函数的单调性与最值专题

合集下载

高考数学专题复习《函数的单调性与最大值》PPT课件

高考数学专题复习《函数的单调性与最大值》PPT课件

解 当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调递增.证明
如下:
(方法1 定义法)任取x1,x2∈(-1,1),且x1<x2,
因为
-1+1
1
f(x)=a(
)=a(1+ ),则
-1
-1
1
1
( 2 - 1 )
f(x1)-f(x2)=a(1+ )-a(1+ )=
(-1)-
(方法2 导数法) f'(x)=
2
(-1)
=
-
(-1)2
,所以当a>0时,f'(x)<0,当a<0
时,f'(x)>0,即当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调
递增.
解题心得1.判断函数单调性的四种方法:
(1)定义法;
(2)图像法;
3
∴f(-2)<f(- )<f(-1).故选
2
D.
f(x)在(-∞,-1]上是增函数,
3 1
4.(2020 全国 2,文 10)设函数 f(x)=x - 3 ,则 f(x)(

)
A.是奇函数,且在(0,+∞)上单调递增 B.是奇函数,且在(0,+∞)上单调递减
C.是偶函数,且在(0,+∞)上单调递增 D.是偶函数,且在(0,+∞)上单调递减
3.若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(
3
A.f(-2)<f(-1)<f(2)
3
B.f(-1)<f(-2)<f(2)

函数的单调性与最值专题训练

函数的单调性与最值专题训练

函数的单调性与最值专题训练一、选择题1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A.-2B.2C.-6D.62. 下列函数中,在区间(-1,1)上为减函数的是( ) A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a 2;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),在区间[-2,2]上的最大值等于( ) A.-1B.1C.6D.124.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a = f⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <aD.a <b <c5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A.(8,+∞) B.(8,9] C.[8,9]D.(0,8)二、填空题6. 设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.7. 函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.8.设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.三、解答题9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.10.已知函数f (x )=2x -ax 的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.11. 若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( ) A.4B.2C.12D.1412. 已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( )A.[0,3]B.(1,3)C.[2-2,2+2]D.(2-2,2+2) 解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1,若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 D13. 对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.14.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.函数的单调性与最值专题训练答案一、选择题1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A.-2B.2C.-6D.6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6. 答案 C3. 下列函数中,在区间(-1,1)上为减函数的是( ) A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x解析 ∵y =11-x与y =ln(x +1)在(-1,1)上为增函数,且y =cos x 在(-1,1)上不具备单调性.∴A ,B ,C 不满足题意.只有y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上是减函数. 答案 D3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a 2;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),在区间[-2,2]上的最大值等于( ) A.-1B.1C.6D.12解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案 C4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a = f⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <aD.a <b <c解析 ∵函数图象关于x =1对称,∴a =f⎝ ⎛⎭⎪⎫-12=f⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c .答案 B5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A.(8,+∞) B.(8,9] C.[8,9]D.(0,8)解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎨⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案 B 二、填空题6. 设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析由题意知g (x )=⎩⎨⎧x 2 (x >1),0 (x =1),-x 2 (x <1),函数的图象如图所示的实线部分,根据图象,g (x )的减区间是[0,1). 答案 [0,1)7.(2017·石家庄调研)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 答案 38. 设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪[4,+∞) 三、解答题9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. (1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0, ∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f⎝ ⎛⎭⎪⎫12=12,f (2)=2,易知a =25. 10.已知函数f (x )=2x -ax 的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x ,任取1≥x 1>x 2>0, 则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫2+1x 1x 2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值, 当x =1时取得最大值2-a ; 当a <0时,f (x )=2x +-ax , 当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a 2<1,即a ∈(-2,0)时,y =f (x )在⎝ ⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a 2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a . 14. 若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( ) A.4B.2C.12D.14解析 当a >1,则y =a x 为增函数,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 在[0,+∞)上为减函数,不合题意. 当0<a <1,则y =a x 为减函数, 有a -1=4,a 2=m ,此时a =14,m =116.此时g (x )=34x 在[0,+∞)上是增函数.故a =14. 答案 D15. 已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( ) A.[0,3]B.(1,3)C.[2-2,2+2]D.(2-2,2+2)解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1],即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 D13.对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________. 解析 依题意,h (x )=⎩⎨⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1. 答案 114.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)由x +ax -2>0,得x 2-2x +a x>0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +ax -2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax2>0.因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=ln a2.(3)对任意x ∈[2,+∞),恒有f (x )>0.即x +ax -2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).。

函数单调性和求极值点、最值(知识点及相关练习)

函数单调性和求极值点、最值(知识点及相关练习)

函数单调性和求极值点、最值(知识点及相关练习)本文档将介绍函数的单调性以及如何求函数的极值点和最值。

这些概念是在研究高等数学中非常重要的一部分。

函数的单调性函数的单调性描述了函数图像在定义域内的变化趋势。

一个函数可以是递增的(单调递增),也可以是递减的(单调递减),或者在某个区间内既递增又递减。

判断函数的单调性需要观察函数的导数。

如果函数的导数恒大于零(导函数递增),则函数单调递增;如果导数恒小于零(导函数递减),则函数单调递减。

如果导数在某个区间内既大于零又小于零,则函数在该区间内既递增又递减。

下面是一些相关联系。

练题:1. 设函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的单调区间。

- 解答:- 首先求导数:$f'(x)=3x^2-6x$- 然后求解 $f'(x)=0$ 的解,即 $3x^2-6x=0$ ,解得 $x=0, 2$- 将 $x=0$ 和 $x=2$ 代入 $f'(x)$ 的导数符号表,得到如下结果:| $x$ | $(-\infty,0)$ | $(0,2)$ | $(2,+\infty)$ |- 由上表可以看出,函数 $f(x)$ 在区间 $(-\infty, 0)$ 上递减,在区间 $(0,2)$ 上递增,而在区间 $(2,+\infty)$ 上递增,所以函数的单调区间分别为 $(-\infty, 0)$ 和 $(2,+\infty)$。

求函数的极值点和最值函数的极值点是函数某一段上的极大值或极小值点。

函数的最大值和最小值是函数在整个定义域上的最大值和最小值。

为了求函数的极值点和最值,我们需要找到函数的临界点和边界点。

- 临界点:函数定义域内导数为零或不存在的点。

- 边界点:函数定义域的端点。

对于一个函数,如果它有极值点,那么极值点一定在函数的临界点和边界点处。

下面是一些相关练。

练题:1. 设函数 $g(x)=x^3-6x^2+9x+2$,求 $g(x)$ 的极值点和最值。

专题2.2 函数的单调性与最值(重难点突破)(解析版)

专题2.2 函数的单调性与最值(重难点突破)(解析版)

专题2.2 函数的单调性与最值(重难点突破)(理科)一、考纲要求1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。

二、考情分析三、考点梳理【基础知识梳理】1、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述1/ 112 / 11自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足 条件(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得()0f x M =(3)对于任意的x I ∈,都有()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论 M 为最大值 M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 【知识拓展】1、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与()y f x =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,b a ⎛-∞-⎝和,b a ⎫+∞⎪⎪⎭上单调递增,在,0b a ⎛⎫ ⎪ ⎪⎝⎭和b a ⎛ ⎝3 / 11上单调递减.四、题型分析(一) 判断函数的单调性 1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(2020·安徽省池州一中模拟)下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.【变式训练1】.(2020届陕西省咸阳市高三第一次模拟)函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是( )A .132,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z B .372,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z C .312,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z D .152,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z4 / 11【答案】C【解析】令()224k x k k Z πππππ-≤-≤∈,解得()312244k x k k Z -≤≤+∈, 因此,函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是()312,244k k k Z ⎡⎤-+∈⎢⎥⎣⎦,故选C 。

高一 函数的单调性及其最值知识点+例题+练习 含答案

高一 函数的单调性及其最值知识点+例题+练习 含答案

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x 2”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________. 答案 ①解析 对于①,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;②,③,④函数在(0,+∞)上均不单调.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1解析 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减, 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增, 则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________. 答案 (1)① (2)(-∞,-2) (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用命题点1 比较大小例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系) 答案 < >解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), 得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________.(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)⎣⎡⎦⎤-14,0 (2)[32,2) 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是__________.(2)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是__________.答案 (1)(8,9] (2)(0,1]解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (14分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1, ∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1] =f (x 2-x 1)+f (x 1)-1,[4分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[14分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法.[失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练(时间:40分钟)1.下列函数f (x )中,①f (x )=1x;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)答案 ①解析 由题意知f (x )在(0,+∞)上是减函数.①中,f (x )=1x满足要求; ②中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;③中,f (x )=e x 是增函数;④中,f (x )=ln(x +1)在(0,+∞)上是增函数.2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.答案 b <a <c解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________. 答案 -2解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.答案 [0,34] 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎨⎧ a >0,-4(a -3)4a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.函数f (x )=⎩⎪⎨⎪⎧12log ,x x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x <2,-x +3,x ≥2.当0<x <2时,h (x )=log 2x 是增函数;当x ≥2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.12.定义新运算:当a ≥b 时,ab =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.答案 (-3,-1)∪(3,+∞)解析 由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

高考数学复习函数的单调性与最值专题训练(含答案)

高考数学复习函数的单调性与最值专题训练(含答案)

高考数学复习函数的单调性与最值专题训练(含答案)函数的单调性也可以叫做函数的增减性,下面是函数的单调性与最值专题训练,请考生及时练习。

一、选择题1.以下函数中,既是偶函数又在(0,+)内单调递减的函数是().A.y=x2B.y=|x|+1C.y=-lg|x|D.y=2|x|解析关于C中函数,当x0时,y=-lg x,故为(0,+)上的减函数,且y=-lg |x|为偶函数.答案 C.函数f(x)为R上的减函数,那么满足f(|x|)A.(-1,1)B.(0,1)C.(-1,0)(0,1)D.(-,-1)(1,+)解析 f(x)在R上为减函数且f(|x|)|x|1,解得x1或x-1.答案 D.假定函数y=ax与y=-在(0,+)上都是减函数,那么y=ax2+bx 在(0,+)上是()A.增函数B.减函数C.先增后减D.先减后增解析y=ax与y=-在(0,+)上都是减函数,a0,b0,y=ax2+bx的对称轴方程x=-0,y=ax2+bx在(0,+)上为减函数.答案B4.设函数f(x)=g(x)=x2f(x-1),那么函数g(x)的递减区间是().A.(-,0]B.[0,1)C.[1,+)D.[-1,0]解析 g(x)=如下图,其递减区间是[0,1).应选B.答案 B.函数y=-x2+2x-3(x0)的单调增区间是()A.(0,+)B.(-,1]C.(-,0)D.(-,-1]解析二次函数的对称轴为x=1,又由于二次项系数为正数,,对称轴在定义域的右侧,所以其单调增区间为(-,0).答案 C.设函数y=f(x)在(-,+)内有定义,关于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为().A.(-,0)B.(0,+)C.(-,-1)D.(1,+)解析 f(x)=f(x)=f(x)的图象如右图所示,因此f(x)的单调递增区间为(-,-1).答案 C二、填空题.设函数y=x2-2x,x[-2,a],假定函数的最小值为g(a),那么g(a)=________.解析函数y=x2-2x=(x-1)2-1,对称轴为直线x=1.当-21时,函数在[-2,a]上单调递减,那么当x=a时,ymin=a2-2a;当a1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,那么当x=1时,ymin=-1.综上,g(a)=答案.函数y=-(x-3)|x|的递增区间是_______.解析y=-(x-3)|x|作出该函数的图像,观察图像知递增区间为.答案.函数f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,那么a的取值范围是________.解析当a=0时,f(x)=-12x+5在(-,3)上为减函数;当a0时,要使f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,那么对称轴x=必在x=3的左边,即3,故0答案10.函数f(x)=(a是常数且a0).关于以下命题:函数f(x)的最小值是-1;函数f(x)在R上是单调函数;假定f(x)0在上恒成立,那么a的取值范围是a对恣意的x10,x20且x1x2,恒有f.其中正确命题的序号是____________.解析依据题意可画出草图,由图象可知,显然正确;函数f(x)在R上不是单调函数,故错误;假定f(x)0在上恒成立,那么2a-10,a1,故正确;由图象可知在(-,0)上对恣意的x10,x20且x1x2,恒有f成立,故正确.答案三、解答题.求函数y=a1-x2(a0且a1)的单调区间.当a1时,函数y=a1-x2在区间[0,+)上是减函数,在区间(-,0]上是增函数;当0x12,那么f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x22,得x1x2(x1+x2)16,x1-x20,x1x20.要使f(x)在区间[2,+)上是增函数,只需f(x1)-f(x2)0,即x1x2(x1+x2)-a0恒成立,那么a16..函数f(x)=a2x+b3x,其中常数a,b满足ab0.(1)假定ab0,判别函数f(x)的单调性;(2)假定ab0,求f(x+1)f(x)时的x的取值范围.解 (1)当a0,b0时,由于a2x,b3x都单调递增,所以函数f(x)单调递增;当a0,b0时,由于a2x,b3x都单调递减,所以函数f(x)单调递减.(2)f(x+1)-f(x)=a2x+2b3x0.(i)当a0,b0时,x-,解得x(ii)当a0,b0时,x-,解得x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)假定f(4)=5,解不等式f(3m2-m-2)3.(1)证明设x1,x2R,且x10,f(x2-x1)1.f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-10.f(x2)f(x1).即f(x)是R上的增函数.(2) f(4)=f(2+2)=f(2)+f(2)-1=5,f(2)=3,原不等式可化为f(3m2-m-2)函数的单调性与最值专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优秀的效果。

高一函数(2):函数的单调性与最值

高一函数(2):函数的单调性与最值

专题一 函数的单调性与最值题型一 确定函数的单调性1.确定函数单调性(区间)的三种常用方法(1)定义法:一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性)..(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.(3)导数法:利用导数取值的正负确定函数的单调性. 2.熟记函数单调性的常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”.(4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值.【例1】(2020·华南师范大学附属中学月考)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)【解析】由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数. 要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8在定义域内的单调递增区间. ∵函数t =x 2-2x -8在(-∞,-2)上单调递减,在(4,+∞)上单调递增, ∴函数f (x )的单调递增区间为(4,+∞).【例2】函数y =x 2+x -6的单调递增区间为________,单调递减区间为________. 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞). 【例3】判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解法一】设-1<x 1<x 2<1,⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-=111111)(x a x x a x f⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-+=-111111)()(2121x a x a x f x f =a (x 2-x 1)(x 1-1)(x 2-1), 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增.【解法二】f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为单调递减函数, 当a <0时,f (x )在(-1,1)上为单调递增函数.题型二 求函数的最值(值域) 求函数的最值(值域)的常用方法(1)单调性法:若所给函数为单调函数,可根据函数的单调性求最值.(2)换元法:求形如y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.(3)数形结合法:若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值(4)有界性法:利用代数式的有界性(如x 2≥0,x ≥0,2x >0,-1≤sin x ≤1等)确定函数的值域.(5)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解。

函数的单调性与最值(含例题详解)

函数的单调性与最值(含例题详解)

函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格 的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值 前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件①对于任意x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但 f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________.答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5l og y u =为()0,+∞上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭.答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________.解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k ⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<,所以210x x ->,120x x >. 故当()12,,x x k ∈+∞时,()()12f x f x <,即函数在(),k +∞上单调递增.当()12,0,x x k ∈时,()()12f x f x >,即函数在()0,k 上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调 性,故在(),k -∞-单调递增,在(),0k -上单调递减. 综上,函数f (x )在(),k -∞-和(),k +∞上单调递增,在(),0k -和()0,k 上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0, f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R , 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0.再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为 f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x ,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图 象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区 间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ).又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数. 答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x 2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7.又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴112111121111x x x x ⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1. 问题转化为m 2-2am +1≥1, 即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。

函数单调性和求局部极值、最值(知识点及相关练习)

函数单调性和求局部极值、最值(知识点及相关练习)

函数单调性和求局部极值、最值(知识点及相关练习)函数单调性和求局部极值、最值本文介绍了函数单调性和求局部极值、最值的相关知识点,并提供了相关练。

1. 函数单调性函数的单调性描述了函数在定义域内的增减情况。

根据函数的单调性,我们可以知道函数的变化规律。

1.1 递增函数和递减函数当函数的自变量逐渐增大时,如果函数的值也逐渐增大,则称该函数为递增函数。

当函数的自变量逐渐增大时,如果函数的值逐渐减小,则称该函数为递减函数。

1.2 严格递增函数和严格递减函数当函数的自变量逐渐增大时,如果函数的值严格逐渐增大,则称该函数为严格递增函数。

当函数的自变量逐渐增大时,如果函数的值严格逐渐减小,则称该函数为严格递减函数。

1.3 凸函数和凹函数在定义域内,若函数的图像位于其切线的下方,则称该函数为凸函数。

若函数的图像位于其切线的上方,则称该函数为凹函数。

2. 求局部极值、最值局部极值和最值是指函数在一定区间内取得的极值和最大值、最小值。

2.1 局部极大值和局部极小值在函数的定义域内,如果存在一个点,使得该点的邻域内的函数值不大于(或不小于)该点的函数值,则称该点为局部极大值(或局部极小值)点。

2.2 全局极大值和全局极小值在函数的定义域内,所有的局部极值中,函数值最大的点称为全局极大值点,函数值最小的点称为全局极小值点。

相关练:1. 判断以下函数的单调性:- f(x) = x^2 + 3x - 2- g(x) = -2x^3 + 5x^2 - 3x + 12. 求以下函数的局部极值和最值:- h(x) = x^3 - 3x^2 - 9x + 5以上就是函数单调性和求局部极值、最值的相关知识点及相关练习。

希望能对您有所帮助。

方法技巧专题12 函数单调性、极值、最值与导数问题(解析版)

方法技巧专题12  函数单调性、极值、最值与导数问题(解析版)

方法技巧专题12 函数单调性、极值、最值与导数问题解析篇【一】判断函数单调性1.例题【例1】已知函数()xf x ax e =-判断函数()f x 的单调性。

【解析】由题意可求,()´xf x a e =-1.当0a ≤时,()()´0,f x f x <在R 上为减函数;2.当0a >时,令()´0f x >,解得x lna <, 令()´0f x <,解得x lna > 于是()f x 在(,ln ]a -∞为增函数,在[ln ,)a +∞为减函数;【例2】已知函数2()ln 1a f x x x +=++,其中a ∈R ,讨论并求出f (x )在其定义域内的单调区间. 【解析】()222121()1(1)(1)a f x x ax x x x x +'=-=-+++,设g (x )=x 2-ax +1, ∵x >0,∴①当a <0时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立, 此时函数f (x )在区间(0,+∞)上单调递增;②当a >0时,222()1124a a g x x ax x ⎛⎫=-+=-+-⎪⎝⎭. 当1-24a ≥0,即0<a ≤2时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立,此时函数f (x )在区间(0,+∞)上单调递增;当a >2时,方程g (x )=0的两根分别为12,22a a x x +==,且0<x 1<x 2, ∴当x ∈(0,x 1)时,g (x )>0,f ′(x )>0,故函数f (x )在(0,x 1)上单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,故函数f (x )在(x 1,x 2)上单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,故函数f (x )在(x 2,+∞)上单调递增. 综上所述,当a ≤2时,函数f (x )的单调增区间为(0)∞,+,没有减区间;当a >2时,函数f (x )的减区间为12()x x ,;增区间为(0,x 1),(x 2,+∞).2.巩固提升综合练习【练习1】已知函数()xf x e =,()()210g x ax x a =++>.设()()()g x F x f x =,讨论函数()F x 的单调性;【解析】因为2()1()()xg x ax x F x f x e++==, 所以221(21)'()xx a ax x ax a x a F x e e -⎛⎫-- ⎪-+-⎝⎭==, ①若12a =,2'()0xax F x e-=≤.∴()F x 在R 上单调递减. ②若12a >,则210a a->, 当0x <,或21a x a ->时,'()0F x <,当210a x a-<<时,'()0F x >,∴()F x 在(,0)-∞,21,a a -⎛⎫+∞ ⎪⎝⎭上单调递减,在210,a a -⎛⎫⎪⎝⎭上单调递增.③若102a <<,则210a a-<, 当21a x a -<,或0x >时,'()0F x <,当210a x a-<<时,'()0F x >. ∴()F x 在21,a a -⎛⎫-∞ ⎪⎝⎭,(0,)+∞上单调递减,在21,0a a -⎛⎫⎪⎝⎭上单调递增. 【练习2】已知x ax x x ax x f +--=2221ln )()(,求)(x f 单调区间. 【解析】该函数定义域为),(∞+0(第一步:对数真数大于0求定义域)令x ax x f ln 12)(')(-=,解得121,12x x a==(第二步,令导数等于0,解出两根21,x x ) (1)当0≤a 时,'(0,1),()0,()x f x f x ∈>单调增,'(1,),()0,()x f x f x ∈+∞<单调减 (第三步,1x 在不在进行分类,当其不存在得到0≤a ;第四步数轴穿根或图像判断正负)(2)当121=a 时即21=a '(0,),()0,()x f x f x ∈+∞>单调增, (第五步,x 1在区间时,进行比较大小,当21x x =得到21=a 第四步图像判断正负)①当1210<<a 时,即21>a'1(0,),(1,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[,1],()0,()2x f x f x a∈<单调减(当21x x <得到21>a ;第四步图像判断正负)②当121>a 时,即210<<a'1(0,1),(,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[1,],()0,()2x f x f x a∈<单调减(21x x >得到210<<a ;第四步图像判断正负)综上可知:0≤a ,'(0,1),()0,()x f x f x ∈>单调增,'(1,),()0,()x f x f x ∈+∞<单调减;21=a ,'(0,),()0,()x f x f x ∈+∞>单调增 21>a '1(0,),(1,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[,1],()0,()2x f x f x a ∈<单调减210<<a ,'1(0,1),(,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[1,],()0,()2x f x f x a ∈< 单调减【二】根据单调性求参数 1.例题【例1】(1)若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是 . (2)函数()()2244xf x exx =--在区间()1,1k k -+上不单调,实数k 的范围是( )(3)若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为 .(4)若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .【解析】(1)因为函数2()2(1)2f x x a x =+-+的单调减区间为(],1a -∞-,又函数()f x 在区间(],4-∞上是减函数,则(],4-∞⊆(],1a -∞-,则14a -≥,解得:3a ≤-, (2)()()2244xf x exx =--,()()228x f x e x '∴=-,令()0f x '=,得2x =±. 当2x <-或2x >时,()0f x '>;当22x -<<时,()0f x '<. 所以,函数()y f x =的极大值点为2-,极小值点为2.由题意可得121k k -<-<+或121k k -<<+,解得31k -<<-或13k <<. (3)由2450x x -++>,即2450x x --<,解得15x -<<. 二次函数245y x x =-++的对称轴为2x =.由复合函数单调性可得函数()()212log 45f x x x =-++的单调递增区间为()2,5.要使函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增, 则()()32,22,5m m -+⊆,即32225322m m m m -≥⎧⎪+≤⎨⎪-<+⎩,解得423m ≤<.(4)若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.【例2】已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞ D .[)3,-+∞【解析】(1)2'()361f x ax x =+-,∴()f x 有三个单调区间,∴036120a a ≠⎧⎨∆=+>⎩,解得3a >-且0a ≠.故选B .2.巩固提升综合练习 【练习1】函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a > B .1a ≥C .2a >D .2a ≥【答案】D【解析】由题意得:()22f x ax x '=-()f x 在[]1,2上单调递增等价于:()0f x '≥在[]1,2上恒成立即:220ax x -≥ 222x a x x∴≥=当[]1,2x ∈时,22x≤ 2a ∴≥本题正确选项:D【练习2】已知函数f(x)=x 3+ax 2+x +1(a ∈R )在(−23,−13)内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3] C .(√3,+∞) D .(√3,3)【答案】C【解析】f ′(x )=3x 2+2ax +1 假设f(x) 在(−23,−13)内不存在单调递减区间,而f(x)又不存在常函数情况,所以f(x) 在(−23,−13)内递增,即有x ∈ (−23,−13)时不等式f ′(x )=3x 2+2ax +1≥0恒成立,即x ∈ (−23,−13)时,a ≤−32x −12x =−32(x +13x)恒成立,解得a ≤√3,所以函数f(x) 在(−23,−13)内存在单调递减区间,实数a 的取值范围是(√3,+∞)故选C【练习3】若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞【答案】B【解析】22222122(2)(1)()ln '()1(0)x x x x f x x x f x x x x x x x+-+-=++⇒=+-==> 1x ≥单调递增,01x <<单调递减.函数2()ln f x x x x=++在区间[],2t t +上是单调函数 区间[],2t t +上是单调递减不满足只能区间[],2t t +上是单调递增. 故1t ≥故答案选B【三】函数的极值问题1.例题【例1】(1)函数3()12f x x x =-的极大值点是_______,极大值是________。

函数单调性和求最大值区间、最值(知识点及相关练习)

函数单调性和求最大值区间、最值(知识点及相关练习)

函数单调性和求最大值区间、最值(知识点及相关练习)函数单调性和求最大值区间、最值 (知识点及相关练)知识点在数学中,函数的单调性是指函数的增减性质。

一个函数可以是递增的(单调递增),也可以是递减的(单调递减),或者在某些区间内既递增又递减。

单调递增和单调递减- 函数在一个区间内递增,意味着随着自变量的增加,函数值也增加。

可以通过计算函数在该区间内的导数来判断函数的单调递增性。

- 函数在一个区间内递减,意味着随着自变量的增加,函数值减少。

可以通过计算函数在该区间内的导数来判断函数的单调递减性。

最大值区间和最值- 最大值区间是指函数在某个区间内取得最大值的范围。

- 最大值是函数在某个区间内取得的最大值。

可以通过求函数的导数和二阶导数来找到函数的极值点和拐点,进而确定最大值区间和最值。

练题1. 求下列函数的单调区间并判断其单调性:a) $f(x) = x^2 - 4x + 3$b) $g(x) = \frac{1}{x}$c) $h(x) = \sin(x)$2. 求下列函数的最值:a) $f(x) = x^3 - 6x^2 + 9x + 1$ 在区间 $[-2, 4]$ 上b) $g(x) = e^{-x} + x^2$ 在区间 $(-\infty, \infty)$ 上c) $h(x) = \sin(x)$ 在区间 $[0, 2\pi]$ 上3. 请写出一个函数,使其既在某个区间内递增又在某个区间内递减。

参考答案1.a) 单调递增区间:$(2, \infty)$,单调递减区间:$(-\infty, 2)$b) 单调递增区间:$(-\infty, 0)$,单调递减区间:$(0, \infty)$c) 单调递增区间:$[2n\pi, (2n+1)\pi]$,单调递减区间:$[(2n-1)\pi, 2n\pi]$ (其中 n 为整数)2.a) 最大值:$f(4) = 9$,最大值区间:$[2, 4]$b) 最大值:$g(2) = 5$,最大值区间:$(-\infty, \infty)$c) 最大值:$h(\frac{\pi}{2}) = 1$,最大值区间:$[0,\frac{\pi}{2}]$3. 一个例子是 $f(x) = x^2$,在区间 $(-\infty, 0)$ 上递增,在区间 $(0, \infty)$ 上递减。

第2节 函数的单调性与最值(经典练习及答案详解)

第2节 函数的单调性与最值(经典练习及答案详解)

第2节 函数的单调性与最值知识梳理1.函数的单调性 (1)增函数与减函数(2)单调区间的定义如果函数y =f (x )在区间D 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值1.有关单调性的常用结论在公共定义域内,增函数+增函数=增函数;减函数+减函数=减函数;增函数-减函数=增函数;减函数-增函数=减函数.2.函数y=f(x)(f(x)>0或f(x)<0)在公共定义域内与y=-f(x),y=1f(x)的单调性相反.3.“对勾函数”y=x+ax(a>0)的单调增区间为(-∞,-a),(a,+∞);单调减区间是[-a,0),(0,a].诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在区间D上是增函数.()(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).()(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.()(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).()答案(1)√(2)×(3)×(4)×解析(2)此单调区间不能用“∪”连接,故单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)<f(x2)成立才可以.(4)若f(x)=x,在[1,+∞)上为增函数,但y=f(x)的单调递增区间是(-∞,+∞).2.下列函数中,在区间(0,+∞)内单调递减的是()A.y=1x-x B.y=x2-xC.y=ln x-xD.y=e x 答案A解析易知A中y=1x-x在(0,+∞)内是减函数,B ,C 中函数y =x 2-x 与y =ln x -x 在(0,+∞)内不单调,D 中y =e x 在(0,+∞)内是增函数.3.函数y =xx -1在区间[2,3]上的最大值是________.答案 2解析 函数y =x x -1=1+1x -1在[2,3]上递减,当x =2时,y =x x -1取得最大值22-1=2.4.(2021·长沙检测)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A.(-∞,-2) B.(-∞,1) C.(1,+∞)D.(4,+∞)答案 D解析 由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求t =x 2-2x -8的单调递增区间. ∵函数t =x 2-2x -8的单调递增区间为(4,+∞), ∴函数f (x )的单调递增区间为(4,+∞).5.(2020·全国Ⅱ卷)设函数f (x )=ln|2x +1|-ln|2x -1|,则f (x )( ) A.是偶函数,且在⎝ ⎛⎭⎪⎫12,+∞单调递增B.是奇函数,且在⎝ ⎛⎭⎪⎫-12,12单调递减C.是偶函数,且在⎝ ⎛⎭⎪⎫-∞,-12单调递增D.是奇函数,且在⎝ ⎛⎭⎪⎫-∞,-12单调递减答案 D解析f (x )=ln|2x +1|-ln|2x -1|的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠±12,关于原点对称, 又f (-x )=ln|-2x +1|-ln|-2x -1|=ln|2x -1|-ln|2x +1|=-f (x ), ∴f (x )为奇函数,故排除A ,C ;又当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,f (x )=ln(-2x -1)-ln(1-2x )=ln -2x -11-2x =ln 2x +12x -1=ln ⎝⎛⎭⎪⎫1+22x -1, ∵y =1+22x -1在⎝⎛⎭⎪⎫-∞,-12上单调递减,由复合函数的单调性可得f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减.故选D. 6.(2021·聊城检测)函数f (x )=9x 2+x -1的最小值为________. 答案 9解析 ∵f (x )的定义域为[1,+∞), 且y =9x 2与y =x -1在[1,+∞)内均为增函数,∴f (x )在[1,+∞)上单调递增,故f (x )min =f (1)=9.考点一 确定函数的单调性(区间)1.(2019·北京卷)下列函数中,在区间(0,+∞)上单调递增的是( )A.y =x 12 B.y =2-x C.y =log 12xD.y =1x答案 A解析 由图象知,只有y =x 12在(0,+∞)上单调递增. 故选A.2.函数y =log 12(-x 2+x +6)的单调递增区间为( )A.⎝ ⎛⎭⎪⎫12,3B.⎝ ⎛⎭⎪⎫-2,12 C.(-2,3)D.⎝ ⎛⎭⎪⎫12,+∞ 答案 A解析 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =log 12t ,易知其为减函数.则本题等价于求函数t =-x 2+x +6在(-2,3)上的单调递减区间.利用二次函数的性质,得t =-x 2+x +6在定义域(-2,3)上的单调递减区间为⎝ ⎛⎭⎪⎫12,3,故选A.3.(2021·重庆联考)下列函数的图象既关于直线x =1对称,又在区间[-1,0]上为增函数的是( ) A.y =sin πx B.y =|x -1| C.y =cos πxD.y =e x +e -x答案 C解析 A 中,当x =1时,y =sin π=0≠±1,所以y =sin πx 不关于直线x =1对称,则A 错误.B 中,y =|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,-x +1,x <1,在区间[-1,0]上为减函数,则B 错误.D 中,y =f (x )=e x +e -x ,则f (0)=2,f (2)=e 2+e -2,则f (0)≠f (2),所以y =e x +e-x 不关于直线x =1对称,则D 错误.4.设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.答案 [0,1)解析由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,函数的图象如图所示的实线部分,根据图象,g (x )的递减区间是[0,1). 感悟升华 1.函数单调性的判断方法有:(1)定义法;(2)图象法;(3)利用已知函数的单调性;(4)导数法.2.函数y =f [g (x )]的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则. 考点二 函数的最值(值域)【例1】 (1)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.(2)对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________. 答案 (1)3 (2)1解析 (1)由于y =⎝ ⎛⎭⎪⎫13x在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)法一 在同一坐标系中, 作函数f (x ),g (x )的图象,依题意,h (x )的图象如图所示的实线部分. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 因此h (x )在x =2时取得最大值h (2)=1. 感悟升华 1.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.2.对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【训练1】 (1)已知1≤x ≤5,则下列函数中,最小值为4的是( ) A.y =4x +1xB.y =x +4x +1C.y =-x 2+2x +3D.y =5+ln x -1x(2)(多选题)(2021·淄博质检)对于实数x ,记[x ]表示不超过x 的最大整数,例如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],则下列说法中正确的是( ) A.f (-3.9)=f (4.1) B.函数f (x )的最大值为1 C.函数f (x )的最小值为0 D.方程f (x )-12=0有无数个根 答案 (1)D (2)ACD解析 (1)函数y =4x +1x 在[1,5]上递增,所以4x +1x ≥5,A 不符合题意;因为x≥1,所以y=x+4x+1=x+1+4x+1-1≥4-1=3(当且仅当x=1时取等号),故其最小值不为4,B不符合题意;y=-x2+2x+3=-(x-1)2+4,其最大值为4(当x=1时取得),最小值是f(5)=-12,C不符合题意.易知函数y=5+ln x-1x在(0,+∞)上递增,所以在区间[1,5]上也是增函数,其最小值为f(1)=5+ln 1-11=4,D符合题意.(2)f(-3.9)=-3.9-[-3.9]=-3.9-(-4)=0.1,f(4.1)=4.1-[4.1]=4.1-4=0.1,A正确;显然x-1<[x]≤x,因此0≤x-[x]<1,∴f(x)无最大值,但有最小值且最小值为0,B错误,C正确;方程f(x)-12=0的解为x=k+12(k∈Z),D正确.故选ACD.考点三函数单调性的应用角度1利用单调性比较大小【例2】(1)(2021·武汉模拟)已知函数f(x)=1e x+1-12,若a=f(21.3),b=f(40.7),c=f(log38),则a,b,c的大小关系为()A.c<a<bB.a<c<bC.b<a<cD.a<b<c(2)(2021·福州质检)已知定义域为R的函数f(x)满足f(-x)-f(x)=0,且当x≥0时,f(x)=x-2-x,设a=f(-31.2),b=f(3-0.2),c=f(log30.2),则()A.c>b>aB.a>b>cC.c>a>bD.a>c>b答案(1)C(2)D解析(1)函数f(x)=1e x+1-12是R上的减函数,又log38<2<21.3<21.4=40.7,∴f (40.7)<f (21.3)<f (log 38),即b <a <c . (2)由f (-x )-f (x )=0,知f (x )是偶函数, 易知f (x )=x -2-x 在[0,+∞)上单调递增.因为a =f (-31.2)=f (31.2),c =f (log 30.2)=f ⎝ ⎛⎭⎪⎫log 315=f (-log 35)=f (log 35),且31.2>3,1=log 33<log 35<log 327=3,0<3-0.2<1,即31.2>log 35>3-0.2>0,所以f (31.2)>f (log 35)>f (3-0.2),即a >c >b . 角度2 求解函数不等式【例3】 (1)已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是________.(2)(2021·青岛联考)已知定义在R 上的函数f (x )满足f (x )=f (-x ),且f (x )在(-∞,0]上单调递减,若不等式f (ax +2)≤f (-1)对于任意x ∈[1,2]恒成立,则a 的最大值为________.答案 (1)(-5,-2)∪(2,5) (2)-1解析 (1)因为函数f (x )=ln x +2x 在定义域(0,+∞)上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得,f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5.(2)由于f (x )满足f (x )=f (-x ),可知f (x )的图象关于y 轴对称, ∵f (x )在(-∞,0]上单调递减, ∴f (x )在[0,+∞)上单调递增.根据f (x )的图象特征可得-1≤ax +2≤1在[1,2]上恒成立, 得-3x ≤a ≤-1x 在[1,2]上恒成立, 所以-32≤a ≤-1,故a 的最大值为-1. 角度3 求参数的值或取值范围【例4】 (1)(2020·九江三校联考)已知函数f (x )=⎩⎪⎨⎪⎧22-x ,x <2,34x 2-3x +4,x ≥2,若不等式a≤f (x )≤b 的解集恰好为[a ,b ],则b -a =________.(2)(2021·衡水中学检测)已知函数f (x )=⎩⎨⎧log 2x ,x ≥4,2ax -3,x <4,对任意x 1,x 2∈(-∞,+∞),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则实数a 的取值范围为________.答案 (1)4 (2)⎝ ⎛⎦⎥⎤0,58 解析 (1)易知f (x )在(-∞,2)上递减,在[2,+∞)上递增,且x <2时,22-x > 22-2=1, ∴f (x )min =f (2)=1,又a ≤f (x )≤b 的解集恰好为[a ,b ]. ∴必然有a ≤1,此时22-1=2,所以b ≥2. 依题设,34b 2-3b +4=b ,解得b =4或b =43(舍). 令22-x =4,得x =0,所以a =0,于是b -a =4. (2)依题设,函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥4,2ax -3,x <4在R 上单调递增,∴⎩⎪⎨⎪⎧2a >0,8a -3≤2,解得0<a ≤58. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤0,58.感悟升华 1.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”,转化为自变量间的大小关系,应注意函数的定义域.3.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.【训练2】 (1)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A.f ⎝ ⎛⎭⎪⎫log 314>f (2-32)>f (2-23) B.f ⎝ ⎛⎭⎪⎫log 314>f (2-23)>f (2-32) C.f (2-32)>f (2-23)>f ⎝ ⎛⎭⎪⎫log 314 D.f (2-23)>f (2-32)>f ⎝ ⎛⎭⎪⎫log 314 (2)如果函数f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)C (2)⎣⎢⎡⎭⎪⎫32,2 解析 (1)因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34). 又因为log 34>1>2-23>2-32>0,且函数f (x )在(0,+∞)上单调递减,所以f (log 34)<f (2-23)<f (2-32). 即f ⎝ ⎛⎭⎪⎫log 314<f (2-23)<f (2-32). (2)对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0, 所以y =f (x )在(-∞,+∞)上是增函数.所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,2. 构造函数破解不等式(方程)问题对于结构相同(相似)的不等式(方程),通常考虑变形,构造函数,利用基本初等函数的性质,寻找变量之间的关系,达到解题目的.考查的核心素养是逻辑推理与数学抽象.【典例】(2020·全国Ⅰ卷)若2a +log 2a =4b +2log 4b ,则( )A.a >2bB.a <2bC.a >b 2D.a <b 2答案 B解析 由指数和对数的运算性质可得2a +log 2a =4b +2log 4b =22b +log 2b .令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增.又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ),∴2a +log 2a <22b +log 2(2b ),即f (a )<f (2b ),∴a <2b .故选B.素养升华 1.破解此类题的关键:一是细审题,盯题眼,如本题的题眼为“2a +log 2a =4b +2log 4b ”;二是巧构造,即会构造函数,注意活用基本初等函数的单调性进行判断;三是会放缩,即会利用放缩法比较大小.2.(1)本题主要考查利用函数的单调性,比较大小等知识;(2)逻辑推理是解决数学问题最常用、最重要的手段,将题目变形“22b +log 2b <22b +log 2(2b )”时要充分借助选项与提供的信息.【训练】(2020·全国Ⅱ卷)若2x -2y <3-x -3-y ,则( )A.ln(y -x +1)>0B.ln(y -x +1)<0C.ln|x-y|>0D.ln|x-y|<0答案A解析原已知条件等价于2x-3-x<2y-3-y,设函数f(x)=2x-3-x.因为函数y=2x与y=-3-x在R上均单调递增,所以f(x)在R上单调递增.即f(x)<f(y),所以x<y,即y-x>0,所以A正确,B不正确.因为|x-y|与1的大小不能确定,所以C,D不正确.A级基础巩固一、选择题1.(2021·青岛一中月考)函数f(x)=log12(x2-4)的单调递增区间为()A.(-∞,-2)B.(2,+∞)C.(-∞,0)D.(0,+∞)答案A解析f(x)的定义域为(-∞,-2)∪(2,+∞),令t=x2-4,易知t=x2-4在(-∞,-2)上单调递减,又y=log12t是减函数,∴f(x)的单调递增区间为(-∞,-2).2.(2021·宜宾调研)下列函数中,同时满足:①图象关于y轴对称;②∀x1,x2∈(0,+∞)(x1≠x2),f(x2)-f(x1)x2-x1>0的是()A.f(x)=x-1B.f(x)=log2|x|C.f(x)=cos xD.f(x)=2x+1答案B解析 满足条件的函数f (x )为偶函数,且在(0,+∞)上单调递增,∵f (x )=x -1为奇函数,f (x )=2x +1非奇非偶,f (x )=cos x 为周期函数,且在(0,+∞)上不单调,∴A ,C ,D 项均不正确,只有f (x )=log 2|x |为偶函数,且在(0,+∞)上递增.3.(2021·南昌四校联考)已知函数f (x )=3x -2cos x ,若a =f (32),b =f (2),c =f (log 27),则a ,b ,c 的大小关系是( )A.a <b <cB.c <a <bC.b <a <cD.b <c <a答案 D解析 对f (x )=3x -2cos x 求导得f ′(x )=3+2sin x ,则有f ′(x )=3+2sin x >0在R 上恒成立,则f (x )在R 上为增函数.又2=log 24<log 27<3<32,所以b <c <a .4.若函数y =2-x x +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( ) A.(1,2)B.(-1,2)C.[1,2)D.[-1,2) 答案 D解析 函数y =2-x x +1=3-(x +1)x +1=3x +1-1在区间(-1,+∞)上是减函数,且f (2)=0,所以n =2.根据题意,x ∈(m ,n ]时,y min =0.∴m 的取值范围是[-1,2).5.已知函数f (x )=⎩⎨⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫34,1 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎦⎥⎤13,34 D.⎝ ⎛⎦⎥⎤0,13 答案 C解析 由分段函数f (x )在R 上单调递减,可得0<a <1,根据二次函数图象及性质,可得-4a -32≥0,解得a ≤34,又由3a ≥log a (0+1)+1得3a ≥1,解得a ≥13.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,34. 6.定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x ,2x -3,6-x },则M 的最小值是( )A.2B.3C.4D.6 答案 C解析 画出函数M =max{2x ,2x -3,6-x }的图象(如图),由图可知,函数M 在A (2,4)处取得最小值22=6-2=4,故M 的最小值为4.二、填空题7.若函数f (x )=e x -e -x ,则不等式f (2x +1)+f (x -2)>0的解集为________.答案 ⎝ ⎛⎭⎪⎫13,+∞ 解析 由f (-x )=-f (x ),知f (x )=e x -e -x 为奇函数,又易证在定义域R 上,f (x )是增函数,则不等式f (2x +1)+f (x -2)>0等价于f (2x +1)>-f (x -2)=f (-x +2),则2x +1>-x +2,即x >13,故不等式的解集为⎝ ⎛⎭⎪⎫13,+∞. 8.函数y =|x |(1-x )的单调递增区间是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0,函数的大致图象如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12. 9.(2021·山东师大附中调研)已知函数f (x )=e |x -a |(a 为常数),若f (x )在区间[1, +∞)上是增函数,则实数a 的取值范围是________.答案 (-∞,1]解析 f (x )=⎩⎪⎨⎪⎧e x -a ,x ≥a ,e a -x ,x <a ,当x ≥a 时,f (x )单调递增,当x <a 时,f (x )单调递减, 又f (x )在[1,+∞)上是增函数,所以a ≤1.三、解答题10.函数f (x )=log a (1-x )+log a (x +3)(0<a <1).(1)求方程f (x )=0的解;(2)若函数f (x )的最小值为-1,求a 的值.解 (1)由⎩⎪⎨⎪⎧1-x >0,x +3>0得-3<x <1. ∴f (x )的定义域为(-3,1).则f (x )=log a (-x 2-2x +3),x ∈(-3,1),令f (x )=0,得-x 2-2x +3=1,解得x =-1-3或x =-1+3,经检验,均满足原方程成立.故f (x )=0的解为x =-1± 3.(2)由(1)得f (x )=log a [-(x +1)2+4],x ∈(-3,1),由于0<-(x +1)2+4≤4,且a ∈(0,1),∴log a [-(x +1)2+4]≥log a 4,由题意可得log a 4=-1,解得a =14,满足条件.所以a 的值为14.11.已知函数f (x )=a -22x +1. (1)求f (0);(2)探究f (x )的单调性,并证明你的结论;(3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的取值范围.解 (1)f (0)=a -220+1=a -1. (2)f (x )在R 上单调递增.证明如下:∵f (x )的定义域为R ,∴任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=a -22x 1+1-a +22x 2+1 =2·(2x 1-2x 2)(1+2x 1)(1+2x 2), ∵y =2x 在R 上单调递增且x 1<x 2,∴0<2x 1<2x 2,∴2x 1-2x 2<0,2x 1+1>0,2x 2+1>0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ),即a -22-x +1=-a +22x +1,解得a =1. ∴f (ax )<f (2),即为f (x )<f (2),又∵f (x )在R 上单调递增,∴x <2.∴x 的取值范围是(-∞,2).B 级 能力提升12.(多选题)(2021·长沙调研)函数f (x )的定义域为D ,对给定的正数k ,若存在闭区间[a ,b ]⊆D ,使得函数f (x )满足:①f (x )在[a ,b ]内是单调函数;②f (x )在[a ,b ]上的值域为[ka ,kb ],则称区间[a ,b ]为y =f (x )的k 级“理想区间”.下列结论正确的是( )A.函数f (x )=x 2存在1级“理想区间”B.函数f (x )=e x 不存在2级“理想区间”C.函数f (x )=4x x 2+1(x ≥0)存在3级“理想区间” D.函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫-π2,π2不存在4级“理想区间” 答案 ABC解析 易知[0,1]是f (x )=x 2的1级“理想区间”,故A 正确;由于g (x )=e x -2x 无零点,因此f (x )=e x 不存在2级“理想区间”,故B 正确;由h (x )=4x x 2+1-3x =0(x ≥0),得x =0或x =33,则⎣⎢⎡⎦⎥⎤0,33是f (x )=4x x 2+1(x ≥0)的一个3级“理想区间”,C 正确;易知y =tan x 的图象与直线y =4x 在⎝ ⎛⎭⎪⎫-π2,π2内有三个交点,因此f (x )=tan x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫-π2,π2有4级“理想区间”,故D 错误.13.设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.答案 (-∞,1]∪[4,+∞)解析 作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.14.已知函数f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2(a >0,且a ≠1). (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞),当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-a x 2>0.因此g (x )在[2,+∞)上是增函数,∴f (x )在[2,+∞)上是增函数.则f (x )min =f (2)=lg a 2.(3)对任意x ∈[2,+∞),恒有f (x )>0.即x +a x -2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数, ∴h (x )max =h (2)=2.故a >2时,恒有f (x )>0.故a 的取值范围为(2,+∞).。

函数的单调性最值(含例题详解)

函数的单调性最值(含例题详解)

函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值 前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 ①对于任意x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M结论 M 为最大值 M 为最小值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________.解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C 2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________. 答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5l og y u =为()0,+∞上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭. 答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________. 解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为120x x <<,所以210x x ->,120x x >. 故当()12,,x x k ∈+∞时,()()12f x f x <,即函数在(),k +∞上单调递增.当()12,0,x x k ∈时,()()12f x f x >,即函数在()0,k 上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调 性,故在(),k -∞-单调递增,在(),0k -上单调递减. 综上,函数f (x )在(),k -∞-和(),k +∞上单调递增,在(),0k -和()0,k 上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2x x -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选 B ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( )A .一定大于0B .一定小于0C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1.又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数.答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2. 又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f(x)在[-1,1]上单调递增.(2)∵f(x)在[-1,1]上单调递增,∴112111121111xxxx⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x<-1.(3)∵f(1)=1,f(x)在[-1,1]上单调递增.∴在[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。

高考数学专题《函数的单调性与最值》习题含答案解析

高考数学专题《函数的单调性与最值》习题含答案解析

专题3.2 函数的单调性与最值1.(2021·全国高一课时练习)函数f(x)=1,01,0x xx x+≥⎧⎨-<⎩在R上()A.是减函数B.是增函数C.先减后增D.先增后减【答案】B【解析】画出函数图像即可得解.【详解】选B.画出该分段函数的图象,由图象知,该函数在R上是增函数.故选:B.2.(2021·全国高一课时练习)若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有()-()-f a f ba b>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)先增后减D.函数f(x)先减后增【答案】A【解析】根据条件可得当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),从而可判断.【详解】练基础由()-()-f a f b a b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.3.(2021·全国高一课时练习)设函数f (x )是(-∞,+∞)上的减函数,则 ( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a )【答案】D 【解析】利用0a =排除ABC ,作差可知21a a +>,根据单调性可知D 正确. 【详解】当0a =时,选项A 、B 、C 都不正确; 因为22131()024a a a +-=-+>,所以21a a +>, 因为()f x 在(,)-∞+∞上为减函数,所以2(1)()f a f a +<,故D 正确.故选:D4.(2021·西藏高三二模(理))已知函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞C .(),3-∞-D .()3,-+∞【答案】C 【解析】根据函数为奇函数且在R 上单调递减可得()()32f m f m -<求解. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<, 得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C .5.(2021·广西来宾市·高三其他模拟(理))已知定义在R 上的偶函数()f x 满足在[0,)+∞上单调递增,(3)0f =,则关于x 的不等式(2)(2)0f x f x x++-->的解集为( )A .(5,2)(0,)--+∞ B .(,5)(0,1)-∞- C .(3,0)(3,)-⋃+∞ D .(5,0)(1,)-+∞【答案】D 【解析】根据题意作出函数()f x 的草图,将(2)(2)0f x f x x++-->,转化为2(2)0f x x +>,利用数形结合法求解. 【详解】因为定义在R 上的偶函数()f x 满足在(0,)+∞内单调递增, 所以()f x 满足在(,0)-∞内单调递减,又(3)0f =, 所以(3)(3)0f f -==. 作出函数()f x 的草图如下:由(2)(2)0f x f x x ++-->,得(2)[(2)]0f x f x x++-+>,得2(2)0f x x+>, 所以0,(2)0,x f x >⎧⎨+>⎩或0,(2)0,x f x <⎧⎨+<⎩所以0,23,x x >⎧⎨+>⎩或0,323,x x <⎧⎨-<+<⎩ 解得1x >或5x 0-<<, 即不等式(2)(2)0f x f x x++-->的解集为(5,0)(1,)-+∞.故选:D6.(2021·黑龙江哈尔滨市·哈师大附中高三三模(文))已知函数()22f x x x -=-( )A .是奇函数,0,单调递增B .是奇函数,0,单调递减C .是偶函数,0,单调递减D .是偶函数,0,单调递增【答案】D 【解析】利用奇偶性和单调性的定义判断即可 【详解】解:定义域为{}0x x ≠, 因为2222()()()()f x x x x x f x ---=---=-=,所以()f x 为偶函数,任取12,(0,)x x ∈+∞,且12x x <,则2222212211()()f x f x x x x x ---=--+212122121()()(1)x x x x x x =-++, 因为12x x <,12,(0,)x x ∈+∞,所以212122121()()(1)0x x x x x x -++>,所以21()()f x f x >,所以()f x 在0,单调递增,故选:D7.(2021·全国高三月考(理))若()f x 是奇函数,且在(,0)-∞上是减函数,又(4)0f -=,则(2)(2)0f x f x x+--->的解集是( )A .(4,0)(4,)-⋃+∞B .(6,2)(0,2)--⋃C .(6,2)(2,)--⋃+∞D .(,4)(0,4)-∞-⋃【答案】B 【解析】根据函数()f x 为奇函数,(4)0f -=得到(4)0f =,再由函数在(,0)-∞上是减函数,作出函数()f x 的图象,再由(2)(2)0f x f x x +--->,等价于2(2)0f x x+>,利用数形结合法求解.【详解】因为函数()f x 为奇函数, 所以(4)(4)0f f -=-=, 所以(4)0f =,因为函数()f x 在(,0)-∞上是减函数, 所以函数()f x 在(0,) +∞上是减函数. 作出函数()f x 的大致图象如图所示,而(2)(2)0f x f x x +--->,等价于(2)[(2)]0f x f x x +--+>,即2(2)0f x x+>,则0(2)0x f x <⎧⎨+<⎩或0(2)0x f x >⎧⎨+>⎩,所以0420x x <⎧⎨-<+<⎩或0024x x >⎧⎨<+<⎩,解得62x -<<-或02x <<. 综上,(2)(2)0f x f x x+--->的解集是(6,2)(0,2)--⋃.故选:B8.(2021·全国高三专题练习(文))已知函数()||2f x x x x =⋅-,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0-∞,B .()f x 是偶函数,递减区间是()1-∞,C .()f x 是奇函数,递减区间是(11)-, D .()f x 是奇函数,递增区间是(0)+∞,【答案】C 【解析】将函数解析式化为分段函数型,画出函数图象,数形结合即可判断; 【详解】解:将函数()||2f x x x x =⋅-去掉绝对值得2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,画出函数()f x 的图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,且在(11)-,上单调递减, 故选:C9.(2021·宁夏银川市·高三二模(文))设函数()21f x x x=-,则()f x ( )A .是偶函数,且在(),0-∞单调递增B .是偶函数,且在(),0-∞单调递减C .是奇函数,且在(),0-∞单调递增D .是奇函数,且在(),0-∞单调递减【答案】B 【解析】利用定义可判断函数()f x 的奇偶性,化简函数()f x 在(),0-∞上的解析式,利用函数单调性的性质可判断函数()f x 在(),0-∞上的单调性. 【详解】函数()21f x x x =-的定义域为{}0x x ≠,()()()2211f x x x f x x x-=--=-=-, 所以,函数()f x 为偶函数, 当0x <时,()21f x x x=+,由于函数2y x 、1y x=在(),0-∞上均为减函数,所以,函数()f x 在(),0-∞上单调递减, 故选:B.10.(2021·全国高一课时练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 【答案】1223⎛⎫- ⎪⎝⎭, 【解析】结合函数定义域和函数的单调性列不等式求解即可. 【详解】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,1.(2021·黑龙江大庆市·大庆实验中学高二月考(文))定义在*N 上的函数()22,3,3x ax a x f x ax x ⎧-+<=⎨≥⎩为递增函数,则头数a 的取值范围是( ) A .()1,2 B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .()1,3【答案】D 【解析】练提升根据定义域和单调性可知()()12f f <,再根据3x ≥时()f x 的单调性判断出()()32f f >,由此求解出a 的取值范围..【详解】因为*x ∈N ,所以3x <时,即{}1,2x ∈,由单调性可知()()21f f >,所以22142a a a a -+<-+,解得3a <;当3x ≥时,y ax =为增函数,若()f x 单调递增,则只需()()32f f >,所以2342a a a >-+,解得14a <<,综上可知a 的取值范围是:()1,3, 故选:D.2.(2021·上海高三二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】A 【解析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤-所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =也有最大值和最小值,故命题q 为真命题. 故选:A3.(2021·全国高三二模(理))已知实数a ,b ,c ,d 满足a b c >>,且0a b c ++=,220ad bd b +-=,则d 的取值范围是( ) A .(][),10,-∞-+∞B .()1,1-C .(D .(11--+【答案】D 【解析】先求解出方程的解1,2d ,然后利用换元法(bt a=)将d 表示为关于t 的函数,根据条件分析t 的取值范围,然后分析出d 关于t 的函数的单调性,由此求解出d 的取值范围. 【详解】因为220ad bd b +-=,所以1,2b b d a a -==-±2440b ab ∆=+≥,令bt a=,则1,2d t =-±20t t +≥,所以(][),10,t ∈-∞-+∞,又因为0a b c ++=且a b c >>,所以0a >且c a b b a =--<<, 所以2,a b b a -<<,所以112bt a-<=<,所以[)0,1t ∈,当[)0,1t ∈时,())10,1d t t =-==∈, 因为1y t=在()0,1上单调递减,所以y t =-()0,1上单调递增, 当0t =时,10d =,当1t =时,11d =,所以)11d ⎡∈⎣; 当[)0,1t ∈时,2d t =-,因为y t =、2y t t =+在[)0,1上单调递增,所以y t =-[)0,1上单调递减, 当0t =时,20d =,当1t =时,21d =-(21d ⎤∈-⎦,综上可知:(11d ∈---, 故选:D.4.【多选题】(2021·湖南高三三模)关于函数()111f x x x =++的结论正确的是( ) A .()f x 在定义域内单调递减 B .()f x 的值域为R C .()f x 在定义城内有两个零点 D .12y f x ⎛⎫=-⎪⎝⎭是奇函数 【答案】BD 【解析】根据所给函数结合函数性质,对各项逐个分析判断, 即可得解. 【详解】()111f x x x =++的定义域为(,1)(1,0)(0,)-∞--+∞, 而1x和11x +在各段定义域内均为减函数, 故()f x 在各段上为减函数,但不能说在定义域内单调递减,故A 错误; 当(1,0)x ∈- ,1x →-时,有()111f x x x =+→+∞+, 当0x →时,有()111f x x x =+→-∞+,所以()f x 的值域为R ,故B 正确; 令()2112101x f x x x x x+=+==++,可得12x =-,所以()f x 在定义城内有一个零点,故C 错误;2211128111241224x x y f x x x x x ⎛⎫=-=+== ⎪-⎝⎭-+-, 令28()41x g x x =-,易知12x ≠±,此时定义域关于原点对称,且28()()41xg x g x x --==--,故()g x 为奇函数, 所以12y f x ⎛⎫=- ⎪⎝⎭是奇函数,故D 正确, 故选:BD.5.【多选题】(2021·全国高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数 【答案】AC 【解析】取0x y ==,11,22x y ==-,12x y ==-得出(0)f ,12f ⎛⎫- ⎪⎝⎭,(1)f -的值进而判断A ;由(1)(0)f f -<判断B ;令y x =-结合奇偶性的定义判断C ;令1()()2=+g x f x ,结合g (x )为奇函数,得出()1()f x f x -+=-,从而判断D.【详解】由已知,令0x y ==,得1(0)(0)(0)2f f f =++,1(0)2f ∴=-,令11,22x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112f ⎛⎫∴-=- ⎪⎝⎭,再令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3(1)2f ∴-=-,A 正确;(1)(0)f f -<,()f x ∴不是R 上的减函数,B 错误;令y x =-,得1()()()2f x x f x f x -=+-+,11()()022f x f x ⎡⎤⎡⎤∴++-+=⎢⎥⎢⎥⎣⎦⎣⎦,故C正确;令1()()2=+g x f x ,由C 可知g (x )为奇函数,11()()22g x g x ∴-+=-+,即1111()()2222f x f x ⎡⎤⎡⎤-++=-++⎢⎥⎢⎥⎣⎦⎣⎦,()1()f x f x ∴-+=-,故D 错误. 故选:AC6.【多选题】(2021·全国高一单元测试)如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,]()x x a b x x ∈≠,则下列结论中正确的是( )A .1212()()0f x f x x x ->-B .1212()[()()]0x x f x f x -->C .12()()()()f a f x f x f b ≤<≤D .12()()f x f x >E.1212()()0f x f x x x -<-【答案】AB 【解析】利用函数单调性的定义:12x x -与12()()f x f x -同号,判断A 、B 、E 的正误;而对于C 、D 选项,由于12,x x 的大小不定,1()f x 与2()f x 的大小关系不能确定. 【详解】由函数单调性的定义知,若函数()y f x =在给定的区间上是增函数,则12x x -与12()()f x f x -同号,由此可知,选项A ,B 正确,E 错误;对于选项C 、D ,因为12,x x 的大小关系无法判断,则1()f x 与2()f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB.7.【多选题】(2021·全国高一课时练习)(多选题)已知函数()f x 的定义域为D ,若存在区间[,]m n D ⊆使得()f x :(1)()f x 在[,]m n 上是单调函数; (2)()f x 在[,]m n 上的值域是[2,2]m n , 则称区间[,]m n 为函数()f x 的“倍值区间”. 下列函数中存在“倍值区间”的有( ) A .2()f x x =; B .1()f x x=; C .1()f x x x=+; D .23()1x f x x =+.【答案】ABD 【解析】函数中存在“倍值区间”,则()f x 在[],m n 内是单调函数,()()22f m m f n n ⎧=⎪⎨=⎪⎩或()()22f m nf n m ⎧=⎪⎨=⎪⎩,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”. 【详解】函数中存在“倍值区间”,则(1)()f x 在[,]m n 内是单调函数,(2)()2()2f m m f n n =⎧⎨=⎩或()2()2f m nf n m=⎧⎨=⎩,对于A ,2()f x x =,若存在“倍值区间”[,]m n ,则()2()2f m m f n n =⎧⎨=⎩⇒2222m m n n⎧=⎨=⎩⇒02m n =⎧⎨=⎩,2()f x x ∴=,存在“倍值区间”[0,2];对于B ,1()()f x x R x =∈,若存在“倍值区间”[,]m n ,当0x >时,1212n m mn⎧=⎪⎪⎨⎪=⎪⎩⇒12mn =,故只需12mn =即可,故存在; 对于C ,1()f x x x=+;当0x >时,在区间[0,1]上单调递减,在区间[1,)+∞上单调递增, 若存在“倍值区间”1[],1][0,2n m n m m ⊆⇒+=,212210n m m mn n+=⇒-+=,222210n mn m n -+=⇒=不符题意;若存在“倍值区间”1[,][1,)2m n m m m ⊆+∞⇒+=,22121n n m n n+=⇒==不符题意,故此函数不存在“倍值区间“; 对于D ,233()11x f x x x x==++,所以()f x 在区间[0,1]上单调递增,在区间[1,)+∞上单调递减,若存在“倍值区间”[,][0,1]m n ⊆,2321m m m =+,2321n n n =+,0m ∴=,2n =, 即存在“倍值区间”[0,2; 故选:ABD .8.(2021·全国高三专题练习(理))已知1a >,b R ∈,当0x >时,[]24(1)102x a x b x ⎛⎫---⋅-≥ ⎪⎝⎭恒成立,则3b a +的最小值是_____.3 【解析】根据题中条件,先讨论10,1x a ⎛⎤∈ ⎥-⎝⎦,根据不等式恒成立求出114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦;再讨论1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭,求出114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦得到b ,再由基本不等式即可求出结果.【详解】当10,1x a ⎛⎤∈ ⎥-⎝⎦时,(1)10a x --<,即2402x b x--≤恒成立, 24222x x y x x-==-是10,1x a ⎛⎤∈ ⎥-⎝⎦上的增函数, ∴114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦, 当1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭时,(1)10a x -->,即2402x b x--≥恒成立,24222x x y x x-==-是1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭上的增函数, ∴114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦, ∴114(1)21b a a ⎡⎤=--⎢⎥-⎣⎦,∴13(1)332(1)b a a a +=+-+≥-,当12a =+时等号成立.3.9.(2021·全国高三专题练习)对于满足2p ≤的所有实数p ,则使不等式212x px p x ++>+恒成立的x的取值范围为______.【答案】()()13+-∞-⋃∞,,. 【解析】将不等式转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题. 【详解】解:原不等式可化为2(1)210x p x x -+-+>,令2()(1)21f p x p x x =-+-+,则原问题等价于()0f p >在[2,2]p ∈-上恒成立,则(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎨->⎩解得:1311x x x x ⎧⎪⎨-⎪⎩或或∴1x <-或3x >. 即x 的取值范围为()()13+-∞-⋃∞,,. 故答案为:()()13+-∞-⋃∞,,. 10.(2021·上海高三二模)已知a R ∈,函数()22,011,02x a x x f x x ax a x ⎧++-≥⎪=⎨-++<⎪⎩的最小值为2a ,则由满足条件的a 的值组成的集合是_______________.【答案】{3- 【解析】讨论a -与0、2的大小关系,判断函数()f x 在[)0,+∞、(),0-∞上的单调性与最小值,根据函数()f x 的最小值列方程解出实数a 的值.【详解】分以下三种情况讨论:①若0a -≤时,即当0a ≥时,()222,22,0211,02x a x f x a x x ax a x ⎧⎪+->⎪=+≤≤⎨⎪⎪-++<⎩,所以,函数()f x 在(),0-∞上单调递减,且()112f x a >+, 当0x ≥时,()min 1212f x a a =+>+, 此时,函数()f x 无最小值;②若02a <-≤时,即当20a -≤<时,()222,22,222,011,02x a x a a x f x x a x a x ax a x +->⎧⎪+-≤≤⎪⎪=⎨--+≤<-⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥+.22a a +>,所以,21242a aa -++=,整理可得2640a a +-=,20a -≤<,解得3a =-±; ③当2a ->时,即当2a <-时,()222,2,222,0211,02x a x a a x a f x x a x x ax a x +->-⎧⎪--≤≤-⎪⎪=⎨--+≤<⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥--.因为202a a -->>,所以,21242a aa -++=,整理可得2640a a +-=,2a <-,解得3a =-3a =-+.综上所述,实数a的取值集合为{3-.故答案为:{3-.1.(2020·全国高考真题(文))设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出. 【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .2.(2019·北京高考真题(文))下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A 【解析】函数122,log xy y x -==, 练真题1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .3.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .4.(2017课标II)函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.5.(2017天津)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<,本题选择C 选项.6.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③。

函数的单调性与最值课件共20张PPT

函数的单调性与最值课件共20张PPT
那么就称函数f(x)在区间D上单 那么就称函数f(x)在区间D上单
调递增
调递减
∀x1,x2∈D 且 x1≠x2,有fxx11- -fx2x2>0(<0)或
(x1- x2)[f(x1)- f(x2)]>0(<0)⇔ f(x) 在区 间 D 上单 调递 增
(减).
复习回顾
图象 描述
自左向右看图象是上升的
解析

x2+4=t,则
t≥2,∴x2=t2-4,∴y= t2
+t 1=t+1 1,
t
设 h(t)=t+1,则 h(t)在[2,+∞)上为增函数, t
∴h(t)min=h(2)=52,∴y≤15=25(x=0 时取等号). 2
即 y 的最大值为2. 5
求函数最值的三种基本方法:
一.单调性法:先确定函数的单调性,再由单调性求最值. 二.图象法:先作出函数的图象,再观察其最高点、最低点,求出
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性 变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.

专题07 函数:高中常见函数的单调性

专题07 函数:高中常见函数的单调性

专题7 常见函数的单调性与值域、最值目录【题型一】单调性定义 .............................................................................................................................................. 1 【题型二】1:反比例函数 ........................................................................................................................................ 2 【题型三】2:一元二次函数 .................................................................................................................................... 3 【题型四】3:分段函数 ............................................................................................................................................ 4 【题型五】4:“对勾”函数 ...................................................................................................................................... 5 【题型六】5:“双刀”函数(双曲函数) .............................................................................................................. 6 【题型七】6:无理函数 ............................................................................................................................................ 6 【题型八】7:max 与min 函数 ................................................................................................................................. 7 【题型九】8:“放大镜”函数 .................................................................................................................................. 8 【题型十】9:取整函数(高斯函数) .................................................................................................................... 9 培优第一阶——基础过关练 .................................................................................................................................... 10 培优第二阶——能力提升练 .................................................................................................................................... 11 培优第三阶——培优拔尖练 (12)【题型一】单调性定义【典例分析】下列说法错误的是( ) A .函数()f x 的定义域为(),a b ,若()12,,x x a b ∀∈,当12x x <时,()()21f x f x <,则函数()f x 是(),a b 上的减函数B .函数()f x 的定义域为(),a b ,若()12,,x x a b ∃∈,当12x x <时,()()21f x f x <,则函数()f x 不是(),a b 上的增函数C .若函数()f x 在[],a b 上是增函数,在(],b c 上也是增函数,则函数()f x 在[],a c 上是增函数D .若函数()f x 在[],a b 上是增函数,在[],b c 上也是增函数,则函数()f x 在[],a c 上是增函数【提分秘籍】 基本规律单调性的运算关系:①一般认为,-f (x )和1f (x )均与函数f (x )的单调性 相反 ;②同区间,↑+↑= ↑ ,↓+↓= ↓ ,↑-↓= ↑ ,↓-↑= ↓ ;(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么有: ①f (x 1)-f (x 2)x 1-x 2>0⇔f (x )是[a ,b ]上的 增函数 ;②f (x 1)-f (x 2)x 1-x 2<0⇔f (x )是[a ,b ]上的__减函数__;(3)复合函数单调性结论: 同增异减 .1.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是( )A .()()12120f x f x x x ->- B .()()()12120x x f x f x -->⎡⎤⎣⎦ C .()()()()12f a f x f x f b ≤<≤ D .()()12f x f x ≠2.下列有关函数单调性的说法,不正确的是( )A .若()f x 为增函数,()g x 为增函数,则()()f x g x +为增函数B .若()f x 为减函数,()g x 为减函数,则()()f x g x +为减函数C .若()f x 为增函数,()g x 为减函数,则()()f x g x +为增函数D .若()f x 为减函数,()g x 为增函数,则()()f x g x -为减函数3.下列函数f x ()中,满足“对任意()120x x ∈+∞,,,且12x x <都有()()12f x f x >”的是( ) A .f x x =()B .2f x x x=-() C .22f x x x =+-() D .3f x x =-()【题型二】1:反比例函数【典例分析】()20212022x f x x -=-*N x ∈,则()f x 取得最大值时的x 值为______.【提分秘籍】基本规律反比例函数分式函数求值域: 1.若分子与分母同次用:分离常数法, 2.若分子与分母不同次用:上下同除法1.关于函数3125x y x -=-,下列说法正确的是( ) A .若x N ∈,则函数只有最大值没有最小值 B .若x N ∈,则函数只有最小值没有最大值 C .若x N ∈,则函数有最大值没有最小值 D .若x N ∈,则函数有最小值也有最大值2.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值D .()f x 无最大值,最小值753..已知函数31()1x f x x -=-,其定义域是[4-,2)-,则( )A .()f x 有最大值73-,最小值135-B .()f x 有最大值73-,无最小值C .()f x 有最大值135-,最小值73-D .()f x 有最小值135-,无最大值【题型三】2:一元二次函数【典例分析】若函数2()f x x =在区间[,]a b 上的值域为[,1]()t t t +∈R ,则b a -( ) A .有最大值,但无最小值 B .既有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值【提分秘籍】 基本规律二次函数求值域用: 1.配方法2.对称轴单调性法二次函数基础知识:①一般式顶点式:y =ax 2+bx +c =a ⎝⎛⎭⎫x +b 2a 2+4ac -b 24a. ②顶点是⎝⎛⎭⎫-b 2a,4ac -b 24a ,对称轴是:x =-b2a.③方程ax 2+bx +c =0(a ≠0)求根公式:x =-b ±b 2-4ac2a1.函数 23y x x + )A .3,2⎛⎫-∞- ⎪⎝⎭ B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--2..已知2()2a f x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .23.若函数2()45f x x mx =-+在区间[1,)-+∞上是增函数,则(2)f 的最小值是 A .8 B .8- C .37 D .37-【题型四】3:分段函数【典例分析】.已知函数()21,=,2x c f x x x x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( )A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞【提分秘籍】 基本规律分段函数求值域或者最值,分段讨论,数形结合画图1.已知()32f x x =-,()22g x x x =-,若()()()()()()(),,g x f x g x F x f x f x g x ⎧≥⎪=⎨<⎪⎩,则()F x 的最值是( )A .最大值为3,最小值1-B .最大值为727-C .最大值为3,无最小值D .无最大值,最小值为1-2..函数2,[1,0]()1,(0,1]x x f x x x⎧∈-⎪=⎨∈⎪⎩的最值情况为( ).A .最小值0,最大值1B .最小值0,无最大值C .最小值0,最大值5D .最小值1,最大值5【题型五】4:“对勾”函数【典例分析】.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为( ) A .103B .152C .3D .4【提分秘籍】 基本规律对勾函数:by ax a b 0x=+>,(,)图像特征 1.有“渐近线”:y=ax 2.“拐点”:解方程bax x =(即第一象限均值不等式取等处)1.若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( )A .132⎡⎤⎢⎥⎣⎦, B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦,2.设0a >,函数100()f x x x=+在区间(0,]a 上的最小值为m 1,在区间[,)a +∞上的最小值为m 2,若122020m m =,则a 的值为( ) A .1 B .2 C .100 D .1或1003..函数()()2404xf x x x x x =++>+的最小值为( )A .2B .103C .174D .2654..函数224y x =+ )A .2B .52C .1D .不存在【题型六】5:“双刀”函数(双曲函数)【典例分析】已知函数4(),[,)af x x b x b x=++∈+∞,其中0,b a R >∈,记M 为()f x 的最小值,则当2M =时,a 的取值范围为( )A .13a > B .13a < C .14a > D .14a <【提分秘籍】基本规律b by ax y ax a b 0x x =-=->(两支各自增),或者(两支各自减),(,)1.有“渐近线”:y=ax 与y=-ax2.“零点”:解方程bax x =(即方程等0处)1.函数y =x -1x在[1,2]上的最大值为( )A .0B .32C .2D .32..函数()12f x x x=-在区间[]1,2上的最小值是( )A .72- B .72 C .1D .-13.已知0x >,则92535x x x x ⎛⎫⎛⎫+-⋅++ ⎪ ⎪⎝⎭⎝⎭的最小值为A .15B .48C .79316D .60【题型七】6:无理函数【典例分析】若()2224f x x x x --+()g x x a x a =+-(0a >)的最大值相等,则a 的值为( )A .1B 2C .2D .22【提分秘籍】 基本规律无理函数,注意几点: 1.定义域;2.是否具有单调性3.双根号,是否可以“分子有理化”来化简。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性与最值专题1.函数y =(2m -1)x +b 在R 上是减函数,则( )A .m >12B .m <12C .m >-12D .m <-122.已知函数y =1x -1,那么( )A .函数的单调递减区间为(-∞,1),(1,+∞)B .函数的单调递减区间为(-∞,1)∪(1,+∞)C .函数的单调递增区间为(-∞,1),(1,+∞)D .函数的单调递增区间为(-∞,1)∪(1,+∞)3.已知函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,234.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)5.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]7.已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,23 B .(0,+∞)C.⎝ ⎛⎭⎪⎫0,23 D .(-∞,0)∪⎝ ⎛⎭⎪⎫23,+∞8.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.9.函数y =x -x (x ≥0)的最大值为________.10.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.11.已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.强化训练1.已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f x 1-f x 2x 1-x 2>0;②对定义域内的任意x ,都有f (x )=f (-x ).则符合上述条件的函数是( )A .f (x )=x 2+|x |+1 B .f (x )=1x-xC .f (x )=ln|x +1|D .f (x )=cos x2.已知奇函数f (x )在x >0时单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为 ( )A .{x |0<x <1或x >2}B .{x |x <0或x >2}C .{x |x <0或x >3}D .{x |x <-1或x >1}3.已知y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )4.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)5.已知定义在R 上的奇函数f (x )满足f (x +2e)=-f (x )(其中e =2,718 2…),且在区间[e,2e]上是减函数,令a =ln 22,b =ln 33,c=ln 55,则f (a ),f (b ),f (c )的大小关系(用不等号连接)为( )A .f (b )>f (a )>f (c )B .f (b )>f (c )>f (a )C .f (a )>f (b )>f (c )D .f (a )>f (c )>f (b )6.已知单调函数f (x ),对任意的x ∈R 都有f [f (x )-2x ]=6,则f (2)=( )A .2B .4C .6D .87.已知函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是________.8.已知函数f (x )=⎩⎪⎨⎪⎧a x ,x <0,a -3x +4a ,x ≥0满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是________.9.已知函数f (x )=⎩⎪⎨⎪⎧e -x -2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1;④对任意x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<fx 1+f x 22.其中正确命题的序号是________.10.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1.若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(1)判断f (x )在[-1,1]上的单调性,并证明;(2)解不等式f ⎝⎛⎭⎪⎫x +12<f ⎝⎛⎭⎪⎫1x -1; (3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.答 案函数的单调性与最值专题1.函数y =(2m -1)x +b 在R 上是减函数,则( )A .m >12B .m <12C .m >-12D .m <-12答案:B 解析:由2m -1<0⇒m <12.2.已知函数y =1x -1,那么( )A .函数的单调递减区间为(-∞,1),(1,+∞)B .函数的单调递减区间为(-∞,1)∪(1,+∞)C .函数的单调递增区间为(-∞,1),(1,+∞)D .函数的单调递增区间为(-∞,1)∪(1,+∞)答案:A 解析:在每个区间内都单调递减,但不可用“并集”形式.3.已知函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 答案:D解析:由题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23.4.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案:D 解析:由x 2-4>0,得x <-2或x >2.又y =log 12 u 为减函数,故f (x )的单调递增区间为(-∞,-2).5.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案:C 解析:充分性:x >0,当a <0时,则f (x )=|(ax -1)x |=-ax 2+x 为开口向上的二次函数,且对称轴为x =12a<0,故f (x )为增函数;当a =0时,f (x )=x 为增函数.必要性:当a ≠0时,f ⎝ ⎛⎭⎪⎫1a =0,f (0)=0,f (x )在(0,+∞)上为增函数,则1a<0,即a <0;f (x )=x 时,为增函数,此时a =0,故a ≤0.综上,a ≤0为f (x )在(0,+∞)上为增函数的充分必要条件. 6.若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1] 答案:B 解析:易知函数f (x )=2|x -a |+3的增区间在为[a ,+∞),减区间为(-∞,a ].因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a >1. 故选B.7.已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,23 B .(0,+∞)C.⎝ ⎛⎭⎪⎫0,23 D .(-∞,0)∪⎝ ⎛⎭⎪⎫23,+∞答案:C 解析:∵f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),∴⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23.故选C.8.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫12,32 解析:由题意知,函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<212 ,解得12<a <32. 9.函数y =x -x (x ≥0)的最大值为________.答案:14 解析:令t =x ,则t ≥0,y =t -t 2=-⎝⎛⎭⎪⎫t -122+14,当t =12,即x =14时,y max =14.10.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.答案:[0,1) 解析:易知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.画出g (x )的图象如图所示,其递减区间是[0,1).11.已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明:任取x 1,x 2∈(0,+∞),且x 2>x 1, 则x 2-x 1>0,x 1x 2>0.f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解:∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2.易得a =25.强化训练1.已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f x 1-f x 2x 1-x 2>0;②对定义域内的任意x ,都有f (x )=f (-x ).则符合上述条件的函数是( )A.f(x)=x2+|x|+1 B.f(x)=1x-xC.f(x)=ln|x+1| D.f(x)=cos x答案:A 解析:由题意,得f(x)是偶函数,在(0,+∞)上递增.对于A,f(-x)=f(x),是偶函数,且x>0时,f(x)=x2+x+1,f′(x)=2x+1>0,故f(x)在(0,+∞)上递增,符合题意;对于B,函数f(x)是奇函数,不符合题意;对于C,由x+1≠0,解得x≠-1,定义域不关于原点对称,故函数f(x)不是偶函数,不符合题意;对于D,函数f(x)在(0,+∞)上不单调递增,不符合题意.故选A.2.已知奇函数f(x)在x>0时单调递增,且f(1)=0,若f(x-1)>0,则x的取值范围为 ( )A.{x|0<x<1或x>2} B.{x|x<0或x>2}C.{x|x<0或x>3} D.{x|x<-1或x>1}答案:A 解析:∵奇函数f(x)在(0,+∞)上单调递增,且f(1)=0,∴函数f(x)在(-∞,0)上单调递增,且f(-1)=0,则-1<x<0或x>1时,f(x)>0;x<-1或0<x<1时,f(x)<0.∴不等式f(x-1)>0,即-1<x-1<0或x-1>1,解得0<x<1或x>2.故选A.3.已知y=f(x)是R上的偶函数,对任意x1,x2∈(0,+∞),都有(x1-x2)·[f(x1)-f(x2)]<0.设a=ln 1π,b=(ln π)2,c=lnπ,则( )A.f(a)>f(b)>f(c) B.f(b)>f(a)>f(c)C.f(c)>f(a)>f(b) D.f(c)>f(b)>f(a)答案:C 解析:由题意易知f (x )在(0,+∞)上是减函数, 又∵|a |=ln π>1,b =(ln π)2>|a |,0<c =ln π2<|a |,∴f (c )>f (|a |)>f (b ). 又由题意知f (a )=f (|a |), ∴f (c )>f (a )>f (b ). 故选C.4.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 答案:A 解析:∵f (x )是偶函数,∴f (-2)=f (2). 又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,∴f (x )在[0,+∞)上是减函数. 又∵1<2<3,∴f (1)>f (2)=f (-2)>f (3),故选A.5.已知定义在R 上的奇函数f (x )满足f (x +2e)=-f (x )(其中e = 2,718 2…),且在区间[e,2e]上是减函数,令a =ln 22,b =ln 33,c=ln 55,则f (a ),f (b ),f (c )的大小关系(用不等号连接)为( )A .f (b )>f (a )>f (c )B .f (b )>f (c )>f (a )C .f (a )>f (b )>f (c )D .f (a )>f (c )>f (b ) 答案:A 解析:∵f (x )是R 上的奇函数, 满足f (x +2e)=-f (x ), ∴f (x +2e)=f (-x ),∴函数f (x )的图象关于直线x =e 对称,∵f (x )在区间[e,2e]上为减函数 ∴f (x )在区间[0,e]上为增函数, 又易知0<c <a <b <e , ∴f (c )<f (a )<f (b ),故选A.6.已知单调函数f (x ),对任意的x ∈R 都有f [f (x )-2x ]=6,则f (2)=( )A .2B .4C .6D .8 答案:C 解析:设t =f (x )-2x ,则f (t )=6,且f (x )=2x +t , 令x =t ,则f (t )=2t +t =6, ∵f (x )是单调函数,f (2)=22+2=6, ∴t =2,即f (x )=2x +2, 则f (2)=4+2=6,故选C.7.已知函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是________.答案:(-∞,-2]∪[2,+∞) 解析:∵函数y =f (x )是R 上的偶函数,∴y =f (x )的图象关于y 轴对称. 又∵y =f (x )在(-∞,0]上是增函数,则y =f (x )在(0,+∞)上是减函数,f (a )≤f (2), ∴|a |≥2,∴a ≤-2或a ≥2.8.已知函数f (x )=⎩⎪⎨⎪⎧a x ,x <0,a -3x +4a ,x ≥0满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是________.答案:⎝⎛⎦⎥⎤0,14 解析:由任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0,知f (x )在R 上为减函数,则需⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥a -3·0+4a ,解得0<a ≤14.9.已知函数f (x )=⎩⎪⎨⎪⎧e -x -2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1;④对任意x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<fx 1+f x 22.其中正确命题的序号是________.答案:①③④ 解析:根据题意可得函数图象如图所示.①由图象易得在点x =0处函数f (x )有最小值-1,故正确; ②由图象易得函数f (x )在R 上不是单调函数,故错误;③因为f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,且f (x )在(0,+∞)上单调递增,所以当x =12时,函数取得最小值,求得a 的取值范围是a >1,故正确;④因为函数在(-∞,0)上的图象是下凹的,所以任取两点连线应在图象的上方,即f ⎝⎛⎭⎪⎫x 1+x 22<fx 1+f x 22,故正确.故正确的命题为①③④.10.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1.若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(1)判断f (x )在[-1,1]上的单调性,并证明;(2)解不等式f ⎝⎛⎭⎪⎫x +12<f ⎝⎛⎭⎪⎫1x -1; (3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1], 因为f (x )为奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1+-x 2·(x 1-x 2),由已知得f x 1+f -x 2x 1+-x 2>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在[-1,1]上单调递增. (2)因为f (x )在[-1,1]上单调递增,所以⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1,解得-32≤x <-1.(3)因为f(1)=1,f(x)在[-1,1]上单调递增,所以在区间[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0对a∈[-1,1]恒成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,所以m≤-2或m≥2.所以m的取值范围是{m|m=0或m≥2或m≤-2}.。

相关文档
最新文档