09高考数学中利用空间向量解决立体几何的向量方法五

合集下载

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

空间向量在立体几何中的应用

空间向量在立体几何中的应用

空间向量在立体几何中的应用教学目标1、知识与技能(1) 进一步理解向量垂直的充要条件;(2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法;2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。

3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感,从而激发学数学、用数学的热情。

教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。

教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。

教学方法启发式教学、讲练结合教学媒体ppt课件学法指导交流指导,渗透指导.课型新授课教学过程一、知识的复习与引人自主学习1.若=x i+y j+z k,那么(x,y,z)叫做向量的坐标,也叫点P的坐标.2. 如图,已知长方体的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点为坐标原点,射线分别为轴、轴、轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么±=(x 1±x 2,y 1±y 2, ), ⊥⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 为BC 的中点,N 为AB 的中点,P 为BB 1的中点.(Ⅰ)求证:BD 1⊥B 1C ;(Ⅱ)求证:BD 1⊥平面MNP .设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

数学与应用数学专业毕业论文-向量在立体几何中的应用

数学与应用数学专业毕业论文-向量在立体几何中的应用

向量在立体几何中的应用摘要作为现代数学的重要标志之一的向量已进入了中学数学教学,为用代数方法研究几何问题提供了强有力的工具,促进了高中几何的代数化.而在高中数学体系中,几何占有很重要的地位,有些几何问题用常规方法去解决往往比较复杂,运用向量作行与数的转化,则使过程得到大大的简化.向量法应用于平面几何中时,它能将平面几何许多问题代数化、程序化从而得到有效的解决,体现了数学中数与形的完美结合.立体几何常常涉及到的两大问题:证明与计算,用空间向量解决立体几何中的这些问题,其独到之处,在于用向量来处理空间问题,淡化了传统方法的有“形”到“形”的推理过程,使解题变得程序化.装关键词:向量;立体几何;证明;计算;运用订线ABSTRACTAs one of the important signs of modern mathematics the vector has entered middle school mathematics teaching, using algebraic method research geometry problems provides powerful tools, promoted the high school of the geometry of algebra. And in the high school mathematics system, geometric occupies a very important position, some geometry problems with conventional method to solve tend to be complex, using vector for the number of rows and transformation, makes the process is greatly simplified. Vector method was used the plane geometry, it will be when the plane geometry many problems algebra effectively, programmed to solve, reflected in mathematics, the perfect combination of Numbers and forms. Three-dimensional geometry often involved the two big problems: proof and calculation, with space vector solve three-dimensional geometry in these problems, its unique, is using vector to deal with the problem of space, fade the traditional methods are "form" to "form" reasoning process, causes the problem-solving become programmed.Keywords:Vector; solid geometry; proof; calculation; use目录摘要 (Ⅰ)ABSTRACT (Ⅰ)1 向量方法在研究几何问题中的作用 (1)2 向量方法解决证明问题的直接应用 (2)2.1平行问题 (2)2.1.1证明两直线平行 (2)2.1.2证明线面平行 (3)2.2垂直问题 (4)2.2.1证明两直线垂直 (4)2.2.2证明线面垂直 (4)2.2.3证明面面垂直 (5)2.3处理角的问题 (6)2.3.1求异面直线所成的角 (6)2.3.2求线面角 (7)2.3.3求二面角 (8)3 向量方法解决度量问题的直接应用 (10)3.1两点间的距离 (10)3.2点与直线距离 (10)3.3点到面的距离 (11)3.4求两异面直线的距离 (11)3.5求面积 (12)3.6求体积 (13)4 向量方法解决证明与计算问题有关的综合应用 (14)5 向量在立体几何中应用的教学反思 (21)5.1对比综合法与向量法的利弊 (21)5.2向量法解决立体几何问题的步骤 (22)5.3向量法能解决所有立体几何问题吗 (22)参考文献 (23)1 向量方法在研究几何问题中的作用]1[向量是高中数学新增加的内容,在作用上它取代了以往复数在高中数学教材中的地位,但从目前的使用情况来看,向量的作用要远远大于复数.一个复数所对应的点只能在平面上,而向量却有平面向量和空间向量之分,这一点在与几何(尤其是立体几何)的联系上表现得更加突出.向量知识、向量观点在数学、物理等学科的很多分支上都有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形于一体,能与中学数学教学内容中的许多主干知识相结合,形成知识交汇点.向量进入高中数学教材,为用代数方法研究几何问题提供了强有力的工具,促进了高中几何的代数化.而在高中数学体系中,几何占有很重要的地位,有些几何问题用常规方法去解决往往比较繁杂,而运用向量作形与数的转化,则能使过程得到大大的简化.用向量法解决几何问题有着思路清晰、过程简洁的优点,往往会产生意想不到的神奇效果.著名教育家布鲁纳说过:“学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退.”这充分揭示了方法求变的重要性,如果我们能重视向量的教学,重视学生在学习向量过程中产生的障碍并且提供相应的教学对策,必然能引导学生拓展思路,减轻他们的学习负担.向量方法在解决几何问题时充分体现了它的优越性,平面向量就具有较强的工具性作用,向量方法不仅可以用来解决不等式、三角、复数、物理、测量等某些问题,还可以简捷明快地解决平面几何许多常见证明(平行、垂直、共线、相切、角相等)与求值(距离、角、比值等)问题.不难看出向量法应用于平面几何中时,它能将平面几何许多问题代数化、程序化从而得到有效的解决,体现了数学中数与形的完美结合.向量法是将几何问题代数化,用代数方法研究几何问题.立体几何的证明与计算常常涉及到两大问题:一是位置关系,它主要包括线线垂直、线面垂直、线线平行、线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成的角,面面所成角等.用空间向量解决立体几何中的这些问题,其独到之处,在于用向量来处理空间问题,淡化了传统方法的有“形”到“形”的推理过程,使解题变得程序化.那么解立体几何题时就可以用向量方法,对某些传统性较大,随机性较强的立体几何问题,引入向量工具之后,可提供一些通法.2 向量方法解决证明问题的直接应用2.1平行问题]2[2.1.1证明两直线平行b a CD AB b D C a B A //,,;,⇒=∈∈λ. 知),(),,(2211y x CD y x AB ==,则有b a y x y x //1221⇒=. 例 1 已知直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足,求证:OA//BD.证明:如上图,以点O 为原点,以射线OA 为z 轴,建立空间直角坐标系xyz O -,k j i ,,为沿x 轴,y 轴,z 轴的坐标向量,且设),,(z y x BD =,∵α⊥BD ,∴j BD i BD ⊥⊥,∴0)0,0,1(),,(==⋅=⋅x z y x i BD ,0)0,1,0(),,(==⋅=⋅y z y x ,∴),0,0(z =∴k z BD =,又知O 、B 为两个不同的点,∴OA BD //.方法思路:在两条直线上分别取不同的两点得到两向量,转化为证明两向量平行.2.1.2证明线面平行1、线∉a 面α,a B A ∈,,面α的法向量为n ,α//0AB n AB n AB ⇔⊥⇔=⋅. 方法思路:求面的法向量,在直线找不同两点得一向量,证明这一向量与法向量垂直(即证明数量积为0),则可得线面平行.2、已知面α外的直线a 的方向向量为a ,21,e e 是平面α的一组基底(不共线的向量),若αλλ//2211a e e a ⇔+=.例2 如上图,正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,P 、Q 分别是对角线AC 、BF 上的一点,且AP = FQ,求证:PQ ∥平面BCE.证明:设λ=,∵AP = FQ, ∴λ=,∴FQ AF PA PQ ++==λλ++-=λλλλ+-+--=)1(λλ-+∴//PQ 平面BCE.方法思路:证明直线的方向向量可用平面的一组基底线性表示(即在平面内存在一向量与方向相等),则可得面内一直线与面外的线平行,从而证明线面平行.2.1.3面面平行1、不重合的两平面α与β的法向量分别是m 和n ,βαλ//⇔=.方法思路:求平面的法向量,转化为证明两法向量平行,则两平面平行.2、不重合的两平面α与β,面α的法向量为,若βαβ//⇔⊥.方法思路:求出其中一平面的法向量,再证该法向量与另一面的不共线的两向量数量积为0(即垂直),则可得两平面平行.2.2垂直问题]3[2.2.1证明两直线垂直不重合的直线a 和直线b 的方向向量分别为a 和b ,则有b a b a ⊥⇒=⋅0. 例3 如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB //CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.证明:PE ⊥BC证明:以H 为原点,,,HA HB HP 分别为,,x y z 轴,线段HA 的长为单位长, 建立空间直角坐标系如图, 则(1,0,0),(0,1,0)A B设 (,0,0),(0,0,)(0,0)C m P n m n <>,则 )0,2,21(),0,,0(m E m D , 可得)0,1,(),,2,21(-=-=m n m , 因为0022m m PE BC ⋅=-+=, 所以 PE BC ⊥.2.2.2证明线面垂直直线l 的方向向量为]4[,平面α的方向向量为,则有αλ⊥⇒⋅=l . 例4,如图,m, n 是平面α内的两条相交直线.如果n l m l ⊥⊥,,求证:α⊥l .证明:在α内作任一直线g ,分别在g n m l ,,,上取非零向量g n m l ,,,. 因为m 与n 相交,所以向量n m ,不平行.由向量共面的充要条件知,存在唯一的有序实数对(x,y ),使n y m x g +=将上式两边与向量l 作数量积,得n l y m l x g l ⋅+⋅=⋅,因为 0,0=⊥=⊥n l m l ,所以0=⋅g l ,所以g l ⊥即g l ⊥.这就证明了直线l 垂直于平面α内的任意一条直线,所以α⊥l .方法思路:找直线的方向向量(在两直线上取两点得一向量)及平面的法向量,只需证明两向量平行,则可证线面垂直. 2.2.3证明面面垂直1、不重合的平面α与β的法向量分别为m 和n ,则有βα⊥⇔=⋅0n m . 方法思路:找平面的法向量,只需证明两向量数量积为0,则可证明两平面垂直.2、平面β的法向量为n ,21,e e 是平面α的一组基底(不共线的向量),则有βαλλ⊥⇔+=2211e e n .例5 在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1,CD 的中点(1)求证:AD ⊥D 1F ;(2)证明平面AED ⊥平面A 1FD 1分析:涉及正方体中一些特殊的点、线、面的问题,建立空间直角坐标系来解,不仅容易找到解题方向,而且坐标也简单,此时“垂直”问题转化为“两向量数量积为“0”的问题,当然也可用其它的证法.证明:建立空间直角坐标系如图,并设AB=2,则A(0,0,0), D(0,2,0), A 1(0,0,2)D 1(0,2,2),E(2,0,1), F(1,2,0)(1)(0,2,0),AD = 1(1,0,2)D F =-m n gα l AB C DA 1B 1C 1D 1z y∴ 1AD D F ⋅=0×1+2×1+0×(-2)=0, ∴AD ⊥D 1F(2)AE =(2,0,1) 1D F =(1,0,-2),||5AE = ,|1|5D F = 设AE 与D 1F 的夹角为θ,则θcos =055)2(10012|F D ||AE |FD AE 11=-⨯+⨯+⨯=⋅所以D 1F ⊥AE ,由(1)知D 1F ⊥AD ,又AD ∩AE=A ,∴D 1F ⊥平面AED ,∵D 1F ⊂平面A 1FD 1M∴平面AED ⊥平面A 1FD 1方法思路:找其中以平面的法向量,证明法向量与另一平面平行,即法向量可以用另一平面的一组基底(不共线的向量)线性表示.2.3处理角的问题]5[2.3.1求异面直线所成的角a,b 是两异面直线,b D C a B A ∈∈,,,,a ,b 所成的角为θ,则有CD AB CDAB CD AB ⋅⋅=〉〈=,cos cos θ.例6 如图所示,三棱锥A-BCD,AB ,,CD BD BCD ⊥⊥平面若AB=BC=2BD,求二面角B-AC-D 的大小.解: 如图建立空间直角坐标系O-xyz,∵AB=BC=2BD,设BD=1则AB=BC=2,DC=3A(1,0,2),B(1,0,0),C(0,3,0),D(0,0,0))2,0,1(),0,3,0(),0,3,1(),2,0,0(==-=-=→→→→DA DCBC AB设平面ABC 的法向量为),,(1111z y x n =→, 则00.11=⇒=→→z n AB030.111=+-⇒=→→y x n BC取平面ABC 的法向量)0,1,3(1=→n 设平面ACD 的法向量为),,(2222z y x n =→则00.22=⇒=→→y n DC020.222=+⇒=→→z x n DA取法向量)1,0,2(-=→n cos<→→21,n n >=5151040131001)2(32221-=++⨯++⨯+⨯+-⨯=⋅→→→→n n n n 515arccos,21->=∴<→→πn n 互补平面角与二面角><--∴→→21,n n D AC B , 515arccos的大小的所求二面角D AC B --∴. 方法思路:找两异面直线的方向向量,转化为向量的夹角问题,套公式(但要理解异面直线所成的夹角与向量的夹角相等或互补).2.3.2求线面角设平面α的斜线l 与面α所成的角为β,若,,l B A ∈m 是面α的法向量,则有〉〈=m AB ,cos sin β.例7如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90,侧棱AA 1=2,D 、E分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.求A 1B 与平面ABD 所成角的大小(结果用余弦值表示);D D A 1C 1B 1z E解析:如图所示,建立坐标系,坐标原点为C ,设a CA 2=,则)0,0,2(a A ,)0,2,0(a B ,)1,0,0(D ,)2,0,2(1a A ,)1,,(a a E ,)31,32,32(a a G , ∵ ()2,,333a a GE =---,()0,2,1BD a =-,032322=-=⋅a , ∴1=a ,()112,,333GE =---,()12,2,2A B =--∵ GE 为平面ABD的法向量,且32,cos 1==〉〈GE B A . ∴ A 1B 与平面ABD 所成角的余弦值是32. 方法思路:找直线的方向向量与平面的法向量,转化为向量的夹角问题,再套公式(注意线面角与两向量所在直线夹角互余).2.3.3求二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如右图所示),则 ① 若二面角βα--l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n ⋅=θ.② 若二面角βα--l 是“锐角型”的如右图所示,那么其大小等于两法向量21n n 、的夹角,即||||cos 2121n n ⋅=θ方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、,则二面角βα--l 的大小等于向量21n n 、的夹角,即 ||||cos 2121n n ⋅=θ.例8 在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.解 如图所示,建立空间直角坐标系xyz O -, 依题意:A 1(0,0,2),D (0,a ,0). ∴Q (2,2,0),D (0,4,0), ∴)20,2(),2,2,2(1-=-=A , 面AA 1D 的法向量)0,0,1(1=n , 设面A 1DQ 的法向量),,(3212a a a n =,则⎪⎩⎪⎨⎧=+-=⋅=-+=⋅,022,022*********a a QD n a a a Q A n ⎩⎨⎧==⇒,2,1312a a a a ∴)2,,(1112a a a n =, 令a 1=1,则)2,1,1(2=n ,∴66611,cos 21=⨯=>=<n n , 二面角的平面角为锐角,∴二面角A —A 1D —Q 的大小为66arccos. 此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若令11-=a ,则)2,1,1(2---=n ,∴66,cos 21->=<n n ,∴二面角A —A 1D —Q 的大小 是><21,n n 66arccos-=π的补角66arccos .所以在计算之前不妨先依题意直观判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”.O (A 1z3 向量方法解决度量问题的直接应用3.1两点间的距离]6[两点间距离重在“转化”,即将空间两点间距离转化为向量的长度问题.利用向量的模,可以推导出空间两点的距离公式,即空间两点()()11112222,,,,,P x y z P x y z ,则()()()22212212121d PP x x y y z z ==-+-+-例1 在三棱锥S ABC -中,面SAC ⊥面ABC ,SA AC ⊥,BC AC ⊥6SA =,21,8AC BC ==,求SB 的长. 分析 如图,本题可以用几何法求出SB , 但需要证明若用向量法,注意到SA ,AC ,BC 之间的关系.建立以A 点为原点的空间直角坐标系.则无须证明就有如下巧解.解 如图,建立以A 为原点的空间直角坐标系,则()()()0,0,0,21,0,0,0,6A B S ,所以()()()222080216011SB SB ==-+-+-=.本题用向量法巧妙地把与SB 有关元素的位置关系转化为相应向量是SB 的数量关系,构造向量的空间距离模型,然后通过数值计算将问题加以解决.3.2点与直线距离]7[如图 求得向量AP 在向量AB 的射影长为d , 则点P 到直线AB 22AP d -例2 设P 为矩形ABCD 所在平面外的一点,直线PA 垂直平面外的一点, 直线PA 垂直平面ABCD ,AB =3,BC =4,PA =1 求点P 到直线BP 的距离. 解()()29BP BD BA AP BC BA AB ⋅=+⋅+==BD5所以BP 在BD 上的射影长为95,又10BP =,所以点P 到直线BD 的距离3.3点到面的距离任取一点α∈Q 得m PQ ,是平面α的法向量,则有:点P 到平面α的距离mm PQ d ⋅=(向量PQ 在法向量m 的投影的长度).方法思路:求出平面的任一法向量m (方程组可求),在平面内任取一点Q 与点P 得一向量转化为PQ 在法向量的投影长度,套公式.3.4求两异面直线的距离知b a ,是两异面直线,b D C a B A ∈∈,,,,找一向量与两异面直线都垂直的向量m ,则两异面直线的距离mm AC d ⋅=例3如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形 B B A A ''是矩形,。

高中数学一轮复习立体几何的向量方法:第5节 利用空间向量证明平行问题

高中数学一轮复习立体几何的向量方法:第5节  利用空间向量证明平行问题

第5节 利用空间向量证明平行问题【基础知识】证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【规律技巧】恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.【典例讲解】【例1】 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF →=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0, 令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →,∵PB ⊄面EFG ,∴PB ∥平面EFG .【变式探究】 如图,平面P AC ⊥平面ABC ,△ABC 是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为P A ,PB ,AC 的中点,AC =16,P A =PC =10.设G 是OC 的中点,证明:FG ∥平面BOE ;证明 如图,连接OP ,∵P A =PC ,O 是AC 的中点,∴PO ⊥AC ,又∵面P AC ⊥面ABC ,∴PO ⊥面ABC ,∵△ABC 是以AC 为斜边的直角三角形,∴BO ⊥AC .【针对训练】如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( ) A .(1,1,1)B.⎝⎛⎭⎫23,23,1C.⎝⎛⎭⎫22,22,1D.⎝⎛⎭⎫24,24,1解析 设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线交点,∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标⎝⎛⎭⎫22,22,1. 答案 C【练习巩固】1.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)解析 若l ∥α,则a·n =0,D 中,a·n =1×0+(-1)×3+3×1=0,∴a ⊥n .答案 D2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交B .平行C .在平面内D .平行或在平面内 解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.答案 D3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.答案 A4.在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,AB BC CF DE ⊥= ,45BAC ∠=o ,求平面FGH 与平面ACFD所成的角(锐角)的大小.。

知识归纳:立体几何中的向量方法

知识归纳:立体几何中的向量方法

知识归纳:立体几何中的向量方法1.直线的方向向量:我们把直线l 上的向量以及与共线的向量叫做直线l 的方向向量.2.平面的法向量:如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥,那么向量叫做平面α的法向量.给定一个点,以向量为法向量的平面是完全确定的.3.空间向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及到的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果“翻译”成相应的几何意义.4.用向量研究空间线面关系,设空间两条直线21,l l 的方向向量分别为21,e e ,两个平面21,αα的法向量分别为21,n n ,则有如下结论5.用向量法求线线角:AB 与CD 的夹角和AB 与CD 的夹角相等或互补.公式为cos ,||||AB CDAB CD AB CD ⋅<>=.6.法向量求线面角:设平面β的斜线l 与平面β所成的角为α1,斜线l 与平面β的法向量所成角α2,则α1与α2互余或与α2的补角互余.求出斜线与平面的法向量所成的角后,即可求出斜线与平面所成的角的大小.公式为cos ,||||AB nAB n AB n ⋅<>=.7.法向量求面面角:一个二面角的平面角α1与这个二面角的两个半平面的法向量所成的角α2相等或互补.求出两平面的法向量所成的角后,即可求出二面角的大小.公式为121212cos ,||||n n n n n n ⋅<>=.8.向量法求异面直线间的距离:设分别以这两异面直线上任意两点为起点和终点的向量为,与这两条异面直线都垂直的向量为,则两异面直线间的距离是在方向上的正射影向量的模.公式为d 9.向量法求点到平面的距离:设分别以平面外一点P 与平面内一点M 为起点和终点的向量为,平面的法向量为,则P 到平面的距离d 等于在方向上正射影向量的模.公式为||n d =。

(完整版)用基底建模向量法解决立体几何问题

(完整版)用基底建模向量法解决立体几何问题

用基底建模向量法解决立体几何问题空间向量是高中数学新教材中一项基本内容,它的引入有利于处理立体几何问题,有利于学生克服空间想象力的障碍和空间作图的困难,有利于丰富学生的思维结构,利用空间向量的坐标运算解立体几何问题,可把抽象的几何问题转化为代数计算问题,并具有很强的规律性和可操作性, 而利用空间向量的坐标运算需先建立空间直角坐标系,但建立空间直角坐标系有时要受到图形的制约,在立体几何问题中很难普遍使用,其实向量的坐标形式只是选取了特殊的基底,一般情况下, 我们可以根据题意在立体几何图形中选定一个基底,然后将所需的向量用此基底表示出来, 再利用向量的运算进行求解或证明, 这就是基底建模法. 它是利用向量的非坐标形式解立体几何问题的一种有效方法。

基向量法在解决立体几何的证明、求解问题中有着很特殊的妙用。

空间向量基本定理及应用空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对空间任一向量p 存在惟一的有序实数组x 、y 、z ,使p =x a + y b + z c .1、 已知空间四边形OABC 中,∠AOB =∠BOC = ∠AOC ,且OA =OB =OC .M ,N 分别是OA ,BC 的中点,G 是 MN 的中点.求证:OG ⊥BC .【解前点津】 要证OG ⊥BC ,只须证明0=•BC OG 即可.而要证0=•BC OG ,必须把OG 、BC 用一组已知的空间基向量来表示.又已知条件为∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,因此可选OC OB OA ,,为已知的基向量.【规范解答】 连ON 由线段中点公式得:例1题图),(41)(212121)(21OC OB OA OC OB OA ON OM OG ++=⎥⎦⎤⎢⎣⎡++=+= 又OB OC BC -=,所以•OG OB OC OB OB OA OC OC OB OC OA OB OC OC OB OA OB •--•-+•+•=-•++=22(41)()(41)=41(OA 22OB OC OB OA OC -+•-•). 因为AOC OC OA OC OA ∠••=•cos .AOB OB OA OB OA ∠••=•cos 且OA OB OC ==,∠AOB =∠AOC .所以BC OG •=0,即OG ⊥BC .【解后归纳】 本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力.【例2】 在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求:异面直线BA 1与AC 所成的角.【解前点津】 利用><⨯•=•AC BA AC BA AC BA ,cos 111,求出向量1BA 与AC 的夹角〈1BA ,AC 〉, 再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角. 【规范解答】 因为BC AB AC BB BA BA +=+=,11,所以)()(11BC AB BB BA AC BA +•+=•=BC BB AB BB BC BA AB BA •+•+•+•11 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以AB BB BC BA •=•1,0=0,AB BA BC BB •=•,01=-a 2.所以AC BA •1=-a 2.又,,cos 111><••=•AC BA AC BA AC BA .2122,cos 21-=⨯->=<aa a AC BA 所以〈AC BA ,1〉=120°.所以异面直线BA 1与AC 所成的角为60°.【解后归纳】 求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示例3:如图,在底面是菱形的四棱锥P-ABCD 中,∠ABC=60º,PA ⊥面ABCD , PA=AC =a,PB=PD=2a ,点E 在PD 上,且PE:PD=2:1. 在棱PC 上是否存在一点F ,使BF ∥ 平面AEC ?证明你的结论. 解析:我们可选取,,AB AD AP 作为一组空间基底CAPE,()(1)(1)22()331233PF PC BF BP PF AP AB AC AP AB AD APAE AP PE AP PD AP AD AP AP AD AC AB A λλλλλ==+=-+-=-++-=+=+=+-=+=+设而又因为并且//,12(1)(1)=+333-1=2213211123PC F,PC BF DBF AEC BF x AE y AC AB AD AP x AP AD AB AD x y x y x λλλλλλλ=+-++-++⎧⎧=⎪⎪⎪⎪⎪⎪==-⎨⎨⎪⎪⎪⎪=-=⎪⎪⎩⎩要使平面那么存在实数x,y 使成立即()y()于是,可得到解得故在棱上存在一点其为的中点,使//AEC平面【例4】 证明:四面体中连接对棱中点的三条直线交于一点且互相平分(此点称为四面体的重心).【规范解答】∵E ,G 分别为AB ,AC 的中点,∴EGBC 21,同理HF BC 21,∴EG HF .从而四边形EGF H 为平行四边形,故其对角线EF , GH 相交于一点O ,且O 为它们的中点,连接OP ,OQ .只要能证明向量OP =-OQ 就可以说明P ,O ,Q 三点共线且O为PQ 的中点,事实上,HQ OH OQ GP OG OP +=+=, ,而O 为GH 的中点, 例4图∴GPOH OG ,0=+21CD,QH21CD,∴.21,21CD QH CD GP ==∴=CD CD HQ GP OH OG OQ OP 21210-+=+++=+=0.∴OQ OP -==,∴PQ 经过O 点,且O 为PQ 的中点.【解后归纳】本例要证明三条直线相交于一点O ,我们采用的方法是先证明两条直线相交于一点,然后证明OQ OP ,两向量共线,从而说明P 、O 、Q 三点共线进而说明PQ 直线过O 点.例5.如图在平行六面体ABCD -A1B1C1D1中,E 、F 、G 分别是A1D1、D1D 、D1C1的中点. 求证:平面EFG ∥平面AB1C.证明:设AB =a ,AD =b ,1AA =c ,则EG =1ED +1D G =12(a +b),AC =a +b =2EG ,∴EG ∥AC ,EF =1ED +1D F =12b -12c =12(b -c),1B C =11B C +1C C =b -c =2EF ,∴EF ∥1B C .又∵EG 与EF 相交,AC 与B1C 相交, ∴平面EFG ∥平面AB1C.例6.如图,平行六面体ABCD -A1B1C1D1中,以顶点A 为端点的三条棱长都为1,且 两夹角为60°. (1)求AC1的长;(2)求BD1与AC 夹角的余弦值. 解:设AB =a ,AD =b ,=c ,则两两夹角为60°,且模均为1.(1)1AC =AC +1CC =AB +AD +1AA =a +b +c.∴|1AC |2=(a +b + c)2=|a|2+|b|2+|c|2+2a ·b +2b ·c +2a ·c=3+6×1×1×12=6,∴|1AC |=6,即AC1的长为 6.(2)1BD =BD +1DD =AD -AB +1AA =b -a +c.∴1BD ·AC =(b -a +c)·(a +b)=a ·b -a2+a ·c +b2-a ·b +b ·c =1. |1BD |=(b -a +c)2=2,|AC |=(a +b)2=3,∴cos 〈1BD ,AC 〉=11BD ACBD AC =12×3=66. ∴BD1与AC 夹角的余弦值为66.14.已知线段AB 在平面α内,线段AC ⊥α,线段BD ⊥AB ,且与α所成的角是30,如果AB =a ,AC =BD =b ,求C 、D 之间的距离..如图,由AC ⊥α,知AC ⊥AB.过D 作DD ′⊥α,D ′为垂足,则∠DBD ′=30°,〈BD CA ,〉=120°, ∴|CD|2= 2)(CD AB CA CD CD ++=• =BDAB BD CA AB CA BD AB CA •+•+•+++222222=b2+a2+b2+2b2cos120°=a2+b2.∴CD =22b a +15如图所示,已知ABCD ,O 是平面AC 外的一点点,OD OD OC OC OB OB OA OA 2,2,2,21111====, 求证:A 1,B 1,C 1,D 1四点共面.证明:∵)(22)(2221111AD AB AC OA OC OA OC OA OC C A +==-=-=-= =2[])22()22(()(OA OD OA OB OA OD OA OB -+-=-+- =11111111)()(D A B A OA OD OA OB +=-+- ∴A1,B1,C1,D1四点共面.16 :如图,已知平行六面体ABCD-A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB=∠C 1CD=∠BCD=60°. 证明:C 1C ⊥BD ;{}1,,,,,,解:分别以的单位向量为空间的基底CD CB CC 123123e e e e e e===m 11CD m ,CB ,CC n 依题设中的条件,可知:23e e e<e 1,e 2>=60°, <e 1,e 3>=60°, <e 2,e 3>=60°,m m n 1(1)BD BC CD m ,BD CC (m )()mn()mn(cos ,cos )0=+=-+∴⋅=-+⋅=⋅-⋅=<>-<>=2121313231323e e e e e e e e e e e e ,e∴ C 1C ⊥BD17 .如图,在梯形ABCD 中,AB ∥CD ,∠ADC =90°,3AD =DC =3,AB =2,E 是DC 上的点,且满足 DE =1,连结AE ,将△DAE 沿AE 折起到△D1AE第17题B 1D C OBA的位置,使得∠D1AB =60°,设AC 与BE 的交点为O. (1)试用基向量AB , AE ,1AD 表示向量1OD ; (2)求异面直线OD1与AE 所成角的余弦值;(3)判断平面D1AE 与平面ABCE 是否垂直?并说明理由. 解:(1)∵AB ∥CE ,AB =CE =2,∴四边形ABCE 是平行四边形,∴O 为BE 的中点. ∴1OD =-AO =1AD -12(AB +AE )=1AD -12AB -12AE .(2)设异面直线OD1与AE 所成的角为θ,则cosθ=|cos 〈1OD ,AE 〉|=11OD AEOD AE⋅⋅,∵1OD ·AE =(1AD -12AB -12AE )·AE =1AD ·AE -12AB ·AE -12|AE |2 =1×2×cos45°-12×2×2×cos45°-12×(2)2=-1,|1OD |=2111()22AD AB AE --=62, ∴cos θ=11OD AEOD AE⋅⋅=|-162×2|=33. 故异面直线OD1与AE 所成角的余弦值为33.(3)平面D1AE ⊥平面ABCE.证明如下: 取AE 的中点M ,则1D M =AM -1AD=12AE -1AD , ∴1D M ·AE =(12AE -1AD )·AE =12|AE |2-1AD ·AE=12×(2)2-1×2×cos45°=0. ∴1D M ⊥AE .∴D1M ⊥AE.∵1D M ·AB =(12AE -1AD )·AB =12AE ·AB -1AD ·AB=12×2×2×cos45°-1×2×cos60°=0,∴1D M ⊥AB ,∴D1M ⊥AB. 又AE∩AB =A ,AE 、AB ⊂平面ABCE ,∴D1M ⊥平面ABCE.∵D1M ⊂平面D1AE , ∴平面D1AE ⊥平面ABCE.在四面体、平行六面体等图形中,当不易找到(或作出)从一点出发的三条两两垂直的直线建立直坐标系时,可采用“基底建模法”选定从一点发的不共面的三个向量作为基底,并用它们表示出指定的向量,再利用向量的运算证明平行和垂直,求解角和距离。

空间向量在立体几何里的综合运用.

空间向量在立体几何里的综合运用.

z 分析:钢板所受重力的大
小为 500kg ,垂直向下作用在
F1
三角形的重心 O ,如果能将各
顶点出所受的力 F1 、F2 、F3 用 向量形式表示,求出其合力, A 就能判断钢板的运动状态. x
F3
F2 C
O
B
y 500kg
合力
答案
F2
F1
F3
F2 F3 F1
F1 A
F3
F2 C
O
B
500kg
合 力 就 是 以F1、F2、F3 为棱的平行六面体的
uv
若二面角 l 的大小为 (0 ,) 则 cos .
uv
“同进同出互补”
“一进一出相等”
例1
四、异面直线成角
(1)定义:设a,b是两条异面直线,过空间任一点O作直 线a ′∥a, b ′∥b,则a ′, b ′所夹的锐角或直角叫a与b 所成的角.
(2)设 直 线a,b的 方 向 向 量 分 别 为a, b,
(3)法一:如图建系,设DC 1,n (x, y, z) 面PBC,
则P(0,0,1), B(1,1,0),C(0,1,0).
Z
PB (1,1,1), PC (0,1,1),
P
则n PB 0, n PC 0

x

y
y z
z 0
0 ,另z
1,
l



a

AB

a

AB

0
a CD a CD 0
例1
三、二面角的平面角
①方向向量法 将二面角转化为二面角的两个面的
方向向量(在二面角的面内且垂直于二面角的棱)

高考理科数学必考——几何证明与利用空间向量求线面角、面面角

高考理科数学必考——几何证明与利用空间向量求线面角、面面角

高考理科数学必考——几何证明与利用空间向量求线面角、面
面角
时间过的飞快,距离高考的时间就只剩76天了,同学和老师也越来越紧张了,有些地方欠缺的同学开始寝食难安,老师也赶快奉献点干货来帮助几何证明欠缺的学生。

立体几何其实难度不大,只要你会空间向量,会建系,一切就自然而然水到渠成了。

在这先分析这些立体几何的解题思路。

在立体几何中,第一问一般会让你证明线面平行、线面垂直、面面平行、面面垂直
1、证明线面平行的方法1、平移的方法,找到直线与平面内一条直线平行
2、利用面面平行、证明线面平行
2、证明线面垂直的方法1、证明直线与平面内相交的两直线垂直
3、证明面面平行的方法1、证明一个平面内两相交的直线与另一个平面内两相交的直线互相平行
2、证明平面内两相交的直线分别平行另一个平面
4、证明面面垂直的方法1、先证明一条直线垂直于一个平面,这条直线还在另一个平面内
利用这些方法第一问就可以轻松解决了。

在立体几何第二中,会求线面角、面面角,在第二步中,利用空间向量解决就可以
利用空间向量解决第二问的步骤1、找三垂,建立空间直角坐标系
2、写出各个点的坐标
3、求出直线向量、面的法向量
4、利用夹角公式算出余弦值
下面通过两个例题说明一下这个空间几何。

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

专题09立体几何与空间向量选择填空题历年考题细目表题型年份考点试题位置单选题2019表面积与体积2019年新课标1理科12单选题2018几何体的结构特征2018年新课标1理科07单选题2018表面积与体积2018年新课标1理科12单选题2017三视图与直观图2017年新课标1理科07单选题2016三视图与直观图2016年新课标1理科06单选题2016空间向量在立体几何中的应用2016年新课标1理科11单选题2015表面积与体积2015年新课标1理科06单选题2015三视图与直观图2015年新课标1理科11单选题2014三视图与直观图2014年新课标1理科12单选题2013表面积与体积2013年新课标1理科06单选题2013三视图与直观图2013年新课标1理科08单选题2012三视图与直观图2012年新课标1理科07单选题2012表面积与体积2012年新课标1理科11单选题2011三视图与直观图2011年新课标1理科06单选题2010表面积与体积2010年新课标1理科10填空题2017表面积与体积2017年新课标1理科16填空题2011表面积与体积2011年新课标1理科15填空题2010三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是PA,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴1。

专题09 利用空间向量求空间距离(解析版)

专题09 利用空间向量求空间距离(解析版)

2020年高考数学立体几何突破性讲练09利用空间向量求空间距离一、考点传真:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用. 二、知识点梳理:空间距离的几个结论(1)点到直线的距离:设过点P 的直线l 的方向向量为单位向量n ,A 为直线l 外一点,点A 到直线l 的距离d =|P A →|2-|P A →·n |2. (2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|P A →·n ||n |.(3)线面距离、面面距离都可以转化为点到面的距离. 三、例题:例 1.(2018天津)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.N ABC D EF G M例2. (2014新课标2)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,ADE ACD -的体积.例3.(2013天津) 如图, 四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB DC ∥,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.1A 1(Ⅰ)证明11B C CE ⊥;(Ⅱ)求二面角11B CE C --的正弦值;(Ⅲ)设点M 在线段1C E 上;且直线AM 与平面11ADD A , 求线段AM 的长.例4.(2012福建)如图,在长方体1111ABCD A B C D -中11AA AD ==,E 为CD 中点.(Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的行;若存在,求AP 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30°,求AB 的长.四、巩固练习:1.如图,已知圆柱OO 1底面半径为1,高为π,平面ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其运动路程最短时在侧面留下曲线Γ.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后得到平面A 1B 1C 1D 1,边B 1C 1与曲线Γ相交于点P .(1)求曲线Γ的长度;(2)当θ=π2时,求点C 1到平面APB 的距离.2.如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB ⊥AC ,AE ⊥BD ,DE ∥12AC ,AD =BD =1.(1)求AB 的长;(2)已知2≤AC ≤4,求点E 到平面BCD 的距离的最大值.3.如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离.4.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E ,F分别为PD ,PB 的中点.(1)求证://CF 平面PAD ;(2)若截面CEF 与底面ABCD 所成锐二面角为4π,求PA 的长度.5.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.6.如图,四棱锥P-ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD,PA=AD=2,BD=2.1(1)求证:BD⊥平面PAC;(2)求二面角P-CD-B的大小;(3)求点C到平面PBD的距离.。

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。

接下来,就让我们一起深入了解一下空间向量的相关知识。

一、空间向量的基本概念空间向量是指具有大小和方向的量。

它与平面向量类似,但存在于三维空间中。

一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。

零向量:长度为\(0\)的向量,其方向任意。

单位向量:长度为\(1\)的向量。

二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。

若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。

空间向量法解决立体几何问题全面总结

空间向量法解决立体几何问题全面总结

由OA1 =(-1,-1,2),OD1 =(-1,1,2)
得:
x x

y y

2z 2z

0 0
解得:xy20z
取z =1
得平面OA1D1的法向量的坐标n=(2,0,1).
(2)求平面的法向量的坐标的特殊方法:
• 第一步:写出平面内两个不平行的向量 • a = (x1,y1,z1), b = (x2,y2,z2), • 第二步:那么平面法向量为
z
C1
A1
A x
B1
C O
B y
• 解:建立如图示的直角坐标系,则

A(
a 2
,0,0),B(0,
3 2
a
,0)
A1(
a 2
,0,).
C(-
a 2
,0,
2a)
• 设面ABB1A1的法向量为n=(x,y,z)
•得 a 3
AB ( , 2
2
a,0), AA1 (0,0,
2a)
• •

a
一.引入两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向
量都称为直线的方向向量.如图,在空间直角
坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是
z
AB (x2 x1, y2 y1, z2 z1)
B
A
y
x
2.平面的法向量 • 如果表示向量n的有向线段所在的直线垂直
n
a
b
α
(1)求平面的法向量的坐标的一般步骤:
• 第一步(设):设出平面法向量的坐标为n=(x,y,z).

空间向量解决立体几何

空间向量解决立体几何

1 空间直角坐标系构建三策略利用空间向量的方法解决立体几何问题,关键是依托图形建立空间直角坐标系,将其它向量用坐标表示,通过向量运算,判定或证明空间元素的位置关系,以及空间角、空间距离问题的探求.所以如何建立空间直角坐标系显得非常重要,下面简述空间建系的三种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如.1.利用共顶点的互相垂直的三条棱例1 已知直四棱柱中,AA 1=2,底面ABCD 是直角梯形,∠DAB 为直角,AB ∥CD ,AB =4,AD =2,DC =1,试求异面直线BC 1与DC 所成角的余弦值.解 如图以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴,y轴,z 轴,建立空间直角坐标系,则D (0,0,0),C 1(0,1,2),B (2,4,0),C (0,1,0),所以BC 1→=(-2,-3,2),CD →=(0,-1,0).所以cos 〈BC 1→,CD →〉=BC 1→·CD →|BC 1→||CD →|=31717. 故异面直线BC 1与DC 所成角的余弦值为31717. 点评 本例以直四棱柱为背景,求异面直线所成角.求解关键是从直四棱柱图形中的共点的三条棱互相垂直关系处着眼,建立空间直角坐标系,写出有关点的坐标和相关向量的坐标,再求两异面直线的方向向量的夹角即可.2.利用线面垂直关系例2 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥面BB 1C 1C ,E 为棱C 1C 的中点,已知AB =2,BB 1=2,BC =1,∠BCC 1=π3.试建立合适的空间直角坐标系,求出图中所有点的坐标.解 过B 点作BP 垂直BB 1交C 1C 于P 点,因为AB ⊥面BB 1C 1C ,所以BP ⊥面ABB 1A 1,以B 为原点,分别以BP ,BB 1,BA 所在的直线为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BB 1=2,BC =1,∠BCC 1=π3, 所以CP =12,C 1P =32,BP =32,则各点坐标分别为B (0,0,0),A (0,0,2),B 1(0,2,0),C (32,-12,0),C 1(32,32,0),E (32,12,0),A 1(0,2,2).点评 空间直角坐标系的建立,要尽量地使尽可能多的点落在坐标轴上,这样建成的坐标系,既能迅速写出各点的坐标,又由于坐标轴上的点的坐标含有0,也为后续的运算带来了方便.本题已知条件中的垂直关系“AB ⊥面BB 1C 1C ”,可作为建系的突破口.3.利用面面垂直关系例3 如图1,等腰梯形ABCD 中,AD ∥BC ,AB =AD =2,∠ABC =60°,E 是BC 的中点.将△ABE 沿AE 折起,使平面BAE ⊥平面AEC (如图2),连接BC ,BD .求平面ABE 与平面BCD 所成的锐角的大小.解 取AE 中点M ,连接BM ,DM .因为在等腰梯形ABCD 中,AD ∥BC ,AB =AD ,∠ABC =60°,E 是BC 的中点, 所以△ABE 与△ADE 都是等边三角形,所以BM ⊥AE ,DM ⊥AE .又平面BAE ⊥平面AEC ,所以BM ⊥MD .以M 为原点,分别以ME ,MD ,MB 所在的直线为x ,y ,z 轴,建立空间直角坐标系Mxyz ,如图,则E (1,0,0),B (0,0,3),C (2,3,0),D (0,3,0),所以DC →=(2,0,0),BD →=(0,3,-3),设平面BCD 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧m ·DC →=2x =0,m ·BD →=3y -3z =0.取y =1,得m =(0,1,1), 又因平面ABE 的一个法向量MD →=(0,3,0),所以cos 〈m ,MD →〉=m ·MD →|m ||MD →|=22, 所以平面ABE 与平面BCD 所成的锐角为45°.点评 本题求解关键是利用面面垂直关系,先证在两平面内共点的三线垂直,再构建空间直角坐标系,然后分别求出两个平面的法向量,求出两法向量夹角的余弦值,即可得所求的两平面所成的锐角的大小.用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度就不同,所以最后还应该根据这个二面角的实际形态确定其大小.2 用向量法研究“动态”立体几何问题“动态”立体几何问题是在静态几何问题中渗透了一些“动态”的点、线、面等元素,同时由于“动态”的存在,使得问题的处理趋于灵活.本文介绍巧解“动态”立体几何问题的法宝——向量法,教你如何以静制动.1.求解、证明问题例1 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E .证明 以O 为坐标原点建立如图所示的空间直角坐标系,则A 1(a,0,a ),C 1(0,a ,a ).设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0).∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ).∵A 1F →·C 1E →=(-x ,a ,-a )·(a ,x -a ,-a )=-ax +ax -a 2+a 2=0,∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .2.定位问题例2 如图,已知四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,在DG 上是否存在点M ,使得直线MB 与平面BEF 的夹角为45°?若存在,求出点M 的位置;若不存在,请说明理由.解题提示 假设存在点M ,设平面BEF 的法向量为n ,设BM 与平面BEF所成的角为θ,利用sin θ=|BM →·n ||BM →||n |解出t ,若t 满足条件则存在. 解 因为四边形CDGF ,ADGE 均为正方形,所以GD ⊥DA ,GD ⊥DC .又DA ∩DC =D ,所以GD ⊥平面ABCD .又DA ⊥DC ,所以DA ,DG ,DC 两两互相垂直,如图,以D 为原点建立空间直角坐标系,则B (1,1,0),E (1,0,1),F (0,1,1).因为点M 在DG 上,假设存在点M (0,0,t ) (0≤t ≤1)使得直线BM 与平面BEF 的夹角为45°.设平面BEF 的法向量为n =(x ,y ,z ).因为BE →=(0,-1,1),BF →=(-1,0,1),则⎩⎪⎨⎪⎧ n ·BE →=0,n ·BF →=0,即⎩⎪⎨⎪⎧-y +z =0,-x +z =0,令z =1,得x =y =1, 所以n =(1,1,1)为平面BEF 的一个法向量.又BM →=(-1,-1,t ),直线BM 与平面BEF 所成的角为45°,所以sin 45°=|BM →·n ||BM →||n |=|-2+t |t 2+2×3=22, 解得t =-4±3 2.又0≤t ≤1,所以t =32-4.故在DG 上存在点M (0,0,32-4),且DM =32-4时,直线MB 与平面BEF 所成的角为45°.点评 由于立体几何题中“动态”性的存在,使有些问题的结果变得不确定,这时我们要以不变应万变,抓住问题的实质,引入参量,利用空间垂直关系及数量积将几何问题代数化,达到以静制动的效果.3 向量与立体几何中的数学思想1.数形结合思想向量方法是解决问题的一种重要方法,坐标是研究向量问题的有效工具,利用空间向量的坐标表示可以把向量问题转化为代数运算,从而沟通了几何与代数的联系,体现了数形结合的重要思想.向量具有数形兼备的特点,因此,它能将几何中的“形”和代数中的“数”有机地结合在一起.例1 如图,在四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,∠BAD =90°,AD ∥BC ,且A 1A =AB =AD =2BC =2,点E 在棱AB 上,平面A 1EC 与棱C 1D 1相交于点F .(1)证明:A 1F ∥平面B 1CE ;(2)若E 是棱AB 的中点,求二面角A 1-EC -D 的余弦值;(3)求三棱锥B 1-A 1EF 的体积的最大值.(1)证明 因为ABCD -A 1B 1C 1D 1是棱柱,所以平面ABCD ∥平面A 1B 1C 1D 1.又因为平面ABCD ∩平面A 1ECF =EC ,平面A 1B 1C 1D 1∩平面A 1ECF =AF ,所以A 1F ∥EC .又因为A 1F ⊄平面B 1CE ,EC ⊂平面B 1CE ,所以A 1F ∥平面B 1CE .(2)解 因为AA 1⊥底面ABCD ,⊥BAD =90°,所以AA 1,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,AA 1分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系.则A 1(0,0,2),E (1,0,0),C (2,1,0),所以A 1E →=(1,0,-2),A 1C →=(2,1,-2).设平面A 1ECF 的法向量为m =(x ,y ,z ),由A 1E →·m =0,A 1C →·m =0,得⎩⎪⎨⎪⎧x -2z =0,2x +y -2z =0. 令z =1,得m =(2,-2,1).又因为平面DEC 的法向量为n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=13, 由图可知,二面角AA 1-EC -D 的平面角为锐角,所以二面角A 1-EC -D 的余弦值为13. (3)解 过点F 作FM ⊥A 1B 1于点M ,因为平面A 1ABB 1⊥平面A 1B 1C 1D 1,FM ⊂平面A 1B 1C 1D 1,所以FM ⊥平面A 1ABB 1,所以VB 1-A 1EF =VF -B 1A 1E =13×S △A 1B 1E ×FM =13×2×22×FM =23FM . 因为当F 与点D 1重合时,FM 取到最大值2(此时点E 与点B 重合),所以当F 与点D 1重合时,三棱锥B 1-A 1EF 的体积的最大值为43. 2.转化与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题提供了工具,因此我们要善于把这些问题转化为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,然后利用向量的性质进行运算和论证,再将结果转化为几何问题.这种“从几何到向量,再从向量到几何”的思想方法,在本章尤为重要.例2 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A -DF -C 的平面角的余弦值.分析 求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.解 (1)以D 为原点,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2).∵E 为AB 的中点,∴E 点坐标为E (1,1,0),∵D 1F =2FE ,∴D 1F →=23D 1E →=23(1,1,-2) =(23,23,-43), ∴DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43) =(23,23,23),设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0, ∴⎩⎪⎨⎪⎧ 23x +23y +23z =0,2y =0.取x =1得平面FDC 的一个法向量为n =(1,0,-1).设p =(x ,y ,z )是平面ED 1C 的法向量,则⎩⎪⎨⎪⎧p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧ 23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1), ∵n ·p =(1,0,-1)·(1,1,1)=0,∴平面DFC ⊥平面D 1EC .(3)设q =(x ,y ,z )是平面ADF 的法向量,则⎩⎪⎨⎪⎧ q ·DF →=0,q ·DA →=0, ∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1),设二面角A -DF -C 的平面角为θ,由题中条件可知θ∈(π2,π),则cos θ=|n ·q |n |·|q ||=-0+0+12×2=-12, ∴二面角A -DF -C 的平面角的余弦值为12. 3.函数思想例3 已知关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根,且c =a +t b ,a =(-1,1,3),b =(1,0,-2).问|c |能否取得最大值?若能,求出实数t 的值及对应的向量b 与c 夹角的余弦值;若不能,说明理由.分析 写出|c |关于t 的函数关系式,再利用函数观点求解.解 由题意知Δ≥0,得-4≤t ≤-43, 又c =(-1,1,3)+t (1,0,-2)=(-1+t,1,3-2t ),∴|c |=(-1+t )2+(3-2t )2+1 =5⎝⎛⎭⎫t -752+65. 当t ∈⎣⎡⎦⎤-4,-43时,f (t )=5⎝⎛⎭⎫t -752+65是单调递减函数,∴y max =f (-4),即|c |的最大值存在, 此时c =(-5,1,11).b·c =-27,|c |=7 3.而|b |=5,∴cos 〈b ,c 〉=b·c |b||c |=-275×73=-91535. 点评 凡涉及向量中的最值问题,若可用向量坐标形式,一般可考虑写出函数关系式,利用函数思想求解.4.分类讨论思想例4 如图,矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD (点P 位于平面ABCD 上方),问BC 边上是否存在点Q ,使PQ →⊥QD →?分析 由PQ →⊥QD →,得PQ ⊥QD ,所以平面ABCD 内,点Q 在以边AD为直径的圆上,若此圆与边BC 相切或相交,则BC 边上存在点Q ,否则不存在.解 假设存在点Q (Q 点在边BC 上),使PQ →⊥QD →,即PQ ⊥QD ,连接AQ .∵P A ⊥平面ABCD ,∴P A ⊥QD .又PQ →=P A →+AQ →且PQ →⊥QD →,∴PQ →·QD →=0,即P A →·QD →+AQ →·QD →=0.又由P A →·QD →=0,∴AQ →·QD →=0,∴AQ →⊥QD →.即点Q 在以边AD 为直径的圆上,圆的半径为a 2. 又∵AB =1,由题图知,当a 2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意; 当a 2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a 2<1,即a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ;当0<a <2时,不存在点。

基向量法解决立体几何问题

基向量法解决立体几何问题

AB (2)当 的值为多少时,才能使AC’⊥平面A’BD.请证明。 AA'
解:
AC' 平面A' BD AC' A' B且AC' A' D
AC' A' B 0且AC' A' D 0 (a b c) (a c) 0 (a b c) (b c) 0 2 m n m2 m n m n 2 m n 0 2 2 2 2 2 A m m n m2 m n m n n2 0 2 2 2 2 3m2 mn 2n2 0, 解得m n
A'
D'
C'
m2 mn ab ,a c bc 2 2
B'
D C
BD BA AD b a
AA' BD c (b a ) c b c a 0 所以 AA' BD.
A
B
线线线面垂直
13(2)在平行六面体AC’中,AB=AD,∠A’AD=∠A’AB=∠DAB=60º .
D'
C
A'
B'
D C
B
所以当AB / AA' 1时,AC' 平面A' BD.
线线线面垂直2
如图,60°的二面角的棱上有A、B两点,直线AC、BD分别在这个 二面角的两个半平面内,且都垂直AB,已知AB=4,AC=6,BD=
8,求CD的长.
C
A
解: CA 6 , AB 4 , BD 8 且 CA AB, BD AB , CA, BD 120

高中数学立体几何建系设点专题

高中数学立体几何建系设点专题

2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。

一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角;(3)求点P 到平面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线为x ,y ,z 轴建立空间直角坐标系(如图1),易得CA DB QP 、、,.所求异面直线(02)(02)AQ PB =--=-u u u r u u u r 1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r 、所成的角是.1arccos3(3)由(2)知,点.(00)(0)(004)D AD PQ -=--=-u u u r u u u r设n =(x ,y ,z )是平面QAD 的一个法向量,则得取x =1,得00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u rg 、、nn 00z x y +=+=⎪⎩、、.点P 到平面QAD 的距离(11--、、n =PQ d ==u u u r g nn途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱中,AB =BC ,D 、E 分别为111ABC A B C -的中点.11BB AC 、(1)证明:ED 为异面直线与的公垂线;1BB 1AC (2)设,求二面角的大小.1AA AC ==11A AD C --解:(1)如图2,建立直角坐标系,其中原点O 为O xyz -AC 的中点,设则,,(00)A a 、、1(00)(02)B b B b c 、、、、、则,即.11(00)(002)0ED b BB c ED BB ===u u u r u u u r u u u r u u u r g 、、、、、、1ED BB ⊥同理. 因此ED 为异面直线与的公垂线.1ED AC ⊥1BB 1AC (2)不妨令,则,1a b c ===1(110)(110)(002)BC AB AA =--=-=u u u r u u u r u u u r 、、、、、、、、.即BC ⊥AB ,BC ⊥,又∵,∴BC ⊥面100BC AB BC AA ==u u u r u u u r u u u r u u u rg g 、1AA 1AB AA A =I .1A AD 又,,(101)(101)(010)0EC AE ED EC AE =--=-==u u u r u u u r u u u r u u u r u u u rg 、、、、、、、、、0EC ED =u u u r u u u r g 即EC ⊥AE ,EC ⊥ED ,又∵AE ∩ED =E ,∴EC ⊥面.∴1C AD ,即得和的夹角为.所以,二面角1cos 2EC BC EC BC EC BC <>==u u u r u u u ru u u r u u u r g u u u r u u u r 、EC u u u r BC u u u r 60o 为.11A AD C --60o 练2:如图,平面PAC ⊥平面ABC ,ABC∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥中,底面四边长为1的菱形,,O ABCD -ABCD 4ABC π∠=, ,为的中点。

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。

立体几何的向量方法-空间向量求距离

立体几何的向量方法-空间向量求距离

BIG DATA EMPOWERS TO CREATE A NEW
ERA
向量的表示与运算
向量的表示
空间中一个点可以表示为一个有序实数对(x,y,z),与该点对应的向量可以表示为 $overrightarrow{OP} = (x,y,z)$。
向量的加法
对于任意两个向量$overrightarrow{a} = (a_1, a_2, a_3)$和$overrightarrow{b} = (b_1, b_2, b_3)$,它们的和为$overrightarrow{a} + overrightarrow{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$。
04
空间向量求距离的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
球面距离问题
总结词
利用向量方法求球面上的两点之间的最 短距离
VS
详细描述
将球面上的两点分别表示为向量,通过向 量的模长和夹角计算两点之间的距离。具 体步骤包括将球面距离转化为平面距离, 利用向量的模长和夹角公式计算距离。
平面距离问题
总结词
利用向量方法求平面上的两点之间的最短距 离
详细描述
将平面上的两点分别表示为向量,通过向量 的模长和夹角计算两点之间的距离。具体步 骤包括将平面距离转化为直线距离,利用向 量的模长和夹角公式计算距离。
异面直线间的距离问题
总结词
利用向量方法求异面直线间的最短距离
详细描述
将异面直线分别表示为向量,通过向量的模 长和夹角计算直线之间的距离。具体步骤包 括将异面直线间的距离转化为平面距离,利
用向量的模长和夹角公式计算距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N
分别以 i, j, k 为坐标向量建立空间直角坐标系A xyz D
C
A(0,0,0), B(0,1,0),C(1,1,0), D(1,0,0),
P(0,0,1) M(0, 1 , 0), N( 1 , 1 , 1)
MN
(
1
, 0,
1
2
)PD
2
(1,0, 1)
2
2
A x
22
y MB
DC (0,10 MN PD
(1)M是中点,N是中点
C1 B1
N C
Q RB
MN∥RQ
MN∥平面AC
法(2) 作PP1⊥AB于P1,
D1
C1
作MM1 ⊥AB于M1,A1 连结QP1,
P
B1
作NN1⊥ QP1于N1, 连结M1N1
MN
NN1∥PP1 MM1∥AA1
D
N1
Q
C
A
P1 M1
B
又NN1、MM1均等于边长的一半
故MM1N1N是平行四边形,故MN∥M1N1
又M不在平面AC 内,所以MN∥平面AC
例2.在正方体ABCD-
D1
A1B1C1D1中,求证: 平面A1BD∥平面CB1D1
A1
(1)平行四边形A1BCD1
D
A1B∥D1C
A
平行四边形DBB1D1 B1D1∥BD
于是平面A1BD∥平面CB1D1
C1 B1
C B
(2)证明:建立如图所示 的空间直角坐标系o-xyz
面面垂直 ⊥ u ⊥ v u v 0.
二、 用空间向量处理“垂直”问 题
m
↑n
n
m
m
n
nm0
例例45: 在正方体ABCD A' B 'C ' D '中.E,F分别是CC ', BD的中点.
求证:A' F 平面BDE.
Z
证明:如图取DA, DC, DD '分别为x轴,y轴,z轴
利用向量解题 的关键是建立适当的空间直角坐标系 及写出有关点的坐标。
用代数的方法解决立体几何问题是立体几何的发展 趋势,而向量是用代数的方法解决立体几何问题的主 要工具,故学会用向量法解立体几何问题是学好立体 几何的基础。
D M A
N
C
B
小结:
利用向量的有关知识解决一些立体几何的问题,是 近年来很“热”的话题,其原因是它把有关的“证明” 转化为“程序化的计算” 。本课时讲的内容是立体几 何中的证明“线面平行、垂直”的一些例子,结合我们 以前讲述立体几何的其他问题(如:求角、求距离等), 大家从中可以进一步看出基中一些解题的“套路”。
z D1
C1
设正方形边长为1, A1
B1
则向量 DA1 (1,0,1)
DB (1,1,0)
oD
y C
设为平面nBD(Ax1,的y法, z向) 则量有x A
B
x+z=0
x=1
令x=1,则得方程组的解为 y=-1
x+y=0 故平面BDA1的法向量为
n
z=-1
(1,1,1)
z D1
A1
C1 B1
oD
建立空间直角坐标系,设正方体的棱长为2.
A(2,0,0),B(2,2,0),A '(2,0,2)
E
E(0,2,1),F(1,1,0)
A' F (1,1, 2), DB (2, 2,0), DE (0, 2,1) A' F DB (1,1, 2) (2, 2,0) 0
Y
F
A' F DE (1,1, 2) (0, 2,1) 0
X
A' F DB, A' F DE,又DB DE D. A' F 平面BDE
练习1
已 知 PA 垂 直 于 正 方 形 ABCD 所 在 的 平 面 , M 、N 分 别 是 AB 、PC 的 中 点 , 并 且 PA AD ,求证: MN 平面 PDC
分析:坐标系容易建立,
P
N
应考虑用坐标法,解题思路
MN∥平面AC
证明:建立如图
z
所示的空间直角
D1
设坐正标方系形o-边xy长z 为2,A1 P
C1 B1
又A1P=BQ=2x 则P(2,2x,2)、
Q(2-2x,2,0)
故N(2-x, 1+x, 1),而A
M(2, 1, 1)
x
MN
o D
Cy Q
B
所向以量向为量n M(0N, 0,(1-x),, x,∴0)M,N又平n 面0A∴CM的N法 n
F C1 B1
C
A
B
AD∥GF,AD=GF
平行四边形ADGE AE∥DG
又EH∥B1D1,GF∥B1D1 EH∥GF
故得平面AEH∥平面BDGF
略证:建立如图所示的
z D1 G
空间直角坐标系o-xyz F
则求得平面AEF的法向 A1
E
量为 n (2,2,1)
求得平面BDGH的法向
oD
量为 m (2,2,1)
22 MN DC ( 1 , 0, 1 ) (0,1, 0) 0 MN DC
22
又 PD DC D MN 平面PDC
例6:如图,在正三棱柱ABC-A1B1C1中,
AB=AA1/3=a,E、F分别是BB1、CC1上的
点,且BE=a,CF=2a 。

证: 面AEF面ACF。 z
A1
C1
y C
A
同理可得平面 CB1D1的法x向量为m
B
(1,1,1)
则显然有 n m
即得两平面BDA1和CB1D1的法向量平行 所以 平面BDA1∥CB1D1
例3.在正方体ABCDA1B1C1D1中,E、F、
D1 G H
G、H分别是A1B1、 A1
E
B1C1、C1D1、D1A1的
中点. 求证:
D
平面AEH∥平面BDGF
{ { 向量,则 nAE=3x+y+2z=0 nAF=2y+4z=0
x=0 令z=1得, y= -2z n=(0,-2,1)
显然有m n=0,即,mn 面AEF面ACF
练习2
已知ABCD是矩形,PD⊥平面
ABCD,PD=DC=a,AD= 2a ,
M、N分别是AD、PB的中点。
P
求证:平面MNC⊥平面PBC;
空间向量 在立体几何中的应用5
前段时间我们研究了用空间向量求 角(包括线线角、线面角和面面角)、求 距离(包括线线距离、点面距离、线面 距离和面面距离)
今天我来研究如何利用空间向量来 解决立体几何中的有关证明及计算问 题。
复习空间向量(一)
一、空间向量的运算及其坐标运算的掌握
是平面向量的推广, 有关运算方法几 乎一样,只是 “二维的”变成 “三维的”了.
B1
F
A
E
B x
Cy
证明:如图,建立空间直角
z A1
C1
坐标系A-xyz ,
不防设 a =2,则A(0,0,0), B1
F
B(3 ,1,0)C(0,2,0),
E( 3,1,2) F(0,2,4),
AE=( 3,1,2)AF=(0,2A,
E
4),因为,x轴面ACF 所以 可
Cy
取面ACF的法向量为m=(1,x 0, 0),设n=(x,y,z)是面AEF的法 B
二、立体几何问题的解决──向量是很好的工具
(一)平行与垂直的判断
(二)夹角与距离的计算
一、 用空间向量处理“平行”问 题设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则
线线平行 l ∥ m a ∥ b a kb ;
线面平行 l ∥ a u a u 0 ;
A x
显然有 m n
故 平面AEH∥平面BDGF
H C1 B1
y C B
二、 用空间向量处理“垂直”问 题设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则
线线垂直 l ⊥ m a ⊥ b a b 0 ;
线面垂直 l ⊥ a ∥ u a ku ;
面面平行 ∥ u ∥ v u kv.
注意:这里的线线平行包括线线重合,线面平行 包括线在面内,面面平行包括面面重合.
例1.在正方体
D1
ABCD-A1B1C1D1中,A1 P、Q分别是A1B1和
P
BC上的动点,且
A1P=BQ,M是AB1
M
的中点,N是PQ的
D
中点. 求证:
A
MN∥平面AC.
D
C
水到渠成.
A
MB
. 已 知 PA 垂 直 于 正 方 形 ABCD 所 在 的 平
面 , M 、N 分 别 是 AB 、PC 的 中 点 , 并 且
PA AD ,求证: MN 平面 PDC
证明: PA AD AB, 且PA 平面AC, AD AzB
可设DA i, AB j, AP k, PA 1 P
相关文档
最新文档