南京市、盐城市2012届高三年级第三次模拟考试数学试卷及参考答案2012.05

合集下载

2012年南京三模三模数学试卷和参考答案

2012年南京三模三模数学试卷和参考答案

南京市、盐城市2012届高三年级第三次模拟考试数 学 2012.05注意事项:1.本试卷共160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、考试号写在答卷题卡上.试题的答案写在答.题卡..上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:锥体的体积公式为V =13Sh ,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,计70分.请把答案写在答题纸的指定位置上.1.已知集合A ={}1,1,3-,B =}2,a ,且B A ⊆,则实数a 的值是 ▲ .答案:12.已知复数z 满足(2)5i z i -=(其中i 为虚数单位),则复数z 的模是 ▲ .答案3.根据如图所示的流程图,若输入x 的值为 -7.5,则输出y 的值为 ▲ . 答案: -14.若将一颗质地均匀的骰子(各面上分别标有1、2、3、4、5、6个点的正方形玩具)先后抛掷两次,向上的点数依次为m 、n ,则方程220x mx n ++=无实根的概率是 ▲ .答案:7365.为了检测某自动包装流水线的生产情况,在流水线上随机抽取40件产品,分别称出它们的重量(单位:克)作为样本。

下图是样本的频率分布直方图,根据图中各组的组中值估计产品的平均重量是 ▲ 克. 答案:5076.已知正△ABC 的边长为1,73CP CA CB =+, 则CP AB ⋅ =▲ . 答案: -27.已知α、β是两个不同的平面,下列四个条件: ①存在一条直线a ,a α⊥,a β⊥; ②存在一个平面γ,,γαγβ⊥⊥;③存在两条平行直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α; ④存在两条异面直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α。

其中是平面α∥平面β的充分条件的为= ▲ .(填上所有符合要求的序号) 答案:①③8.若函数222,0(),0x x x f x x ax x ⎧-≥⎪=⎨-+<⎪⎩是奇函数,则满足()f x a >的x 的取值范围是 ▲ .答案:(1)-+∞9.在直角坐标系xOy 中,记不等式组30270260y x y x y -≥⎧⎪+-≤⎨⎪-+≥⎩表示的平面区域为D .若指数函数x y a =(a >0且1a ≠)的图象与D 有公共点,则a 取值范围是 ▲ .答案:)+∞10.在平面直角坐标系xOy 中,抛物线24y x =的焦点为F ,点P 在抛物线上,且位于x 轴上方.若点P 到坐标原点O的距离为则过F 、O 、P 三点的圆的方程是 ▲ . 答案:221725()()222x y -+-=11.已知sin()sin 032ππααα++=-<<,则cos α= ▲ .解答:3sin coscos sinsin sin )332265πππαααααα++=+=+=- 4sin()65πα+=-,又366πππα-<+<,所以3cos()65πα+=。

江苏省南京市、盐城市2012届高三第三次模拟考试(政治).pdf

江苏省南京市、盐城市2012届高三第三次模拟考试(政治).pdf

基本、最有效的企业组织形式,对促进经济发展具有非常重要的作用。图表明①该公司 ②国有经济是国民经济的主导
③该公司④股份制有利于扩大公有资本支配范围
②③ B.①②
C.③④ D.①④①培养自主创业意识,树立创业理想 ②全面提升自身素质,具备良
好心态
③加强就业指导,完善就业 ④树立多种方式就业观,适应市场需求
A.①③ B.①④ C.②③
D.②④
25.“人生在世,俯仰之间,自当追求卓越,但有尽其所能人生到处知何似应似飞鸿踏雪泥人生在世不满百,谁敢
笑我鬓发白人生在世不称意明朝散发弄扁舟人生得意须尽欢,莫使金樽空对月心理学家建议,如果想摆脱某些思绪,最
好回忆一件久远的事情;想停止某些想法,最好的办法是想想其他事情,尤其是发生在许久之前,或者文化差异大、空
C.小微企业生产经营者个人所得税负担减少
D.政府通过宏观政策支持小微企业健康发展
右边漫画出现社会现象的原因可能是2011年,我国以并购方式实现直接投资222亿美元,占我国同期对外投资总额的
37%我国对外承包工程业务完成营业额1034.2亿美元,同比增长12.2。这说明我国
①利用外资发展壮大自己实力 ②积极参与国际经济竞争与合作
第Ⅰ卷(选择题,共66分)
一、单项选择题:在每题给出的四个选项中,只有一项是最符合题意的,请选出来。本大题共33小题,每小题2分
,共计66分。
1.2012年3月14日第十一届全国人民代表大会第五次会议表决通过关于修改刑事诉讼法的决定刑事诉讼法对于具有
重要意义监督行政机关依法履行职责保障诉讼参与人的合法权益推进国家民主法治进程学技术奖励大会12月中央经济工
层设计”建筑师王澍获得了堪称建筑界的诺贝尔奖普利兹克建筑奖运用地方材料和传统工艺,用现代空间和建筑体量诠

江苏省盐城市2012届高三数学摸底考试

江苏省盐城市2012届高三数学摸底考试

盐城市2011/2012学年度高三年级摸底考试数 学 试 题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1.已知集合{}{}2,0,2,4,|03P Q x x =-=<<,则P Q = ▲ .2.命题“0sin ,>∈∀x R x ”的否定是 ▲ .3. 已知复数(2)(z i i i =-为虚数单位),则z = ▲ .4. 已知等差数列{}n a 满足3710a a +=,则该数列的前9项和9S = ▲ .5.4张卡片上分别写有数字0,1,2,3,从这4张卡片中一次随机 抽取不同的2张,则取出的卡片上的数之差的绝对值等于2的概 率为 ▲ .6. 某校举行2011年元旦汇演,七位评委为某班的小品打出的分数如 右上茎叶统计图所示,则去掉一个最高分和一个最低分后,所剩数 据的平均值为 ▲ . 7.执行右图所示的程序框图,则输出的y 的值是 ▲ . 8.已知向量1(3,1),(1,)2==-a b ,若向量λ+a b 与向量a 垂直,则实 数λ的值为 ▲ .9. 在平面上,若两个正方形的边长的比为1:2,则它们的面积比为1:4; 类似地,在空间,若两个正方体的棱长的比为1:2,则它们的体积比 为 ▲ . 10.若sin()(0,0,||)2y A x A πωϕωϕ=+>><的最小值为2-,其图象相邻最高点与最低点横坐标之差为2π,且图象过点, 则其解析式是 ▲ .11.如图,在平面直角坐标系xoy 中,已知椭圆22221(0)x y a b a b +=>>的左顶点为A ,左焦点为F ,上顶点为B , 若090BAO BFO ∠+∠=,则椭圆的离心率是 ▲ .12.与直线3x =相切,且与圆22(1)(1)1x y +++=相内切的半径最小的圆的方程是 ▲ .13.已知函数2()|6|f x x =-,若0a b <<,且()()f a f b =,则2a b 的最小值是 ▲ .7 98 4 4 4 6 7 9 3第6题第7题第11题14.设等差数列{}n a 满足:公差*d N ∈,*n a N ∈,且{}n a 中任意两项之和也是该数列中的一项. 若513a =,则d 的所有可能取值之和为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)如图,正三棱柱111ABC A B C -中,点D 是BC 的中点.(Ⅰ)求证: AD ⊥平面11BCC B ; (Ⅱ)求证:1AC 平面1AB D .16.(本小题满分14分)如图,在ABC ∆中,BC 边上的中线AD 长为3,且cos 8B =,1cos 4ADC ∠=-.(Ⅰ)求sin BAD ∠的值; (Ⅱ)求AC 边的长.17.(本小题满分14分)某市出租汽车的收费标准如下:在3km 以内(含3km )的路程统一按起步价7元收费,超.过.3km 以外的路程按2.4元/km 收费. 而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用约为2.3元;二是燃油费,约为1.6元/km ;三是折旧费,它与路程的平方近似成正比,且当路程为100km 时,折旧费约为0.1元. 现设一次载客的路程为xkm . (Ⅰ)试将出租汽车一次载客的收费F 与成本C 分别表示为x 的函数;(Ⅱ)若一次载客的路程不少于2km ,则当x 取何值时,该市出租汽车一次载客每km 的收益y (F Cy x-=)取得最大值? 第15题ABCDA 1B 1C 1AD B C 第16题18.(本小题满分16分) 如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q .(Ⅰ)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (Ⅱ)过点Q 作直线1QRAF 交12F F 于点R ,记1PRF ∆的外接圆为圆C .① 求证:圆心C 在定直线7480x y ++=上; ② 圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.19.(本小题满分16分)已知()f x 为R 上的偶函数,当0x ≥时,()ln(2)f x x =+. (Ⅰ)当0x <时,求()f x 的解析式;(Ⅱ)当m R ∈时,试比较(1)f m -与(3)f m -的大小;(Ⅲ)求最小的整数(2)m m ≥-,使得存在实数t ,对任意的[,10]x m ∈,都有()2ln |3|f x t x +≤+.第18题20.(本小题满分16分)已知数列{}n a 满足11[2(1)][2(1)]1(1)3n n n n n a a n +++-++-=+-⋅,*n N ∈,12a =.(Ⅰ)求2a ,3a 的值;(Ⅱ)设2121n n n b a a +-=-,*n N ∈,证明: {}n b 是等差数列;(Ⅲ)设212n n c a n =+,求数列{}n c 的前n 项和n S .盐城市2011/2012学年度高三年级摸底考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题] 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.A.(选修4—1:几何证明选讲)如图,圆O 的直径6AB =,C 为圆周上一点,3BC =,过点C作圆O 的切线l ,过点A 作l 的垂线AD ,D 为垂足,且AD 与圆O 交于点E ,求DAC ∠的度数与线段AE 的长.B .(选修4—2:矩阵与变换)已知矩阵A =1214⎡⎤⎢⎥-⎣⎦,求A 的特征值1λ、2λ及对应的特征向量1α、2α. C .(选修4—4:坐标系与参数方程)已知直线l 的极坐标方程为()4R πθρ=∈,曲线C的参数方程为2(x y θθθ⎧=+⎪⎨=⎪⎩为参数),试判断l 与C 的位置关系.D.(选修4—5:不等式选讲)已知,,a b c 为正数,且22214a b c ++=,试求23a b c ++的最大值.第21(A)题A· OB E l D C[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内. 22.(本小题满分10分)甲、乙等五名深圳大运会志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 23.(本小题满分10分)如图,在直三棱柱111ABC A B C -中,∠ACB =90°,∠BAC =30°,1BC =,1AA = M 是棱1CC 的中点.(Ⅰ)求证:1A B ⊥AM ; (Ⅱ)求直线AM 与平面11AA B B 所成角的正弦值.盐城市2011/2012学年度高三年级摸底考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.{}2 2.,sin 0x R x ∃∈≤.45 5.136. 85 7.1 8.4 9.1:8 10.2sin(2)3y x π=+11.1212.22125()(1)24x y -++= 13.-16 14.364二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)证:(Ⅰ)因为ABC ∆是正三角形,而D 是BC 的中点,所以AD BC ⊥……………………………… 3分又BC 是两个相互垂直的平面ABC 与面11BCC B 的交线,且AD ABC ⊂面, 所以11AD BCC B ⊥面…………………………………………………………………………………… 7分第23题ABMA 1B 1C 1C(Ⅱ)连接1A B ,设11AB A B E =,则E 为1A B 的中点,连接DE ,由D 是BC 的中点,得DEAC ………11分 又1DE AB D ⊂面,且11AC AB D ⊄面,所以1AC 平面1AB D ………14分16.(本小题满分14分) 解:(Ⅰ)因为cos B =,所以sin 8B =…………………………………………………………2分 又1cos 4ADC ∠=-,所以sin ADC ∠= 4分 所以sin sin()sin cos cos sin BAD ADC B ADC B ADC B ∠=∠-∠=∠-∠1()48484=--⨯=………………………………………………………………………7分(Ⅱ)在ABD ∆中,由正弦定理,得sin sin AD BD B BAD =∠,即=,解得2BD =……………10分故2DC =,从而在ADC ∆中,由余弦定理,得2222cos AC AD DC AD DC ADC =+-⋅∠=22132232()164+-⨯⨯⨯-=,所以4AC =………………………………………………………14分17.(本小题满分14分) 解:(Ⅰ)703()7 2.4(3)3x F x x x <≤⎧=⎨+⨯->⎩7032.40.23x x x <≤⎧=⎨->⎩…………………………3分 设折旧费2z kx =,将(100,0.1)代入,得.20.1100k =,解得5110k =……………………………………5分所以251() 2.3 1.610C x x x =++…………………………………………………………………………7分 (Ⅱ)因为F C y x-=,所以554.711.623102.510.8()310x x x y x x x ⎧--≤≤⎪⎪=⎨⎪-+>⎪⎩……………………………………11分①当3x >时,由基本不等式,得0.80.79y ≤-=(当且仅当500x =时取等号)……………12分 ②当23x ≤≤时,由y在[2,3]上单调递减,得max 554.7221.60.750.7921010y =--=-<…………13分 答: 该市出租汽车一次载客路程为500km 时,每km 的收益y 取得最大值…………………………14分 18.(本小题满分16分)解:(Ⅰ)设椭圆的方程为22221(0)x y a b a b+=>>,当3t =时,PQ 的中点为(0,3),所以b=3……………3分 而2216a b -=,所以225a =,故椭圆的标准方程为221204x y +=……………………………………5分 (Ⅱ)①解法一:易得直线12:28;:28AF y x AF y x =+=-+,所以可得88(,),(,)22t t P t Q t --,再由1QR AF ,得(4,0)R t -………………………………………8分则线段1F R 的中垂线方程为2t x =-, 线段1PF 的中垂线方程为151628t y x -=-+,由1516282t y x t x -⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1PRF ∆的外接圆的圆心坐标为7(,2)28t t --…………………10分经验证,该圆心在定直线7480x y ++=上…………………………………………………… 11分解法二: 易得直线12:28;:28AF y x AF y x =+=-+,所以可得88(,),(,)22t tP t Q t --, 再由1QRAF ,得(4,0)R t -……………………………………………………………………8分设1PRF ∆的外接圆C 的方程为220x y Dx Ey F ++++=,则2222(4)(4)0(4)4088()022t t D F y D F t t t D tE F ⎧⎪-+-+=⎪=--+=⎨⎪--⎪++++=⎩,解得744416D tE tF t =⎧⎪⎪=-⎨⎪=-⎪⎩…………………………………10分所以圆心坐标为7(,2)28t t--,经验证,该圆心在定直线7480x y ++=上…………………11分②由①可得圆C 的方程为227(4)41604x y tx t y t +++-+-=……………………………13分该方程可整理为227(216)(4)04x y y t x y ++-+-+=, 则由2241607404x y y x y ⎧++-=⎪⎨-+=⎪⎩,解得4133213x y ⎧=⎪⎪⎨⎪=⎪⎩或40x y =-⎧⎨=⎩, 所以圆C 恒过异于点1F 的一个定点,该点坐标为432(,)1313…………………………………16分19.(本小题满分16分) 解: (Ⅰ)当0x <时,()()ln(2)f x f x x =-=-+…………………………………………………3分(Ⅱ)当0x ≥时,()ln(2)f x x =+单调递增,而()f x 是偶函数,所以()f x 在(,0)-∞上单调递减,所以(1)f m ->22(3)|1||3|(1)(3)f m m m m m -⇔->-⇔->-2m ⇔>………………6分所以当2m >时, (1)(3)f m f m ->-;当2m =时, (1)(3)f m f m -=-;当2m <时,(1)(3)f m f m -<-……………………………………………………………… 8分(Ⅲ)当x R ∈时,()ln(||2)f x x =+,则由()2ln |3|f x t x +≤+,得2ln(||2)ln(3)x t x ++≤+,即2||2(3)x t x ++≤+对[,10]x m ∈恒成立………………………………………………………12分从而有225777t x x t x x ⎧≤++⎨≥---⎩对[,10]x m ∈恒成立,因为2m ≥-, 所以22min 22max (57)57(77)77t x x m m t x x m m ⎧≤++=++⎨≥---=---⎩………………………………………………………14分 因为存在这样的t ,所以227757m m m m ---≤++,即2670m m ++≥…………………… 15分又2m ≥-,所以适合题意的最小整数1m =-………………………………………………………16分20.(本小题满分16分)解: (Ⅰ)因为11[2(1)][2(1)]1(1)3n n n n n a a n +++-++-=+-⋅ (*),且12a =,所以将1n =代入(*)式,得1232a a +=-,故28a =-……1分 将2n =代入(*)式,得2337a a +=,故35a =…………2分(Ⅱ)在(*)式中,用2n 代换n ,得2122221[2(1)][2(1)]1(1)6n n n n n a a n +++-++-=+-⋅, 即221316n n a a n ++=+ ①, 再在(*)式中,用21n -代换n ,得22121212[2(1)][2(1)]1(1)(63)n n n n n a a n ---+-++-=+-⋅-,即212346n n a a n -+=- ②, ①-②,得21213()123n n a a n +--=-,即41n b n =-…………………6分则由1(4(1)1)(41)4n n b b n n +-=+---=,得{}n b 是等差数列……………………………………… 8分(Ⅲ)因为12a =,由(Ⅱ)知,21131532123()()()k k k a a a a a a a a ---=+-+-+⋅⋅⋅+-2(411)(421)(4(1)1)k =+⨯-+⨯-+⋅⋅⋅+⨯--=(1)(21)2k k --+ ③, 将③代入②,得23(1)(21)646k k k a k --++=-,即22635k a k k =-+-………………………… 10分所以221211(21)2k k c a k --=+-=27452k k -+,2221(2)2k k c a k =+=2435k k -+-,则212322k k c c k -+=--,所以21234212()()()k k k S c c c c c c -=++++⋅⋅⋅++=3[(21)2-⨯+3(22)2+⨯+3(2)]2k +⋅⋅⋅+⨯+23335[(21)(22)(2)]2222k k k-⨯++⨯++⋅⋅⋅+⨯+=--……… 13分所以2222122511()(435)3522k k k S S c k k k k k k -=-=----+-=-+……………………………15分故221135(21)25(2)2n k k n k S k k n k ⎧-+=-⎪⎪=⎨⎪--=⎪⎩223512()45()4n n n n n n ⎧-+⎪⎪=⎨+⎪-⎪⎩为数为数奇偶………………………………16分数学附加题部分21.A. 解: 连结OC ,因BC=OB=OC=3,因此060CBO ∠=,由于DCA CBO ∠=∠,所以060DCA ∠=,又AD DC⊥,故030DAC ∠=…………………………………………………………………………5分又因为090ACB ∠=,得030CAB ∠=,那么060EAB ∠=,连接BE,则030ABE ∠=,于是132AE AB ==…………………………………………………………………………………… 10分B. 解:设A 的一个特征值为λ,由题意知1214λλ---=0,则(2)(3)0λλ--=,解得12λ=或23λ=………………………………………………………………………………………5分当λ1=2时,由1214⎡⎤⎢⎥-⎣⎦xy⎡⎤⎢⎥⎣⎦=2xy⎡⎤⎢⎥⎣⎦,得A属于特征值2的特征向量α1=21⎡⎤⎢⎥⎣⎦…………………8分当λ2=3时,由1214⎡⎤⎢⎥-⎣⎦xy⎡⎤⎢⎥⎣⎦=3xy⎡⎤⎢⎥⎣⎦,得A属于特征值3的特征向量α2=11⎡⎤⎢⎥⎣⎦…………………10分C.解:直线l的直角坐标方程为y x=……3分曲线C是圆,圆心为(2,0),半径为r=6分因为圆心到直线l的距离d r===,所以直线与曲线C相切……………………………10分D. 解:根据柯西不等式,得22222222(23)()(123)14a b c a b c++≤++++=………………………8分所以2314a b c++≤,即23a b c++的最大值为14…………………………………………………10分22. 解:(Ⅰ)记甲、乙两人同时参加A岗位服务为事件AE,那么3324541()40AAP EC A==,即甲、乙两人同时参加A岗位服务的概率是140………………………………………………………5分(Ⅱ)随机变量ξ可能取的值为1,2,事件“2ξ=”是指有两人同时参加A岗位服务,则235334541(2)4C APC Aξ===,所以3(1)1(2)4P Pξξ==-==,即ξ的分布列如下表所示…………10分23.解:(Ⅰ)因为1C C⊥平面ABC,BC⊥AC,所以分别以CA,CB,1CC所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系,则B(0,1,0),1A,A0,0),M,所以1A B=(1,,AM=(3-0,所以1A B·AM=3+0-3=0,所以1A B⊥AM,即1A B⊥AM……………………………………5分(Ⅱ)由(Ⅰ)知(,0)AB=-,1A A=(0,0),设面11AA B B的法向量为(,,)n x y z=,ξ 1 3P3414- 11 -则0,0.y ⎧+=⎪=不妨取(1n =,设直线AM 与平面11AA B B 所成角度为θ,则sin |cos ,|||||||AM n AM n AM n θ⋅=<>==⋅ 所以直线AM 与平面11AA B B 10分(注:其它建系方法与解法,类似给分)。

江苏省盐城中学2012届高三三模数学试题

江苏省盐城中学2012届高三三模数学试题

盐城中学2012届高三三模数学试题一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1.已知复数z 满足(1i)1z -⋅=,则z =_▲____。

2.命题“0,2≥∈∀x R x ”的否定是 ▲ 。

3.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若B A =,则c = ▲ 。

4、若数据123,,,,n x x x x 的平均数x =5,方差22σ=,则数据12331,31,31,,31n x x x x ++++ 的方差为 ▲ 。

5.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:①若//αβ,m α⊂,n β⊂,则//m n ; ②若m α⊥,//m β,则αβ⊥;③ 若n α⊥,n β⊥,m α⊥,则m β⊥; ④ 若αγ⊥,βγ⊥,m α⊥,则m β⊥. 其中错误..命题的序号是 ▲ 。

6.如图,若程序框图输出的S 是126,则判断框①中应为 ▲ 。

7.已知数列{}n a 满足*331log 1log ()n n a a n ++=∈N 且2469a a a ++=,则15793log ()a a a ++的值是 ▲ 。

8.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是 ▲ 。

9..若实数a 满足)(|2||1|R t t t a ∈--->恒成立,则函数()()256a f x log x x =-+的单调减区间为 ▲ 。

10.已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA 、PB 是圆C :2220x y y +-=的两条切线,A 、B 是切点,若四边形PACB 的最小面积是2,则k 的值为 ▲ 。

11.直线y x =与函数22,,()42,x m f x x x x m>⎧=⎨++≤⎩的图象恰有三个公共点,则实数m 的取值范围是 ▲ 。

2012年江苏省南京市、盐城市高考数学三模试卷

2012年江苏省南京市、盐城市高考数学三模试卷

2012 年江苏省南京市、盐城市高考数学三模试卷2012 年江苏省南京市、盐城市高考数学三模试卷一、填空题:本大题共14 小题,每题 5 分,计 70 分 .请把答案写在答题纸的指定地点上 .1.( 5 分)( 2012?盐城三模) 已知会合 A={ ﹣ 1,1,3} ,B= ,且 B? A ,则实数 a 的值是 _________.2.( 5 分)(2012?盐城三模)已知复数 z 知足( 2﹣ i ) z=5i (此中 i 为虚数单位),则复数 z 的模是_________.3.( 5 分)(2012?盐城三模)依据如下图的流程图,若输入 x 的值为﹣ 7.5,则输出 y 的值为 _________.4.(5 分)( 2012?盐城三模)若将一颗质地均匀的骰子(各面上分别标有 1、 2、3、4、5、6 个点的正方形玩具)先后投掷两次,向上的点数挨次为 m 、 n ,则方程 x 2+2mx+n=0 无实根的概率是_________ . 5.( 5 分)( 2014?扬州模拟)为了检测某自动包装流水线的生产状况,在流水线上随机抽取 40 件产品,分别称出它们的重量(单位:克)作为样本.如图是样本的频次散布直方图,依据图中各组的组中值预计产品的均匀重量是_________ 克.6.( 5 分)(2012?盐城三模)已知正 △ ABC 的边长为 1,,则 = _________ .7.( 5 分)(2012?盐城三模)已知 α、 β是两个不一样的平面,以下四个条件: ① 存在一条直线 a , a ⊥α, a ⊥ β;② 存在一个平面γ, γ⊥ α, γ⊥ β;③ 存在两条平行直线 a 、 b , a? α,b? β, a ∥ β, b ∥ α; ④ 存在两条异面直线a 、b , a? α,b? β, a ∥ β, b ∥ α.此中是平面 α∥ 平面 β的充足条件的为 _________ .(填上全部切合要求的序号)8.( 5 分)(2012?盐城三模)若函数是奇函数,则知足 f (x )> a 的 x 的取值范围是_________ .9.( 5 分)(2012?盐城三模)在直角坐标系 xOy 中,记不等式组 表示的平面地区为 D .若指数函数y=a x( a > 0 且 a ≠1)的图象与 D 有公共点,则 a 取值范围是 _________ .10.( 5 分)( 2012?盐城三模)在平面直角坐标系xOy 中,抛物线 y 2=4x 的焦点为 F ,点 P 在抛物线上,且位于 x 轴上方.若点 P 到坐标原点 O 的距离为 ,则过 F 、 O 、P 三点的圆的方程是_________ .11.(5 分)( 2012?盐城三模)已知,则 cos α= _________ .12.( 5 分)( 2012?盐城三模)在平面直角坐标系 xOy 中,已知点 A ( 0, 2),直线 l : x+y ﹣ 4=0 .点 B ( x ,y )是圆 C : x 2+y 2﹣ 2x ﹣1=0 的动点, AD ⊥ l , BE ⊥ l ,垂足分别为 D 、 E ,则线段 DE 的最大值是 _________ . 13.(5 分)( 2012?盐城三模)如图,将数列 {a n } 中的全部项按每一行比上一行多两项的规则排成数表.已知表中的 第一列 a 1,a 2,a 5, 组成一个公比为 2 的等比数列,从第 2 行起,每一行都是一个公差为d 的等差数列.若 a 4=5,a =518,则 d= _________ .8614.( 5 分)( 2013?宝应县一模) 若不等式 |ax 3﹣ lnx|≥1 对随意 x ∈( 0,1]都成立, 则实数 a 取值范围是_________ .二、解答题(共 6 小题,满分 90 分)15.( 14 分)(2013?宝应县一模)在 △ ABC 中,角 A 、B 、C 的对边分别为 a 、 b 、c .已知向量,,且.( 1)求的值;( 2)若,求 △ ABC 的面积 S .16.( 14 分)( 2012?盐城三模)在 △ ABC 中, ∠ BAC=90 °,∠ B=60 °,AB=1 , D 为线段 BC 的中点, E 、 F 为线段 AC 的三平分点(如图 1).将 △ABD 沿着 AD 折起到 △ AB ′D 的地点,连结 B'C (如图 2).( 1)若平面 AB ′D ⊥ 平面 ADC ,求三棱锥 B ′﹣ ADC 的体积;( 2)记线段 B ′C 的中点为 H ,平面 B ′ED 与平面 HFD 的交线为 l ,求证: HF ∥ l ;( 3)求证: AD ⊥ B ′E .17.( 14 分)(2012?盐城三模)在某次水下考古活动中,需要潜水员潜入水深为 30 米的水底进行作业.其用氧量包含 3 个方面:①下潜时,均匀速度为 v (米 /单位时间),单位时间内用氧量为cv 2( c 为正常数);② 在水底作业需 5 个单位时间,每个单位时间用氧量为 0.4;③ 返回水面时,均匀速度为(米 /单位时间),单位时间用氧量为 0.2.记该潜水员在此次考古活动中,总用氧量为y .( 1)将 y 表示为 v 的函数;( 2)设 0< v ≤5,试确立下潜速度 v ,使总的用氧量最少.18.( 16 分)( 2012?盐城三模) 在平面直角坐标系 xOy 中,过点 A (﹣ 2,﹣ 1)椭圆的左焦点为 F ,短轴端点为 B 1、 B 2, .( 1)求 a 、b 的值;( 2)过点 A 的直线 l 与椭圆 C 的另一交点为 Q ,与 y 轴的交点为 R .过原点 O 且平行于 l 的直线与椭圆的一个交点为 P .若 AQ ?AR=3OP 2,求直线 l 的方程.19.( 16 分)(2012?盐城三模)已知数列 {a n } 的奇数项是公差为 d 1 的等差数列,偶数项是公差为 d 2 的等差数列, S n是数列 {a n } 的前 n 项和, a 1=1, a 2=2. ( 1)若 S 5 =16, a 4=a 5,求 a 10;( 2)已知 S 15=15a 8,且对随意 n ∈N *,有 a n < a n+1 恒成立,求证:数列 {a n } 是等差数列;( 3)若 d 1 =3d 2( d 1≠0),且存在正整数 m 、 n (m ≠n ),使得 a m =a n .求当 d 1 最大时,数列 {a n } 的通项公式.20.( 16 分)( 2013?宁波模拟)已知函数 f ( x ) =x 3+ax 2﹣ a 2x+2 , a ∈R . ( 1)若 a <0 时,试求函数 y=f (x )的单一递减区间;( 2)若 a=0,且曲线 y=f ( x )在点 A 、B (A 、 B 不重合)处切线的交点位于直线x=2 上,证明: A 、 B 两点的横坐标之和小于 4;( 3)假如对于全部 x 1、 x 2、 x 3∈[0 , 1] ,总存在以 f ( x 1)、 f ( x 2)、f (x 3)为三边长的三角形,试求正实数 a 的取值范围.三、 [选做题 ]在 A 、 B 、 C 、 D 四小题中只好选做 2 题,每题 0 分,共 20 分.请在答题卡指定地区内作答.解答应写出文字说明、证明过程或演算步骤.21.( 2012?盐城三模)选修 4﹣ 1:几何证明选讲:如图, ⊙ O 的直径 AB 的延伸线与弦 CD 的延伸线订交于点P ,E 为 ⊙ O 上一点, ,DE 交 AB 于点 F .求证:PF?PO=PA?PB .22.( 2012?盐城三模)选修 4﹣ 2:矩阵与变换:已知曲线 C : x 2+y 2=1,对它先作矩阵 A=对应的变换,再作矩阵B=对应的变换,获得曲线.务实数 b 的值.23.( 2012?盐城三模)选修 4﹣ 4:坐标系与参数方程:在以 O 为极点的极坐标系中,直线l 与曲线 C 的极坐标方程分别是和 ρsin 2θ=8cos θ,直线l 与曲线 C 交于点 A 、 B ,求线段 AB 的长.24.( 2012?盐城三模)选修 4﹣ 5:不等式选讲: 解不等式:.四、 [必做题 ]每题 10 分,共 20 分.请在答题卡指定地区内作答.解答应写出文字说明、证明过程或演算步骤. 25.( 2012?盐城三模)一个袋中装有大小和质地都同样的 10 个球,此中黑球 4 个,白球 5 个,红球 1 个. ( 1)从袋中随意摸出 3 个球,记获得白球的个数为 X ,求随机变量 X 的概率散布和数学希望 E (X ); ( 2)每次从袋中随机地摸出一球,记下颜色后放回.求 3 次摸球后,摸到黑球的次数大于摸到白球的次数的概率.26.( 2012?盐城三模)已知数列 {a n } 的首项为 1,.( 1)若数列 {a n } 是公比为 2 的等比数列,求p (﹣ 1)的值;( 2)若数列 {a n } 是公差为 2 的等差数列,求证: p (x )是对于 x 的一次多项式.2012 年江苏省南京市、盐城市高考数学三模试卷参照答案与试题分析一、填空题:本大题共14 小题,每题 5 分,计 70 分 .请把答案写在答题纸的指定地点上.1.( 5 分)(2012?盐城三模)已知会合A={ ﹣ 1, 1, 3} ,B=,且B ? A,则实数a 的值是1.考点:会合的包含关系判断及应用.专题:计算题.剖析:由 B ? A,及+2≥2 知+2∈A,且+2=3 ,直接得出a=1.解答:解:因为A={ ﹣ 1, 1, 3} ,B=,且B? A,则 +2∈A ,又+2≥2,∴+2=3 ,a=1所以 a 的值为 1.故答案为: 1评论:此题考察了会合的包含关系,属于基础题型.2.( 5 分)(2012?盐城三模)已知复数z 知足( 2﹣ i) z=5i (此中 i 为虚数单位),则复数z 的模是.考点:复数代数形式的乘除运算;复数求模.专题:计算题.剖析:对复数方程两边求模,而后求出复数z 的模.解答:解:因为复数z 知足( 2﹣ i) z=5i ,所以 |( 2﹣ i) z|=|5i|,所以 |z|=.故答案为:.评论:此题考察复数的模的求法,考察计算能力.3.( 5 分)(2012?盐城三模)依据如下图的流程图,若输入x 的值为﹣ 7.5,则输出y 的值为﹣1.考点:程序框图.专题:图表型.剖析:联合框图,写出前几次循环的结果,判断每一次结果能否知足判断框的条件,直到知足履行Y,输出 y 的值.解答: 解:经过第一次循环获得x= ﹣5.5经过第二次循环获得 x= ﹣ 3.5 经过第三次循环获得 x= ﹣ 1.5 经过第四次循环获得x=0.5知足判断框的条件,履行 Y , y=log 20.5=﹣ 1,输出﹣ 1故答案为:﹣ 1评论: 此题考察解决程序框图中的循环构造时,常采纳写出前几次循环的结果,找规律.4.(5 分)( 2012?盐城三模)若将一颗质地均匀的骰子(各面上分别标有1、 2、3、4、5、6 个点的正方形玩具)先后投掷两次,向上的点数挨次为m 、 n ,则方程2无实根的概率是.x +2mx+n=0考点 : 古典概型及其概率计算公式. 专题 : 计算题.剖析: 连续投掷两次骰子分别获得的点数记作(m , n ):共 36 个,方程 x 2+2mx+n=0 无实根,即 △ < 0,即 n > m 2 ,这样的( m , n )有 7 个,由此求得方程 x 2+2mx+n=0 无实根的概率.解答: 解:连续投掷两次骰子分别获得的点数记作( m , n ):( 1, 1),(1, 2),(1, 3),( 1, 4),( 1, 5),( 1, 6) ( 2, 1),(2, 2),(2, 3),( 2, 4),( 2, 5),( 2, 6) ( 3, 1),(3, 2),(3, 3),( 3, 4),( 3, 5),( 3, 6) ( 4, 1),(4, 2),(4, 3),( 4, 4),( 4, 5),( 4, 6) ( 5, 1),(5, 2),(5, 3),( 5, 4),( 5, 5),( 5, 6)( 6, 1),(6, 2),(6, 3),( 6, 4),( 6, 5),( 6, 6).共 36 个方程 x 2+2mx+n=0 无实根,即 △ =4m 2 ﹣4n < 0,即 n >m 2,这样的( m , n )有:( 1, 2),( 1, 3),( 1, 4),( 1, 5),(1, 6),( 2, 5),(2, 6),共 7 个,故方程x 2+2mx+n=0 无实根的概率是,故答案为.评论: 此题考察古典概型问题,能够列举出试验发生包含的事件和知足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.5.( 5 分)( 2014?扬州模拟)为了检测某自动包装流水线的生产状况,在流水线上随机抽取40 件产品,分别称出它们的重量(单位:克)作为样本. 如图是样本的频次散布直方图, 依据图中各组的组中值预计产品的均匀重量是507克.考点 : 频次散布直方图.专题:计算题.剖析:直接依据频次直方图均匀数的求法求解即可.解答:解:由题意可知:均匀重量=0.1×490+0.3×500+0.4×510+0.2×520=507.故答案为: 507.评论:此类题要点考察频次散布直方图的知识,加权均匀数,频次计算,考察计算能力.6.( 5 分)(2012?盐城三模)已知正△ ABC的边长为1,,则=﹣2.考点:平面向量数目积的性质及其运算律;向量加减混淆运算及其几何意义.专题:计算题.剖析:由题意可得=()? =7+3,再利用两个向量的数目积的定义求出结果.解答:解:由题意可得=()? =7+3=7×1×1cos120°+3×1×1cos60°=+ =﹣2,故答案为﹣ 2.评论:此题主要考察两个向量的数目积的定义,注意两个向量的夹角的值,属于基础题.7.( 5 分)(2012?盐城三模)已知α、β是两个不一样的平面,以下四个条件:①存在一条直线a, a⊥α, a⊥ β;② 存在一个平面γ,γ⊥ α,γ⊥ β;③存在两条平行直线a、 b, a? α,b? β, a∥ β, b∥ α;④存在两条异面直线a、 b, a? α,b? β, a∥ β, b∥ α.此中是平面α∥ 平面β的充足条件的为①④.(填上全部切合要求的序号)考点:平面与平面平行的判断.专题:证明题.剖析:利用空间直线与平面平行、垂直的判断与性质和平面与平面平行的判断与性质,对各个选项分别加以推理论证,则不难获得此题的正确答案.解答:解:对于① ,依据直线与平面垂直的性质可知,当直线a⊥ α且 a⊥ β,必有平面α、β相互平行时,故①正确;对于② ,以长方体的一个角为例,可知γ⊥α且γ⊥β时,也可能α、β订交,不必定有α∥ β,故② 不正确;对于③,当α、β订交,交线 l 既与 a 平行,又与 b 平行时,存在两条平行直线a、 b, a? α, b? β, a∥ β,b∥ α,所以,③ 不正确;对于④,存在两条异面直线a、b, a? α,b? β, a∥ β, b∥ α.可将α内的直线平移到β内的直线c,则有订交直线b、 c 都与平面α平行,依据面面平行的判断定理,可得④ 正确.故答案为:①④评论:此题以充足条件的判断为载体,找寻使两个平面平行的充足条件,侧重考察了空间线面垂直、面面垂直、面面平行的判断与性质等知识点,属于基础题.8.( 5 分)(2012?盐城三模)若函数是奇函数,则知足 f (x)> a 的 x 的取值范围是.考点:函数奇偶性的性质.专题:计算题.剖析: 依据奇函数定义求出a 的值,得原不等式即 f ( x )>﹣ 2,再分类议论,分别解一元二次不等式,可得原不等式的解集.解答: 解:当 x <0 时, f (﹣ x ) =(﹣ x ) 2﹣ 2(﹣ x ) =x 2+2x∵ 函数 f ( x )是奇函数,∴ 当 x < 0 时, f ( x )=﹣ f (﹣ x ) =﹣ x 2﹣ 2x ,比较已知条件,得 a=﹣ 2① 当 x ≥0 时,原不等式可化为x 2﹣ 2x >﹣ 2,即 x 2﹣ 2x+2 > 0 解之得 x ≥0;② 当 x < 0 时,原不等式可化为﹣ x 2﹣ 2x >﹣ 2,即 x 2+2x ﹣ 2<0解之得﹣ 1﹣ <x < 0综上所述,得原不等式的解集为故答案为:评论: 此题给出分段函数为奇函数,求参数a 值并解对于 x 的不等式,侧重考察了函数奇偶性和一元二次不等式的解法等知识,属于基础题.9.( 5 分)(2012?盐城三模)在直角坐标系 xOy 中,记不等式组表示的平面地区为 D .若指数函数y=a x( a > 0 且 a ≠1)的图象与 D 有公共点,则 a 取值范围是[ ) .考点 : 简单线性规划的应用.专题 : 综合题.剖析: 作出平面地区,对底数 a 议论,联合函数的图象,利用指数函数的性质,即可获得结论.解答: 解:暗影部分是平面地区D ,依据指数函数的性质可知,当 a > 1 时,函数图象离 y 轴越近,则 a 的值越大∴ 当图象经过 g ( x )与 r ( x )的交点时, a 的值最小由,可得∴ 3=a 2, ∴ a=∴ a ≥当 0< a < 1 时,函数图象与 D 没有公共点 综上知, a ≥ 故答案为: [)评论: 此题考察线性规划知识,考察指数函数,考察学生剖析解决问题的能力,属于中档题.10.( 5 分)( 2012?盐城三模)在平面直角坐标系 xOy 中,抛物线 y 2=4x 的焦点为 F ,点 P 在抛物线上,且位于 x轴上方.若点 P 到坐标原点 O 的距离为 ,则过 F 、 O 、P 三点的圆的方程是22.x +y ﹣ x ﹣ 7y=0考点 : 抛物线的简单性质;圆的一般方程.专题 : 计算题.剖析: 依据抛物线方程,求出焦点F 的坐标和知足条件 |OP|=4 的 P 点的坐标,再设经过 F 、O 、P 三点圆的一般式方程,将 O 、F 、 P 坐标代入,解对于 D 、 E 、 F 的方程组,即可获得所求圆的方程.解答: 解: ∵ 抛物线的方程为 y 2=4x , ∴ 抛物线焦点为 F ( 1, 0)设 P (, t ),则 |OP|==4 ,解之得 t=4 (舍负),∴ P 坐标为( 4, 4)设经过 F 、 O 、P 三点的圆的方程为x 2+y 2+Dx+Ey+F=0 ,将 O ( 0, 0),F ( 1,0), P ( 4, 4)代入,得,解之得 D= ﹣ 1, E=﹣ 7,F=022∴ 经过 F 、 O 、P 三点的圆的方程为x +y ﹣x ﹣ 7y=0 .22故答案为: x +y ﹣ x ﹣7y=0评论: 此题给出过抛物线上一点和焦点的圆经过坐标原点,求圆的一般式方程,侧重考察了抛物线的标准方程和基本观点、圆的一般式方程等知识,属于基础题.11.(5 分)( 2012?盐城三模)已知,则 cos α= .考 两角和与差的正弦函数;同角三角函数间的基本关系. 点:专 计算题.题: 分由条件求得,再由 ,可得 ,再由析:,利用两角和差的正弦公式求出结果.解解: ∵已知 ,答:∴,,又,所以.∴= ?cos+sin?sin=,故答案为.点 此题主要考察两角和差的正弦公式,同角三角函数的基本关系的应用,属于中档题.评:12.( 5 分)( 2012?盐城三模)在平面直角坐标系 xOy 中,已知点 A ( 0, 2),直线 l : x+y ﹣ 4=0 .点 B ( x ,y )是圆 C : x 2+y 2﹣ 2x ﹣1=0 的动点, AD ⊥ l , BE ⊥ l ,垂足分别为 D 、 E ,则线段 DE 的最大值是.考点 : 直线和圆的方程的应用.专题 : 计算题.剖析: 线段 DE 的最大值等于圆心( 1,0)到直线 AD : x ﹣y+2=0 的距离加半径,由此可得结论.解答: 解:圆 C : x 2+y 2﹣2x ﹣ 1=0 的圆心坐标为( 1, 0),半径为 ;依据题意,线段 DE 的最大值等于圆心( 1, 0)到直线 AD : x ﹣ y+2=0 的距离加半径,∵ 圆心( 1, 0)到直线 AD :x ﹣ y+2=0 的距离为=∴ 线段 DE 的最大值为故答案为:.评论: 此题考察直线与圆的方程的应用,考察学生剖析解决问题的能力,属于中档题.13.(5 分)( 2012?盐城三模)如图,将数列 {a n } 中的全部项按每一行比上一行多两项的规则排成数表.已知表中的第一列 a 1,a 2,a 5, 组成一个公比为2 的等比数列,从第2 行起,每一行都是一个公差为d 的等差数列.若 a 4=5,a =518,则 d= 1.5 .86考点 : 等差数列与等比数列的综合. 专题 : 综合题.剖析: 由第 2 行成公差为 d 的等差数列,得 a 2=5﹣ 2d ,由第 n 行的数的个数为2n ﹣1,从第 1 行到第 n 行的全部数的个数总和 n 2,由此利用 a 4=5, a 86=518 ,能求出 d . 解答: 解: ∵ 第 2 行成公差为 d 的等差数列,∴ a 2=a 4﹣ 2d=5﹣ 2d ,第 n 行的数的个数为 2n ﹣ 1,从第 1 行到第 n 行的全部数的个数总和为,86=9 2+5,第 10 行的前几个数为: a 82, a 83,a 84, a 85, a 86, ,所以 a 82=a 86﹣ 4d=518﹣ 4d .第一列 a 1 2 5 10 17 26 375065822 的等比数列,, a , a , a , a ,a , a , a, a , a , 组成一个公比为 故有 ,解得: d=1.5. 故答案为: 1.5.评论: 此题考察等差数列和等比数列的综合应用,解题时要认真审题,认真察看,注意找寻规律.14.( 5 分)(2013?宝应县一模)若不等式 |ax 3﹣ lnx| ≥1 对随意 x ∈( 0,1] 都成立,则实数 a 取值范围是.考点 : 利用导数求闭区间上函数的最值;函数恒成立问题.专题 : 综合题;导数的综合应用.剖析:令 g( x)=ax 3﹣ lnx ,求导函数,确立函数的单一性,从而可求函数的最小值,利用最小值大于等于1,即可确立实数 a 取值范围.解答:解:明显 x=1 时,有 |a|≥1, a≤﹣ 1 或 a≥1.令 g( x)=ax 3﹣ lnx ,①当 a≤﹣ 1 时,对随意x∈( 0,1] ,,g(x)在(0,1]上递减,g(x)min=g(1)=a≤﹣ 1,此时 g( x)∈[a, +∞), |g( x) |的最小值为0,不合适题意.②当 a≥1 时,对随意x∈( 0, 1],,∴函数在( 0,)上单一递减,在(,+∞)上单一递加∴ |g( x) |的最小值为≥1,解得:.∴实数 a 取值范围是评论:此题考察导数知识的运用,考察函数的单一性与最值,考察分类议论的数学思想,正确求导是要点.二、解答题(共 6 小题,满分90 分)15.( 14 分)(2013?宝应县一模)在△ABC中,角A、B、C的对边分别为a、 b、c.已知向量,,且.( 1)求的值;( 2)若,求△ ABC的面积S.考点:解三角形;平面向量的综合题.专题:计算题;解三角形.剖析:( 1)由可得b(cosA﹣2cosC)+(a﹣2c)cosB=0法一:依据正弦定理可得, sinBcosA ﹣ 2sinBcosC+sinAcosB ﹣ 2sinCcosB法二:依据余弦定理可得,b×=0化简可得,而后依据正弦定理可求( 2)由( 1) c=2a 可求 c,由 | |可求 b,联合余弦定理可求cosA ,利用同角平方关系可求sinA ,代入三角形的面积公式S=可求解答:解:( 1)法一:由可得b(cosA﹣2cosC)+(a﹣2c)cosB=0依据正弦定理可得, sinBcosA ﹣2sinBcosC+sinAcosB ﹣ 2sinCcosB=0∴( sinBcosA ﹣ sinAcosB )﹣ 2(sinBcosC+sinCcosB ) =0∴sin(A+B )﹣ 2sin( B+C )=0∵A+B+C= π∴sinC﹣ 2sinA=0∴(法二):由可得 b( cosA﹣ 2cosC)+( a﹣ 2c)cosB=0依据余弦定理可得, b×=0整理可得, c﹣ 2a=0∴=2( 2)∵由( 1)可知 c=2a=4∴b=3∴ cosA==,sinA==∴ △ABC 的面积 S===评论:此题以向量的坐标运算为载体主要考察了正弦定理及余弦定理在三角形求解中的应用,属于三角知识的综合应用16.( 14 分)( 2012?盐城三模)在△ ABC 中,∠ BAC=90 °,∠ B=60 °,AB=1 , D 为线段 BC 的中点, E、 F 为线段 AC 的三平分点(如图 1).将△ABD 沿着 AD 折起到△ AB ′D 的地点,连结 B'C (如图 2).(1)若平面 AB ′D⊥平面 ADC ,求三棱锥 B ′﹣ ADC 的体积;(2)记线段 B ′C 的中点为 H,平面 B ′ED 与平面 HFD 的交线为 l,求证: HF ∥ l;(3)求证: AD ⊥ B′E.考点:直线与平面平行的性质;空间中直线与直线之间的地点关系.剖析:(1)要求三棱锥的体积,要点要确立高与底面,因为平面AB'D ⊥平面 AD C ,则可让△ADC 为底, B'到面 ADC 的距离为高,即要找到过B'点的 AD 的垂线即可;( 2)此问是要证明线线平行,又知l 为平面 B'ED 与平面 HFD 的交线,故可证HF ∥面 B'ED ,再用线面平行的性质定理即得证;( 3)要证 AD ⊥ B'E,可用线面垂直的性质定理,即让AD 垂直于 B'E 所在的此中一个平面即可.解答:解:(1)在直角△ ABC中,D为BC的中点,所以AD=BD=CD .又 ∠ B=60 °,所以 △ABD 是等边三角形.取 AD 中点 O ,连结 B'O , ∴ B'O ⊥ AD . ∵ 面 AB'D ⊥ 面 ADC ,面 AB'D ∩面 ADC=AD , B'O? 面 AB'D , ∴ B'O ⊥ 面 ADC .在 △ ABC 中, ∠ BAC=90 °, ∠ B=60 °, AB=1 , D 为 BC 的中点,∴ AC=, B'O=,∴. ∴ 三棱锥 B' ﹣ADC 的体积为 V=.( 2)∵H又 HF?面 ∵HF? 面 为 B'C 的中点, F 为 CE 的中点, ∴ HF ∥B'E ,B'ED , B'E ? 面 B'ED , ∴HF ∥ 面 B'ED , HFD ,面 B'ED ∩面 HFD=l ,∴ HF ∥ l .( 3)由( 1)知, B'O ⊥ AD .∵ AE= , , ∠DAC=30 °,∴=,∴ AO 2+EO 2=AE 2, ∴AD ⊥ EO又 B'O ? 面 B'EO , EO? 面 B'EO , B'O ∩EO=O , ∴AD ⊥ 面 B'EO ,又 B'E? 面 B'EO , ∴ AD ⊥B'E .评论: 此题考察的是立体几何的平行与垂直的关系和空间体的体积;立体几何的平行与垂直的问题是高考的常考必考内容,除了要掌握与平行垂直有关的结论外,理科生还要注意掌握用空间向量的方法解决立体几何中的平行、垂直、空间角的问题.17.( 14 分)(2012?盐城三模)在某次水下考古活动中,需要潜水员潜入水深为 30 米的水底进行作业.其用氧量包含 3 个方面:①下潜时,均匀速度为 v (米 /单位时间),单位时间内用氧量为 cv 2( c 为正常数);② 在水底作业需 5 个单位时间,每个单位时间用氧量为 0.4;③ 返回水面时,均匀速度为(米 /单位时间),单位时间用氧量为 0.2.记该潜水员在此次考古活动中,总用氧量为y .( 1)将 y 表示为 v 的函数;( 2)设 0< v ≤5,试确立下潜速度 v ,使总的用氧量最少.考点 : 函数模型的选择与应用;利用导数求闭区间上函数的最值.专题 : 应用题;函数的性质及应用.剖析: ( 1)分别计算潜入水底用时、用氧量;水底作业时用氧量;返回水面用时、用氧量,即可获得总用氧量的函数;( 2)利用基本不等式可得 时取等号, 再联合 0< v ≤5,即可求得确立下潜速度 v ,使总的用氧量最少.解答:解:( 1)潜入水底用时 ,用氧量为,水底作业时用氧量为5×0.4=2,返回水面用时,用氧量为= ,∴ 总用氧量 y=(v > 0);( 2) y=≥2+2=2+12,当且仅当 ,即时取等号当≤5,即时,时,y的最小值为2+12,当> 5,即时,y′=0,∴函数在( 0, 5] 上为减函数∴ v=5 时, y 的最小值为.综上,当时,下潜速度为时,用氧量最小值为2+12;当时,下潜速度为 5 时,用氧量最小值为.评论:此题考察函数模型的建立,考察基本不等式的运用,考察导数知识,考察分类议论的数学思想.18.( 16 分)( 2012?盐城三模)在平面直角坐标系xOy 中,过点 A(﹣ 2,﹣ 1)椭圆的左焦点为 F,短轴端点为 B1、 B2,.( 1)求 a、b 的值;( 2)过点 A 的直线 l 与椭圆 C 的另一交点为Q,与 y 轴的交点为 R.过原点 O 且平行于 l 的直线与椭圆的一个交点为 P.若 AQ ?AR=3OP 2,求直线 l 的方程.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.剖析:( 1)利用222,依据椭圆过点A(﹣ 2,﹣ 1),可得,由此可求 a、,可得 c ﹣ b=2bb 的值;( 2)设直线 l 的方程代入椭圆方程,求出Q 的横坐标;直线OP 的方程代入椭圆方程,求出P 的横坐标,利用 AQ ?AR=3OP 2,成立方程,即可求得直线l 的方程.解答:解:( 1)由题意, F(﹣ c, 0), B 1(0,﹣ b),B 2( 0, b),则∵∴c 2﹣ b2=2b2①∵椭圆过点 A (﹣ 2,﹣ 1)∴②2 2由①②解得 a =8, b =2∴;x+2)[ (4k 2+1)(x+2 )﹣( 8k+4 )]=0( 2)由题意,设直线l 的方程为 y+1=k (x+2 ),代入椭圆方程可得(∵ x+2≠0,∴,∴ x Q+2=由题意,直线OP 的方程为 y=kx ,代入椭圆方程可得(4k 2+1) x2=8∴∵AQ ?AR=3OP 2,∴∴∴k=1 或 k=﹣ 2当 k=1 时,直线 l 的方程为 x﹣ y+1=0 ;当 k=﹣ 2 时,直线 l 的方程为 2x+y+5=0评论:此题考察椭圆的方程,考察直线与椭圆的地点关系,考察学生的计算能力,属于中档题.19.( 16 分)(2012?盐城三模)已知数列{a } 的奇数项是公差为 d 的等差数列,偶数项是公差为d的等差数列, Sn12n 是数列 {a n12.} 的前 n 项和, a =1, a =2(1)若 S5 =16, a4=a5,求 a10;(2)已知 S15=15a8,且对随意 n∈N *,有 a n< a n+1恒成立,求证:数列 {a n} 是等差数列;(3)若 d1 =3d2( d1≠0),且存在正整数 m、 n(m≠n),使得 a m=a n.求当 d1最大时,数列 {a n} 的通项公式.考点:数列的应用;等差关系确实定.专题:综合题;等差数列与等比数列.剖析:(1)确立数列的前 5 项,利用S5=16, a4=a5,成立方程,求出d1=2, d2=3,从而可求a10;(2)先证明 d1=d2,再利用 S15=15a8,求得 d1=d2=2,从而可证数列 {a n} 是等差数列;(3)若 d1 =3d2( d1≠0),且存在正整数 m、 n(m≠n),使得 a m=a n,在 m, n 中必定一个是奇数,一个是偶数.不如设 m 为奇数, n 为偶数,利用 a m=a n,及 d1=3d2,可得,从而可求当 d1最大时,数列 {a n} 的通项公式.解答:( 1)解:依据题意,有a1=1,a2=2, a3=a1+d1=1+d1, a4=a2+d2=2+d 2, a5=a3+d1=1+2d 1∵ S5=16, a4=a5,∴a1+a2+a3+a4+a5=7+3d1+d 2=16 ,2+d 2=1+2d1∴ d1=2, d2=3.∴a10=2+4d 2=14( 2)证明:当n 为偶数时,∵ a n< a n+1恒成立,∴2+,∴(d2﹣d1)+1﹣d2<0∴d2﹣ d1≤0 且 d2> 1当 n 为奇数时,∵ a n n+1恒成立,∴,<a∴( 1﹣ n)( d1﹣ d2)+2> 0∴d1﹣ d2≤0∴d1=d2∵ S15=15a8,∴ 8++14+=30+45d 2∴d1=d2=2∴a n =n∴数列 {a n} 是等差数列;(3)解:若 d1=3d2(d1≠0),且存在正整数 m、 n( m≠n),使得 a m=a n,在 m,n 中必定一个是奇数,一个是偶数不如设 m 为奇数, n 为偶数∵a m=a n,∴∵d1=3d2,∴∵ m 为奇数, n 为偶数,∴ 3m﹣ n﹣ 1 的最小正当为2,此时 d1=3, d2=1∴ 数列 {a nn.} 的通项公式为a =评论: 此题考察数列的通项,考察数列的乞降,考察学生剖析解决问题的能力,确立数列的通项是要点.20.( 16 分)( 2013?宁波模拟)已知函数 f ( x ) =x 3+ax 2﹣ a 2x+2 , a ∈R . ( 1)若 a <0 时,试求函数 y=f (x )的单一递减区间;( 2)若 a=0,且曲线 y=f ( x )在点 A 、B (A 、 B 不重合)处切线的交点位于直线 x=2 上,证明: A 、 B 两点的横坐标之和小于 4;( 3)假如对于全部 x 1、 x 2 、 x 3∈[0 , 1] ,总存在以 f ( x 1)、 f ( x 2)、f (x 3)为三边长的三角形,试求正实数 a 的取值范围.考点 : 利用导数研究函数的单一性;利用导数研究曲线上某点切线方程.专题 : 综合题.剖析: ( 1)求导函数,令 f' ( x )< 0,联合 a <0,可得函数单一递减区间;( 2)设在点 A ( x 1 3 2 3,x 1 +2 2+2)处切线的交点位于直线 x=2 上一点 P ( 2,t ),求出切线方程,)、B ( x , x 代入点 P 的坐标,双方程相减,借助于基本不等式,即可证得 A 、 B 两点的横坐标之和小于 4;( 3)先确立 0< a < 2,再求导函数,确立函数的单一性与最小值,从而可确立正实数a 的取值范围.解答:( 1)解: f'( x ) =3x 2+2ax ﹣ a 2=3(x+a )( x ﹣ )令 f' ( x )< 0, ∵ a < 0, ∴∴ 函数单一递减区间 [ ,﹣ a] ;( 2)证明:当 a=0 时, f ( x ) =x 3+2设在点 A ( x 33x=2 上一点 P ( 2, t ),1,x 1 +2)、 B ( x 2, x 2 +2)处切线的交点位于直线 ∵ y ′=3x 2, ∴ 在点 A 处的切线斜率为 k=∴ 在 A 处的切线方程为y ﹣( x 13+2) = 1(( x ﹣ x )3(( 2﹣x 1)∵ 切线过点 P , ∴ t ﹣( x 1 +2 ) =∴①同理②①﹣②可得∵ x 1≠x 2, ∴∵ x 1≠x 2, ∴∴∴ 0< x 1+x 2 <4∴ A 、B 两点的横坐标之和小于4;2( 3)解:由题设知, f ( 0)< f( 1)+f ( 1),即 2< 2(﹣ a +a+3 ),∴ ﹣1< a< 2∵a> 0,∴0< a< 2∵∴ x∈时,f′(x)<0,f(x)单一递减;当x∈时,f′(x)>0,f(x)单一递加∴当 x=时,f(x)有最小值 f ()=﹣∴ f()=﹣>0① ,f(0)<2(﹣)② ,f(1)<2(﹣)③ ,由①得 a<;由② 得,∵ 0<a<2,∴不等式③化为<0令 g( a)=,则g′(a)=,∴ g(a)为增函数∵ g( 2)=﹣<0,∴ 当时,g(a)<0恒成立,即③ 成立∴正实数 a 的取值范围为.评论:此题考察导数知识的运用,考察函数的单一性,考察导数的几何意义,考察存在性问题的研究,正确求导是要点.三、 [选做题 ]在 A 、 B 、 C、 D 四小题中只好选做 2 题,每题 0 分,共 20 分.请在答题卡指定地区内作答.解答应写出文字说明、证明过程或演算步骤.21.( 2012?盐城三模)选修4﹣ 1:几何证明选讲:如图,⊙ O 的直径 AB 的延伸线与弦CD 的延伸线订交于点P,E 为⊙ O 上一点,,DE交AB于点F.求证:PF?PO=PA?PB.考点:与圆有关的比率线段.专题:证明题;直线与圆.剖析:先证明△PDF∽ △ POC,再利用割线定理,即可证得结论.解答:证明:连结OC、 OE,则∠ COE=2 ∠ CDE∵, ∴ ∠AOC= ∠AOE∴ ∠ AOC= ∠ CDE ∴ ∠ COP= ∠PDF ∵ ∠ P=∠P∴ △ PDF ∽ △POC∴∴ PF ×PO=PD ×PC 由割线定理可得PC ×PD=PA ×PB∴ PF?PO=PA?PB .评论: 此题考察三角形相像,考察割线定理的运用,考察学生剖析解决问题的能力,属于基础题.22.( 2012?盐城三模)选修 4﹣ 2:矩阵与变换:已知曲线 C : x 2+y 2=1,对它先作矩阵 A=对应的变换,再作矩阵 B=对应的变换,获得曲线.务实数 b 的值.考点 : 矩阵变换的性质.专题 : 计算题.剖析:从曲线 C 1 变到曲线 C 2 的变换对应的矩阵为 BA ,而后在曲 C 1 上随意选一点 P ( x 0, y 0),设它在矩阵 BA对应的变换作用下变成 P'( x',y' ),成立关系式,将 P (x 0, y 0)代入 x 2+y 2=1,最后与 比较可得 b 的值.解答:解:从曲线 C 1 变到曲线 C 2 的变换对应的矩阵 BA= ? =在曲 C 1 上随意选一点 P (x 0, y 0),设它在矩阵 BA 对应的变换作用下变成 P'( x', y' ),则有?=故解得代入曲线 C 1 方程得, y'2+=1即曲线 C 2 方程为:+y 2=1与已知的曲线 C 2 的方程为:比较得( 2b ) 2=4所以 b=±1评论: 此题主要考察了矩阵变换的性质,同时考察了计算能力和运算求解的能力,属于基础题.23.( 2012?盐城三模)选修 4﹣ 4:坐标系与参数方程:在以 O 为极点的极坐标系中,直线 l 与曲线 C 的极坐标方程分别是和 ρsin 2θ=8cos θ,直线l 与曲线 C 交于点 A 、 B ,求线段 AB 的长.考点 : 简单曲线的极坐标方程;直线与圆锥曲线的关系.剖析: 把两曲线化为一般方程,分别获得直线与抛物线的方程,联立直线与抛物线的分析式,消去y 获得对于 x的一元二次方程,求出交点A 与B 的坐标,利用弦长公式求出弦AB 的长度.解答: 解:直线 l 的直角坐标方程为 x ﹣y ﹣ 6=0 ,抛物线 C 的一般方程为 y 2=8x ,二者联立解得 A 和 B 的坐标为: A (2,﹣ 4),B ( 18, 12)∴ 线段 AB 的长:|AB|=.评论: 本小题主要考察圆的参数方程和直线的极坐标方程与直角坐标方程的互化,以及直线与圆的地点关系,属于基础题.24.( 2012?盐城三模)选修 4﹣ 5:不等式选讲:解不等式:.考点 : 绝对值不等式的解法.专题 : 计算题;不等式的解法及应用.剖析:依据解绝对值不等式的方法, 经过分类议论将不等式|x ﹣ 1|> 化为整式不等式, 从而获得原不等式的解集.解答:解:不等式 |x ﹣ 1|> 可化为:当 x < 0 时,原不等式成立;当 x ≥1 时,原不等式可化为 x ( x ﹣ 1)> 2,解得 x > 2 或 x <﹣ 1,所以 x >2.当 0< x < 1 时,原不等式可化为: x ( 1﹣ x )> 2,此不等式无解,综上所述,原不等式的解集是 {x|x < 0 或 x > 2} .评论: 此题考察的知识点是绝对值不等式的解法,此中将含绝对值符号的不等式化为整式不等式是解答此题的要点.四、 [必做题 ]每题 10 分,共 20 分.请在答题卡指定地区内作答.解答应写出文字说明、证明过程或演算步骤.25.( 2012?盐城三模)一个袋中装有大小和质地都同样的 10 个球,此中黑球 4 个,白球 5 个,红球 1 个.( 1)从袋中随意摸出 3 个球,记获得白球的个数为X ,求随机变量 X 的概率散布和数学希望E ( X );( 2)每次从袋中随机地摸出一球,记下颜色后放回.求 3 次摸球后,摸到黑球的次数大于摸到白球的次数的概率.考点 : 失散型随机变量的希望与方差;等可能事件的概率;n 次独立重复试验中恰巧发生 k 次的概率.专题 : 综合题.剖析: ( 1)确立随机变量 X 的取值,求出相应的概率,即可获得随机变量的散布列及数学希望;( 2)3 次摸球后,摸到黑球的次数大于摸到白球,包含 3 个黑球, 2 个黑球 1 个白球或 2 个黑球 1 个红球,由此可得结论.解答: 解:( 1)随机变量 X 的取值为 0, 1, 2, 3,则P (X=0 )= = ;P (X=1 ) = ; P (X=2 ) = = ; P (X=3 ) = = .X 的散布列为 X 0123P。

江苏省盐城市2011--2012学年度高三年级摸底考试数学试题(WORD版,有答案)

江苏省盐城市2011--2012学年度高三年级摸底考试数学试题(WORD版,有答案)

江苏省盐城市2011-2012学年度高三年级摸底考试数 学 试 题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1.已知集合{}{}2,0,2,4,|03P Q x x =-=<<,则P Q = ▲ .2.命题“0sin ,>∈∀x R x ”的否定是 ▲ .3. 已知复数(2)(z i i i =-为虚数单位),则z = ▲ .4. 已知等差数列{}n a 满足3710a a +=,则该数列的前9项和9S = ▲ .5.4张卡片上分别写有数字0抽取不同的2率为 ▲ .6. 某校举行2011据的平均值为 ▲ .78.已知向量(3,1),(==-a b 数λ的值为 ▲ .9. 在平面上,为 ▲ . 10.若sin()(0,0,||)2y A x A πωϕωϕ=+>><的最小值为2-,其图象相邻最高点与最低点横坐标之差为2π,且图象过点, 则其解析式是 ▲ .11.如图,在平面直角坐标系xoy 中,已知椭圆22221(0)x y a b a b +=>>的左顶点为A ,左焦点为F ,上顶点为B , 若090BAO BFO ∠+∠=,则椭圆的离心率是 ▲ .12.与直线3x =相切,且与圆22(1)(1)1x y +++=相内切的半径最小的圆的方程 是 ▲ .13.已知函数2()|6|f x x =-,若0a b <<,且()()f a f b =,则2a b 的最小值是 ▲ .7 98 4 4 4 6 7 9 3第6题第11题14.设等差数列{}n a 满足:公差*d N ∈,*n a N ∈,且{}n a 中任意两项之和也是该数列中的一项. 若513a =,则d 的所有可能取值之和为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)如图,正三棱柱111ABC A B C -中,点D 是BC 的中点. (Ⅰ)求证: AD ⊥平面11BCC B ;(Ⅱ)求证:1A C平面1AB D .16.(本小题满分14分)如图,在ABC ∆中,BC(Ⅰ)求sin BAD ∠的值; (Ⅱ)求AC 边的长.17.(本小题满分14分)某市出租汽车的收费标准如下:在3km 以内(含3km )的路程统一按起步价7元收费,超过..3km 以外的路程按2.4元/km 收费. 而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用约为2.3元;二是燃油费,约为1.6元/km ;三是折旧费,它与路程的平方近似成正比,且当路程为100km 时,折旧费约为0.1元. 现设一次载客的路程为xkm .(Ⅰ)试将出租汽车一次载客的收费F 与成本C 分别表示为x 的函数;(Ⅱ)若一次载客的路程不少于2km ,则当x 取何值时,该市出租汽车一次载客每km 的收益ABCDA 1B 1C 1B 第16题y (F Cy x-=)取得最大值?18.(本小题满分16分)如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q .(Ⅰ)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (Ⅱ)过点Q 作直线1QRAF 交12F F 于点R ,记1PRF ∆的外接圆为圆C .① 求证:圆心C 在定直线7480x y ++=上;② 圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.19.(本小题满分16分)已知()f x 为R 上的偶函数,当0x ≥时,()ln(2)f x x =+. (Ⅰ)当0x <时,求()f x 的解析式;(Ⅱ)当m R ∈时,试比较(1)f m -与(3)f m -的大小;第18题(Ⅲ)求最小的整数(2)m m ≥-,使得存在实数t ,对任意的[,10]x m ∈,都有()2ln |3|f x t x +≤+.20.(本小题满分16分) 已知数列{}n a 满足11[2(1)][2(1)]1(1)3n n n n n a a n +++-++-=+-⋅,*n N ∈,12a =.(Ⅰ)求2a ,3a 的值;(Ⅱ)设2121n n n b a a +-=-,*n N ∈,证明: {}n b 是等差数列;(Ⅲ)设212n n c a n =+,求数列{}n c 的前n 项和n S .江苏省盐城市2011/2012学年度高三年级摸底考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题] 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.A.(选修4—1:几何证明选讲)如图,圆O 的直径6AB =,C 为圆周上一点,3BC =,过点C作圆O 的切线l ,过点A 作l 的垂线AD ,D 为垂足,且AD 与圆O 交于点E ,求DAC ∠的度数与线段AE 的长.B .(选修4—2:矩阵与变换)已知矩阵A =1214⎡⎤⎢⎥-⎣⎦,求A 的特征值1λ、2λ及对应的特征向量1α、2α.第21(A)题A· OB E l D CC .(选修4—4:坐标系与参数方程)已知直线l 的极坐标方程为()4R πθρ=∈,曲线C 的参数方程为2(x y θθθ⎧=+⎪⎨=⎪⎩为参数),试判断l 与C 的位置关系.D.(选修4—5:不等式选讲)已知,,a b c 为正数,且22214a b c ++=,试求23a b c ++的最大值.[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内. 22.(本小题满分10分)甲、乙等五名深圳大运会志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 23.(本小题满分10分)如图,在直三棱柱111ABC A B C -中,∠ACB =90°,∠BAC =30°,1BC =,1AA =, M 是棱1CC 的中点.(Ⅰ)求证:1A B ⊥AM ;(Ⅱ)求直线AM 与平面11AA B B 所成角的正弦值.ABMA 1B 1C 1盐城市2011/2012学年度高三年级摸底考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}2 2.,sin 0x R x ∃∈≤.45 5.136. 85 7.1 8.4 9.1:8 10.2sin(2)3y x π=+11.12 12.22125()(1)24x y -++= 13.-16 14. 364 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)证:(Ⅰ)因为ABC ∆是正三角形,而D 是BC 的中点,所以AD BC ⊥……………………………… 3分又BC 是两个相互垂直的平面ABC 与面11BCC B 的交线,且AD ABC ⊂面,所以11AD BCC B ⊥面…………………………………………………………………………………… 7分 (Ⅱ)连接1A B ,设11AB A B E =,则E 为1A B 的中点,连接DE ,由D 是BC 的中点,得DEAC ………11分 又1DE AB D ⊂面,且11A C AB D ⊄面,所以1A C平面1AB D ………14分16.(本小题满分14分) 解:(Ⅰ)因为cos 8B =,所以sin 8B =…………………………………………………………2分 又1cos 4ADC ∠=-,所以sin 4ADC ∠=………………………………………………………… 4分所以sin sin()sin cos cos sin BAD ADC B ADC B ADC B ∠=∠-∠=∠-∠1()48484=--⨯=………………………………………………………………………7分 (Ⅱ)在ABD ∆中,由正弦定理,得sin sin AD BDB BAD =∠,84=,解得2BD =……………10分故2DC =,从而在ADC ∆中,由余弦定理,得2222cos AC AD DC AD DC ADC =+-⋅∠=22132232()164+-⨯⨯⨯-=,所以4AC =………………………………………………………14分 17.(本小题满分14分) 解: (Ⅰ) 703()7 2.4(3)3x F x x x <≤⎧=⎨+⨯->⎩7032.40.23x x x <≤⎧=⎨->⎩…………………………3分 设折旧费2z kx =,将(100,0.1)代入,得.20.1100k =,解得5110k =……………………………………5分所以251() 2.3 1.610C x x x =++…………………………………………………………………………7分 (Ⅱ)因为F C y x -=,所以554.711.623102.510.8()310x x x y x x x ⎧--≤≤⎪⎪=⎨⎪-+>⎪⎩……………………………………11分①当3x >时,由基本不等式,得0.80.79y ≤-=(当且仅当500x =时取等号)……………12分 ②当23x ≤≤时,由y 在[2,3]上单调递减,得max 554.7221.60.750.7921010y =--=-<…………13分答: 该市出租汽车一次载客路程为500km 时,每km 的收益y 取得最大值…………………………14分 18.(本小题满分16分)解:(Ⅰ)设椭圆的方程为22221(0)x y a b a b+=>>,当3t =时,PQ 的中点为(0,3),所以b=3 (3)分而2216a b -=,所以225a =,故椭圆的标准方程为221204x y +=……………………………………5分 (Ⅱ)①解法一:易得直线12:28;:28AF y x AF y x =+=-+,所以可得88(,),(,)22t tP t Q t --,再由1QR AF ,得(4,0)R t -………………………………………8分 则线段1F R 的中垂线方程为2t x =-, 线段1PF 的中垂线方程为151628t y x -=-+,由1516282t y x t x -⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1PRF ∆的外接圆的圆心坐标为7(,2)28t t --…………………10分经验证,该圆心在定直线7480x y ++=上…………………………………………………… 11分解法二: 易得直线12:28;:28AF y x AF y x =+=-+,所以可得88(,),(,)22t tP t Q t --, 再由1QRAF ,得(4,0)R t -……………………………………………………………………8分设1PRF ∆的外接圆C 的方程为220x y Dx Ey F ++++=,则2222(4)(4)0(4)4088()022t t D F y D F t t t D tE F ⎧⎪-+-+=⎪=--+=⎨⎪--⎪++++=⎩,解得744416D tE tF t =⎧⎪⎪=-⎨⎪=-⎪⎩…………………………………10分 所以圆心坐标为7(,2)28t t--,经验证,该圆心在定直线7480x y ++=上…………………11分 ②由①可得圆C 的方程为227(4)41604x y tx t y t +++-+-=……………………………13分该方程可整理为22(x y ++则由2241607404x y y x y ⎧++-=⎪⎨-+=⎪⎩所以圆C 恒过异于点1F 16分 19.(本小题满分16分)解: (Ⅰ)当0x <时,()f x 3分 (Ⅱ)当0x ≥时,()ln(f x x =)在(,0)-∞上单调递减,所以(1)f m ->22(3)|1||3|(1)(3)f m m m m m -⇔->-⇔->-2m ⇔>………………6分所以当2m >时, (1)(3)f m f m ->-;当2m =时, (1)(3)f m f m -=-;当2m <时, (1)(3)f m f m -<-……………………………………………………………… 8分(Ⅲ)当x R ∈时,()ln(||2)f x x =+,则由()2ln |3|f x t x +≤+,得2ln(||2)ln(3)x t x ++≤+,即2||2(3)x t x ++≤+对[,10]x m ∈恒成立………………………………………………………12分从而有225777t x x t x x ⎧≤++⎨≥---⎩对[,10]x m ∈恒成立,因为2m ≥-, 所以22min 22max (57)57(77)77t x x m m t x x m m ⎧≤++=++⎨≥---=---⎩………………………………………………………14分因为存在这样的t ,所以227757m m m m ---≤++,即2670m m ++≥…………………… 15分 又2m ≥-,所以适合题意的最小整数1m =-………………………………………………………16分 20.(本小题满分16分) 解: (Ⅰ)因为11[2(1)][2(1)]1(1)3n n n n n a a n +++-++-=+-⋅ (*),且12a =,所以将1n =代入(*)式,得1232a a +=-,故28a =-……1分 将2n =代入(*)式,得2337a a +=,故35a =…………2分 (Ⅱ)在(*)式中,用2n 代换n ,得2122221[2(1)][2(1)]1(1)6n n n n n a a n +++-++-=+-⋅,即221316n n a a n ++=+ ①,再在(*)式中,用21n -代换n ,得22121212[2(1)][2(1)]1(1)(63)n n n n n a a n ---+-++-=+-⋅-, 即212346n n a a n -+=- ②, ①-②,得21213()123n n a a n +--=-,即41n b n =-…………………6分 则由1(4(1)1)(41)4n n b b n n +-=+---=,得{}n b 是等差数列……………………………………… 8分 (Ⅲ)因为12a =,由(Ⅱ)知,21131532123()()()k k k a a a a a a a a ---=+-+-+⋅⋅⋅+-2(411)(421)(4(1)1)k =+⨯-+⨯-+⋅⋅⋅+⨯--=(1)(21)2k k --+ ③,将③代入②,得23(1)(21)646k k k a k --++=-,即22635k a k k =-+-………………………… 10分所以221211(21)2k k c a k --=+-=27452k k -+,2221(2)2k k c a k =+=2435k k -+-, 则212322k k c c k -+=--,所以21234212()()()k k k S c c c c c c -=++++⋅⋅⋅++=3[(21)2-⨯+3(22)2+⨯+3(2)]2k +⋅⋅⋅+⨯+23335[(21)(22)(2)]2222k k k -⨯++⨯++⋅⋅⋅+⨯+=--……… 13分所以2222122511()(435)3522k k k S S c k k k k k k -=-=----+-=-+…………………………… 15分故221135(21)25(2)2n k k n k S k k n k ⎧-+=-⎪⎪=⎨⎪--=⎪⎩223512()45()4n n n n n n ⎧-+⎪⎪=⎨+⎪-⎪⎩为数为数奇偶………………………………16分数学附加题部分21.A. 解: 连结OC ,因BC=OB=OC=3,因此060CBO ∠=,由于DCA CBO ∠=∠,所以060DCA ∠=, 又AD DC ⊥,故030DAC ∠=…………………………………………………………………………5分 又因为090ACB ∠=,得030CAB ∠=,那么060EAB ∠=,连接BE,则030ABE ∠=, 于是132AE AB ==…………………………………………………………………………………… 10分 B. 解:设A 的一个特征值为λ,由题意知1214λλ---=0,则(2)(3)0λλ--=,解得12λ=或23λ=………………………………………………………………………………………5分 当λ1=2时,由1214⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=2x y ⎡⎤⎢⎥⎣⎦,得A 属于特征值2的特征向量α1=21⎡⎤⎢⎥⎣⎦…………………8分当λ2=3时,由1214⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=3x y ⎡⎤⎢⎥⎣⎦,得A 属于特征值3的特征向量α2=11⎡⎤⎢⎥⎣⎦…………………10分 C. 解:直线l 的直角坐标方程为y x =……3分 曲线C 是圆,圆心为(2,0),半径为r =6分因为圆心到直线l的距离d r ===,所以直线与曲线C 相切……………………………10分 D. 解:根据柯西不等式,得22222222(23)()(123)14a b c a b c ++≤++++=………………………8分所以2314a b c ++≤,即23a b c ++的最大值为14…………………………………………………10分22. 解:(Ⅰ)332454140A C A =,即甲、乙两人同时参加A 5分 (Ⅱ)随机变量ξA 岗位服务,则235334541(2)4C A P C A ξ===,10分23.解:(Ⅰ)因为1C C ⊥平面ABC ,BC ⊥AC ,所以分别以CA ,CB ,1CC 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则B (0,1,0),1A ,A 0,0),M ,所以1A B =(,1,),AM =(0,所以1A B ·AM =3+0-3=0,所以1A B ⊥AM ,即1A B ⊥AM ……………………………………5分(Ⅱ)由(Ⅰ)知(AB =-,1A A =(0,0),设面11AA B B 的法向量为(,,)n x y z =,则0,0.y ⎧+=⎪=不妨取n =,设直线AM 与平面11AA B B 所成角度为θ,- 11 -则sin |cos ,|||6||||AM nAM n AM n θ⋅=<>==⋅ 所以直线AM 与平面11AA B B 所成角的正弦值为610分 (注:其它建系方法与解法,类似给分)。

2012南京三模试卷 数学(含参考答案)

2012南京三模试卷 数学(含参考答案)

南京市2012届高三年级第三次模拟考试数 学 2012.05参考公式:锥体的体积公式为V =13Sh ,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,计70分.请把答案写在答题纸的指定位置上. 1.已知集合A ={}1,1,3-,B ={}2,a a +,且B A ⊆,则实数a 的值是 ▲ .答案:12.已知复数z 满足(2)5i z i -=(其中i 为虚数单位),则复数z 的模是 ▲ . 答案:53.根据如图所示的流程图,若输入x 的值为 -7.5,则输出y 的值为 ▲ . 答案: -14.若将一颗质地均匀的骰子(各面上分别标有1、2、3、4、5、6个点的正方形玩具)先后抛掷两次,向上的点数依次为m 、n ,则方程220x mx n ++=无实根的概率是 ▲ . 答案:7365.为了检测某自动包装流水线的生产情况,在流水线上随机抽取40件产品,分别称出它们的重量(单位:克)作为样本。

下图是样本的频率分布直方图,根据图中各组的组中值估计产品的平均重量是 ▲ 克. 答案:5076.已知正△ABC 的边长为1,73CP CA CB =+, 则CP AB ⋅= ▲ . 答案: -27.已知α、β是两个不同的平面,下列四个条件: ①存在一条直线a ,a α⊥,a β⊥; ②存在一个平面γ,,γαγβ⊥⊥;③存在两条平行直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α; ④存在两条异面直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α。

其中是平面α∥平面β的充分条件的为= ▲ .(填上所有符合要求的序号) 答案:①③8.若函数222,0(),0x x x f x x ax x ⎧-≥⎪=⎨-+<⎪⎩是奇函数,则满足()f x a >的x 的取值范围是 ▲ .答案:(1)--+∞9.在直角坐标系xOy 中,记不等式组30270260y x y x y -≥⎧⎪+-≤⎨⎪-+≥⎩表示的平面区域为D .若指数函数x y a =(a >0且1a ≠)的图象与D 有公共点,则a 取值范围是 ▲ .答案:)+∞10.在平面直角坐标系xOy 中,抛物线24y x =的焦点为F ,点P 在抛物线上,且位于x 轴上方.若点P 到坐标原点O的距离为,则过F 、O 、P 三点的圆的方程是 ▲ . 答案:221725()()222x y -+-=11.已知sin()sin 0352ππααα++=--<<,则cos α= ▲ .解答:3sin coscos sinsin sin )3326πππαααααα++==+= 4sin()65πα+=-,又366πππα-<+<,所以3cos()65πα+=。

江苏省南京市、盐城市2012届高三第一次模拟考试(数学)

江苏省南京市、盐城市2012届高三第一次模拟考试(数学)

江苏省南京市、盐城市2012届高三第一次模拟考试(数学)(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1.已知集合{}{}1,3,1,2,A B m ==,若A B ⊆,则实数m = ▲ .2.若(12)(,i i a bi a b -=+∈R ,i 为虚数单位),则ab = ▲ .3.若向量a (2,3),=b (,6)x =-,且∥ab ,则实数x = ▲ . 4.袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是 ▲ .5.某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示(成绩分组为[0,10),[10,20),,[80,90),[90,100]⋅⋅⋅).则在本次竞赛中,得分不低于80分以上的人数为 ▲ .6.在ABC ∆中,已知s i n:s i n :s i n2A B C =,则cos C =▲ .7.根据如图所示的伪代码,当输入a 的值为3时,最后输出的S 的值 为 ▲ .8.已知四边形ABCD 为梯形, ∥ABCD ,l 为空间一直线,则“l 垂直于两腰,AD BC ”是“l 垂直于两底,AB DC ”的 ▲ 条件(填写“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中的一个).9.函数2()(1)xf x x x e =++()x R ∈的单调减区间为 ▲ . 10.已知1()21x f x a =--是定义在(,1][1,)-∞-+∞ 上的奇函数, 则()f x 的值域为▲ .11.记等比数列{}n a 的前n 项积为*()n T n N ∈,已知1120m m m a a a -+-=,且21128m T -=, 则m = ▲ .12.若关于x 的方程1ln kx x +=有解,则实数k 的取值范围是 ▲ .13.设椭圆2222:1(0)x y C a b a b +=>>恒过定点(1,2)A ,则椭圆的中心到准线的距离的最小值第7题▲ . 14.设a b c x y===+,若对任意的正实数,x y ,都存在以,,a b c 为三边长的三角形,则实数p 的取值范围是 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)已知函数21()cos cos ()2f x x x x x R =-+∈.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]4π上的函数值的取值范围.16.(本小题满分14分)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(1)求证:∥PD面AEC ; (2)求证:平面AEC ⊥平面PDB .17.(本小题满分14分)在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD 的三边AB 、BC 、CD 由长6分米的材料弯折而成,BC 边的长为2t 分米(312t ≤≤);曲线AOD 拟从以下两种曲线中选择一种:曲线1C 是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为cos 1y x =-),此时记门的最高点O 到BC 边的CA BD PE 第16题距离为1()h t ;曲线2C 是一段抛物线,其焦点到准线的距离为98,此时记门的最高点O 到BC边的距离为2()h t .(1)试分别求出函数1()h t 、2()h t 的表达式;(2)要使得点O 到BC 边的距离最大,应选用哪一种曲线?此时,最大值是多少?18.(本小题满分16分)如图,在平面直角坐标系xoy 中,已知点A 为椭圆222199x y +=的右顶点, 点(1,0)D ,点,P B 在椭圆上, BP DA =.(1)求直线BD 的方程;(2)求直线BD 被过,,P A B 三点的圆C 截得的弦长;(3)是否存在分别以,PB PA 为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.第17题第18题19.(本小题满分16分)对于函数()f x ,若存在实数对(b a ,),使得等式b x a f x a f =-⋅+)()(对定义域中的每一个x 都成立,则称函数()f x 是“(b a ,)型函数”.(1)判断函数()4xf x =是否为“(b a ,)型函数”,并说明理由;(2)已知函数()g x 是“(1,4)型函数”, 当[0,2]x ∈时,都有1()3g x ≤≤成立,且当[0,1]x ∈时,2()g x x =(1)1m x --+(0)m >,若,试求m 的取值范围.20.(本小题满分16分) 已知数列{}n a 满足*1(0,)a aa a N =>∈,1210n n a a a pa +++⋅⋅⋅+-=*(0,1,)p p n N ≠≠-∈. (1)求数列{}n a 的通项公式n a ;(2)若对每一个正整数k ,若将123,,k k k a a a +++按从小到大的顺序排列后,此三项均能构成等差数列, 且公差为k d .①求p 的值及对应的数列{}k d .②记k S 为数列{}k d 的前k 项和,问是否存在a ,使得30kS <对任意正整数k 恒成立?若存在,求出a 的最大值;若不存在,请说明理由.南京市、盐城市2012届高三年级第一次模拟考试 数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题] 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.A.(选修4—1:几何证明选讲)如图,O 的半径OB 垂直于直径AC ,D 为AO 上一点,BD 的延长线交O 于点E ,过E 点的圆的切线交CA 的延长线于P . 求证:2PD PA PC =⋅.ABCPO· EDB .(选修4—2:矩阵与变换)已知矩阵1101,20201⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦A B ,若矩阵AB 对应的变换把直线l :20x y +-=变为直线'l ,求直线'l 的方程.C .(选修4—4:坐标系与参数方程) 在极坐标系中,圆C的方程为)4πρθ=-,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为11x t y t =+⎧⎨=-⎩(t 为参数),求直线l 被C 截得的弦AB 的长度.D.(选修4—5:不等式选讲)已知x y z 、、均为正数,求证:111()x y z ++≤.[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内. 22.(本小题满分10分) 如图所示,在棱长为2的正方体1AC 中,点P Q 、分别在棱BC CD 、上,满足11B Q D P ⊥,且PQ (1)试确定P 、Q 两点的位置.(2)求二面角1C PQ A --大小的余弦值.DC 第22题23.(本小题满分10分)已知整数n ≥4,集合{}1,2,3,,M n =⋅⋅⋅的所有3个元素的子集记为312,,,n C A A A ⋅⋅⋅. (1)当5n =时,求集合3512,,,C A A A ⋅⋅⋅中所有元素之和.(2)设i m 为i A 中的最小元素,设n P =312n C m m m ++⋅⋅⋅+,试求n P .南京市、盐城市2012届高三年级第一次模拟考试 数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.32. 23. -44.125.1206.14-7.21 8.充分不必要 9.(2,1)--(或闭区间)10.3113[,)(,]2222-- 11.4m = 12.21(,]e -∞13.2 14. (1,3)二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解: (1)因为1()2cos 22f x x x =-……………………………………………………………4分s i n (2)6x π=-……………………………………………………………………………………………6分 故()f x 的最小正周期为π………………………………………………………………………………8分(2)当[0,]4x π∈时,2[,]663x πππ-∈-…………………………………………………………………10分故所求的值域为1[2-………………………………………………………………………………14分16.(1)证明:设AC BD O = ,连接EO,因为O,E 分别是BD,PB 的中点,所以∥PDEO …………4分 而,PD AEC EO AEC⊄⊂面面,所以∥PD 面AEC …………………………………………………7分(2)连接PO,因为P A P C =,所以A C P O ⊥,又四边形ABCD 是菱形,所以A CB D ⊥…………10分而PO ⊂面PBD ,BD ⊂面PBD ,PO BD O = ,所以AC ⊥面PBD ……………………………13分又AC ⊂面AEC,所以面AEC ⊥面PBD ……………………………………………………………14分17.解:(1)对于曲线1C ,因为曲线AOD 的解析式为cos 1y x =-,所以点D 的坐标为(,cos 1)t t -……2分所以点O 到AD 的距离为1cos t -,而3AB DC t ==-, 则13()(3)(1cos )cos 4(1)2h t t t t t t =-+-=--+≤≤…………………………………………………4分对于曲线2C ,因为抛物线的方程为294x y =-,即249y x =-,所以点D 的坐标为24(,)9t t -………2分所以点O到AD的距离为249t ,而3AB DC t==-,所以2243()3(1)92h t t t t =-+≤≤……………7分(2)因为1()1sin 0h t t '=-+<,所以1()h t 在3[1,]2上单调递减,所以当1t =时,1()h t 取得最大值为3cos1-…………………………………………………………………………………………………9分又224939()()9816h t t =-+,而312t ≤≤,所以当32t =时,2()h t 取得最大值为52……………………11分因为1cos1cos32π>=,所以153cos1322-<-=,故选用曲线2C ,当32t =时,点E 到BC 边的距离最大,最大值为52分米……………………………14分18.解: (1)因为BP DA = ,且A(3,0),所以BP DA ==2,而B,P 关于y 轴对称,所以点P 的横坐标为1,从而得(P B -……………………………………………………………………………………3分 所以直线BD的方程为10x y +-=………………………………………………………………………5分(2)线段BP 的垂直平分线方程为x=0,线段AP 的垂直平分线方程为1y x =-, 所以圆C的圆心为(0,-1),且圆C的半径为r =8分又圆心(0,-1)到直线BD的距离为d ,所以直线BD 被圆C 截得的弦长为=……………………………………………………………………………………10分(3)假设存在这样的两个圆M 与圆N,其中PB 是圆M 的弦,PA 是圆N 的弦,则点M 一定在y 轴上,点N 一定在线段PC 的垂直平分线1y x =-上,当圆M 和圆N 是两个相外切的等圆时,一定有P ,M,N 在一条直线上,且PM=PN …………………………………………………………………………………………12分 设(0,)M b ,则(2,4)N b -,根据(2,4)N b -在直线1y x =-上, 解得3b =…………………………………………………………………………………………………14分所以(0,3),(2,1),M N PM PN ==,故存在这样的两个圆,且方程分别为22(3)2x y +-=,22(2)(1)2x y -+-=………………………………………………………………16分 19.解:(1)函数()xf x =是“(ba ,)型函数”…………………………………………………………2分因为由b x a f x a f =-⋅+)()(,得16ab =,所以存在这样的实数对,如1,16a b ==………………6分(2) 由题意得,(1)(1)4g x g x +-=,所以当[1,2]x ∈时,4()(2)g x g x =-,其中2[0,1]x -∈, 而[0,1]x ∈时,22()(1)110g x x m x x mx m =+-+=-++>,且其对称轴方程为2mx =,当12m >,即2m >时,()g x 在[0,1]上的值域为[(1),(0)]g g ,即[2,1]m +,则()g x 在[0,2]上的值域为44[2,1][,2][,1]11m m m m +=+++ ,由题意得13411m m +≤⎧⎪⎨≥⎪+⎩,此时无解………………………11分②当1122m ≤≤,即12m ≤≤时,()g x 的值域为[(),(0)]2mg g ,即2[1,1]4m m m +-+,所以则()g x 在[0,2] 上的值域为2244[1,1][,]4114m m m m m m +-+++-,则由题意得2431413m m m ⎧≤⎪⎪+-⎨⎪+≤⎪⎩且2114411m m m ⎧+-≥⎪⎪⎨⎪≥⎪+⎩,解得12m ≤≤……………………………………………………………………13分当1022m <≤,即01m <≤时,()g x 的值域为[(),(1)]2mg g ,即2[1,2]4m m +-,则()g x 在[0,2]上的值域为224[1,2][2,]414m m m m +-+- =224[1,]414m m m m +-+-,则221144314m m m m ⎧+-≥⎪⎪⎨≤⎪⎪+-⎩,解得21m -≤≤.综上所述,所求m的取值范围是22m ≤≤…………………………………………………16分20.解:(Ⅰ)因为1210n n a a a pa +++⋅⋅⋅+-=,所以2n ≥时, 1210n n a a a pa -++⋅⋅⋅+-=,两式相减,得11(2)n n a p n a p ++=≥,故数列{}n a 从第二项起是公比为1p p +的等比数列…………………………3分又当n=1时,120a pa -=,解得2aa p=,从而2(1)1()(2)n n a n a a p n p p -⎧=⎪=+⎨≥⎪⎩…………………………5分(2)①由(1)得11123111(),(),()k k k k k k a p a p a p a a a p p p p p p -+++++++===,[1]若1k a +为等差中项,则1232k k k a a a +++=+,即11p p +=或12p p +=-,解得13p =-…………6分此时1123(2),3(2)k kk k a a a a -++=--=--,所以112||92k k k k d a a a -++=-=⋅……………………8分[2]若2k a +为等差中项,则2132k k k a a a +++=+,即11p p +=,此时无解………………………………9分[3]若3k a +为等差中项,则3122k k k a a a +++=+,即11p p +=或112p p+=-,解得23p =-, 此时11133131(),()2222k k k k a a a a -+++=--=--,所以11391||()82k k k k a d a a -++=-=⋅……………11分综上所述,13p =-,192k k d a -=⋅或23p =-,191()82k k a d -=⋅…………………………………12分②[1]当13p =-时,9(21)k k S a =-,则由30k S <,得103(21)ka <-, 当3k ≥时, 1013(21)k<-,所以必定有1a <,所以不存在这样的最大正整数……………………14分[2]当23p =-时,91(1())42k k a S =-,则由30k S <,得4013(1())2k a <-,因为4040133(1())2k >-,所以13a =满足30k S <恒成立;但当14a =时,存在5k =,使得4013(1())2k a >-即30k S <,所以此时满足题意的最大正整数13a =……………………………………………………………16分数学附加题部分21.A. 证明:连结OE ,因为PE 切⊙O 于点E ,所以∠OEP=900,所以∠OEB+∠BEP=900,因为OB=OE ,所以∠OBE=∠OEB ,因为OB ⊥AC 于点O ,所以∠OBE+∠BDO=900……………5分故∠BEP=∠BDO=∠PDE ,PD=PE ,又因为PE 切⊙O 于点E ,所以PE2=PA ·PC ,故PD2=PA ·PC ………………………………………………………………………………………10分B. 易得11101122020102AB ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ……3分, 在直线l 上任取一点(,)P x y '',经矩阵AB 变换为点(,)Q x y ,则11122022x x x y y y y ⎡⎤⎡⎤'''+⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦'⎣⎦⎣⎦,∴122x x y y y ⎧''=+⎪⎨⎪'=⎩,即142x x y y y ⎧'=-⎪⎪⎨⎪'=⎪⎩……………8分代入20x y ''+-=中得12042yx y -+-=,∴直线l '的方程为480x y +-=…………………10分C. 解:C 的方程化为4cos 4sin ρθθ=+,两边同乘以ρ,得24c o s 4sin ρρθρθ=+由222,cos ,sin x y x y ρρθρθ=+== ,得22440x y x y +--=………………………………5分其圆心C坐标为(2,2),半径r=又直线l的普通方程为20x y--=,∴圆心C到直线l的距离d==,∴弦长AB==……………………………10分D. 证明:由柯西不等式得2222222111111(111)()()x y z x y z++++≥++……………………………………5分则111x y z++,即111()x y z++≤………………………10分22. 解:(1)以1,,AB AD AA为正交基底建立空间直角坐标系A x y z-,设(0CP a a=≤≤,则(2,2,0),(2CQ P a Q=-,1(2,2)B Q=-, 1(2,,2)D P a=--,∵11B Q D P⊥,∴11BQ D P⋅=,∴240a-+=,解得1a=……………………………4分∴PC=1,CQ=1,即P Q、分别为,BC CD中点…………………………………………………………5分(2)设平面1C PQ的法向量为(,,)n a b c=,∵1(1,1,0),(0,1,2)P Q P C=-=,又1n PQ n PC⋅=⋅=,∴20a bb c-+=⎧⎨+=⎩,令1c=-,则2a b==,(2,2,1)n=-………………………………………………8分∵(0,0,2)k=-为面APQ的一个法向量,∴1cos,3n k<>=,而二面角为钝角,故余弦值为13-……10分23.(1)解:当5n =时,含元素1的子集有246C =个,同理含2,3,4,5的子集也各有6个, 于是所求元素之和为24(12345)61590C ++++⨯=⨯=……………………………………………5分(2)证明:不难得到12,i i m n m Z ≤≤-∈ ,并且以1为最小元素的子集有21n C -个,以2为最小元素的子集有22n C -个,以3为最小元素的子集有23n C -,…,以2n -为最小元素的子集有22C 个,则32222121232123(2)nn n n n C P m m m C C C n C ---=+++=⨯++++- ………………………………8分2222231(2)(3)(4)n n n C n C n C C -=-+-+-++ 2222222341(3)()(4)n C n C C n C C -=+-++-++2322223341(3)()(4)n C n C C n C C -=+-++-++ 23222441(3)(4)n C n C n C C -=+-+-++ 2332224441(4)()n C C n C C C -=++-+++ 23322451(4)n C C n C C -=++-++4333445n C C C C =++++ 41n C +=……………………………………………………………………10分。

南京市、盐城市2013届高三第三次模拟考试数学试题(word版含答案及评标准).

南京市、盐城市2013届高三第三次模拟考试数学试题(word版含答案及评标准).

南京市、盐城市2013届高三第三次模拟考试数 学 2013.05注意事项:1.本试卷共160分、考试用时120分钟.2.答题前,考生务必将自己的学校、姓名、考试号写在答题卡上.考试结束后,交回答题卡. 参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1n i =1∑n (x i --x )2,其中-x =1n i =1∑nx i .一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.记函数f (x )=3-x 的定义域为A ,函数g (x )=lg(x -1)的定义域为B ,则A ∩B = ▲ .2.已知复数z 满足(z +1)i =3+5i ,其中i 为虚数单位,则|z |= ▲ . 3.某算法的伪代码如图所示,若输出y 的值为3,则 输入x 的值为 ▲ .4.右图是7位评委给某作品打出的分数的茎叶图,那么 这组数据的方差是 ▲ .5.已知函数f (x )=2sin(ωx +ϕ)(ω>0)的部分图象如图所示, 则ω= ▲ .6.在一个盒子中有分别标有数字1,2,3,4,5的5张卡片,现从中一次取出2张卡片,则取到的卡片上的数字之积为偶数的概率是 ▲ .7.在平面直角坐标系xOy 中,已知OA →=(3,-1),OB →=(0,2).若OC →·AB →=0,AC →=λOB →,则实数λ的值为 ▲ .8.已知m ,n 是两条不同的直线,α,β是两个不同的平面.①若m ⊂α,m ⊥β,则α⊥β; ②若m ⊂α,α∩β=n ,α⊥β,则m ⊥n ; ③若m ⊂α,n ⊂β,α∥β,则m ∥n ; ④若m ∥α,m ⊂β,α∩β=n ,则m ∥n . 上述命题中为真命题的是 ▲ (填写所有真命题的序号).Read xIf x ≤0 Then y ←x +2 Elsey ←log 2x End If Print y (第3题)8 8 9 9 9 0 1 1 2 (第4题)9.如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5, AC =7,DC =3,则AB 的长为 ▲ .10.记定义在R 上的函数y =f (x )的导函数为f ′(x ).如果存在x 0∈[a ,b ],使得f (b )-f (a )=f′(x 0)(b -a )成立,则称x 0为函数f (x )在区间[a ,b ]上的“中值点”.那么函数f (x )=x 3-3x 在区间[-2,2]上“中值点”的个数为 ▲ .11.在平面直角坐标系xOy 中,点F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过F 作双曲线C 的一条渐近线的垂线,垂足为A ,延长F A 与另一条渐近线交于点B .若FB →=2FA →,则双曲线的离心率为 ▲ .12.在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m )x -4my +5m 2-6m =0,直线l 经过点(1,0).若对任意的实数m ,定直线l 被圆C 截得的弦长为定值,则直线l 的方程为 ▲ .13.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5.设c n =⎩⎨⎧a n ,a n ≤b n ,b n ,a n >b n ,若在数列{c n }中,c 8>c n (n ∈N*,n ≠8),则实数p 的取值范围是 ▲ .14.设点P 是曲线y =x 2上的一个动点,曲线y =x 2在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线y =x 2的另一交点为Q ,则PQ 的最小值为 ▲ .二、解答题:本大题共6小题,共90分.请在答.题卡..指定区域内.....作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知α,β∈(0,π),且tan α=2,cos β=-7210.(1)求cos2α的值; (2)求2α-β的值.ABDC(第9题)16.(本小题满分14分)如图,在正三棱柱ABC -A 1B 1C 1中,A 1A =2AC ,D ,E ,F 分别为线段AC ,A 1A ,C 1B 的中点.(1)证明:EF ∥平面ABC ; (2)证明:C 1E ⊥平面BDE .17.(本小题满分14分)已知函数f (x )=12m (x -1)2-2x +3+ln x ,m ∈R .(1)当m =0时,求函数f (x )的单调增区间;(2)当m >0时,若曲线y =f (x )在点P (1,1)处的切线l 与曲线y =f (x )有且只有一个公共点,求实数m 的值.18.(本小题满分16分)将一张长8cm ,宽6cm 的长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S 1cm 2,S 2cm 2,其中S 1≤S 2.记折痕长为l cm .(1)若l =4,求S 1的最大值;(2)若S 1∶S 2=1∶2,求l 的取值范围.19.(本小题满分16分)ABC DEC 1A 1B 1F (第16题)在平面直角坐标系xOy 中,椭圆C : x 2m +y 28-m =1.(1)若椭圆C 的焦点在x 轴上,求实数m 的取值范围; (2)若m =6,①P 是椭圆C 上的动点, M 点的坐标为(1,0),求PM 的最小值及对应的点P 的坐标; ②过椭圆C 的右焦点F 作与坐标轴不垂直的直线,交椭圆C 于A ,B 两点,线段AB 的垂直平分线l 交x 轴于点N ,证明:ABFN是定值,并求出这个定值.20.(本小题满分16分)记等差数列{a n }的前n 项和为S n . (1)求证:数列{S nn}是等差数列;(2)若a 1=1,且对任意正整数n ,k (n >k ),都有S n +k +S n -k =2S n 成立,求数列{a n }的通项公式; (3)记b n =a a n (a >0),求证:b 1+b 2+…+b n n ≤b 1+b n 2.南京市、盐城市2013届高三第三次模拟考试数学附加题1.附加题供选考物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的学校、姓名、考试号写在答题卡...上.考试结束后,交回答题卡. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.请在答.题卡指定区域......内.作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,P A ,PB 是⊙O 的切线,切点分别为A ,B ,线段OP 交⊙O 于点C .若P A =12,PC =6,求AB 的长.B .选修4—2:矩阵与变换已知矩阵M = ⎣⎢⎡⎦⎥⎤1 a b 1 对应的变换将点A (1,1)变为A' (0,2),将曲线C :xy =1变为曲线C'.(1)求实数a ,b 的值; (2)求曲线C' 的方程.C .选修4—4:坐标系与参数方程已知圆C 的极坐标方程为ρ=4cos(θ-π6),点M 的极坐标为(6,π6),直线l 过点M ,且与圆C 相切,求l 的极坐标方程.D .选修4—5:不等式选讲解不等式x |x -4|-3<0.【必做题】第22题、第23题,每题10分,共20分.请在答.题卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,三棱锥P -ABC 中,已知P A ⊥平面ABC ,△ABC 是边长为2的正三角形,D ,E 分别为PB ,ABP OC (第21题A )EDP(1)若P A =2,求直线AE 与PB 所成角的余弦值; (2)若平面ADE ⊥平面PBC ,求P A 的长.23.(本小题满分10分)如图,一颗棋子从三棱柱的一个顶点沿棱移到相邻的另一个顶点的概率均为13,刚开始时,棋子在上底面点A 处,若移了n 次后,棋子落在上底面顶点的概率记为p n .(1)求p 1,p 2的值; (2)求证:i =1∑n14P i -1>n 2n +1.南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准 2013.05说明:ABCDEF(第23题)1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分.1.(1,3] 2.5 3.8 4.127 5. 236.710 7.2 8.①④ 9.56210.2 11.2 12.2x +y -2=0 13.(12,17) 14.332二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15.解(1)方法一:因为tan α=2,所以sin αcos α=2,即sin α=2cos α. ………………………… 2分又sin 2α+cos 2α=1,解得sin 2α=45,cos 2α=15. ………………………… 4分所以cos2α=cos 2α-sin 2α=-35. ………………………… 6分方法二:因为cos2α=cos 2α-sin 2α ………………………… 2分=cos 2α-sin 2αsin 2α+cos 2α =1-tan 2αtan 2α+1, ………………………… 4分 又tan α=2,所以cos2α=1-2222+1=-35. ………………………… 6分(2)方法一:因为α∈(0,π),且tan α=2,所以α∈(0,π2).又cos2α=-35<0,故2α∈(π2,π) ,sin2α=45. ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π). ………………………… 10分所以sin(2α-β)=sin2αcos β-cos2αsin β=45×(-7210)-(-35)×210=-22. ………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分方法二:因为α∈(0,π),且tan α=2,所以α∈(0,π2),tan2α=2tan α1-tan 2α=-43. 从而2α∈(π2,π). ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π),因此tan β=-17. ………………………… 10分所以tan(2α-β)=tan2α-tan β1+tan2αtan β=-43+171+(-43)×(-17)=-1. ………………………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分16.证明(1)如图,取BC 的中点G ,连结AG ,FG .因为F 为C 1B 的中点,所以FG =∥12C 1C . 在三棱柱ABC -A 1B 1C 1中,A 1A =∥C 1C ,且E 为A 1A 的中点, 所以FG =∥EA . 所以四边形AEFG 是平行四边形. 所以EF ∥AG . ………………………… 4分 因为EF ⊄平面ABC ,AG ⊂平面ABC ,所以EF ∥平面ABC . ………………………… 6分 (2)因为在正三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,BD ⊂平面ABC ,所以A 1A ⊥BD .因为D 为AC 的中点,BA =BC ,所以BD ⊥AC .因为A 1A ∩AC =A ,A 1A ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,所以BD ⊥平面A 1ACC 1. 因为C 1E ⊂平面A 1ACC 1,所以BD ⊥C 1E . ………………………… 9分 根据题意,可得EB =C 1E =62AB ,C 1B =3AB , 所以EB 2+C 1E 2=C 1B 2.从而∠C 1EB =90°,即C 1E ⊥EB .……………………… 12分 因为BD ∩EB =B ,BD ⊂平面BDE , EB ⊂平面BDE ,所以C 1E ⊥平面BDE . ………………………… 14分17.解(1)由题意知,f (x )=-2x +3+ln x ,(第16题)ABC D EC 1A 1B 1FG所以f ′(x )=-2+1x =-2x +1x (x >0). ……………………… 2分由f ′(x )>0得x ∈(0,12) .所以函数f (x )的单调增区间为(0,12). ……………………… 4分(2)由f ′(x )=mx -m -2+1x,得f ′(1)=-1,所以曲线y =f (x )在点P (1,1)处的切线l 的方程为y =-x +2.…………………… 6分 由题意得,关于x 的方程f (x )=-x +2有且只有一个解, 即关于x 的方程12m (x -1)2-x +1+ln x =0有且只有一个解.令g (x )=12m (x -1)2-x +1+ln x (x >0).则g ′(x )=m (x -1)-1+1x =mx 2-(m +1)x +1x =(x -1)(mx -1)x (x >0). …………… 8分①当0<m <1时,由g ′(x )>0得0<x <1或x >1m ,由g ′(x )<0得1<x <1m ,所以函数g (x )在(0,1)为增函数,在(1,1m )上为减函数,在(1m ,+∞)上为增函数.又g (1)=0,且当x →∞时,g (x )→∞,此时曲线y =g (x )与x 轴有两个交点.故0<m <1不合题意. ……………………… 10分 ②当m =1时,g ′(x )≥0,g (x )在(0,+∞)上为增函数,且g (1)=0,故m =1符合题意. ③当m >1时,由g ′(x )>0得0<x <1m 或x >1,由g ′(x )<0得1m<x <1,所以函数g (x )在(0,1m ) 为增函数,在(1m ,1)上为减函数,在(1,+∞)上为增函数.又g (1)=0,且当x →0时,g (x )→-∞,此时曲线y =g (x )与x 轴有两个交点. 故m >1不合题意.综上,实数m 的值为m =1. ……………………… 14分18.解 如图所示,不妨设纸片为长方形ABCD ,AB =8cm ,AD =6cm ,其中点A 在面积为S 1的部分内.折痕有下列三种情形:①折痕的端点M ,N 分别在边AB ,AD 上; ②折痕的端点M ,N 分别在边AB ,CD 上; ③折痕的端点M ,N 分别在边AD ,BC 上.ABCD (情形①)MNABCD (情形②)MNABCD (情形③)MN(1)在情形②、③中MN ≥6,故当l =4时,折痕必定是情形①.设AM =x cm ,AN =y cm ,则x 2+y 2=16. ……………………… 2分 因为x 2+y 2≥2xy ,当且仅当x =y 时取等号, 所以S 1=12xy ≤4,当且仅当x =y =22时取等号.即S 1的最大值为4. ……………………… 5分 (2)由题意知,长方形的面积为S =6×8=48.因为S 1∶S 2=1∶2,S 1≤S 2,所以S 1=16,S 2=32.当折痕是情形①时,设AM =x cm ,AN =y cm ,则12xy =16,即y =32x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤32x ≤6,得163≤x ≤8.所以l =x 2+y 2=x 2+322x 2,163≤x ≤8. ……………………… 8分 设f (x )=x 2+322x 2,x >0,则f ′(x )=2x -2×322x 3=2(x 2+32)(x +42)(x -42)x 3,x >0.故 x 163 (163,42) 4 2 (42,8)8 f ′(x ) - 0 + f (x )6449↘64↗80所以f (x )的取值范围为[64,80],从而l 的范围是[8,45]; ……………… 11分 当折痕是情形②时,设AM =x cm ,DN =y cm ,则12(x +y )×6=16,即y =163-x .由⎩⎪⎨⎪⎧0≤x ≤8,0≤163-x ≤8,得0≤x ≤163.所以l =62+(x -y )2=62+4(x -83)2,0≤x ≤163.所以l 的范围为[6,21453]; ……………………… 13分当折痕是情形③时,设BN =x cm ,AM =y cm ,则12(x +y )×8=16,即y =4-x .由⎩⎨⎧0≤x ≤6,0≤4-x ≤6,得0≤x ≤4. 所以l =82+(x -y )2=82+4(x -2)2,0≤x ≤4. 所以l 的取值范围为[8,45].综上,l 的取值范围为[6,45]. ……………………… 16分19.解(1)由题意得,m >8-m >0,解得4<m <8.即实数m 的取值范围是(4,8). ……………………… 2分 (2)因为m =6,所以椭圆C 的方程为x 26+y 22=1.①设点P 坐标为(x ,y ),则x 26+y 22=1.因为点M 的坐标为(1,0),所以PM 2=(x -1)2+y 2=x 2-2x +1+2-x 23=2x 23-2x +3 =23(x -32)2+32,x ∈[-6,6]. ……………………… 4分 所以当x =32时,PM 的最小值为62,此时对应的点P 坐标为(32,±52).……………………… 6分②由a 2=6,b 2=2,得c 2=4,即c =2,从而椭圆C 的右焦点F 的坐标为(2,0),右准线方程为x =3,离心率e =63. 设A (x 1,y 1),B (x 2,y 2),AB 的中点H (x 0,y 0),则x 126+y 122=1,x 226+y 222=1, 所以x 12-x 226+y 12-y 222=0,即k AB =y 1-y 2x 1-x 2=-x 03y 0. ……………………… 9分令k =k AB ,则线段AB 的垂直平分线l 的方程为y -y 0=-1k (x -x 0).令y =0,则x N =ky 0+x 0=23x 0.因为F (2,0),所以FN =|x N -2|=23|x 0-3|. ……………………… 12分因为AB =AF +BF =e (3-x 1)+e (3-x 2)=263|x 0-3|.故AB FN =263×32=6. 即ABFN为定值6. ……………………… 16分20.解(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,从而S nn =a 1+n -12d . 所以当n ≥2时,S n n -S n -1n -1=(a 1+n -12d )-(a 1+n -22d )=d2.即数列{S nn }是等差数列. ……………………… 2分(2)因为对任意正整数n ,k (n >k ),都有S n +k +S n -k =2S n 成立,所以S n +1+S n -1=2S n ,即数列{S n }是等差数列. ……………………… 4分 设数列{S n }的公差为d 1,则S n =S 1+(n -1)d 1=1+(n -1)d 1, 所以S n =[1+(n -1)d 1]2,所以当n ≥2时,a n =S n -S n -1=[1+(n -1)d 1]2-[1+(n -2)d 1]2=2d 21n -3d 21+2d 1,因为{a n }是等差数列,所以a 2-a 1=a 3-a 2,即(4d 21-3d 21+2d 1)-1=(6d 21-3d 21+2d 1)-(4d 21-3d 21+2d 1),所以d 1=1,即a n =2n -1.又当a n =2n -1时,S n =n 2,S n +k +S n -k =2S n 对任意正整数n ,k (n >k )都成立, 因此a n =2n -1. ……………………… 7分 (3)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,b n =a a n ,所以b n b n -1=a a n -a n -1=a d ,即数列{b n }是公比大于0,首项大于0的等比数列. ……………………… 9分 记公比为q (q >0).以下证明:b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n . 因为(b 1+b n )-(b p +b k )=b 1+b 1q n -1-b 1q p -1-b 1q k -1=b 1(q p -1-1)( q k -1-1). 当q >1时,因为y =q x 为增函数,p -1≥0,k -1≥0, 所以q p -1-1≥0,q k -1-1≥0,所以b 1+b n ≥b p +b k . 当q =1时,b 1+b n =b p +b k .当0<q <1时,因为y =q x 为减函数,p -1≥0,k -1≥0, 所以q p -1-1≤0,q k -1-1≤0,所以b 1+b n ≥b p +b k .综上,b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n .………………… 14分 所以n (b 1+b n )=(b 1+b n )+(b 1+b n )+…+(b 1+b n )≥(b 1+b n )+(b 2+b n -1)+(b 3+b n -2)+…+(b n +b 1)=(b 1+b 2+…+b n )+(b n +b n -1+…+b 1), 即b 1+b 2+…+b n n ≤b 1+b n2. …………………… 16分南京市、盐城市2013届高三第三次模拟考试数学附加题参考答案及评分标准 2013.0521.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分. A .选修4—1:几何证明选讲证明 如图,延长PO 交⊙O 于D ,连结AO ,BO .AB 交OP 于点E .因为P A 与⊙O 相切, 所以P A 2=PC ·PD .设⊙O 的半径为R ,因为P A =12,PC =6,所以122=6(2R +6),解得R =9. …………………… 4分 因为P A ,PB 与⊙O 均相切,所以P A =PB .又OA =OB ,所以OP 是线段AB 的垂直平分线. …………………… 7分 即AB ⊥OP ,且AB =2AE . 在Rt △OAP 中,AE =OA ·P A OP =365.所以AB =725. …………………… 10分B .选修4—2:矩阵与变换 解 (1)由题知,⎣⎢⎡⎦⎥⎤1 a b 1 ⎣⎡⎦⎤11=⎣⎡⎦⎤02,即⎩⎨⎧1+a =0,b +1=2,解得⎩⎨⎧a =-1,b =1.…………………… 4分(2)设P' (x ,y )是曲线C'上任意一点,P' 由曲线C 上的点P (x 0,y 0) 经矩阵M 所表示的变换得到,所以⎣⎢⎡⎦⎥⎤1 -11 1 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧x 0-y 0=x ,x 0+y 0=y ,解得⎩⎨⎧x 0=y +x2,y 0=y -x 2.…………………… 7分 因为x 0y 0=1,所以y +x 2·y -x 2=1,即y 24-x 24=1.即曲线C' 的方程为y 24-x 24=1. …………………… 10分C .选修4—4:坐标系与参数方程解 以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,则圆C 的直角坐标方程为(x -3)2+(y -1)2=4,点M 的直角坐标为(33,3). …………………… 3分当直线l 的斜率不存在时,不合题意. 设直线l 的方程为y -3=k (x -33),由圆心C (3,1)到直线l 的距离等于半径2.ABP OC (第21题A )DE故|23k -2|k 2+1=2. …………………… 6分解得k =0或k =3.所以所求的直线l 的直角坐标方程为y =3或3x -y -6=0. ………………… 8分所以所求直线l 的极坐标方程为ρsin θ=3或ρsin(π3-θ)=3. …………………… 10分D .选修4—5:不等式选讲解 原不等式等价于 ⎩⎨⎧x ≥4,x 2-4x -3<0,或⎩⎨⎧x <4,-x 2+4x -3<0. …………………… 5分 解得⎩⎨⎧x ≥4,2-7<x <2+7,或⎩⎨⎧x <4,x <1或x >3.即4≤x <2+7或3<x <4或x <1.综上,原不等式的解集为{x | x <1或3<x <2+7}. …………………… 10分【必做题】第22题、第23题,每题10分,共20分.22.解(1)如图,取AC 的中点F ,连接BF ,则BF ⊥AC .以A 为坐标原点,过A 且与FB 平行的直线为x 轴,AC 为y 轴,AP 为z则A (0,0,0),B (3,1,0), C (0,2,0),P (0,0,2),E (0,1,1),从而→PB =(3,1,-2), →AE =(0,1,1). 设直线AE 与PB 所成角为θ, 则cos θ=|→PB ·→AE|→PB |×|→AE ||=14.即直线AE 与PB 所成角的余弦值为14 . …………………… 4分(2)设P A 的长为a ,则P (0,0,a ),从而→PB =(3,1,-a ),→PC =(0,2,-a ).设平面PBC 的法向量为n 1=(x ,y ,z ),则n 1·→PB =0,n 1·→PC =0, 所以3x +y -az =0,2y -az =0. 令z =2,则y =a ,x =33a . 所以n 1=(33a ,a ,2)是平面PBC 的一个法向量. 因为D ,E 分别为PB ,PC 中点,所以D (32,12,a 2),E (0,1,a2), 则→AD =(32,12,a 2),→AE =(0,1,a2). (第22题)设平面ADE 的法向量为n 2=(x ,y ,z ),则n 2·→AD =0,n 2·→AE =0. 所以32x +12y +a 2z =0,y +a2z =0. 令z =2,则y =-a ,x =-33a . 所以n 2=(-33a ,-a ,2)是平面ADE 的一个法向量. …………………… 8分 因为面ADE ⊥面PBC , 所以n 1⊥n 2,即n 1·n 2=(33a ,a ,2)·(- 33a ,-a ,2)=-13a 2-a 2+4=0, 解得a =3,即P A 的长为3. …………………… 10分 23.解(1)p 1=23,p 2=23×23+13×(1-23)=59. …………………… 2分(2)因为移了n 次后棋子落在上底面顶点的概率为p n ,故落在下底面顶点的概率为1-p n .于是移了n +1次后棋子落在上底面顶点的概率为p n +1=23p n +13(1-p n )=13p n +13.…………………… 4分从而p n +1-12=13(p n -12).所以数列{p n -12}是等比数列,其首项为16,公比为13.所以p n -12=16×(13)n -1.即p n =12+12×13n . …………………… 6分用数学归纳法证明:①当n =1时,左式=14×23-1=35,右式=12,因为35>12,所以不等式成立.当n =2时,左式=14×23-1+14×59-1=7855,右式=43,因为7855>43,所以不等式成立.②假设n =k (k ≥2)时,不等式成立,即i =1∑k14P i -1>k 2k +1.则n =k +1时,左式=i =1∑k14P i -1+14P k +1-1>k 2k +1+14(12+12×13k +1)-1=k 2k +1+3k +13k +1+2.要证k 2k +1+3k +13k +1+2≥(k +1)2k +2,只要证3k +1 3k +1+2≥(k +1)2k +2-k 2k +1.只要证3k +13k +1+2≥k 2+3k +1 k 2+3k +2.只要证2 3k +1≤1k 2+3k +1.只要证3k +1≥2k 2+6k +2. 因为k ≥2,所以3k +1=3(1+2)k ≥3(1+2k +4C 2k )=6k 2+3=2k 2+6k +2+2k (2k -3)+1>2k 2+6k +2,所以k 2k +1+3k +1 3k +1+2≥(k +1)2k +2.即n =k +1时,不等式也成立.由①②可知,不等式i =1∑n14P i -1>n 2n +1对任意的n ∈N *都成立. ……………………10分。

南京市、盐城市高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准 2013.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分.1.(1,3] 2.5 3.8 4.127 5. 236.710 7.2 8.①④ 9.56210.2 11.2 12.2x +y -2=0 13.(12,17) 14.332二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15.解(1)方法一:因为tan α=2,所以sin αcos α=2,即sin α=2cos α. ………………………… 2分又sin 2α+cos 2α=1,解得sin 2α=45,cos 2α=15. ………………………… 4分所以cos2α=cos 2α-sin 2α=-35. ………………………… 6分方法二:因为cos2α=cos 2α-sin 2α ………………………… 2分=cos 2α-sin 2αsin 2α+cos 2α =1-tan 2αtan 2α+1, ………………………… 4分 又tan α=2,所以cos2α=1-2222+1=-35. ………………………… 6分(2)方法一:因为α∈(0,π),且tan α=2,所以α∈(0,π2).又cos2α=-35<0,故2α∈(π2,π) ,sin2α=45. ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π). ………………………… 10分所以sin(2α-β)=sin2αcos β-cos2αsin β=45×(-7210)-(-35)×210=-22. ………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分方法二:因为α∈(0,π),且tan α=2,所以α∈(0,π2),tan2α=2tan α1-tan 2α=-43.从而2α∈(π2,π). ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π),因此tan β=-17. ………………………… 10分所以tan(2α-β)=tan2α-tan β1+tan2αtan β=-43+171+(-43)×(-17)=-1. ………………………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分16.证明(1)如图,取BC 的中点G ,连结AG ,FG .因为F 为C 1B 的中点,所以FG =∥12C 1C . 在三棱柱ABC -A 1B 1C 1中,A 1A =∥C 1C ,且E 为A 1A 的中点, 所以FG =∥EA . 所以四边形AEFG 是平行四边形. 所以EF ∥AG . ………………………… 4分 因为EF ⊄平面ABC ,AG ⊂平面ABC ,所以EF ∥平面ABC . ………………………… 6分 (2)因为在正三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,BD ⊂平面ABC ,所以A 1A ⊥BD .因为D 为AC 的中点,BA =BC ,所以BD ⊥AC .因为A 1A ∩AC =A ,A 1A ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,所以BD ⊥平面A 1ACC 1. 因为C 1E ⊂平面A 1ACC 1,所以BD ⊥C 1E . ………………………… 9分 根据题意,可得EB =C 1E =62AB ,C 1B =3AB , 所以EB 2+C 1E 2=C 1B 2.从而∠C 1EB =90°,即C 1E ⊥EB .……………………… 12分 因为BD ∩EB =B ,BD ⊂平面BDE , EB ⊂平面BDE ,(第16题)ABC D EC 1A 1B 1FG所以C 1E ⊥平面BDE . ………………………… 14分17.解(1)由题意知,f (x )=-2x +3+ln x ,所以f ′(x )=-2+1x =-2x +1x (x >0). ……………………… 2分由f ′(x )>0得x ∈(0,12) .所以函数f (x )的单调增区间为(0,12). ……………………… 4分(2)由f ′(x )=mx -m -2+1x,得f ′(1)=-1,所以曲线y =f (x )在点P (1,1)处的切线l 的方程为y =-x +2.…………………… 6分 由题意得,关于x 的方程f (x )=-x +2有且只有一个解, 即关于x 的方程12m (x -1)2-x +1+ln x =0有且只有一个解.令g (x )=12m (x -1)2-x +1+ln x (x >0).则g ′(x )=m (x -1)-1+1x =mx 2-(m +1)x +1x =(x -1)(mx -1)x (x >0). …………… 8分①当0<m <1时,由g ′(x )>0得0<x <1或x >1m ,由g ′(x )<0得1<x <1m ,所以函数g (x )在(0,1)为增函数,在(1,1m )上为减函数,在(1m ,+∞)上为增函数.又g (1)=0,且当x →∞时,g (x )→∞,此时曲线y =g (x )与x 轴有两个交点.故0<m <1不合题意. ……………………… 10分 ②当m =1时,g ′(x )≥0,g (x )在(0,+∞)上为增函数,且g (1)=0,故m =1符合题意. ③当m >1时,由g ′(x )>0得0<x <1m 或x >1,由g ′(x )<0得1m<x <1,所以函数g (x )在(0,1m ) 为增函数,在(1m ,1)上为减函数,在(1,+∞)上为增函数.又g (1)=0,且当x →0时,g (x )→-∞,此时曲线y =g (x )与x 轴有两个交点. 故m >1不合题意.综上,实数m 的值为m =1. ……………………… 14分18.解 如图所示,不妨设纸片为长方形ABCD ,AB =8cm ,AD =6cm ,其中点A 在面积为S 1的部分内.折痕有下列三种情形:①折痕的端点M ,N 分别在边AB ,AD 上; ②折痕的端点M ,N 分别在边AB ,CD 上;③折痕的端点M ,N 分别在边AD ,BC 上.(1)在情形②、③中MN ≥6,故当l =4时,折痕必定是情形①.设AM =x cm ,AN =y cm ,则x 2+y 2=16. ……………………… 2分 因为x 2+y 2≥2xy ,当且仅当x =y 时取等号, 所以S 1=12xy ≤4,当且仅当x =y =22时取等号.即S 1的最大值为4. ……………………… 5分 (2)由题意知,长方形的面积为S =6×8=48.因为S 1∶S 2=1∶2,S 1≤S 2,所以S 1=16,S 2=32.当折痕是情形①时,设AM =x cm ,AN =y cm ,则12xy =16,即y =32x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤32x ≤6,得163≤x ≤8.所以l =x 2+y 2=x 2+322x 2,163≤x ≤8. ……………………… 8分 设f (x )=x 2+322x 2,x >0,则f ′(x )=2x -2×322x 3=2(x 2+32)(x +42)(x -42)x 3,x >0.故所以f (x )的取值范围为[64,80],从而l 的范围是[8,45]; ……………… 11分 当折痕是情形②时,设AM =x cm ,DN =y cm ,则12(x +y )×6=16,即y =163-x .由⎩⎪⎨⎪⎧0≤x ≤8,0≤163-x ≤8,得0≤x ≤163.所以l =62+(x -y )2=62+4(x -83)2,0≤x ≤163.所以l 的范围为[6,21453]; ……………………… 13分当折痕是情形③时,设BN =x cm ,AM =y cm ,则12(x +y )×8=16,即y =4-x .ABCD (情形①)MNABCD (情形②)MNABCD (情形③)MN由⎩⎨⎧0≤x ≤6,0≤4-x ≤6,得0≤x ≤4. 所以l =82+(x -y )2=82+4(x -2)2,0≤x ≤4. 所以l 的取值范围为[8,45].综上,l 的取值范围为[6,45]. ……………………… 16分19.解(1)由题意得,m >8-m >0,解得4<m <8.即实数m 的取值范围是(4,8). ……………………… 2分 (2)因为m =6,所以椭圆C 的方程为x 26+y 22=1.①设点P 坐标为(x ,y ),则x 26+y 22=1.因为点M 的坐标为(1,0),所以PM 2=(x -1)2+y 2=x 2-2x +1+2-x 23=2x 23-2x +3 =23(x -32)2+32,x ∈[-6,6]. ……………………… 4分 所以当x =32时,PM 的最小值为62,此时对应的点P 坐标为(32,±52).……………………… 6分②由a 2=6,b 2=2,得c 2=4,即c =2,从而椭圆C 的右焦点F 的坐标为(2,0),右准线方程为x =3,离心率e =63. 设A (x 1,y 1),B (x 2,y 2),AB 的中点H (x 0,y 0),则x 126+y 122=1,x 226+y 222=1, 所以x 12-x 226+y 12-y 222=0,即k AB =y 1-y 2x 1-x 2=-x 03y 0. ……………………… 9分令k =k AB ,则线段AB 的垂直平分线l 的方程为y -y 0=-1k (x -x 0).令y =0,则x N =ky 0+x 0=23x 0.因为F (2,0),所以FN =|x N -2|=23|x 0-3|. ……………………… 12分因为AB =AF +BF =e (3-x 1)+e (3-x 2)=263|x 0-3|.故AB FN =263×32=6. 即ABFN为定值6. ……………………… 16分20.解(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,从而S nn =a 1+n -12d . 所以当n ≥2时,S n n -S n -1n -1=(a 1+n -12d )-(a 1+n -22d )=d2.即数列{S nn }是等差数列. ……………………… 2分(2)因为对任意正整数n ,k (n >k ),都有S n +k +S n -k =2S n 成立,所以S n +1+S n -1=2S n ,即数列{S n }是等差数列. ……………………… 4分 设数列{S n }的公差为d 1,则S n =S 1+(n -1)d 1=1+(n -1)d 1, 所以S n =[1+(n -1)d 1]2,所以当n ≥2时,a n =S n -S n -1=[1+(n -1)d 1]2-[1+(n -2)d 1]2=2d 21n -3d 21+2d 1,因为{a n }是等差数列,所以a 2-a 1=a 3-a 2,即(4d 21-3d 21+2d 1)-1=(6d 21-3d 21+2d 1)-(4d 21-3d 21+2d 1),所以d 1=1,即a n =2n -1.又当a n =2n -1时,S n =n 2,S n +k +S n -k =2S n 对任意正整数n ,k (n >k )都成立, 因此a n =2n -1. ……………………… 7分 (3)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,b n =a a n ,所以b n b n -1=a a n -a n -1=a d ,即数列{b n }是公比大于0,首项大于0的等比数列. ……………………… 9分 记公比为q (q >0).以下证明:b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n . 因为(b 1+b n )-(b p +b k )=b 1+b 1q n -1-b 1q p -1-b 1q k -1=b 1(q p -1-1)( q k -1-1). 当q >1时,因为y =q x 为增函数,p -1≥0,k -1≥0, 所以q p -1-1≥0,q k -1-1≥0,所以b 1+b n ≥b p +b k . 当q =1时,b 1+b n =b p +b k .当0<q <1时,因为y =q x 为减函数,p -1≥0,k -1≥0, 所以q p -1-1≤0,q k -1-1≤0,所以b 1+b n ≥b p +b k .综上,b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n .………………… 14分 所以n (b 1+b n )=(b 1+b n )+(b 1+b n )+…+(b 1+b n )≥(b 1+b n )+(b 2+b n -1)+(b 3+b n -2)+…+(b n +b 1)=(b 1+b 2+…+b n )+(b n +b n -1+…+b 1), 即b 1+b 2+…+b n n ≤b 1+b n2. …………………… 16分南京市、盐城市2013届高三第三次模拟考试数学附加题参考答案及评分标准 2013.0521.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分. A .选修4—1:几何证明选讲证明 如图,延长PO 交⊙O 于D ,连结AO ,BO .AB 交OP 于点E .因为P A 与⊙O 相切, 所以P A 2=PC ·PD .设⊙O 的半径为R ,因为P A =12,PC =6,所以122=6(2R +6),解得R =9. …………………… 4分 因为P A ,PB 与⊙O 均相切,所以P A =PB .又OA =OB ,所以OP 是线段AB 的垂直平分线. …………………… 7分 即AB ⊥OP ,且AB =2AE . 在Rt △OAP 中,AE =OA ·P A OP =365.所以AB =725. …………………… 10分B .选修4—2:矩阵与变换 解 (1)由题知,⎣⎢⎡⎦⎥⎤1 a b 1 ⎣⎡⎦⎤11=⎣⎡⎦⎤02,即⎩⎨⎧1+a =0,b +1=2,解得⎩⎨⎧a =-1,b =1.…………………… 4分(2)设P' (x ,y )是曲线C'上任意一点,P' 由曲线C 上的点P (x 0,y 0) 经矩阵M 所表示的变换得到,所以⎣⎢⎡⎦⎥⎤1 -11 1 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧x 0-y 0=x ,x 0+y 0=y ,解得⎩⎨⎧x 0=y +x 2,y 0=y -x 2.…………………… 7分 因为x 0y 0=1,所以y +x 2·y -x 2=1,即y 24-x 24=1.即曲线C' 的方程为y 24-x 24=1. …………………… 10分C .选修4—4:坐标系与参数方程解 以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,则圆C 的直角坐标方程为(x -3)2+(y -1)2=4,点M 的直角坐标为(33,3). …………………… 3分ABOC (第21题A )DE当直线l 的斜率不存在时,不合题意. 设直线l 的方程为y -3=k (x -33),由圆心C (3,1)到直线l 的距离等于半径2.故|23k -2|k 2+1=2. …………………… 6分解得k =0或k =3.所以所求的直线l 的直角坐标方程为y =3或3x -y -6=0. ………………… 8分所以所求直线l 的极坐标方程为ρsin θ=3或ρsin(π3-θ)=3. …………………… 10分D .选修4—5:不等式选讲解 原不等式等价于 ⎩⎨⎧x ≥4,x 2-4x -3<0,或⎩⎨⎧x <4,-x 2+4x -3<0. …………………… 5分解得⎩⎨⎧x ≥4,2-7<x <2+7,或⎩⎨⎧x <4,x <1或x >3.即4≤x <2+7或3<x <4或x <1.综上,原不等式的解集为{x | x <1或3<x <2+7}. …………………… 10分【必做题】第22题、第23题,每题10分,共20分.22.解(1)如图,取AC 的中点F ,连接BF ,则BF ⊥AC .以A 为坐标原点,过A 且与FB 平行的直线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系. 则A (0,0,0),B (3,1,0), C (0,2,0),P (0,0,2),E (0,1,1),从而→PB =(3,1,-2), →AE =(0,1,1). 设直线AE 与PB 所成角为θ, 则cos θ=|→PB ·→AE|→PB |×|→AE ||=14.即直线AE 与PB 所成角的余弦值为14 . …………………… 4分(2)设P A 的长为a ,则P (0,0,a ),从而→PB =(3,1,-a ),→PC =(0,2,-a ).设平面PBC 的法向量为n 1=(x ,y ,z ),则n 1·→PB =0,n 1·→PC =0, 所以3x +y -az =0,2y -az =0. 令z =2,则y =a ,x =33a . 所以n 1=(33a ,a ,2)是平面PBC 的一个法向量.(第22题)因为D ,E 分别为PB ,PC 中点,所以D (32,12,a 2),E (0,1,a2), 则→AD =(32,12,a 2),→AE =(0,1,a2). 设平面ADE 的法向量为n 2=(x ,y ,z ),则n 2·→AD =0,n 2·→AE =0. 所以32x +12y +a 2z =0,y +a2z =0. 令z =2,则y =-a ,x =-33a . 所以n 2=(-33a ,-a ,2)是平面ADE 的一个法向量. …………………… 8分 因为面ADE ⊥面PBC , 所以n 1⊥n 2,即n 1·n 2=(33a ,a ,2)·(- 33a ,-a ,2)=-13a 2-a 2+4=0, 解得a =3,即P A 的长为3. …………………… 10分 23.解(1)p 1=23,p 2=23×23+13×(1-23)=59. …………………… 2分(2)因为移了n 次后棋子落在上底面顶点的概率为p n ,故落在下底面顶点的概率为1-p n .于是移了n +1次后棋子落在上底面顶点的概率为p n +1=23p n +13(1-p n )=13p n +13.…………………… 4分从而p n +1-12=13(p n -12).所以数列{p n -12}是等比数列,其首项为16,公比为13.所以p n -12=16×(13)n -1.即p n =12+12×13n . …………………… 6分用数学归纳法证明:①当n =1时,左式=14×23-1=35,右式=12,因为35>12,所以不等式成立.当n =2时,左式=14×23-1+14×59-1=7855,右式=43,因为7855>43,所以不等式成立.②假设n =k (k ≥2)时,不等式成立,即i =1∑k14P i -1>k 2k +1.则n =k +1时,左式=i =1∑k14P i -1+14P k +1-1>k 2k +1+14(12+12×13k +1)-1=k 2k +1+3k +13k +1+2.要证k 2k +1+3k +13k +1+2≥(k +1)2k +2,只要证3k +1 3k +1+2≥(k +1)2k +2-k 2k +1.只要证3k +13k +1+2≥k 2+3k +1 k 2+3k +2.只要证2 3k +1≤1k 2+3k +1.只要证3k +1≥2k 2+6k +2. 因为k ≥2,所以3k +1=3(1+2)k ≥3(1+2k +4C 2k )=6k 2+3=2k 2+6k +2+2k (2k -3)+1>2k 2+6k +2,所以k 2k +1+3k +1 3k +1+2≥(k +1)2k +2.即n =k +1时,不等式也成立.由①②可知,不等式i =1∑n14P i -1>n 2n +1对任意的n ∈N *都成立. ……………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市、盐城市2012届高三年级第三次模拟考试数 学 2012.05注意事项:1.本试卷共160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、考试号写在答卷题卡上.试题的答案写在答.题卡..上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:锥体的体积公式为V =13Sh ,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,计70分.请把答案写在答题纸的指定位置上.1.已知集合A ={}1,1,3-,B =}2,a ,且B A ⊆,则实数a 的值是 ▲ .答案:12.已知复数z 满足(2)5i z i -=(其中i 为虚数单位),则复数z 的模是 ▲ .答案3.根据如图所示的流程图,若输入x 的值为 -7.5,则输出y 的值为 ▲ . 答案: -14.若将一颗质地均匀的骰子(各面上分别标有1、2、3、4、5、6个点的正方形玩具)先后抛掷两次,向上的点数依次为m 、n ,则方程220x mx n ++=无实根的概率是 ▲ .答案:7365.为了检测某自动包装流水线的生产情况,在流水线上随机抽取40件产品,分别称出它们的重量(单位:克)作为样本。

下图是样本的频率分布直方图,根据图中各组的组中值估计产品的平均重量是 ▲ 克. 答案:5076.已知正△ABC 的边长为1,73CP CA CB =+, 则CP AB ⋅ =▲ . 答案: -27.已知α、β是两个不同的平面,下列四个条件: ①存在一条直线a ,a α⊥,a β⊥; ②存在一个平面γ,,γαγβ⊥⊥;③存在两条平行直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α; ④存在两条异面直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α。

其中是平面α∥平面β的充分条件的为= ▲ .(填上所有符合要求的序号) 答案:①③8.若函数222,0(),0x x x f x x ax x ⎧-≥⎪=⎨-+<⎪⎩是奇函数,则满足()f x a >的x 的取值范围是 ▲ .答案:(1)-+∞9.在直角坐标系xOy 中,记不等式组30270260y x y x y -≥⎧⎪+-≤⎨⎪-+≥⎩表示的平面区域为D .若指数函数x y a =(a >0且1a ≠)的图象与D 有公共点,则a 取值范围是 ▲ .答案:)+∞10.在平面直角坐标系xOy 中,抛物线24y x =的焦点为F ,点P 在抛物线上,且位于x 轴上方.若点P 到坐标原点O的距离为则过F 、O 、P 三点的圆的方程是 ▲ . 答案:221725()()222x y -+-=11.已知sin()sin 032ππααα++=-<<,则cos α= ▲ .解答:3sin coscos sinsin sin )332265πππαααααα++=+=+=- 4sin(65πα+=-,又366πππα-<+<,所以3cos(65πα+=。

3414cos cos[()()66525210ππαα=+-=⋅+-⋅=。

12.在平面直角坐标系xOy 中,已知点A(0,2),直线:40l x y +-=.点B (,)x y 是圆22:210C x y x +--=的动点,,AD l BE l ⊥⊥,垂足分别为D 、E ,则线段DE 的最大值是 ▲ .解答:线段DE 的最大值等于圆心(1,0)到直线AD (x-y+2=0 13.如图,将数列{}n a 中的所有项按每一行比上一行多两项的规则排成数表.已知表中的第一列125,,,a a a 构成一个公比为2的等比数列,从第2行起,每一行都是一个公差为d 的等差数列。

若4865,518a a ==,则d = ▲ .解答:第2行成公差为d 的等差数列,可得:24252a a d d =-=-, 第n 行的数的个数为21n -,从第1行到第n 行的所有数的个数总和为2(121)2n n n +-=,86=92+5,第10行的前几个数为:8283848586,,,,,a a a a a ,所以828645184a a d d =-=-。

第一列12510172637506582,,,,,,,,,,a a a a a a a a a a 构成一个公比为2的等比数列, 故有8882225184(52)2a a d d =⋅⇒-=-⋅,解得: 1.5d =。

14.若不等式|3ln ax x -|≥1对任意(0,1]x ∈都成立,则实数a 取值范围是 ▲ . 解答:显然1x =时,有||1,1,,1a a or a ≥≤-≥。

令3()ln ,g x ax x =-32131()3ax g x ax x x-'=-=①当1a ≤-时,对任意(0,1]x ∈,331()0ax g x x-'=<,()g x 在(0,1]上递减,min ()(1)1g x g a ==≤-,此时()g x [,)a ∈+∞,|()g x |的最小值为0,不适合题意。

②当1a ≥时,对任意(0,1]x ∈,331()0ax g x x x -'==⇒=|()g x |的最小值为11ln(3)33g a =+≥1,解得:23e a ≥。

故所求23e a ≥二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .已知向量(,2)m b a c =-,(cos 2cos ,cos )n A C B =-,且m n ⊥ .(1)求sin sin CA的值;(2)若2,||a m ==ABC 的面积S .在△ABC 中,90,60,1O O BAC B AB ∠=∠==,D 为线段BC 的中点,E 、F 为线段AC 的三等分点(如图1).将△ABD 沿着AD 折起到△A B 'D 的位置,连结B 'C (如图2). (1)若平面A B 'D ⊥平面AD C ,求三棱锥B '-AD C 的体积;(2)记线段B 'C 的中点为H,平面B 'ED 与平面HFD 的交线为l ,求证:HF ∥l ; (3)求证:AD ⊥B 'E.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v (米/单位时间),单位时间内用氧量为2cv (c 为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为2v(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y . (1)将y 表示为v 的函数;(2)设0<v ≤5,试确定下潜速度v ,使总的用氧量最少.在平面直角坐标系xOy 中,过点A(-2,-1)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F,短轴端点为1B 、2B ,2122FB FB b ⋅=。

(1)求a 、b 的值;(2)过点A 的直线l 与椭圆C 的另一交点为Q ,与y 轴的交点为R .过原点O 且平行于l 的直线与椭圆的一个交点为P .若AQ ⋅AR=3 OP 2,求直线l 的方程。

19.(本小题满分16分)已知数列{}n a 的奇数行项是公差为1d 的等差数列,偶数项是公差为2d 的等差数列,nS 是数列{}n a 的前n 项和,121,2a a ==. (1)若54516,S a a ==,求10a ;(2)已知15815S a =,且对任意n N *∈,有1n n a a +<恒成立,求证:数列{}n a 是等差数列;(3)若1213(0)d d d =≠,且存在正整数m 、()n m n ≠,使得m n a a =.求当1d 最大时,数列{}n a 的通项公式。

20.(本小题满分16分)已知函数322()2,.f x x ax a x a R =+-+∈ (1)若0a <时,试求函数()y f x =的单调递减区间;(2)若0a =,且曲线()y f x =在点A 、B (A 、B 不重合)处切线的交点位于直线2x =上,证明:A 、B 两点的横坐标之和小于4;(3)如果对于一切1x 、2x 、3[0,1]x ∈,总存在以1()f x 、2()f x 、3()f x 为三边长的三角形,试求正实数a 的取值范围。

南京市、盐城市2012届高三年级第三次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题卡上.试题的答案写在答.题卡..上对应题目的答案空格内.考试结束后,交回答题卡. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.请在答.题.卡指定区域内......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点, AE AC ,DE 交AB 于点F .求证:PF ·PO =PA ·PB .B .选修4—2:矩阵与变换已知曲线22:1C x y +=,对它先作矩阵A =⎣⎢⎡⎦⎥⎤1 00 2对应的变换,再作矩阵B=⎣⎢⎡⎦⎥⎤0 b 1 0对应的变换,得到曲线22:14x C y +=.求实数b 的值。

C .选修4—4:坐标系与参数方程在以O 为极点的极坐标系中,直线l 与曲线C 的极坐标方程分别是cos()4πρθ+=2sin 8cos ρθθ=,直线l 与曲线C 交于点A 、B ,求线段AB 的长。

D .选修4—5:不等式选讲 解不等式:2|1|x x->.【必做题】第22题、第23题,每题10分,共20分.请在答.题卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.22.一个袋中装有大小和质地都相同的10个球,其中黑球4个,白球5个,红球1个。

(1)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的概率分布和数学期望E(X);(2)每次从袋中随机地摸出一球,记下颜色后放回.求3次摸球后,摸到黑球的次数大于摸到白球的次数的概率。

23.已知数列{}n a 的首项为1,011222111231()(1)(1)(1)(1)n n n n n n n n n n n n n n p x a C x a C x x a C x x a C x x a C x ----+=-+-+-++-+(1)若数列{}n a 是公比为2的等比数列,求(1)p -的值;(2)若数列{}n a 是公比为2的等差数列,求证:()p x 是关于x 的一次多项式.。

相关文档
最新文档