=,且B=+C,∴cosB=﹣=﹣,同理可得sinC=,则sinA=sin(B+C)=sinBcosC+cosBsinC=×+(﹣)×=∴△ABC的面积S===.18.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士﹣﹣12369”的绿色环保活动小组对2014年1月﹣2014年12月(一月)内空气质量指数API进行监测,如表是在这一年随机抽取的100天的统计结果:指数API [0,50](50,100](100,150](150,200](200,250](250,300]>300空气质量优良轻微污染轻度污染中度污染中重度污染重度污染天数 4 13 18 30 9 11 15(Ⅰ)若市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数API(记为t)的关系为:,在这一年内随机抽取一天,估计该天经济损失P∈若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2×2列联表,并判断是否有95%的把握认为A市本年度空气重度污染与供暖有关?非重度污染重度污染合计供暖季22830非供暖季63770合计8515100下面临界值表功参考.P(K2≥k)0.15 0.10 0.05 0.010 0.005 0.001k 2.072 2.706 3.841 6.635 7.879 10.828参考公式:.【考点】独立性检验.【分析】(Ⅰ)由200<4t﹣400≤600,得150<t≤250,频数为39,即可求出概率;(Ⅱ)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,即可得出结论.【解答】解:(Ⅰ)设“在本年内随机抽取一天,该天经济损失P∈=….(Ⅱ)根据以上数据得到如表:非重度污染重度污染合计供暖季22 8 30非供暖季63 7 70合计85 15 100….K2的观测值K2=≈4.575>3.841…所以有95%的把握认为A市本年度空气重度污染与供暖有关.…19.在四棱锥P﹣ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2(1)求证:平面PBC⊥平面PBD;(2)设Q为棱PC上一点,=λ,试确定λ的值使得二面角Q﹣BD﹣P为60°.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)在梯形ABCD中,过点作B作BH⊥CD于H,通过面面垂直的判定定理即得结论;(2)过点Q作QM∥BC交PB于点M,过点M作MN⊥BD于点N,连QN.则∠QNM是二面角Q﹣BD ﹣P的平面角,在Rt三角形MNQ中利用tan∠MNQ=计算即可.【解答】(1)证明:∵AD⊥平面PDC,PD⊂平面PCD,DC⊂平面PDC,图1所示.∴AD⊥PD,AD⊥DC,在梯形ABCD中,过点作B作BH⊥CD于H,在△BCH中,BH=CH=1,∴∠BCH=45°,又在△DAB中,AD=AB=1,∴∠ADB=45°,∴∠BDC=45°,∴∠DBC=90°,∴BC⊥BD.∵PD⊥AD,PD⊥DC,AD∩DC=D.AD⊂平面ABCD,DC⊂平面ABCD,∴PD⊥平面ABCD,∵BC⊂平面ABCD,∴PD⊥BC,∵BD∩PD=D,BD⊂平面PBD,PD⊂平面PBD.∴BC⊥平面PBD,∵BC⊂平面PBC,∴平面PBC⊥平面PBD;(2)解:过点Q作QM∥BC交PB于点M,过点M作MN⊥BD于点N,连QN.由(1)可知BC⊥平面PDB,∴QM⊥平面PDB,∴QM⊥BD,∵QM∩MN=M,∴BD⊥平面MNQ,∴BD⊥QN,图2所示.∴∠QNM是二面角Q﹣BD﹣P的平面角,∴∠QNM=60°,∵,∴,∵QM∥BC,∴,∴QM=λBC,由(1)知,∴,又∵PD=1,MN∥PD,∴,∴MN===1﹣λ,∵tan∠MNQ=,∴,∴.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,且交椭圆C于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点A作垂直于y轴的直线l1,设直线l1与定直线l2:x=4交于点P,试探索当m变化时,直线BP 是否过定点?【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,列出方程组,求出a,b,由此能求出椭圆C的标准方程.(Ⅱ)令m=0,则A(1,),B(1,﹣)或A(1,﹣),B(1,),从而得到满足题意的定点只能是(,0),设为D点,再证明P、B、D三点共线.由此得到BP恒过定点(,0).【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,∴由题设,得,解得a=2,c=1,∴b2=a2﹣c2=3,∴椭圆C的标准方程为=1.(Ⅱ)令m=0,则A(1,),B(1,﹣)或A(1,﹣),B(1,),当A(1,),B(1,﹣)时,P(4,),直线BP:y=x﹣,当A(1,﹣),B(1,)时,P(4,﹣),直线BP:y=﹣x+,∴满足题意的定点只能是(,0),设为D点,下面证明P、B、D三点共线.设A(x1,y1),B(x2,y2),∵PA垂直于y轴,∴点P的纵坐标为y1,从而只要证明P(4,y1)在直线BD上,由,得(4+3m2)y2+6my﹣9=0,∵△=144(1+m2)>0,∴,,①∵k DB﹣k DP=﹣=﹣==,①式代入上式,得k DB﹣k DP=0,∴k DB=k DP,∴点P(4,y1)恒在直线BD上,从而P、B、D三点共线,即BP恒过定点(,0).21.已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,利用导数的几何意义即可得到结论.(2)求出r(x)的表达式,求函数的导数,利用导数研究函数的单调性即可.【解答】解:(1)①h(x)=f(x)﹣g(x)=e x﹣mx﹣n.则h(0)=1﹣n,函数的导数f′(x)=e x﹣m,则f′(0)=1﹣m,则函数在x=0处的切线方程为y﹣(1﹣n)=(1﹣m)x,∵切线过点(1,0),∴﹣(1﹣n)=1﹣m,即m+n=2.②当n=0时,h(x)=f(x)﹣g(x)=e x﹣mx.若函数h(x)在(﹣1,+∞)上没有零点,即e x﹣mx=0在(﹣1,+∞)上无解,若x=0,则方程无解,满足条件,若x≠0,则方程等价为m=,设g(x)=,则函数的导数g′(x)=,若﹣1<x<0,则g′(x)<0,此时函数单调递减,则g(x)<g(﹣1)=﹣e﹣1,若x>0,由g′(x)>0得x>1,由g′(x)<0,得0<x<1,即当x=1时,函数取得极小值,同时也是最小值,此时g(x)≥g(1)=e,综上g(x)≥e或g(x)<﹣e﹣1,若方程m=无解,则﹣e﹣1≤m<e.(2)∵n=4m(m>0),∴函数r(x)=+=+=+,则函数的导数r′(x)=﹣+=,设h(x)=16e x﹣(x+4)2,则h′(x)=16e x﹣2(x+4)=16e x﹣2x﹣8,[h′(x)]′=16e x﹣2,当x≥0时,[h′(x)]′=16e x﹣2>0,则h′(x)为增函数,即h′(x)>h′(0)=16﹣8=8>0,即h(x)为增函数,∴h(x)≥h(0)=16﹣16=0,即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,故r(x)≥r(0)=,故当x≥0时,r(x)≥1成立.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF 的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.【考点】与圆有关的比例线段;圆的切线的判定定理的证明;圆的切线的性质定理的证明.【分析】(1)证明DC是⊙O的切线,就是要证明CD⊥OC,根据CD⊥AF,我们只要证明OC∥AD;(2)首先,我们可以利用射影定理得到CM2=AM•MB,再利用切割线定理得到DC2=DF•DA,根据证明的结论,只要证明DC=CM.【解答】证明:(1)连接OC,∵OA=OC∴∠OAC=∠OCA,∵CA是∠BAF的角平分线,∴∠OAC=∠FAC∴∠FAC=∠OCA,∴OC∥AD.…∵CD⊥AF,∴CD⊥OC,即DC是⊙O的切线.…(2)连接BC,在Rt△ACB中,CM⊥AB,∴CM2=AM•MB.又∵DC是⊙O的切线,∴DC2=DF•DA.∵∠MAC=∠DAC,∠D=∠AMC,AC=AC∴△AMC≌△ADC,∴DC=CM,∴AM•MB=DF•DA…[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.把代入上述方程即可化为直角坐标方程.(Ⅱ)直线l经过点P(1,1)(t=0时),把直线l的参数方程代入抛物线方程可得:t2+6t﹣6=0,利用|PA|+|PB|=|t1|+|t2|=|t1﹣t2|=即可得出.【解答】解:(Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.化为直角坐标方程:y2=4x.(Ⅱ)直线l经过点P(1,1)(t=0时),把直线l的参数方程(t为参数),代入抛物线方程可得:t2+6t﹣6=0,∴|PA|+|PB|=|t1|+|t2|=|t1﹣t2|==4.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣4|+|x+5|.(Ⅰ)试求使等式f(x)=|2x+1|成立的x的取值范围;(Ⅱ)若关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)f(x)=|x﹣4|+|x+5|和f(x)=|2x+1|,根据绝对值不等式,对|x﹣4|+|x+5|放缩,注意等号成立的条件,(Ⅱ)把关于x的不等式f(x)<a的解集不是空集,转化为关于x的不等式f(x)<a的解集非空,求函数f(x)的最小值.【解答】解:(Ⅰ)因为f(x)=|x﹣4|+|x+5|≥|(x﹣4)+(x+5)|=|2x+1|,当且仅当(x﹣4)(x+5)≥0,即x≤﹣5或x≥4时取等号.所以若f(x)=|2x+1|成立,则x的取值范围是(﹣∞,﹣5]∪[4,+∞).(Ⅱ)因为f(x)=|x﹣4|+|x+5|≥|(x﹣4)﹣(x+5)|=9,所以若关于x的不等式f(x)<a的解集非空,则a>f(x)min=9,即a的取值范围是(9,+∞).。
重庆市南开中学2020年高三下期中数学试题及答案(理科)
A﹒ 3 2
B﹒ 2
C﹒ 9 4
8
D﹒
3
二、填空题 :本 大题共 4 小题,每小题 5分,共 20 分。
13.已知 a , b 均为单位向量,且 (3a b) (a 2b) ,则向量 a 与 b 夹角的余弦值为
﹒
14.已知 (x 2 )n( n N * )的展开式中第 3 项与第 6 项的二项式系数相等,则展开式中 x 的系数为
A﹒ 2
B﹒ 1
C﹒ 0
D﹒ 1 2
8.抛物线 C:y2 2 px ( p 0) 的焦点为 F , A,B 是抛物线 C 上两点,
且 | AF | | BF | 10 , O 为坐标原点,若 OAB 的重心为 F ,则 p
A﹒1
B﹒ 2
C﹒ 3
D﹒ 4
开始
输入 x 1,s 0
x 2x
则 P0,0,1, D 2 2,1,0 ,C 2 2,1,0 , M 2,1,0 ,CP 2 2,1,1 , MD 2,2,0 , MP
2,1,1 ,
设平面
PMD
的法向量为
m
x,
y,
z ,则由
m
MP
0
m
2,1,3 ,设直线 PC 与平面 PMD 所成角
m MD 0
(1)若函数 y f (x) g(x) 在其定义域内单调递增,求实数 a 的取值范围; (2)是否存在实数 a ,使得函数 y f (x) g (x) 的图像与 x 轴相切?若存在,求满足条件的 a 的个数,
请说明理由.
21.(12
分)已知椭圆 :
x2 a2
y2 b2
1(a
b
0 )的离心率为
1 恒成立,令 mx
重庆南开中学2020级高三第三次教学质量检测理科数学
班级: 姓名: 线订装绝密★启用前重庆南开中学2020级高三第三次教学质量检测理科数学时间:120分钟满分:150分命卷人:*审核人:一、选择题(每小题5分,共60分)1. 已知集合U ={1,2,3,4,5},,则C U A =( )A. {5}B. {4,5}C. {3,4,5}D. {2,3,4,5}2. 已知复数2+ai1−i为纯虚数,则实数a =( )A. 4B. 3C. 2D. 13. 已知平面向量a ⃗=(m,1),b ⃗⃗=(8,m −2),则“m =4”是“a ⃗//b⃗⃗”的( ) A. 充要条件B. 既不充分也不必要条件C. 必要不充分条件D. 充分不必要条件4. 函数f(x)=sinx −√3cosx 的一条对称轴为( )A. x =−π6B. x =−π3C. x =π6D. x =π35. 已知等比数列{a n }的前n 项和为S n ,a 1a 2<0,a 4=6a 2+a 3,则S 4S 3=( )A. −157B. −53C. 53D.1576. 已知非零平面向量a ⃗,b ⃗⃗满足(6a ⃗+b ⃗⃗)⊥(a ⃗−b⃗⃗),,则a ⃗与b⃗⃗的夹角为( ) A. π6 B. π3C.2π3 D. 5π67. 已知定义在R 上的函数f(x)满足f(2−x)+f(x)=0,当x >1时,f(x)=x −2,则不等式f(x)<0的解集为( )A. (1,2)B. (−∞,0)C. (0,2)D. (−∞,0)∪(1,2) 8. 明代数学家程大位在《算法统宗》中提出如下向题“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传”意思是将996斤绵分给八个人,从第二个人开始,每个人分得的绵都比前一个人多17斤,则第八个人分得绵的斤数为( )A. 150B. 167装订线C. 184D. 2019. 函数y =lnxcosx 的图象大致为( )A.B.C.D.10. 在ΔABC 中,AC =AB =3,点M ,N 分别在边AC ,AB 上,且AM =BN =2,BM ⊥CN ,则ΔABC 的面积为( )A. 9√1011B. 8122C. 4511D.18√101111. 在ΔABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若c −a =2acosB ,则3a+c b的最小值为( )A. √2B. √3C. 2√2D. 312. 已知数列{a n },{b n }满足:a n+1=2a n +b n ,b n+1=a n +2b n +lnn+1n3(n ∈N ∗),a 1+b 1>0,给出下列四个命题:①数列{a n −b n }单调递增;②数列{a n +b n }单调递增;③数列{a n }从某项以后单调递增;④数列{b n }从某项以后单调递增.这四个命题中的真命题是( )A. ②③④B. ②③C. ①④D. ①②③④ 二、填空题(每小题5分,共20分)13. 已知曲线y =x 3+ax 在x =1处的切线与直线y =2x +1平行,则a 的值为__________.14. 已知函数f(x)=Asin(ωx +φ),其中A >0,ω>0,φ∈(−π,π)的部分图象如图所示,则φ=__________.15. 已知函数f(x)=2e x +(1−k)x 2在(0,+∞)上单调递增,则实数k 的取值范围是__________.16. 已知平面向量a ⃗,b⃗⃗,,a ⃗⊥b⃗⃗,,则的最大值是__________.班级: 姓名: 线订装三、解答题(每小题12分,共60分)17. 已知公差不为0的等差数列{a n }的前n 项和为S n ,a 2,a 4,a 7成等比数列,且S 5=50. (1)求a n ; (2)求数列{1a n a n+1}的前n 项和T n .18. 在ΔABC 中,AB =2,AC =3,D 为BC 边上的中点. (1)求sin∠BADsin∠DAC的值; (2)若∠BAD =2∠DAC ,求AD .19. 某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g )作为质量指标值.由检测结果得到如下频率分布表和频率分布直方图.(1)求图中a ,b 的值; (2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间[47,49)和(51,53]内为合格品,重量在区间[49,51]内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该批零件重量的概率分布.若这批零件共400件,现有两种销售方案: 方案一:对剩余零件不再进行检测,回收处理这100件样本中的不合格品,余下所有零件均按150元/件售出; 方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出. 仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.20. 已知函数f(x)=ax 2−ln(x −1)+1(a ∈R)存在极值点. (1)求a 的取值范围; (2)设f(x)的极值点为x 0,若f(x 0)<x 0,求a 的取值范围.装订线21. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,离心率为√32,点D 在椭圆C 上,且ΔDF 1F 2的周长为4+2√3. (1)求椭圆C 的方程; (2)已知过点(1,0)的直线与椭圆C 交于A ,B 两点,点P 在直线x =4上,求的最小值.四、选做题(每小题10分,共20分)22A. 在直角坐标系xOy 中,直线l 的参数方程为(t 为参数,0<α<π),以O 为极点,x 轴为极轴建立极坐标系,曲线C 的极坐标方方程为ρ(1−cos2Θ)=8cosΘ. (1)判断直线l 与曲线C 的公共点的个数,并说明理由; (2)设直线l 与曲线C 交于不同的两点A ,B ,点P(1,−1),若,求tanα的值.22B. 已知实数a ,b 满足,. (1)证明:; (2)若pq >0,证明:(ap +bq)(aq +bp)⩾pq .班级: 姓名: 线 订装重庆南开中学2020级高三第三次教学质量检测理科数学答案和解析第1题: 【答案】C【解析】由集合,,则.第2题: 【答案】C【解析】复数为纯虚数,∴,,解得.第3题: 【答案】D【解析】两个平面向量,平行,则,或,所以“”是“”的充分不必要条件,故选D.第4题: 【答案】A【解析】.令,解得,, 当时,,所以A 选项是正确的.第5题: 【答案】B【解析】由已知可得,∴, 又,即,解得,∴.第6题: 【答案】C【解析】∵,∴,又∵, ∴,∴,∴与的夹角为.第7题: 【答案】D【解析】由已知,即,∴关于中心对称, 又当时,,作出函数的图象如图所示,由图可知的解集为.第8题: 【答案】C【解析】设第八人分得,则等差数列公差为,,解得.第9题: 【答案】A【解析】当时,,,∴,排除C 、D; 又当时,,,∴,排除B,故选A.第10题:装订线【答案】A【解析】由已知得,, ∵,∴,解得, ∴,∴.第11题: 【答案】C【解析】已知,根据余弦定理,可得,整理得,即,∴,∴即,当且仅当时,有最小值.第12题: 【答案】A【解析】将两式相减得,整理得,,当时,,当时,,∴①错; 将两式相加得, 化简得. 令,∴为公比等于的等比数列,其首项为, ∴,∴, ∵,∴递增,递增,∴为递增数列,∴②正确; 由上式可得,,,, ∴, 令,∴, 又,∴, ∵,递增,递增,∴为递增数列,∴③正确; 由上式可知,,, ∵,∴为递增数列,且按指数增长,为递增数列,且按对数增长,∴,使得当时,,即,∴④正确.第13题:【答案】【解析】,∴当时,; ∴据题意,得,∴,故答案为:.第14题:【答案】【解析】由图可知,,, ∴,即,得,∴, 又∵函数图像过,∴,解得, 又,∴.第15题:【答案】【解析】由已知得,∵在单调递增, ∴在上恒成立,化简得, 令,∴,∴,∴.第16题:【答案】【解析】不妨设,,,∵, ∴,代入坐标得,即, ∴以原点为起点,向量的终点在以为圆心,为半径的圆上, ∴可表示为到的距离, ∴其最大值为.第17题:【答案】见解答【解析】(1)由题知,而,故, 由,∴,,∴. (2), ∴前项和.第18题:【答案】见解答【解析】(1)由题知,即, ∴. (2)由,∴∴, 在中,, 在中,,而,∴.第19题:【答案】见解答【解析】(1)由题知,. (2)该工厂若选方案一:收入为元, 若选方案二:收入为元, 利润方案二比方案一高元,所以,选方案二.第20题:【答案】见解答班级:姓名: 线订装【解析】(1)函数的定义域为,, 当时,,无极值点;当时,或,设,则,当时,的两根一个小于、一个大于,故有一个极值点;当时,对称轴为知的两根均小于,故无极值点;综上所述,. (2)由(1)知且,∴,,令,显然在上单增,又,∴即,∴,∴.第21题:【答案】见解答【解析】(1)由题意可得:,解得:,故椭圆方程为:. (2)①当直线与轴平行时,取,,,则,,,所以最小值为; ②当直线不与轴平行时,设,,,设直线方程为. 联立方程有, 设线段的中点为,则有,其中, 令,则, 又令,则, 当,即时,取最小值, 当且当时取等号, 所以,,当时取等号. ∴的最小值为.第22A 题: 【答案】见解答【解析】(1), 即,将直线的参数方程代入得, 即,由知,,故直线与曲线有两个公共点. (2)由(1)可设方程的两根为,, 则,, 故, ∴,即,∴.第22B 题: 【答案】见解答 【解析】(1)∵,故. (2), 由,得,得证.。
2020年高中高三教学质量检测 含答案
2020年高中高三教学质量检测数 学 (理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用黑色字迹的钢笔或签字笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式: 锥体的体积公式:13V Sh =.其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,集合{}|1A y y x =≥,}{240B x Z x =∈-≤,则下列结论正确的是A .}{2,1A B =--I B . ()(,0)U A B =-∞U ðC .[0,)A B =+∞UD . }{()2,1U A B =--I ð 2.已知向量a =r ,(1,0)b =-r ,则|2|a b +=r rA .1B.C. 2D. 43.如图:正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、K 、L 分别为AB 、BB 1、B 1C 1、C 1D 1、D 1D 、DA的中点,则六边形EFGHKL 在正方体面上的射影可能是4.已知i 是虚数单位,使(1)ni +为实数的最小正整数n 为A .2B .4C .6D .85.已知sin()sin ,0,352ππααα++=--<<则2cos()3πα+等于A .45-B .35-C .35D .456.下列说法中,不正确...的是ABC DABC D A 1B 1C 1D 1H G FK LEA .“x y =”是“x y =”的必要不充分条件;B .命题:p x ∀∈R ,sin 1x ≤,则:p x ⌝∃∈R ,sin 1x >;C .命题“若,x y 都是偶数,则x y +是偶数”的否命题是“若,x y 不是偶数,则x y +不是偶数”;D .命题:p 所有有理数都是实数,:q 正数的对数都是负数,则()()p q ⌝∨⌝为真命题.7.已知实数,m n 满足01n m <<<,给出下列关系式 ①23mn= ②23log log m n = ③23m n = 其中可能成立的有A .0个B .1个C .2个D .3个8.设12,,,(4)n a a a n ≥L 是各项均不为零的等差数列,且公差0d ≠.设()n α是将此数列删去某一项得到的数列(按原来的顺序)为等比数列的最大的n 值,则()n α=A .4B .5C .6D .7二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分) (一)必做题(9~13题)9. 某体育赛事志愿者组织有1000名志愿者,其中参加过2008北京奥运会志愿服务的有250名,新招募的2010年广州亚运会愿者750名.现用分层抽样的方法从中选出100名志愿者调查他们的服务能力,则选出新招募的广州亚运会志愿者的人数是 .10. 已知函数2()(sin cos )1f x x x =+-,x ∈R , 则()f x 的最小正周期是 . 11. 右图给出的是计算201614121++++Λ的 值的一个框图,其中菱形判断框内应填入的条件是_________.12. 若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为_____.13.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则数列{}nS n为等差数列,且通项为1(1)2n S da n n =+-⋅.类似地,若各项均为正数的等比数列{}nb 的首项为1b ,公比为q ,前n 项的积为n T ,第11题图则数列{}n n T 为等比数列,通项为____________________. (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)极坐标系中,直线l 的极坐标方程为sin()26πρθ+=,则极点在直线l 上的射影的极坐标是____________.15.(几何证明选讲)如图,以4AB =为直径的圆与△ABC 的两边 分别交于,E F 两点,60ACB ∠=o,则EF = .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)已知海岸边,A B 两海事监测站相距60 mile n ,为了测量海平面上两艘油轮,C D 间距离,在,A B 两处分别测得75CBD ∠=o,30ABC ∠=o , 45DAB ∠=o ,60CAD ∠=o (,,,A B C D 在同一个水平面内).请计算出,C D 两艘轮船间距离.17.(本题满分12分)某市为鼓励企业发展“低碳经济”,真正实现“低消耗、高产出”,施行奖惩制度.通过制定评分标准,每年对本市50%的企业抽查评估,评出优秀、良好、合格和不合格四个等次,并根据等级给予相应的奖惩(如下表).某企业投入100万元改造,由于自身技术原因,能达到以上四个等次的概率分别为111123824,,,,且由此增加的产值分别为60万元、40万元、20万元、5-万元.设该企业当年因改造而增加利润为ξ.(Ⅰ)在抽查评估中,该企业能被抽到且被评为合格以上等次的概率是多少? (Ⅱ)求ξ的数学期望.评估得分 (0,60)[)7060, [)8070, []10080,评定等级 不合格合格良好优秀奖惩(万元)80- 30 60 10018.(本题满分14分)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段1AD 上的点,且满足1(0)D P PA λλ=>u u u u r u u u r.(Ⅰ)当1λ=时,求证:平面11ABC D ⊥平面PDB ; (Ⅱ)试证无论λ为何值,三棱锥1D PBC -的体积 恒为定值;(Ⅲ)求异面直线1C P 与1CB 所成的角的余弦值.第18题图第16题图CAEF第15题图19.(本题满分14分)已知函数2()ln f x x ax b x =++(0x >,实数a ,b 为常数). (Ⅰ)若1,1a b ==-,求函数()f x 的极值; (Ⅱ)若2a b +=-,讨论函数()f x 的单调性.20.(本题满分14分)如图,抛物线21:8C y x =与双曲线22222:1(x y C a a b-=12,C C 在第一象限的交点,且25AF =. (Ⅰ)求双曲线2C 的方程;(Ⅱ)以1F 为圆心的圆M 与双曲线的一条渐近线相切,圆N :22(2)1x y -+=.平面上有点P 满足:存在过点P 的无穷多对互相垂直的直线12,l l ,它们分别与圆,M N 相交,且直线1l 被圆M 截得的弦长与直线2l 被圆N 截得的弦长的比,试求所有满足条件的点P 的坐标.21.(本题满分14分)设0a >,函数21()f x x a=+. (Ⅰ)证明:存在唯一实数01(0,)x a∈,使00()f x x =;(Ⅱ)定义数列{}n x :10x =,1()n n x f x +=,*n N ∈.(i )求证:对任意正整数n 都有2102n n x x x -<<; (ii) 当2a =时, 若10(2,3,4,)2k x k <≤=L , 证明:对任意*m N ∈都有:1134m k k k x x +--<⋅.2020年高三教学质量检测数学试题(理科)参考答案和评分标准一、选择题:(每题5分,共40分)题号 12345678选项D C B B D C C A二、填空题(每题5分,共30分) 9.75 10. π 11.10?i > 12.94 1311n b -= 14. (2,)3π 15.2 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)解:方法一:在ABD ∆中,由正弦定理得:sinAD ABABD =∠,∴6060sin(3075)60sin 7541sin[180(453075)]sin 302AD +====-++o o oo o o o o…………………4分 同理,在在ABC ∆中,由正弦定理得:sin sin AC ABABC ACB =∠∠ 16060sin 302sin[180(453060)]sin 45AC ⨯====-++oo o o o o ……………………………………………8分∴计算出,AD AC 后,再在ACD ∆中,应用余弦定理计算出CD 两点间的距离:CD ==………………………………………………………10分===∴,C D 两艘轮船相距 mile n .………………………………………………………………12分方法二:在ABC ∆中,由正弦定理得:sin sin BC ABBAC=∠,∴6060sin(6045)60sin 751)sin[180(456030)]sin 452BC +====-++o o oo o o o o…………………4分 同理,在在ABD∆中,由正弦定理得:BD ABADB=606060sin 45221sin[180(453075)]sin 302BD ====-++oo o o o o……………………………………8分 ∴计算出,BC BD 后,再在BCD ∆中,应用余弦定理计算出CD 两点间的距离:CD == ………………………………………………………10分== =∴,C D 两艘轮船相距 mile n . ………………………………………………………12分 17.(本题满分12分)解:(Ⅰ)设该企业能被抽中的概率且评为合格以上等次的概率为P ,则111123238248P ⎛⎫=++⨯= ⎪⎝⎭………………………………………………………4分 (Ⅱ)依题意,ξ的可能取值为185,105,80,60,50,40,0,60,------则1612181)50(,612131)0(,412121)60(=⨯=-==⨯===⨯==ξξξP P P412121)40(,48121241)185(=⨯=-==⨯=-=ξξP P ,111111111(60),(80),(105)326821624248P P P ξξξ=-=⨯==-=⨯==-=⨯=则其分布列为10分第18题图 ∴1111115(60406050801851054616486E ξ=-⨯+-⨯+--⨯+--⨯=-)()()()(万元) ………………………………………………………12分18.(本题满分12分)方法一、证明:(Ⅰ)∵正方体1111ABCD A B C D -中,AB ⊥面11AA D D ,又11AB ABC D ⊂∴平面11ABC D ⊥平面11AA D D , ………………………2分 ∵1λ=时,P 为1AD 的中点,∴1DP AD ⊥, 又∵平面11ABC D I 平面11AA D D 1AD =, ∴DP ⊥平面11ABC D ,又DP ⊂平面PDB ,∴平面11ABC D ⊥平面PDB .……………………………………………………4分 (Ⅱ)∵11//AD BC , P 为线段1AD 上的点, ∴三角形1PBC 的面积为定值,即1122122PBC S ∆==,……………………………………………6分 又∵//CD 平面11ABC D ,∴点D 到平面1PBC 的距离为定值,即22h =, ……………………………………………………8分 ∴三棱锥1D BPC -的体积为定值,即111122133226D PBC PBC V S h -∆=⋅⋅=⨯=. 也即无论λ为何值,三棱锥1D PBC -的体积恒为定值16;……………………………………………10分(Ⅲ)∵由(Ⅰ)易知1B C ⊥平面11ABC D ,又1C P ⊂平面11ABC D ,∴11B C C P ⊥, ……………………………………………12分 即异面直线1C P 与1CB 所成的角为定值90o,从而其余弦值为0.………………………………………14分 方法二、如图,以点D 为坐标原点,建立如图所示的坐标系.(Ⅰ)当1λ=时,即点P 为线段1AD 的中点,则11(,0,)22P ,又(0,0,0)D 、(1,1,0)B∴11(,0,)22PD =--u u u r ,11(,1,)22PB =-u u u r ,设平面PDB 的法向量为(,,)n x y z =r ,……………………1分则00PD n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r r u u u r r r ,即11002211022x z x y z ⎧-+-=⎪⎪⎨⎪+-=⎪⎩,令1y =,解得(1,1,1)n =-r , ……………………2分 又∵点P 为线段1AD 的中点,∴1DP AD ⊥,∴DP ⊥平面11ABC D ,∴平面11ABC D 的法向量为11(,0,)22PD =--u u u r , ……………………3分∵110022PD n ⋅=+-=u u u r r ,∴平面11ABC D ⊥平面PDB , ………………………………………4分(Ⅱ)略;(Ⅲ)∵1(0)D P PA λλ=>u u u u r u u u r ,∴1(,0,)11P λλλ++, ………………………………………11分又1(0,1,1)C 、(0,1,0)C 、1(1,1,1)B ,∴1(,1,)11C P λλλλ-=-++u u u r ,1(1,0,1)CB =u u u r , ………………………………………12分∵110011C P CB λλλλ-⋅=++=++u u u r u u u r ………………………………………13分∴不管λ取值多少,都有11C P CB ⊥,即异面直线1C P 与1CB 所成的角的余弦值为0.……………14分19.(本题满分12分)解:(Ⅰ)函数2()ln f x x x x =+-,则1()21f x x x'=+-,………………………………………1分 令()0f x '=,得1x =-(舍去),12x =. ……………………………………………2分 当102x <<时,()0f x '<,函数单调递减; ……………………………………………3分 当12x >时,()0f x '>,函数单调递增; ……………………………………………4分 ∴()f x 在12x =处取得极小值3ln 24+. ……………………………………………5分(Ⅱ)由于2a b +=-,则2a b =--,从而2()(2)ln f x x b x b x =-++,则(2)(1)()2(2)b x b x f x x b x x --'=-++=……………………………………………5分 令()0f x '=,得12bx =,21x =. ……………………………………………7分① 当02b≤,即0b <时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;…8分② 当01b<<,即02b <<时,列表如下:所以,函数()f x 的单调递增区间为(0,)2,(1,)+∞,单调递减区间为(,1)2b ;…………………10分③ 当12b=,即2b =时,函数()f x 的单调递增区间为(0,)+∞;………………………………11分 ④当1b>,即2b >时,列表如下:所以函数()f x 的单调递增区间为(0,1),(,)2b +∞,单调递减区间为(1,)2b ; …………………13分综上:当02b≤,即0b <时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞; 当012b <<,即02b <<时,函数()f x 的单调递增区间为(0,)2b ,(1,)+∞,单调递减区间为(,1)2b;当12b=,即2b =时,函数()f x 的单调递增区间为(0,)+∞; 当12b >,即2b >时,函数()f x 的单调递增区间为(0,1),(,)2b +∞,单调递减区间为(1,)2b . ………………………………14分20.(本题满分12分)解:(Ⅰ)∵抛物线21:8C y x =的焦点为2(2,0)F ,∴双曲线2C 的焦点为1(2,0)F -、2(2,0)F , ……………………………………………… 1分设00(,)A x y 在抛物线21:8C y x =上,且25AF =,由抛物线的定义得,025x +=,∴03x =, ………………………………………………2分∴2083y =⨯,∴0y =± ……………………………………………… 3分∴1||7AF ==, ……………………………………………… 4分 又∵点A 在双曲线上,由双曲线定义得,2|75|2a =-=,∴1a =, ……………………………………………… 5分∴双曲线的方程为:2213y x -=. ……………………………………………… 6分 (Ⅱ)设圆M 的方程为:222(2)x y r ++=,双曲线的渐近线方程为:y =,∵圆M 与渐近线y =相切,∴圆M 的半径为d ==,………………………………… 7分 故圆M :22(2)3x y ++=, ………………………………… 8分 设点00(,)P x y ,则1l 的方程为00()y y k x x -=-,即000kx y kx y --+=,2l 的方程为001()y y x x k-=--,即000x ky x ky +--=,∴点M 到直线1l 的距离为1d =,点N 到直线2l 的距离为2d =,∴直线1l 被圆M 截得的弦长s = 直线2l 被圆N 截得的弦长t = ………………………………… 11分 由题意可得,s t ==2200003(2)(2)x ky k kx y +-=+-,00002k kx y -=+- ①00002k kx y -=--+②……… 12分由①得:0000(2)0x k y +-+-=, ∵该方程有无穷多组解,∴0000200x y ⎧+=⎪+-=,解得001x y =⎧⎪⎨=⎪⎩,点P 的坐标为.………………………………… 13分由②得:0000(2)0x k y ++--=,∵该方程有无穷多组解,∴0000200x y ⎧++=⎪--=,解得001x y =⎧⎪⎨=⎪⎩P 的坐标为(1,.∴满足条件的点P 的坐标为或(1,. ………………………………… 14分21.(本题满分12分)(Ⅰ)证明: ①3()10f x x x ax =⇔+-=. ………………………………… 1分 令3()1h x x ax =+-,则(0)10h =-<,311()0h a a =>, ∴1(0)()0h h a⋅<. ………………………………… 2分 又/2()30h x x a =+>,∴3()1h x x ax =+-是R 上的增函数. ………………………………… 3分 故3()1h x x ax =+-在区间10,a ⎛⎫⎪⎝⎭上有唯一零点, 即存在唯一实数010,x a ⎛⎫∈ ⎪⎝⎭使00()f x x =. ………………………………… 4分 ②当1n =时, 10x =,211()(0)x f x f a ===,由①知010,x a ⎛⎫∈ ⎪⎝⎭,即102x x x <<成立;………… 5分 设当(2)n k k =≥时, 2102k k x x x -<<,注意到21()f x x a=+在()0,+∞上是减函数,且0k x >, 故有:2102()()()k k f x f x f x ->>,即2021k k x x x +>>∴2021()()()k k f x f x f x +<<, ………………………………… 7分 即21022k k x x x ++<<.这就是说,1n k =+时,结论也成立.故对任意正整数n 都有:2102n n x x x -<<. ………………………………… 8分 (2)当2a =时,由10x =得:211()(0)2x f x f ===,2112x x -= ………………………………… 9分222132222221211122(2)(2)x x x x x x x x --=-=++++22121211114244x x x x x x -+⎛⎫<=⋅-= ⎪⎝⎭……………………………… 10分 当2k ≥时,102k x <≤Q , ∴22112222111122(2)(2)k k k k k k k k x x x x x x x x -+----=-=++++114k k k k x x x x ---+<14k k x x --< 2212321144k k k x x x x ---⎛⎫⎛⎫<⋅-<<⋅- ⎪ ⎪⎝⎭⎝⎭L 14k ⎛⎫< ⎪⎝⎭ ………………………………… 12分 对*m N ∀∈,1121()()()m k k m k m k m k m k k k x x x x x x x x +++-+-+-+-=-+-++-L 1121m k m k m k m k k k x x x x x x ++-+-+-+≤-+-++-L ………………………………… 13分1122111114444k k m m x x +--⎛⎫≤+++++- ⎪⎝⎭L 111114141141134343414m k k k k m k k x x x x ++--⎛⎫=-=⋅-⋅-<⋅= ⎪⋅⎝⎭- ………………………………… 14分。
2020届重庆市南开中学高三第三次教学质量检测考试理科数学
重庆南开中学2020级高三第三次教学质量检测考试理科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{1,2,3,4,5}U =,{}2|30A x x x =∈-<Z ,则U A =ð( )A. {}5B. {}4,5C. {}3,4,5D. {}2,3,4,52.已知复数21aii+-纯虚数,则实数a =( )A. 4B. 3C. 2D. 13.已知平面向量()()182a m b m ==-r r ,,,,则“4m =”是“//a b r r”的( )A. 充要条件B. 既不充分也不必要条件C. 必要不充分条件D. 充分不必要条件4.函数()sin f x x x =的一条对称轴为( ) A. 6x π=-B. 3x π=-C. 6x π=D. 3x π=5.已知等比数列{}n a 的前n 项和为n S ,120a a <,4236=+a a a ,则43S S =( ) A. 157-B. 53-C. 53D. 1576.已知非零平面向量a br r ,满足()()64a b a b b a +⊥-=r r r r r r ,,则a r 与b r 的夹角为( ) A.6π B.3π C.23π D.56π 7.已知定义在R 上的函数()f x 满足()()20f x f x -+=,当1x >时,()2f x x =-,则不等式()0f x <的解集为( )A. ()12,B. ()0-∞,C. ()02,D. ()()012-∞⋃,, 8.明代数学家程大位在《算法统宗》中提出如下问题“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意思是将996斤绵分给八个人,从第二个人开始,每个人分得的绵都比前一个人多17斤,则第八个人分得绵的斤数为( )A. 150B. 167C. 184D. 2019.函数lncosxyx的图象大致为()A.B.C.D10.在ABC ∆中,3AC AB ==,点M ,N 分别在AC AB ,上,且2AM BN ==,⊥BM CN ,则ABC ∆的面积为( )A.B.8122C.4511D.11.在ABC ∆中,内角A B C ,,所对的边分别为a b c ,,,若2cos c a a B -=,则3a cb+的最小值为( )A.B.C. D. 312.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,给出下列四个命题:①数列{}n n a b -单调递增;②数列{}n n a b +单调递增;③数列{}n a 从某项以后单调递增;④数列{}n b 从某项以后单调递增.这四个命题中的真命题是:( ) A ②③④B. ②③C. ①④D. ①②③④本试卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知曲线3y x ax =+在1x =处的切线与直线21y x =+平行,则a 的值为___________.14.已知函数()()sin f x A x =+ωϕ,其中()00A ωϕππ>>∈-,,,的部分图象如图所示,则ϕ=______________.15.已知函数()()221xf x e k x =+-在()0+∞,上单调递增,则实数k 的取值范围是__________. 16.已知平面向量a b r r,满足:2a b ==r r ,⊥r r a b ,22230-⋅+=r r r r b b c c ,则2a c +r r 的最大值是__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知公差不为0的等差数列{}n a 的前n 项和为247n S a a a ,,,成等比数列,且550S =. (1)求n a ;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭前n 项和.18.在ABC ∆中,23AB AC D ==,,为BC 边上的中点. (1)求sin sin BADDAC∠∠的值;(2)若2BAD DAC ∠=∠,求AD .19.某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g )作为质量指标值.由检测结果得到如下频率分布直方图.(1)求图中a b ,的值;(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间[)4749,和(]5153,内为合格品,重量在区间[]4951,内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共m 件()*100m m N>∈,,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150元/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.20.已知函数()()()2ln 11f x ax x a R =--+∈存在极值点.(1)求a 的取值范围;(2)设()f x 的极值点为0x ,若()00f x x <,求a 的取值范围.21.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12F F ,D 在椭圆C 上,且12DF F ∆的周长为.(1)求椭圆C 的方程;(2)已知过点()10,的直线与椭圆C 交于A B ,两点,点P 在直线4x =上,求222PA PB AB ++的最小值.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t xy t x=+⎧⎨=-+⎩(t 为参数,0απ<<),以O 为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()12cos28cos ρθθ-=. (1)判断直线l 与曲线C 的公共点的个数,并说明理由; (2)设直线l 与曲线C 交于不同两点A B ,,点()11P -,,若1143PA PB -=,求tan α的值. 23.已知实数a b ,满足33a b +≥,1a b -≤. (1)证明:1a b +≥;(2)若0pq >,证明:()()ap bq aq bp pq ++≥.的。
重庆市南开中学2020级高三数学理科11月月考试卷 人教版
重庆市南开中学2020级高三数学理科11月月考试卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
1.已知=-==-==B A x y y B x y x A I 则},1|{,1|{22( )A .),1[]1,(+∞--∞YB .),1[+∞C .),0[+∞D .[0,1]2.已知点P 分有向线段分有向线段则的比为A ,31( )A .-4B .4C .41 D .41- 3.已知⋅︒︒=︒︒=则),65sin ,25(sin ),35sin ,55(sin =( )A .︒10sinB .23 C .21 D .21-4.在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为 ( )A .33-=n a nB .n a n 3=C .2+=n a nD .1+=n a n5.给定两个向量x b a b x a b a 则若),()(),1,2(),4,3(-⊥+==的值等于 ( )A .-3B .23 C .3D .23-6.已知函数,2sin )cos (sin 2)(x x x x f ++=则)(x f 值域为( )A .]2,2[-B .]221,2[--C .]221,2[+-D .]221,221[+- 7.若=+=-=+)4tan(,41)4tan(,52)tan(πβπαβα则 ( )A .183 B .1813 C .223D .22138.要得到函数1)42cos(+-=πx y 的图象,只需将函数x y sin =的图象作下列变换,其中正确的变换是( )A .先纵坐标不变,横坐标缩短原来的,21再按向量(1,8π-)平移 B .先纵坐标不变,横坐标缩短原来的,21再按向量(1,4π)平移C .先按向量(1,4π)平移,再纵坐标不变,横坐标缩短原来的,21D .先按向量(1,8π-)平移,再纵坐标不变,横坐标缩短原来的,219.函数)2cos 2(sin log 5.0x x y +=的单调递增区间为( )(其中Z k ∈) A .)83,4(ππππ++k kB .)83,8(ππππ++k kC .)85,8(ππππ++k kD .)83,8(ππππ+-k k10.已知点O 为ABC ∆的外心,且2||4==AB AC ,则 )(AB AC AO -⋅等于( )A .2B .4C .6D .8二、填空题:本大题共6小题,每小题4分,共24分,把答案填在答题卡相应位置上。