中考数学专题训练 函数基础训练题(1)
中考数学《函数基础知识》专项练习题及答案
中考数学《函数基础知识》专项练习题及答案一、单选题1.每周四下午,是八年级学生社团活动时间,小明从教学楼出发,先利用大课间时间去球场打球,然后去实验楼参加物理实验小组活动,最后回到教室写作业,已知学校的教学楼、球场以及实验楼都在一条直线上,小明与教学楼的距离y(米)与离开教学楼的时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明打球的时间是35分钟B.实验楼距离球场30米C.实验楼距离教学楼40米D.社团活动时间是1小时2.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面3.小明的父母出去散步.从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后用15分钟返回家,则表示父亲、母亲离家距离与时间的关系是()A.④②B.①②C.①③D.④③4.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是()A.他离家8km共用了30min B.他等公交车时间为6minC.公交车的速度是350m/min D.他步行的速度是100m/min5.已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是()x…﹣1012…y…﹣2024…A.y=2x B.y=x﹣1C.y=2x D.y=x26.如图在Rt△ABC中,△ACB=90°,△BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B 重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()A.B.C.D.7.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C,设P点经过的路径长为x,ΔCPE的面积为y,则下列图象能大致反映y与x 函数关系的是()A.B.C.D.8.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为中的()A.B.C.D.9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.在动画片《喜羊羊与灰太狼》中,有一次灰太狼追赶喜羊羊,在距羊村40m处追上了喜羊羊.如图中s表示它们与羊村的距离(单位:m),t表示时间(单位:s).根据相关信息判断,下列说法中错误的是()A.喜羊羊与灰太狼最初的距离是30mB.灰太狼用15s追上了喜羊羊C.灰太狼跑了60m追上了喜羊羊D.灰太狼追上喜羊羊时,喜羊羊跑了60m11.随着互联网的发展,互联网消费逐渐深入人们的生活,如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,有下列说法:其中正确说法的个数有()①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从合肥西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.A.1个B.2个C.3个D.4个12.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A.B.C.D.二、填空题13.当x=1时,函数y=3x-5的函数值等于.14.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时间(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快千米.15.已知函数y={(x−1)2+1(x<2)(x−4)2−2(x≥2),若使y=k成立的x的值恰好有三个,则k的值为.16.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就是说x是,y是x的.17.南方旱情严重,乙水库需每天向外供相同量的水.3天后,为缓解旱情,北方甲水库立即以管道运输的方式给乙水库送水,在给乙水库送水前甲水库的蓄水量一直为5000万m3.由于两水库相距较远,甲水库的送出的水要5天后才能到达乙水库,12天后旱情缓解,乙水库不再向外供水,甲水库也停止向乙水库送水,如图是甲水库的蓄水量与乙水库蓄水量之差y(万m3)与时间x(天)之间的函数图象则甲水库每天的送水量为万m3.(假设在单位时间内,甲水库的放水量与乙水库的进水量相同,水在排放、接收以及输送过程中的损耗不计)18.自变量x与因变量y的关系式为:y=2x+5,当x每增加1时,y增加.三、综合题19.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元(1)写出应收门票费y(元)与游览人数x(人)之间的函数关系式(2)利用(1)中的函数关系式计算,某班54人去该风景区旅游时,为购门票共花了多少元? 20.小刚上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小刚离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小刚在超市逗留了分钟;(2)小刚去超市途中的速度是多少?(3)小刚几点几分返回到家?21.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费,已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元;(2)分别用含x的代数式表示小红在甲、乙商场的实际花费;(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少. 22.A,B两地相距560km,甲车从A地驶往B地,1h后,乙车以相同的速度沿同一条路线从B地驶往A地,乙车行驶1小时后,乙车的速度提高到120km/h,并保持此速度直到A地.在整个行驶过程中,甲车到A地的距离y1(km),乙车到A地的距离y2(km)与甲车行驶的时间x(h)之间的关系如图所示,根据图象回答下列问题:(1)图中点P的坐标是,点M的坐标是.(2)甲、乙两车之间的距离不超过240km的时长是多少?23.小明在学习一次函数后,对形如y=k(x−m)+n(其中k,m,n为常数,且k≠0)的一次函数图象和性质进行了探究,过程如下:(1)【特例探究】如图所示,小明分别画出了函数y=(x−2)+1,y=−(x−2)+1,y=2(x−2)+1的图象.请你根据列表、描点、连线的步骤在图中画出函数y=−2(x−2)+1的图象.(2)【深入探究】通过对上述几个函数图象的观察、思考,你发现y=k(x−2)+1(k为常数,且k≠0)的图象一定会经过的点的坐标是.(3)【得到性质】函数y=k(x−m)+n(其中k、m、n为常数,且k≠0)的图象一定会经过的点的坐标是.(4)【实践运用】已知一次函数y=k(x+2)+3(k为常数,且k≠0)的图象一定过点N,且与y轴相交于点A,若△OAN的面积为4,则k的值为.24.如图,是某汽车距离目的地的路程S(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是.(2)汽车在中途停了多长时间?(3)当16≤t≤30,求S关于t的函数关系式.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】B9.【答案】B10.【答案】D11.【答案】D12.【答案】B13.【答案】-214.【答案】0.415.【答案】1或216.【答案】自变量;函数17.【答案】30018.【答案】219.【答案】(1)解:当0≤x≤20时,依题可得:y=20x.当x>20时,y=10(x−20)+25×20=10x+300.(2)解:依题可得:∵54>20∴y=10×54+300=840元.20.【答案】(1)30(2)解:3000÷10=300(米/分钟)答:小敏去超市途中的速度是300米/分钟;(3)解:3000÷3000−200045−40=3000÷200=15(分钟)40+15=55分钟所以小刚9点55分返回家中答:小刚9点55分返回家中.21.【答案】(1)280;270(2)解:x >200小红在甲商场所花费用为200+(x-200)×80%=(0.8x+40)元; 在乙商场所花费用为100+(x-100)×85%=(0.85x+15)元; (3)解:当0.8x+40>0.85x+15时,解得x <500所以当200<x <500时,小红在乙商场购物的实际花费少; 当0.8x+40=0.85x+15时,解得x=500所以当x=500时,小红在甲乙商场购物的实际花费一样; 当0.8x+40<0.85x+15时,解得x >500所以当x >500时,小红在甲商场购物的实际花费少.22.【答案】(1)(2,480);(6,0)(2)解:∵甲车的速度是5607=80∴ON 的解析式为y 1=80x ;当2≤x ≤6时,设PM 函数解析式为y 2=kx +b ,过点P (2,480),M (6,0) ∴{2k +b =4806k +b =0,解得{k =−120b =720 ∴PM 的函数解析式为y 2=−120x +720 当−120x +720−80x =240时,得x=2.4; 当80x +120x −720=240时,得x=4.8∴甲、乙两车之间的距离不超过240km 的时长是4.8-2.4=2.4(h ).23.【答案】(1)解:列表如下:x2 0 y =−2(x −2)+115(2)(2,1) (3)(m ,n )(4)12或−7224.【答案】(1)289(2)解:根据图像可知汽车在中途停的时间为16-9=7(分) (3)解:设S=kt+b ,根据图象经过(16,12)和(30,0)两点 代入得 {12=16k +b 0=30k +b解得: {k =−67b =1807∴S 关于t 的关系式为:S= −67t + 1807 。
中考函数专题基础练习题
函数专题 一次函数一、填空题:1.函数 y = 自变量 x 的取值范围是___2.将直线 y =3x -1 向上平移 3 个单位,得到直线_______3.求一次函数22-=x y 及x 轴的交点坐标 ,及y 轴的交点坐标 ,直线及两坐标轴所围成的三角形面积为4.如果直线 y =ax +b 不经过第四象限,那么 ab ___0(填“≥”、“≤”或“=”)5.已知关于x 、y 的一次函数()12y m x =--的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是6.已知一次函数26y x =-及3y x =-+的图象交于点P ,则点P 的坐标为7.及直线y =-2x+1 平行且经过点(-1,2)的直线解析式为8.一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个. 二、填空题:1.在函数中,自变量x 的取值范围是( )A.x ≥3B.x ≠3C.x>3D.x<3 2.点P (-1,2)关于y 轴对称的点的坐标是( ) A .(1,2) B .(-1,2) C .(1,-2) D .(-1,-2) 3.点 P (a ,a -2)在第四象限,则 a 的取值范围是( )A.-2<a <0B.0<a <2C.a >2D.a <04.如图所示,以恒定的速度向此容器注水,容器内水的高度(h )及注水时间(t )之间的函数关系可用下列图像大致描述的是( )5.关于函数,下列说法中正确的是( )A.函数图象经过点(1,5)B.函数图像经过一、三象限C.y 随x 的增大而减小D.不论x 取何值,总有0<y 6.对于函数y =k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是( ) A .是一条直线 B .过点(1k,k )C .经过一、三象限或二、四象限D .y 随着x 增大而增大7.若一次函数y kx b =+的图象经过第一象限,且及y 轴负半轴相交,那么( )A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <8.一次函数1y kx b =+及2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1C .2D .39.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A.20y -<<B.40y -<<C.2y <-D.4y <-10.若直线)(32222为常数与直线m m y x m y x +=+=+的交点在第四象限,则整数m 的值为( ) A .-3,-2,-1,0 B .-2,-1,0,1 C .-1,0,1,2 D .0,1,2,311.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( ) A .1或-2 B .2或-1 C .3 D .412.已知一次函数y =kx+b,当0≤x ≤2时,对应的函数值y 的取值范围是-2≤y ≤4,则kb 的值为( ) A.12 B.-6 C.-6或-12 D. 6或12三、计算题:1.如图,一个正比例函数的图象和一个一次函数的图象交于点 A (-1,2),且△ABO 的面积为 5,求这两个函数的解析式。
2020年重庆中考复习数学函数图象专题训练一(含答案)
(2)①∵b=8,∴y=|﹣x2+8x﹣7|﹣4,当 x=﹣ 时,y= ;当 x=4 时,y=5;
∴m= ,n=5;②如图所示:
(3)函数关于 x=4 对称;
第 17 页(共 34 页)
(4)当 ,|﹣x2+8x﹣7|=m+4 有四个根,
解(1)当 x=0 时,y=﹣2+2+3=3,即 m=3, 当 x=3 时,y=﹣0.5+1+3=3.5,即 n=3.5 (2)图象如图所示:
(3)图象关于直线 x=2 对称
第 16 页(共 34 页)
(4)∵﹣ (x﹣2)2+|x﹣2|+3=k 有 3 个不相等的实数根,即函数 y=﹣ (x﹣2)2+|x﹣2|+3 图象与
y=k 图象有三个交点,由图象得,k=3. 2、(2019 秋•北碚区校级月考)已知关于 x 函数 y=|﹣x2+bx﹣7|﹣4,点(4,5)在函数上,且 b 为整数,
根据我们已有的研究函数的经验,请对该函数及其图象进行如下探究,并完成以下问题:
(1)求 b= 8 ; (2)函数图象探究:
①下表是 y 与 x 的几组对应值,请直接写出 m 与 n 的值:m=
;
(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质
;
(3)进一步探究函数图象并解决问题:
①直线 y=k 与函数 y=a|x2+bx|+c 有三个交点,则 k= ;
②已知函数 y=x﹣3 的图象如图所示,结合你所画的函数图象,写出不等式 a|x2+bx|+c≤x﹣3 的解
集:
图1
(3)请结合所画函数图象,写出函数图象的一条性质; (4)解决问题:若函数y1 与y2 2a 2 至少有2 个交点,求a 的取值范围.
中考数学总复习《函数基础知识》专题测试卷-含答案
中考数学总复习《函数基础知识》专题测试卷-含答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程S(m)与时间t(min)的大致图象是()A.B.C.D.2.下列曲线中,不表示y是x的函数图象的是()A.B.C.D.3.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP 的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4B.2√3C.12D.4√34.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了150千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时5.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0)D.y=1.5(x﹣12)(0≤x≤10)6.某辆汽车每次加油都会把油箱加满..,下表记录了该车相邻两次加油时的情况.(注:“累计里程”指汽车从出厂开始累计行驶的路程)加油时间加油量(升)加油时的累计里程(千米)2020年3月10日15560002020年3月25日5056500这段时间内,该车每100千米平均耗油量为()A.7升B.8升C.10升D.1007升7.如图①,在△ABC中△C=90°,△A=30°点D是AB边的中点,点P从点A出发,沿着AC﹣CB运动,到达点B停止.设点P的运动路径长为x,连DP,记△APD的面积为y,若表示y与x有函数关系的图象如图②所示,则△ABC的周长为()A.6+2√3B.4+2√3C.12+4√3D.6+4√38.若y与x的关系式为y=30x﹣6,当x=13时,y的值为()A.5B.10C.4D.-49.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同).一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是()A.①③B.②③C.③D.①②③10.小翊早9点从家骑自行车出发,沿一条直路去邮局办事,小翊出发的同时,他的爸爸从邮局沿同一条道路匀速步行回家;小翊在邮局停留了一会后沿原路以原速返回,小翊比爸爸早3分钟到家.设两人离家的距离s(m)与小翊离开家的时间t(min)之间的函数关系如图所示.下列说法:①邮局与家的距离为2400米;②爸爸的速度为96m/min;③小翊到家的时间为9:22分;④小翊在返回途中离家480米处与爸爸相遇.其中,正确的说法有()A.1个B.2个C.3个D.4个11.如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E12.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.二、填空题(共6题;共7分)13.函数y= √x+1x2−4的自变量x的取值范围是.14.小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为.15.如图①,在△ABC中AB=AC,∠BAC=120°点E是边AB的中点,点P是边BC上一动点设PC=x,PA+PE=y图②是y关于x的函数图象,其中H是图象上的最低点.那么a+b的值为.16.如图,在长方形ABCD中AB=8cm,AD=6cm点M,N从A点出发,点M沿线段AB运动,点N沿线段AD运动(其中一点停止运动,另一点也随之停止运动).若设AM=AN=xcm,阴影部分的面积为ycm2,则y与x之间的关系式为.17.下面是王刚和李明两位同学的行程图,如果两人同时在同一地点出发,沿着200米的环形跑道同向行走,那么分钟后两人首次相遇.18.函数y= √x−3中自变量x的取值范围是;若分式2x−3x+1的值为0,则x=三、综合题(共6题;共79分)19.已知抛物线y=−x2+4x−3与x轴相交于A,B两点(点A在点B的左侧),顶点为P.(1)求A,B ,P三点的坐标;(2)在平面直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值大于0.20.模具长计划生产面积为9,周长为m的矩形模具,对于m的取值范围,小陈已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y.由矩形的面积为9,得xy=9.即y=9x;由周长为m,得2(x+y)=m,即y=−x+m2,满足要求的(x,y).应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数y=9x的图象如图所示,而函数y=−x+m2的图象可由直线y=−x平移得到.请在同一直角坐标系中直接画出直线y=−x.(3)平移直线y=−x,观察函数图象①当直线平移到与函数y=9x的图象有唯一交点(3,3),周长m的值为;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围;(4)得出结论若能生产出面积为9的矩形模具,则周长m的取值范围为21.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值:所挂物体质量x/kg012345弹簧长度y/cm182022242628(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)写出弹簧长度y(cm)与所挂物体质量x(kg)的关系式;(3)若弹簧的长度为30cm时,此进所挂重物的质量是多少?(在弹簧的允许范围内)22.某淘宝店专销某种品牌的运动服,每套进价70元,售价120元/套.为了促销,淘宝店决定凡是一次购买数量不超过10套的,按原价每套120元购买;10套以上的,每多买1套,每套降价1元,每多买2套,每套降价2元……(例如,某人一次性购买15套运动服,多出5套,按每套降价5元购买,共需(15×115)元;但是最低价90元/套.(1)求顾客一次至少买多少套,才能以最低价购买?(2)写出当一次购买x(x>10)件时,利润w(元)与购买量x(件)之间的函数关系式;(3)有一天,一位顾客买了35套运动服,另一位顾客买了40套运动服,淘宝店发现卖了40套反而比卖35套赚的钱少!为了使每次卖的数量多赚的钱也多,在其它促销条件不变的情况下,最低价为90元/套至少要提高到多少?为什么?23.杆称是我国传统的计重工具,如图1,可以用秤砣到秤纽的水平距离x(厘米),来得出秤钩上所挂物体的重量y(斤).如表中为若干次称重时所记录的一些数据.x(厘米)124711y(斤)0.75 1.00 1.50 2.25 3.25(1)请在图2平面直角坐标系中描出表中五组数据对应的点;(2)秤钩上所挂物体的重量y是否为秤纽的水平距离的函数?如果是,请求出符合表中数据的函数解析式;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为多少厘米?24.数学活动课上,小明同学根据学习函数的经验,对函数的图象、性质进行了探究,下面是小明同学探究过程,请补充完整:如图1,已知在Rt△ABC,∠ACB=90°,∠A=30°,BC=2cm ,点P为AB边上的一个动点,连接PC.设BP=xcm,CP=ycm .(1)(初步感知)当CP⊥AB时,则①x=,②y=;(2)(深入思考)试求y与x之间的函数关系式并写出自变量x的取值范围;(3)通过取点测量,得到了x与y的几组值,如下表:x cm⁄00.51 1.5 2. 2.53 3.54y cm⁄2 1.8 1.7_2 2.3 2.6 3.0_①计算并补全表格(说明:补全表格时相关数值保留一位小数)②建立平面直角坐标系,如图2,描出已补全后的表中各对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,写出该函数的两条性质.参考答案1.【答案】C2.【答案】A3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】C10.【答案】D11.【答案】C12.【答案】B13.【答案】x≥﹣1且x≠214.【答案】1.5千米15.【答案】716.【答案】y=- 12x2+4817.【答案】1018.【答案】x≥3;3219.【答案】(1)解:令y=0,得到﹣x2+4x﹣3=0即﹣(x﹣1)(x﹣3)=0解得:x=1或3则A(1,0),B(3,0)根据顶点坐标公式得﹣b2a=﹣4−2=2,4ac−b24a=4×(−1)×(−3)−164×(−1)=1即P(2,1);(2)解:作出图象,如图所示根据图象得:当1<x<3时,y>0.20.【答案】(1)一(2)解:(3)解:①12②由①知:0个交点时,0<m<12;2个交点时,m>12;1个交点时,m=12;(4)m≥1221.【答案】(1)解:上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)解:∵物体每增加1千克,弹簧长度增加2cm∴y=18+2x(3)解:把y=30代入y=18+2x,得18+2x=30∴所挂重物的质量是6kg22.【答案】(1)解:由题意得:(120﹣90)÷1+10=40(套)(2)解:当10<x≤40时,w=x (60﹣x )=﹣x 2+60x ;当x >40时,w=(90﹣70)x=20x(3)解:当x >40时,w=20xw 随x 的增大而增大,符合题意;当10<x≤40时w=﹣x 2+60x=﹣(x ﹣30)2+900∵a=﹣1<0∴抛物线开口向下.对称轴是直线x=30∴10<x≤30,w 随着x 的增大而增大而当x=30时,w 最大值=900;∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大∴由以上可知,当x=30,最低售价为120﹣(30﹣10)=100元23.【答案】(1)解:如图所示:(2)解:由(1)图形可知,秤钩上所挂物体的重量y 是秤纽的水平距离的函数 设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得:{k +b =0.752k +b =1解得: {k =14b =12∴y = 14 x + 12; (3)解:当y =4.5时,即4.5= 14 x + 12∴当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米. 24.【答案】(1)1;√3(2)解:过 C 作 CD ⊥AB 于 D由(1)可知BD =1①当 0≤x ≤1 时,如图1-1: PD =1−x∴y =√x 2−2x +4 ;②当 1<x ≤4 时,如图1-2: PD =x −1综合①②可得 y =√x 2−2x +4 (0≤x ≤4) ;(3)解:①当x =1.5时y =√x 2−2x +4=√3.25≈1.8当x =4时 x cm ⁄0.5 1 1.5 2. 2.5 3 3.5 4y cm⁄2 1.8 1.7 1.82 2.3 2.6 3.0 3.5②函数图象如图所示:③由函数图象得:性质一:y的最小值为√3(或1.7);性质二:当0≤x≤1时,y随x增大而减小.。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
中考数学专项复习《函数基础知识》练习题带答案
中考数学专项复习《函数基础知识》练习题带答案一、单选题1.如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点时停止,它们运动的速度都是每秒1个单位长度.设E运动x秒时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为()A.B.C.D.2.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.43.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟4.在圆的面积公式S=πr2中是常量的是()A.s B.πC.r D.S和r5.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.6.如图,AD、BC是△O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设△APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.7.在某次试验中测得两个变量m和v之间的4组对应数据如下表:m1234v0.01 2.98.0315.1()A.v=2m−2B.v=m2−1C.v=3m−3D.v=m+18.如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是()A.B.C.D.9.某公司为了激发员工工作的积极性,规定员工每天的薪金如下:生产的产品不超过m件,则每件3元,超过m件,超过的部分每件n元.下图是一名员工一天获得的薪金y(元)与其生产的产品件数x之间的函数关系图像,则下列结论错误的是()A.m=20B.n=4C.若该员工一天获得的薪金是180元,则其当天生产了50件产品D.若该员工一天生产了46件产品,则其当天获得的薪金是160元10.函数y=√x−1的自变量取值范围是()A.x≥0B.x≤0C.x≥1D.x≤111.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的图象是()A.B.C.D.12.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()A.B.C.D.二、填空题13.如图,在平面直角坐标系中半径均为1个单位长度的半圆O1、O2 、O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2020秒时,点P的坐标是.14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象回答:(1)甲、乙两地之间的距离为;(2)两车同时出发后h相遇;(3)慢车的速度为千米/小时;快车的速度为千米/小时;(4)线段CD表示的实际意义是.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,长方形ABCD中AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为.17.甲骑自行车、乙骑摩托车沿相同路线匀速由A地到B地,行驶过程中路程与时间的函数关系如图所示.根据图象信息可知,乙在甲骑行分钟时追上甲.有意义的x的取值范围是.18.使函数y=√x+2x−2三、综合题19.在平面直角坐标系xOy中抛物线y=ax2+bx−5a与y轴交于点A,将点A向左平移4个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(−1,−2a),Q(−4,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.20.已知:一次函数y=﹣23x+2的图象分别与x轴、y轴交于点A、B.(1)请直接写出A,B两点坐标:A、B(2)在直角坐标系中画出函数图象;(3)若平面内有一点C(5,3),请连接AC、BC,则△ABC是三角形.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.在学习函数的过程中我们经历了通过列表,描点,连线来画函数图象,观察分析图象特征,从而概括出函数的性质的过程.下面是研究函数y={1x−1(x>0)x2+2x+1(x≤0),性质及其应用的部分过程.请按要求完成下列各小题.列表:x…-3-2-1−12015133223…y…4a0141−54−3221b…(2)根据函数图象,写出该函数的一条性质;(3)已知函数y=2x−3的图象如图所示,结合你所画的函数图象,请直接写出不等式y<2x−3的解集.23.某公园有一个小型喷泉,水柱从垂直于地面的喷水枪喷出,水柱落于地面的路径形状可以看作是抛物线的一部分.记喷出的水柱距喷水枪的水平距离为(单x位:m),距地面的垂直高度为y(单位:m),现测得x与y的几组对应数据如下:水平距离x/m0123456…垂直高度y/m0.7 1.6 2.3 2.8 3.1 3.2 3.1…请根据测得的数据,解决以下问题:(1)在平面直角坐标系xOy中描出以表中各组对应数据为坐标的点,并画出该函数的图象;(2)结合表中所给数据或所画图象,得出水柱最高点距离地面的垂直高度为m;(3)求所画图象对应的二次函数表达式;(4)公园准备在水柱下方的地面上竖直安装一根高1.6m的石柱,使该喷水枪喷出的水柱恰好经过石柱顶端,则石柱距喷水枪的水平距离为m.(注:不考虑石柱粗细等其他因素)24.某单位需要用车,准备和一个体车主或一国有出租车公司其中的一家签订合同.设汽车每月行驶x km,应付给个体车主的月租费是y1元,付给国有出租车公司的月租费是y2元,y1,y2分别与x之间的函数关系图象是如图所示的两条直线,观察图象,回答下列问题:(1)每月行驶的路程等于多少时,租两家车的费用相同?(2)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(3)如果这个单位估计每月行驶的路程为2300 km,那么这个单位租哪家的车合算?参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】C11.【答案】C12.【答案】C13.【答案】(2020,0)14.【答案】(1)900km(2)4(3)75;150(4)快车到达乙地后,慢车继续行驶到甲地15.【答案】x>3或x<﹣116.【答案】y=- 52x+2017.【答案】2018.【答案】x≥﹣2且x≠219.【答案】(1)解:∵抛物线y=ax2+bx−5a与y轴交于点A,∴点A(0,-5a)∵将点A向左平移4个单位长度,得到点B∴B(-4,-5a)(2)解:对称轴是x= 0−42=−2(3)解:如图:当a<0时∵A(0,-5a), P(−1,−2a),且-5a>-2a∴点P在抛物线下方∵Q(−4,2),抛物线与线段PQ恰有一个公共点,B(-4,-5a)∴点Q在抛物线上方或是在抛物线上,即2≥−5a解得a≥−2 5∴−25≤a<0时抛物线与线段PQ恰有一个公共点;当a>0时,∵A(0,-5a), P(−1,−2a),且-5a<-2a<0∴点P在抛物线上方,在x轴下方∵Q(−4,2),B(-4,-5a)∴点Q在抛物线上方∴此时抛物线与线段PQ没有公共点;综上,−25≤a<0时抛物线与线段PQ恰有一个公共点20.【答案】(1)(3,0);(0,2)(2)解:如图(3)等腰直角21.【答案】(1)解:由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应∴变量h是关于t的函数(2)解:①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m②由图象可知,秋千摆动第一个来回需2.8s22.【答案】(1)解:当x=−2时,a=(−2)2+2×(−2)+1=1;当x=3时,b=13−1=12;故a=1,b=1 2;补全图象如图;(2)解:当x≤−1,0<x<1或x>1时,y随x的增大而减小;当 −1<x ≤0 时,y 随x 的增大而增大;(任写一条即可)(3)解:由图可知, y =2x −3 与所画函数的交点横坐标大于02x −3=1x−1解得: x 1=2,x 2=12经检验 x 1=2,x 2=12是原方程的根 故两个交点为: (2,1),(12,−2) 由函数图象可知当 12<x <1 或 x >2 时, y =2x −3 在所画函数图象上方 即 y <2x −3 的解集为 12<x <1 或 x >2 . 23.【答案】(1)解:描出各组对应数据为坐标的点,画出该函数的图象如下:(2)3.2(3)解:设二次函数表达式为y =ax 2+bx +c 将(0,0.7),(1,1.6),(2,2.3)代入得:{c =0.7a +b +c =1.6a +2b +c =2.3解得:{a =−0.1b =1c =0.7∴二次函数表达式为y =−0.1x 2+x +0.7(4)1或924.【答案】(1)解:两条直线在1 500 km 处相交,故每月行驶的路程等于1500km 时,租两家车的费用相同.(2)解:由图可知当y 2<y 1时,对应的x 的范围是x<1 500,所以每月行驶的路程在1 500 km 内时,租国有出租公司的出租车合算.(3)解:由图象可知,当x=2300 km 时,2300>1 500,y 1<y 2,即租用个体车主的车合算.。
(中考试题)初中数学专题训练-函数
函数一.选择题(共20小题)1.(2014•射阳县校级模拟)若点P(a,a﹣b)在第四象限,则点Q(b,﹣a)在()A.第四象限B.第三象限C.第二象限D.第一象限2.(2012•翁源县校级模拟)函数的自变量x的取值范围是()A.x≥1B.x≥﹣1或x≠﹣3C.x≥﹣1 D.x≥﹣1且x≠﹣33.(2017春•姜堰区校级月考)如图,在物理实验课上,小明用弹簧秤将铁块A 从完全置身水槽外,到匀速向下放入盛有水的水槽中,直至铁块完全浸入水面下的一定深度,则图能反映弹簧秤的读数y(单位:N)与铁块下降的高度x(单位:cm)之间的函数关系的大致图象是()A.B .C.D.4.(2012•山西模拟)一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是()初中数学A.摩托车比汽车晚到1h B.A,B两地的路程为20kmC.摩托车的速度为45km/h D.汽车的速度为60km/h 5.(2011•大同校级模拟)有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y升与时间x分之间的函数关系如图所示.则在第7分钟时,容器内的水量为()升.A.15B.16C.17D.18 6.(2016•阳泉模拟)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm)2.已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=0.8C.当0<t≤10时,y=0.4t2D.当t=12s时,△PBQ是等腰三角形7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,D是AB边上的一个动点(不与点A,B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示与的函数关系的图象大致是()A.B.C.D.8.(2016春•新洲区期末)若一次函数y=(1﹣m)x|m|﹣1+3的函数值y随x的增大而增大,则m的取值为()A.2B.1C.﹣2D.﹣1 9.(2014•泗县校级模拟)函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.B.C.m<﹣1D.m>﹣110.(2014•永嘉县校级模拟)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较11.(2012春•翠屏区校级期中)直线y=kx+3与x轴的交点是(1,0),则k的值是()A.3B.2C.﹣2D.﹣312.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为()A.y=﹣x+2B.y=x﹣2C.y=﹣x﹣2D.y=x+2 13.(2014•白云区校级模拟)根据下表中,反比例函数的自变量x与函数y的对应值,可得p的值为()x﹣21y3pA.3B.1C.﹣2D.﹣614.一次函数y=kx+b(b>0)与反比例函数y=在同一直角坐标系下的大致图象为()A.B.C.D.15.(2014•泗县校级模拟)若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.不能确定16.(2014•泗县校级模拟)如图,A为反比例函数图象上一点,AB⊥x轴于=3,则k的值为()点B,若S△AOBA.3B.6C.D.无法确定17.(2014•鼓楼区校级模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1 18.(2014•磐石市校级模拟)已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是()A.B.C.D.19.(2014•溧水县校级模拟)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣4;(2)若y<0,则x的取值范围为0<x<2;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.0B.1C.2D.320.对二次函数进行配方,其结果及顶点坐标是()A.B.C.D.二.填空题(共20小题)21.根据点所在位置填表(图)点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限22.(2015秋•灯塔市期末)坐标平面内的点与是一一对应的.23.(2017秋•昌平区校级期中)从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t(分)之间的函数关系式是.24.(2014•新泰市校级模拟)函数y=中,自变量x的取值范围是;函数中,自变量x的取值范围是.25.(2012秋•合肥期末)根据图中所示的程序计算变量y的值,若输入自变量x 的值为,则输出的结果是.26.(2016春•西和县校级月考)用描点法画函数图象的一般步骤是、、.27.(2014•无棣县校级模拟)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2.则y 与x 的关系式为,当重叠部分的面积是正方形面积的一半时,三角形移动时间是.28.(2015秋•深圳校级期中)函数的三种表示方式分别是.29.(2017•和平区校级模拟)当m=时,函数y=(m +3)x 2m +1+4x ﹣5(x≠0)是一次函数.30.(2014•泗县校级模拟)已知函数y=2x ﹣3,当x 时,y ≥0;当x时,y <5.31.一次函数y=kx +b 的图象与性质k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图象的大致位置经过象限第象限第象限第象限第象限性质y 随x 的增大而y 随x 的增大而y 随x 的增大而y 随x 的增大而32.(2014•射阳县校级模拟)如图,点A (﹣3,4)在一次函数y=﹣3x ﹣5的图象上,图象与y 轴的交点为B ,那么△AOB 的面积为.33.(2014秋•路北区期末)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于.34.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为;点E的坐标为.35.(2008春•通城县期中)反比例函数y=的图象经过点(﹣,5)和(a,﹣3),则a=.36.(2014•泗县校级模拟)已知y﹣2与x成反比例,当x=3时,y=1,则y与x 的函数关系式为.37.二次函数y=2x2﹣4x+5的对称轴方程是x=;当x=时,y有最小值是.38.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,1)的下方.下列结论:①a﹣b+c=0,②0<b<﹣a,③a+c>0,④a﹣b+1>0,其中正确结论的个数是个.39.(2014•射阳县校级模拟)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2.(填“>”,“<”或“=”)40.(2014•大石桥市校级模拟)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为.三.解答题(共10小题)41.已知点M(3a+8,﹣1﹣a),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点M在一、三象限角平分线上;(3)点M在第四象限,并且a为最小自然数;(4)N点坐标为(﹣3,6),并且直线MN∥y轴.42.在平面直角坐标系中,已知点A(﹣3,4),点B(﹣1,﹣2),点C(1,2),O是坐标原点.(1)求△AOB的面积;(2)求△ABC的面积.43.求下列函数自变量x的取值范围.(1)y=﹣x2﹣5x+6;(2)y=;(3)y=;(4)y=.44.已知一次函数y=(m+2)x+2﹣n,求:(1)y随x的增大而增大,m的取值范围;(2)函数的图象与y轴的交点在x轴的下方时,m,n的取值范围;(3)m,n为何值时图象与坐标轴交于原点;(4)函数的图象经过第一、二、三象限,m,n的取值范围.45.(2016•阳泉模拟)已知方程x2+mx+n=0的两根是直角三角形的两个锐角的余弦.(1)求证:m2=2n+1;(2)若P(m,n)是一次函数y=x﹣图象上的点,求点P的坐标.46.(2014•浙江模拟)如图,直线AB与x轴交于点A(1,0),与y轴交于点B (0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S=2,求点C的坐标.△OBC47.(2016•阳泉模拟)如图所示,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(6,n)在边AB上,反比例函数y=(k ≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的表达式和n的值.48.如图所示,直线y=2x+3与双曲线y=相交于A,B两点,与轴交于点C,且△OCA的面积为1.5.(1)求双曲线y=的解析式;(2)若点D,B关于原点对称,一动点P沿着x轴运动,则|PA﹣PD|是否有最大值?如果有,请确定点P的位置;如果没有,请说明理由.49.(2014•溧水县校级模拟)已知:二次函数y=ax2+bx+c(a≠0)中的x,y满足下表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求m的值;(2)根据上表求y>0时的x的取值范围;(3)若A(p,y1),B(p+1,y2)两点都在该函数图象上,且p<1,试比较y1与y2大小.50.如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过y=ax2+bx+c(a≠0)点A.(1)求c的值;(2)若a=﹣1,且抛物线与矩形有且只有三个交点,A,D,E,求△ADE的面积S的最大值.第11页(共11页)。
中考数学总复习《函数基础知识》练习题附带答案
中考数学总复习《函数基础知识》练习题附带答案一、单选题1.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.2.如图,点G、D 、C在直线a上,点E、F、A、B 在直线b上,若a∥b,RtΔGEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中ΔGEF与矩形ABCD重合部分....的面积(S)随时间(t)变化的图象大致是()A.B.C.D.3.如图是y关于x的一个函数图象,根据图象,下列说法正确的是()A.该函数的最大值为7B.当x≥2时,y随x的增大而增大C.当x=1时,对应的函数值y=3D.当x=2和x=5时,对应的函数值相等4.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回到家的平均速度是60 m/min5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C→D的路径运动到点D停止.设点P的运动路程为x(cm),则下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的是()A.B.C.D.6.A、B两地相距90km,甲骑摩托车由A地出发,去B地办事,甲出发的同时,乙骑自行车同时由B地出发沿着同一条道路前往A地,甲办完事后原速返回A地,结果比乙早到0.5小时.甲、乙两人离A地距离y(km)与时间x(h)的函数关系图象如图所示.下列说法:①a=3.5,b=4;②甲走的全路程是90km;③乙的平均速度是22.5km/h;④甲在B地办事停留了0.5小时.其中正确的说法有()A.1个B.2个C.3个D.4个7.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,88.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是().A.①;B.①②;C.①②③;D.①②③④9.球的体积V与半径R之间的关系式为V=43πR3,下列说法正确的是()A.变量为V,R,常量为43π,3 B.变量为V,R,常量为43,πC.变量为V,R,π,常量为43D.变量为V,R3,常量为π10.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,下列结论正确的是().A.火车的长度为120米B.火车的速度为30米/秒C.火车整体都在隧道内的时间为35秒D.隧道的长度为750米11.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.12.如图,平行四边形纸片ABCD,CD=5,BC=2,△A=60°,将纸片折叠,使点A落在射线AD上(记为点A′),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y 与x之间关系的大致图象是()A.B.C.D.二、填空题13.知函数y={(x−2)2−2,x≤4(x−6)2−2,x>4使y=a成立的x的值恰好只有2个时,则a满足的条件是.14.如图,在△ABC中,AC=6,BC=10,tanC=34点D是AC边上的动点(不与点C重合),过点D作DE△BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.15.若y+1与x成正比例,且当x=2时,y=3 ,则y与x之间的函数关系为.16.函数y=2√1−x+1x中,自变量x的取值范围是.17.如图为二次函数y=ax2+bx+c(a≠0)的图象,下列说法正确的有.①abc>0;②a+b+c>0;③b2−4ac<0④当x>1时,y随x的增大而增大;⑤方程ax2+bx+c=0(a≠0)的根是x1=−1和x2=3.18.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到学校上学,放学回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)三、综合题19.如图AD,BC,CD分别与⊙O相切于A,B, E三点,AB是⊙O的直径.(1)连接OC,OD若OC=4,OD=3求CD的长;(2)若AD=x,BC=y ,AB=4 ,请画出y关于x的函数图象.20.李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?21.小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y与小婷打完电话后步行的时间x之间的函数关系如图所示(1)妈妈从家出发分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟米,小婷家离学校的距离为米. 22.如图所示,l1,l2分别为走私船与我公安快艇航行时路程y(nmile)与时间x(min)之间的函数图象,根据图象回答下列问题:(1)请问在刚出发时,我公安快艇距离走私船多少海里?(2)请求出走私船与公安快艇的速度。
中考数学总复习《函数基础知识》练习题附带答案
中考数学总复习《函数基础知识》练习题附带答案一、单选题(共12题;共24分)1.如图,小明使用图形计算器探究函数y=ax(x−b)2的图象,他输入了一组a,b的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a,b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 2.已知某二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,下列结论中正确的有()①abc<0;②a﹣b+c<0;③a=−1b;④8a+c>0.A.1个B.2个C.3个D.4个3.函数y=1x−2中,自变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠﹣2 4.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度5.已知函数y=3x﹣1,当x=3时y的值是()A.5B.7C.8D.96.如图1,点P为矩形ABCD边上的一个动点,点P从A出发沿着矩形的四条边运动,最后回到A.设点P 运动的路程长为x,△ABP的面积为y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是()A.√34B.√41C.8D.107.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:①若每户居民每月用电量不超过100度,则按0.60元/度计算;②若每户居民每月用电量超过100度,则超过部分按0.8元度计算(未超过部分仍按0.60元/度计算).现假设某户居民某月用电量是x(单位:度),电费为以(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.8.如图1,矩形ABCD中,动点E从点C出发,速度为2cm/s,沿C→D→A→B方向运动至点B处停止.设点E运动的时间为xs,△BCE的面积为y,如果y关于x的函数图象如图2所示,则四边形ABCD的面积为()A.48cm2B.24cm2C.21cm2D.12cm29.函数y=ax(x−b)2的图象如下图所示:其中a、b为常数.由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<010.如图,△ABC是等腰直角三角形,AC=BC,AB=4,D为AB上的动点,DP△AB交折线A﹣C﹣B于点P,设AD=x,△ADP的面积为y,则y与x的函数图象正确的是()A.B.C.D.11.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是()A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时甲、乙两人相距最远D.乙在跑前300米时速度最慢12.已知函数y={(x−1)2−1(x≤3)(x−5)2−1(x>3),则使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3二、填空题(共6题;共8分)13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示.给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min.其中正确的是.(把你认为正确答案的序号都填上)14.在圆的面积公式S=πR2中,常量是.15.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y(△)与向上攀登的高度x(km)的几组对应值如表所示:向上攀登的高度x/km0.5 1.0 1.5 2.0气温y/△ 2.0-1.0-4.0-7.02.3 km时登山队所在位置的气温约为°C.16.有一个面积为30的梯形,其下底长是上底长的3倍.若设上底长为x,高为y,则y关于x的函数解析式是.17.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时快车追上慢车行驶了千米,快车比慢车早小时到达B地.中,自变量的取值范围是18.在函数√x−2x−3三、综合题(共6题;共79分)19.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式.(2)上课后的第5分钟与第30分钟相比较,分钟时学生的注意力更集中.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?20.小波同学根据学习函数的经验,对函数y=2x−3+1的图象与性质进行了探究,下面是小波同学的探究过程,请根据题意补充完整:(1)下表是y与x的几组对应值:x…-2-1012n5678…y (3)512m0-132533275…=,=;(2)在平面直角坐标系xOy中,补全此函数图象;(3)小渡同学发现y=2x−3+1的图象关于平面直角坐标系中某一点或中心对称,这一点的坐标是;(4)根据函数图象,直接写出不等式2x−3+1>2x−5的解集.21.经过实验获得两个变量x(x>0),y(>0)的一组对应值如表:x123456y6 2.92 1.5 1.21(1)在如图的直角坐标系中,画出相应函数的图象.(2)求y关于x的函数表达式.(3)当x>1.5时求y的取值范围.22.由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时日销售量y(单位:千克)与x之间的函数关系式为y={12x(0≤x≤10),−20x+320(10<x≤16),草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?23.中国最大的水果公司“佳沃鑫荣懋”旗下子公司“欢乐果园”购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为P={14t+30(1≤t≤24,t为整数)−12t+48(25≤t≤48,t为整数),且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售前24天中,子公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.已知图形ABCDEF的相邻两边垂直,AB=8cm.当动点M以2cm/s的速度沿图①的边框按B→C→D→E→F→A的路径运动时△ABM的面积S随时间t的变化如图②所示.回答下列问题:(1)求a的值和EF的长度;(2)当点M运动到DE上时求S与t的关系式.参考答案1.【答案】A 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】C 12.【答案】D 13.【答案】②③④ 14.【答案】π 15.【答案】-8.8 16.【答案】y =15x17.【答案】2;276;4 18.【答案】x≥2且x≠319.【答案】(1)解: 设线段AB 所在的直线的解析式为y 1=k 1x +30把B (10,50)代入得,k 1=2∴AB 解析式为:y 1=2x +30(0≤x≤10).设C 、D 所在双曲线的解析式为y 2=k 2x把C (20,50)代入得,k 2=1000∴曲线CD 的解析式为:y 2=1000x (x≥20);(2)5(3)解:当y =40时2x +30=40,x =5.1000x =40,x =25. ∴25−5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.20.【答案】(1)13;4(2)在平面直角坐标系xOy中,补全此函数图象如图(3)(3,1)(4)观察函数图象,不等式2x−3+1>2x−5的解集是x<2或3<x<4.21.【答案】(1)解:如图(2)解:由(1)得y是x的反比例函数∵图象经过(1,6)∴k=xy=6∴y关于x的函数表达式为y=6 x .(3)解:当x=1.5时y=61.5=4∵在第一象限内,y 随x 的增大而减小 ∴0<y <4.22.【答案】(1)解:∵当10<x ≤16时y =−20x +320∴当x =14时y =−20×14+320=40(千克). ∴第14天小颖家草莓的日销售量是40千克.(2)解:当4≤x ≤12时设草莓价格m 与x 之间的函数关系式为m =kx +b ∵点(4,24),(12,16)在m =kx +b 的图像上 ∴{4k +b =24,12k +b =16.解得{k =−1,b =28.∴函数关系式为m =−x +28. (3)解:∵当0≤x ≤10时y =12x ∴当x =8时y =12×8=96 当x =10时y =12×10=120. ∵当4≤x ≤12时m =−x +28∴当x =8时m =−8+28=20,当x =10时m =−10+28=18. ∴第8天的销售金额为:96×20=1920(元) 第10天的销售金额为:120×18=2160(元). ∵2160>1920∴第10天的销售金额多.23.【答案】(1)解:依题意,设y=kt+b ,将(10,100),(20,80)代入y=kt+b{100=10k +b 80=20k +b ,解得 {k =−2b =120∴日销售量y (kg )与时间t (天)的关系 y=120﹣2t 当t=30时y=120﹣60=60.答:在第30天的日销售量为60千克;(2)解:设日销售利润为W 元,则W=(p ﹣20)y . 当1≤t≤24时W=(t+30﹣20)(120﹣t ) =﹣t 2+10t+1200=﹣(t ﹣10)2+1250 当t=10时W 最大=1250当25≤t≤48时W=(﹣t+48﹣20)(120﹣2t ) =t 2﹣116t+3360=(t ﹣58)2﹣4 由二次函数的图象及性质知:第 11 页 共 11 当t=25时W 最大=1085∵1250>1085∴在第10天的销售利润最大,最大利润为1250元;(3)解:依题意,得W=﹣t 2+(2n+10)t+1200﹣120n (1≤t≤24) 其对称轴为t=2n+10,要使W 随t 的增大而增大 由二次函数的图象及性质知:2n+10≥24解得n≥7又∵n <9∴7≤n <9.24.【答案】(1)解:由S 随时间t 的变化的函数图象得:a= 12 ×8×2×6=48EF=2×(14-12.5)=3cm ;(2)解:∵AB=8cm ,EF=3cm∴CD=8-3=5cm∴点M 在CD 上运动的时间为:5÷2=2.5s∴b=6+2.5=8.5由函数图象可知:当t=12.5时S= 12×8×[2×6-(12.5-8.5)×2]=16 设当点M 运动到DE 上时S 与t 的关系式为:S=kt+n则 {16=12.5k +n 48=8.5k +n ,解得: {k =−8n =116∴S=-8t+116.。
(最新整理)中考_函数专题基础练习题
(完整)中考_函数专题基础练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)中考_函数专题基础练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)中考_函数专题基础练习题的全部内容。
函数专题 一次函数一次函数y=kx +b 的图象(1)一次函数)0(≠+=k b kx y ,当k 0时,y 的值随x 值得增大而增大;当k 0时,y 的值随x 值得增大而减小。
(2)正比例函数,当k 0时,图象经过一、三象限;当k 0时,图象经过二、四象限.强调:k,b 与 一次函数y=kx +b 的图象与性质:k 决定函数的增减性;b 决定图象与y 轴的交点位置 ②当k>0时,y 随着x 的增大而增大, ③当k<0时,y 随着x 的增大而减小, ④当b >0时,直线交于y轴的正半轴, ⑤当b <0时,直线交于y轴的负半轴 ⑥当b =0时,直线交经过原点,一次函数)0(≠+=k b kx y 的图象如下图,请你将空填写完整。
一次函数b kx y +=可以看作是由正比例函数kx y =平移︱b ︱个单位得到的,当b 〉0时,向 平移b 个单位;当b 〈0时,向 平移︱b ︱个单位。
用函数观点解决方程(组)与不等式1.一元一次方程ax+b=0(a ≠0)与一次函数y=ax+b (a ≠0)的关系(1)一元一次方程ax+b=0(a ≠0)是一次函数y=ax+b(a ≠0)的函数值为0时的特殊情形。
(2)直线y=ax+b 与x 轴交点的横坐标是一元一次方程a+b=0的解 2.一元一次不等式与一次函数的关系:(1)一元一次不等式ax+b>0或ax+b 〈0(a ≠0)是一次函数y=ax+b (a ≠0)的函数值不等于0的情形。
中考数学总复习《函数基础知识》专项测试卷(附答案)
中考数学总复习《函数基础知识》专项测试卷(附答案)一、单选题(共12题;共24分)1.在函数y=1√x−2中自变量x的取值范围是()A.x≥2B.x>2C.x≤2D.x<22.如图,M是⊙O上一个定点,将直角三角板的30°角顶点与点M重合,两边与⊙O相交,设交点为A,B,绕点M顺时针旋转三角板,直至其中一个交点与点M重合时停止旋转,设AB= y,旋转角为α,如图所示能反映y与α关系的为()A.B.C.D.3.小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中不正确的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分4.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m (am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.①②③④D.①③④⑤5.现代物流的高速发展,为乡村振兴提供了良好条件,某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1ℎ到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示,请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5ℎB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/ℎD.汽车在乡村道路上行驶的平均速度是40km/ℎ6.已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D.7.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A.甲、乙两地之间的距离为60kmB.他从甲地到乙地的平均速度为30km/hC.当他离甲地15km时,他骑车的时间为1hD.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为58.下列四个函数图象中当x<0时,y随x的增大而减小的是()A.B.C.D.9.如图,在△ABC中∠C=90°,AC=5和BC=10.动点M,N分别从A,C两点同时出发,点M从点A开始沿边AC向点C以每秒1个单位长度的速度移动,点N从点C开始沿CB向点B以每秒2个单位长度的速度移动.设运动时间为t,点M,C之间的距离为y,△MCN的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.正比例函数关系,二次函数关系C.一次函数关系,正比例函数关系D.一次函数关系,二次函数关系10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t B.Q=20﹣0.2t C.t=0.2Q D.t=20﹣0.2Q11.某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中符合以上情况的是()A.B.C.D.12.某市为了鼓励节约用水,按以下规定收水费:(1)每户每月用水量不超过20m3,则每立方米水费为1.2元,(2)每户用水量超过20m3,则超过的部分每立方米水费2元,设某户一个月所交水费为y(元),用水量为x(m3),则y与x的函数关系用图象表示为()A.B.C.D.二、填空题(共6题;共6分)13.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示,则甲的速度为每秒米.14.等腰三角形的周长为16cm,底边长为x cm,腰长为y cm,则x与y之间的关系式为.15.如图所示:图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x轴表示时间,y轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有.①体育场离小冬家2.5千米②小冬在体育场锻炼了15分钟③体育场离早餐店4千米④小冬从早餐店回家的平均速度是3千米/小时16.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y单位:L)与时间x(单位min)之间的关系如图所示:则8min时容器内的水量为.17.已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:(要求写出自变量x的取值范围).18.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.三、综合题(共6题;共64分)19.已知y是x的一次函数,表中给出了部分对应值.x-124ny5-1m-7(1)求该一次函数的表达式;(2)求m,n的值.20.甲、乙两人沿同一路线从A地到B地进行骑车训练,甲先出发,匀速骑行到B地. 乙后出发,并在甲骑行25分钟后提速到原来速度的1.4倍继续骑行(提速过程的时间忽略不计),结果乙比甲早12分钟到B地. 两人距离A地的路程y(单位:千米) 与甲骑行的时间x(单位:分钟)之间的关系如图所示.(1)求甲的速度和乙提速前的速度.(2)求AB两地之间的路程.21.已知等腰三角形的周长为12,设腰长为x,底边长为y.(1)试写出y关于x的函数表达式,并直接写出自变量x的取值范围.(2)当x=5时,求出函数值.22.快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.请结合图象信息解答下列问题:(1)慢车的速度是千米/小时,快车的速度是千米/小时;(2)求m的值,并指出点C的实际意义是什么?(3)在快车按原路原速返回的过程中快、慢两车相距的路程为150千米时,慢车行驶了多少小时?23.A,B两地相距560km,甲车从A地驶往B地,1h后,乙车以相同的速度沿同一条路线从B地驶往A地,乙车行驶1小时后,乙车的速度提高到120km/h,并保持此速度直到A地.在整个行驶过程中甲车到A地的距离y1(km),乙车到A地的距离y2(km)与甲车行驶的时间x(h)之间的关系如图所示,根据图象回答下列问题:(1)图中点P的坐标是,点M的坐标是.(2)甲、乙两车之间的距离不超过240km的时长是多少?24.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距40km.参考答案1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】D 6.【答案】D 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】B 11.【答案】C 12.【答案】C 13.【答案】614.【答案】y=8﹣ 12 x (0<x <8)15.【答案】①②④ 16.【答案】2517.【答案】y=﹣ 12 x+9(0<x <9)18.【答案】7819.【答案】(1)解:设一次函数的表达式为y =kx +b由题意可得 {−k +b =52k +b =−1. 解得 {k =−2b =3.∴一次函数的表达式为y =-2x +3 (2)解:当x =4时,代入可得 m =-2×4+3=-5. 当y =-7时,代入可得 -7=-2n +3 解得n =5.∴m =-5,n =5.20.【答案】(1)解:甲的速度为每分钟15÷50=0.3km设乙提速前的速度为vkm/分钟,根据题意得 (25-5)v+85v (50-25)=15解之:v=0.25.(2)解:∵乙提速前的速度为0.25 km/分钟∴乙提速后的速度为85×0.25=0.4 km/分钟∴乙提速前行驶的路程为0,25×20=5km 设AB 的路程为m 千米,根据题意得m 0,3−(m −50.4+25)=12 解之:m=29.421.【答案】(1)解:由题意得12=2x +y∴y =12-2x . ∵x ,y 是三角形的边长 ∴y <2x ,2x >12-2x ∴3<x <6.(2)解:由(1)知y =12-2x ∴当x =5时,y =2.22.【答案】(1)60;120(2)解:由题意得,60m=360×2﹣120(m ﹣1) 解得m= 14360× 143=280km所以,C 点表示 143 小时时,慢车在距离乙地280千米处,快车在距离甲地280千米处;(3)解:设慢车行驶了x 小时由题意得,60x ﹣120(x ﹣ 360120 ﹣1)=150解得x=5.5小时答:慢车行驶了5.5小时.第 11 页 共 11页 23.【答案】(1)(2,480);(6,0)(2)解:∵甲车的速度是5607=80 ∴ON 的解析式为y 1=80x ;当2≤x ≤6时,设PM 函数解析式为y 2=kx +b ,过点P (2,480),M (6,0)∴{2k +b =4806k +b =0,解得{k =−120b =720∴PM 的函数解析式为y 2=−120x +720当−120x +720−80x =240时,得x=2.4;当80x +120x −720=240时,得x=4.8∴甲、乙两车之间的距离不超过240km 的时长是4.8-2.4=2.4(h ).24.【答案】(1)解:由题意120÷(3.5﹣0.5)=40,a=1×40=40(2)解:①当0≤x≤1时,设y 与x 之间的函数关系式为y=k 1x ,把(1,40)代入,得k 1=40 ∴y=40x ;②当1<x≤ 32时,y=40; ③当 32 <x≤7时,设y 与x 之间的函数关系式为y=k 2x+b ,由题意,得: {32k 2+b =4072k 2+b =120,解得: {k 2=40b =−20,∴y=40x ﹣20; 综上所述: y ={40x(0≤x ≤1)40(1<x ≤32)40x −20(32<x ≤7) (3)解:设乙车行驶的路程y 与时间x 之间的解析式为y=mx+n ,由题意,得: {2m +n =072m +n =120 解得: {m =80n =−160,∴y=80x ﹣160,当40x ﹣20﹣(80x ﹣160)=40时,解得:x=2.5. 当80x ﹣160﹣(40x ﹣20)=40时,解得:x=4.5.答:甲车行驶1小时(或1﹣1.5小时)或2.5小时或4.5小时,两车恰好相距40km。
备战2021中考数学考点专题训练——专题一:一次函数(word解析版)
备战2021中考数学考点专题训练——专题一:一次函数1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.17.问题:如图1,△ABC中,AB=a,∠ACB=α.如何用直尺和圆规作出点P,均使得∠APB=α?(不需解答)尝试:如图2,△ABC中,AC=BC,∠ACB=90°.(1)请用直角三角尺(仅可画直角或直线)在图2中画出一个点P,使得∠APB=45°(2)如图3,若AC=BC=,以点A为原点,直线AB为x轴,过点A垂直于AB的直线为y轴建立平面直角坐标系,直线y=(b≥0)交x轴于点M,交y轴与点N.①当b=7+时,请仅用圆规在射线MN上作出点P,使得∠APB=45°;②请直接写出射线MN上使得∠APB=45°或∠APB=135°时点P的个数及相应的b的取值范围;应用:如图4,△ABC中,AB=a,∠ACB=α,请用直尺和圆规作出点P,使得∠APB=α,且AP+BP最大,请简要说明理由.(不写作法,保留作图痕迹)18.已知,平面直角坐标系中,直线y=kx﹣4k交x轴A,交y轴正半轴于点B,直线y=﹣x+b经过点A,交y轴正半轴于点C,且BC=5OC.(1)如图1,求k的值;(2)如图2,点P为第二象限内直线AC上一点,过点P作AC的垂线,交x轴于点D,交AB于点E,设点P的横坐标为t,△ADE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,Q为线段PE上一点,PQ=PC,连接AQ,过点C作CG⊥AQ 于G,交直线AB于点F,连接QF,若∠AQP=∠FQE,求点F的坐标.19.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H的坐标.20.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.备战2021中考数学考点专题训练——专题一:一次函数参考答案1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?【答案】解:(1)由函数图象可得,甲乙两地之间的路程是560km,快车的速度为:560÷(5﹣1)=140(km/h),慢车的速度为:560÷(5+4﹣1)=70(km/h),故答案为:140,70;(2)设出发a小时时,快慢两车相遇,140a+70a=560,解得,a=,即出发小时后,快慢两车相遇,故答案为:;(3)快慢两车出发b小时后第一次相距150km,140b+70b=560﹣150,解得,b=,即快慢两车出发小时后第一次相距150km2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【答案】解:(1)设ME的函数解析式为y=kx+b(k≠0),由ME经过(0,50),(3,200)可得:,解得,∴ME的解析式为y=50x+50;(2)设BC的函数解析式为y=mx+n,由BC经过(4,0),(6,200)可得:,解得,∴BC的函数解析式为y=100x﹣400;设FG的函数解析式为y=px+q,由FG经过(5,200),(9,0)可得:,解得,∴FG的函数解析式为y=﹣50x+450,解方程组得,同理可得x=7h,答:货车返回时与快递车图中相遇的时间h,7h;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【答案】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【答案】解:(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:=;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+=0时,a=,当(a﹣3+0)=时,a=7,当(+0)=a﹣3时,a=,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?【答案】解:(1)由图象可得,小王的速度为:80÷1=80(km/h),a=400÷80﹣1=4,故答案为:80,4;(2)设小张加速前的速度为xkm/h,2.4x=(x+20)×(4.4﹣2.4),解得,x=100,b=400﹣2.4×100=160,即小张加速前的速度为100km/h,b的值是160;(3)由题意可得,相遇前:100x+80(x+1)=400﹣20解得,x=,相遇后到小张返回前:100x+80(x+1)=400+20解得,x=,小张返回后到小王到达A市前:80×(x+1)=(400﹣100×2.4)+(100+20)×(x﹣2.4)+20,解得,x=4.7(舍去),小王到达A市到小张返回到A市前,(400﹣100×2.4)+(100+20)×(x﹣2.4)+20=400,解得,x=,由上可得,在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km.6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.【答案】解:(1)∵直线l1:y=x+3经过点E(m,4),∴4=+3,解得m=2,∴E(2,4),∵直线l1与坐标轴交于点A、B,∴A(﹣6,0),B(0,3),∵OC=2OB,∴OC=6,∴C(6,0),把C(6,0),E(2,4)代入直线l2:y=kx+b得,解得,∴直线CD的解析式为y=﹣x+6;(2)将直线l1向下平移7个单位得到直线l3:y=x﹣4,令x=0,则y=﹣4,∴G(0,﹣4),由,解得,∴F的坐标为(,﹣),∴S△EFG=S△DFG﹣S△DEG=﹣=.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.【答案】解:(1)设甲车从A到B地对应的函数解析式为y=kx,1.5k=180,得k=120,即甲车从A到B地对应的函数解析式为y=120x,设甲车从B到A对应的函数解析式为y=ax+b,甲车从A到B用的时间为:300÷120=2.5,则函数y=ax+b过点(2.5,300),(5.5,0),,解得,,即甲车从B到A对应的函数解析式为y=﹣100x+550;(2)乙车的速度为:(300﹣180)÷1.5=80(km/h),乙车从B到A的时间为:300÷80=(小时),将x=代入y=﹣100x+550,得y=﹣100×+550=175,即当乙车到达A地时,甲车距离A地的距离是175km.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE【答案】解:(1)由a,b满足+(a﹣b﹣1)2=0可知,解得,∴点A(3,6),B(5,2);(2)设直线AB的解析式为y=kx+c,把点A(3,6),B(5,2)代入得,解得,∴直线AB的解析式为y=﹣2x+12,∵点C在在直线AB上,且点C的坐标为(m,n),∴2m+n=12;(3)设直线EF的解析式为y=﹣2x+d,∴E(,0),F(0,d),∵EF=AB,∴()2+d2=(3﹣5)2+(6﹣2)2,解得d=﹣4或4(舍去),∴直线EF为y=﹣2x﹣4,E(﹣2,0),∵直线AB的解析式为y=﹣2x+12,∴直线AB与x轴,y轴的交点分别为(6,0),(0,12),∴S△AOB=﹣﹣=12,∵点D在直线EF上,且D点的纵坐标为x,∴D(x,﹣2x﹣4),∴S△DOE=×|﹣2x﹣4|=|﹣2x﹣4|,∵S△DOE≥S△AOB,∴|﹣2x﹣4|≥×12,解得x≤﹣10或x≥6,∴当满足S△DOE≥S△AOB时,x的取值范围是x≤﹣10或x≥6.9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.【答案】解:(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:,解得,∴线段BC所在直线对应的函数表达式为.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.【答案】解:(1)∵直线y=x+9分别交x轴、y轴于点A、B,∴x=0时,y=9,当y=0时,x+9=0,解得x=﹣12.∴A(﹣12,0),B(0,9).∴OA=12,OB=9,∴AB===15,过点C作CD⊥AB于点D,如图1,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO(HL),∴BD=BO=9,CO=CD,∴AD=AB﹣BD=15﹣9=6,设CO=x,则AC=12﹣x,CD=x,∵CD2+AD2=AC2,∴x2+62=(12﹣x)2,解得x=.∴C(﹣,0).(2)如图2,当AB为平行四边形的一边时,∵CM∥AB,∴设CM的解析式为y=x+b,∴,解得b=,∴直线CM的解析式为y=.当AB为平行四边形的对角线时,BM∥AC,AM∥BC,∴BM=AC=AO﹣OC=,∴M(﹣,9).设直线CM的解析式为y=mx+n,∴,解得,∴CM的解析式为y=﹣3x﹣.综合以上可得:CM所在直线的解析式为y=x+或y=﹣3x﹣.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.【答案】解:(1)∵直线y=﹣2x+6交x轴于点A,交y轴于点B,∴A(3,0),B(0,6),∴OA=3,OB=6,∵AB=BC,OB⊥AC,∴OC=OA=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=2x+6.(2)如图,取点Q(﹣1,3),连接BQ,DQ,DQ交AB于E.∵D(a,2)在直线y=﹣2x+6上,∴2=﹣2a+6,∴a=2,∴D(2,2),∵B(0,6),∴QB==,QD==,BD==2,∴BD2=QB2+QD2,QB=QD,∴∠BQD=90°,∠BDQ=45°,∵直线DQ的解析式为y=﹣x+,∴E(0,),∴OE=,BE=6﹣=,∴S△BDE=××2=.(3)如图,过点D作DM⊥OA于M,DN⊥OB于N.∵四边形DEGF是正方形,∴∠EDF=90°,ED=DF,∵∠EDF=∠MDN=90°,∴∠EDN=∠DFM,∵DE=DF,DN=DM,∴△DNE≌△DMF(SAS),∴∠DNE=∠DMF=90°,EN=FM,∴点F在x轴上,∴当点F与C重合时,FM=NE=5,此时E(0,7),同法可证,点F′在直线y=4上运动,当点F′落在BC上时,E(0,﹣1),综上所述,满足条件的点E的坐标为(0,7)或(0,﹣1).12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】解:(1)∵四边形ABCO是矩形,B(﹣,4),△ODE是由△OCB旋转得到,∴OC=OD=4,∴D(4,0),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣x+3.(2)∵E(4,),∴直线OE的解析式为y=x,由,解得,∴H(,),∴OH==,∵OB==,∴S△BOH=•OB•OH=××=.(3)如图,由题意F(0,3),D(4,0),∴OF=3,OD=4,∴DF==5,当DM1为菱形的对角线时,M1(﹣4,0),N1(0,﹣3).当DM=DF时,M2(﹣1,0)或M3(9,0),可得N2(﹣5,3),3(5,3),当DF为对角线时,M4(,0),可得N4(,3),综上所述,满足条件的点N的坐标为(0,﹣3)或(﹣5,3)或(5,3)或(,3).13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.【答案】解:(1)如图1中,∵直线y=﹣x+8交x轴于点A,交y轴于点B,∴A(6,0),B(0,8)∴OA=6,OB=8,∴AB===10,∵AC=5,∴AC=BC=5,∵CD∥OA,∴BD=OD=4,∴D(0,4).(2)如图2,作PF⊥AB于点F,PA=6﹣tPF=PA sin∠PAF=(6﹣t),∴CQ=5﹣t,S=•CQ•PF=(5﹣t)•(6﹣t)=t2﹣6t+12.(3)如图3中,作OG⊥AD于点G,在Rt△AOD中,AD===2,∵S△AOD=•OD•OA=•AD•OG∴OG==,∴DG===,∵DE=AE=,∴GE=DE﹣DG=﹣=,∵∠OED+∠OPR=90°,∠OED+∠EOG=90°,∴∠OPR=∠EOG,∴tan∠OPR=tan∠EOG=∵BR===﹣t,∵tan∠OPR==,OP=t,∴OR=t,当R在y轴的负半轴上,如图3中,OR=BR﹣8=﹣t,∴t=﹣t,解得t=,当R在y轴的正半轴上,如图4中,OR=8﹣BR=t﹣,∴t=t﹣,解得t=,综上,当t值为或,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.【答案】解:(1)∵直线y2=kx﹣6交于点C(4,2),∴2=4k﹣6,∴k=2,∵直线y1=﹣x+b过点C(4,2),∴2=﹣2+b,∴b=4,∴直线解析式为:y1=﹣x+4,直线解析式为y2=2x﹣6,∵直线y1=﹣x+b分别与x轴、y轴交于A,B两点,∴当x=0时,y=4,当y=0时,x=8,∴点B(0,4),点A(8,0),故答案为:4,2,(0,4);(2)∵点E在线段AB上,点E的横坐标为m,∴,F(m,2m﹣6),①当0≤m≤4时∴.∵四边形OBEF是平行四边形,∴BO=EF,∴,解得:;②当4≤m≤8时,2m﹣6﹣()=4,解得,综上所述:当或时,四边形OBEF是平行四边形;(3)存在.理由如下:①若以AB为边,AP为边,如图1所示:∵点A(8,0),B(0,4),∴.∵四边形BAPQ为菱形,∴AP=AB=4=BQ,AP∥BQ,∴点Q(4,4),点Q'(﹣4,4),若以AB为边,AP是对角线,如图1,∵四边形ABPQ是菱形,∴OB=OQ=4,∴点Q(0,4);②以AB为对角线,如图2所示:∵四边形APBQ是菱形,∴AP=BP=BQ,AP∥BQ,∵BP2=OP2+OB2,∴AP2=(8﹣AP)2+16,∴AP=5,∴BQ=5,∴点Q(5,4)综上所述:若点P为x轴上一点,当点Q坐标为或剧哦(0,﹣4)或(5,4)时,使以P,Q,A,B为顶点的四边形是菱形.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.【答案】解:(1)设直线AB交CD于E.∵直线y=x+4分别交x轴,y轴于A,B两点,∴A(﹣4,0),B(0,4),∵OC=BC=2,四边形AOCD是矩形,∴D(﹣4,2),当y=2时,2=x+4,∴x=﹣2,∴E(﹣2,2).(2)①如图2﹣1作MF⊥OA于F.在Rt△AMF中,∵∠AFM=90°,AM=t,∠MAF=45°,∴AF=FM=t当点P在线段OE上时,S△PHM=×2×(4﹣t﹣t)=1解得t=.如图2﹣2中,当点P在线段DE上时,同法可得:S△PHM=×2×(t+t﹣4)=1解得t=,综上所述,满足条件的t的值为或.②如图2﹣3中,BP+PH+HQ存在最小值.连接CQ交AO于H,作HP⊥CD于P,∵BC=PH,BC∥PH,∴四边形BCHP是平行四边形,∴BP=CH,∵BP+PH+HQ=CH+BC+HQ=BC+CQ=定值,根据两点之间线段最短,可知此时BP+PH+HQ的值最小,∵B(0,4),A(4,0),∵AQ=AB,∴Q(﹣8,﹣4),∵C(0,2),Q(﹣8,﹣4),∴直线CQ的解析式为y=x+2,令y=0,解得x=﹣,∴H(﹣,0),∴P(﹣,2).16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.【答案】解:(1)由题意可得:A(0,10m),B(﹣10,0),∴S△AOB=×10×|10m|=50,∴m=1或﹣1(舍弃)∴m=1.(2)如图1中,∵PD=PC,P点横坐标为t,C(6,0),∴CD=2|6﹣t|,∴S△PCD=×2|6﹣t|×|10+t|=|t2+4t﹣60|,当t>6时,S=t2+4t﹣60,当﹣10<t<6时,S=﹣t2﹣4t+60.(3)如图2中,在边CD的下方作⊙K与CD相切于点E,与PD相切于点R,与PC相切于点Q,连接PK,CK,DK,EK,PK交CD于T,作FW⊥PK于W.∵DE=DR,GE=GQ,PR=PQ,∵PD+DE=PG+EG,∴PE平分△PDG的周长,∴当F,E,K共线时,PE平分△PDG的周长,∵DK平分∠RDG,PK平分∠DPG,∴∠DKP=∠DGP=45°,∵∠DTK=90°,∴∠KDT=∠DCK=45°,∴∠DKC=90°,∴DT=TC﹣TK=6﹣t,∵EF⊥DG,DG⊥PC,∴FK∥PQ,∴∠FKW=∠CPT,∵FW⊥PK,∴tan∠FKW=tan∠CPT,∴=,∵BC=16,△FBC是等腰直角三角形,∴F(﹣2,8),∵K(t,t﹣6),∴=,解得t=2,∴P(2,12),D(﹣2,0),K(2,﹣4),∴直线PQ的解析式为y=﹣3x+18,直线FK的解析式为y=﹣3x+2,∵DG⊥PQ,∴直线DG的解析式为y=x+,。
中考数学专题复习:函数基础知识练习题(含答案)
中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
初三数学总复习函数基础练习(含答案)
函数练习基础型 姓名一、选择题(本大题共35小题,共105.0分)1. 如图所示,已知二次函数y=ax 2+bx+c ( a *0)的图象的顶点 P 的横坐标是 4,图象交x 轴于点A ( m , 0)和点B ,且m >4,那么AB 的长是( )A.4+ mB.m 2. 要得到 y=-5 (x-2 ) A. 向右平移 B. 向右平移C. 向左平移D. 向左平移 2个单位, 2个单位, 2个单位,2个单位, 2 . .+3的图象,再向上平移 再向下平移 再向上平移 再向下平移 C.2m-8 D.8-2 m 2 将抛物线 y=-5x 作如下平移(3个单位3个单位3个单位 3个单位 4. 已知二次函数y=ax 2+bx+c (a 丰0)的图象如图所示对称轴为 下列式子正确的个数是(1) abc > 0 (2) 2a+b=0 b 2-4 ac v 0 ( ) A.1个 5. 二次函数 A.2 6. 将抛物线 A. y=4 (x+1) C. y=4 (x+1) 7. 抛物线y=A. (1, -2 )8. 已知点 A (-1- •. _ , y 1 )、B (-1 , y 2)、C (2, y 3)在抛物线 y= (x-1 ) +c 上, 关系是( A. y 1 > y 2>y s B. y 1> y s > y C.y s > 屮> y D. y 2> y s >屮 9. 若ab v 0,则函数y=ax 和y=ax+b 在同一坐标系中的图象大致为( B.2个 y=x 2-4x+7的最小值为( B.-2 C.3 y=4x 2向右平移1个单位,再向上平移 2+3 B. y=4'2-3 D.y=4 (x-1 ) 2+2的顶点是( )B. (1, 2)C. (-1 , 2) C.3个 ) x=-1 则 (3) 4a+2b+c v 0 (4)D.4个 D.-3 3个单位,得到的抛物线是( 2 (x-1 ) +3 (x-1 ) 2-3 D. (-1 , -2 ) 则y i 、y 2、y 3的大小C.A. B. D.D.②④②方 且10.如图为二次函数 y=ax 2+bx+c 的图象,给出下列说法:① abc > 0; 2 2 程 ax +bx+c=0 的根为 X i =-1 , X 2=3;36 a-b+c v 0;④a- am >bm-b , m-1工0,其中正确的说法有( ) A.①②③ B.②③④ C.①②④A.4B.-4C.6D.-6x-m《123y-10n2+1A.x>2B. x>3C.x v2D.无法确定16. 一次函数y=-x+4的图象与两坐标轴所围成的三角形的面积为()A.2B.4C.6D.82I17. 下列函数关系式:(1)y=-x; (2)y=2x+11; (3)y=x ; (4),其中一次函数的个数是()A.1B.2C.3D.418. 小阳在如图①所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M 再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t (单位:秒),他与摄像机的距离为y (单位:米),表示y与t的函数关系的图象大致19.6月24日,重庆南开(融侨)中学进行了全校师生地震逃生演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数后,再沿原路匀速步行回教室,同学们离开教学楼的距离y与时间x的关系的大致图象是11.如图,已知A B两点的坐标分别为(2, 0)、(0, 2), OC的圆心坐标为(-1 , 0),半径为1.若D是OO上的一个动点,线段于点巳则厶ABE面积的最大值为(B.2+辺A.2+ _12.如图,函数A.x v 12y=ax-i的图象过点(B. x> 11,C.x v 2C.1D.22), 则不等式ax-1D.x> 213.已知一次函数y=ax+4与y=bx-2的图象在A.4B.-2C. ■DA与y轴交>2的解集是(x轴上相交于同一点,则的值是ID.-■ P14.无论a取什么实数,点P (a-1 , 2a-3 )都在直线I上.若点Q( m, n)也是直线I上的点,贝U 2m- n+3的值等于()21. 某班学生在参加做豆花的实践活动中,计划磨完一定量的黄豆,在磨了一部分黄豆后,大家中A.x 》lB.x >2C.x > 1 且 X M2D.X M224. —个长方形的面积是 10cm 2,其长是acm ,宽是bcm ,下列判断错误的是( )A.10是常量B.10是变量C. b 是变量D.a 是变量25. 如图1, AD, BC 是OO 的两条互相垂直的直径, 点P 从点0出发沿图中某一个扇形顺时针匀速运 动,设/ APB=y (单位:度),如果y 与点P 运动的时间x (单位:秒)的函数关系的图象大致如图20. 如图,在直角梯形 ABCD中, AD// BC, / C=90 , CD=6Cm , AD=2cm , 动点P 、Q 同时从点B 出发,点P 沿BA , AD DC 运动到点C 停止,点Q 沿BC 运动到C 点停止,两点运动时的速度都是 1cm/ s ,而当点P 到达点A 时,点Q 正好到达点C.设P 点运动的时间为t ( s ), △ BPQ 的面积 为象是()途休息并交流磨黄豆的体会, 之后加快速度磨完了剩下的黄豆, 设从开始磨黄豆所经过的时间为 t , 剩下的黄豆量为s ,22.如图,等边△ ABC 中,边长 AB=3 点D 沿BC 方向从B 点以每秒1个单位的速度向终点 从A 点以每秒2个单位的速度运动,当 D 点停止时 时间为t 秒,若D E 、C 三点围成的图形的面积用点D 在线段BC 上,点 C 运动, E 点也停止运动,设运动y 来表示,则y 与t 的图象412(0_ 1 2 3 !E 在射线AC 上,点E 沿AC 方向C)28.如图,已知点F 的坐标为(3, 0),点A 、B 分别是某函数图象与 x 轴、y 轴的交点, 点P 是此图象上的一动点,设点 P 的横坐标为x , PF 的长为d ,且d 与x 之间满足关 系:d=5-(O W x w 5),则结论:①AF=2②BF=5③OA=5④OB=3正确结论的 序号是()A.①②③B.①③C.①②④D.③④ 29.如图:点A 、B 、C 、D 为OO 上的四等分点,动点 P 从圆心O 出发,沿O-C-D-O 的路线 做匀速运动•设运动的时间为 t 秒,/ APB 的度数为y .则下列图象中表示 y 与t 之间函数程x (单位:千米)的增加而减少,若这辆汽车平均耗油 0.2升/千米,则y 与x 函数关系用图象表2所示,那么点P 的运动路线可能为(AS B ^LO B8L C ^O C6 D^O D6 D^O26.如图,动点P 从点A 出发,沿线段 AB 运动至点B .点P 在运动过程中速 度大小不变•则以点 A 为圆心,线段 AP 长为半径的圆的面积 S 与点P 的运 动时间t 之间的函数图象大致是()27.小明从家中出发,到离家 1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离)家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是(30. 一辆汽车的油箱中现有汽油 60升,如果不再加油,那么油箱中的油量 y (单位:升)随行驶里 3A.该函数图象与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图象关于原点中心对称D.该函数图象在第四象限32.如图,向放在水槽底部的烧杯注水直至水槽注满•水槽中水面升上的高度(注水速度不变),注满烧杯后继续注水, y与注水时间x之间的函数关系,大致///再线匀速运动,设点P运动的时间为x (单位:秒),/ APB=y (单位:度)示y与x之间关系的图象是()0CDO的路,那么表A.34.如图,点E、F是以线段BC为公共弦的两条圆弧的中点,别为线段EF、BC上的动点.连接AB AD设BD=x, A扌-AD2=y,下列图象中, 能表示y与x的函数关系的图象是(BC=6.点A D 分)的方向运动,到达点C时停止,设运动时间为x (秒),y=pC,则y关于x的函数的图象大致为()A. B. C. D.38.在直角坐标系xOy中,对于点P (x, y)和Q(x, y'),给出如下定义:若水ir > 0)一血Cl"则称点Q为点P的“可控变点”.例如:点(1 , 2)的“可控变点”为点(1, 2),点(-1 , 3)的“可控变点”为点(-1 , -3 ).若点P在函数y=-x2+16的图象上,其“可控变点” Q的纵坐标y'是7,则“可控变点” Q的横坐标是2 . _ .39.二次函数y=x-2x的图象上有A ( X1, %)、B (X2, y?)两点,若1 v xy X2,贝y1与y?的大小关系是 .40.已知一个口袋中装有六个完全相同的小球,小球上分别标有15六个数,搅匀后一次从中摸出一个小球,将小球上的数记为0, 3, 6, 9, 12, a,则使得一次函数fjj' , (I Ty= ( 5- a) x+a经过一、二、四象限且关于x的分式方程- “的解为整数的概率是_______ .41.如图,直线y=kx+4与x, y轴分别交于A, B两点,以0B为边在y轴左侧作等边三角形OBC将厶OBCB沿y轴翻折后,点C的对应点C'恰好落在直线AB上,则k的值为_______ .42. 如图,在平面直角坐标系中,已知点 A (0, 4), B (-3 , 0),连接AB将厶AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在的直线交y轴正半轴于点C,则点C的坐标为_________________ .43. 一次函数y=kx+b的图象如图所示,贝U k _______ 0, b _______ 0 (填>,v,=符号)244. 一次函数y= ( m+2) x+m -4过原点,则m= _______ .45. 已知点(-3 , y1), (1, y2)都在直线y=-3x+2 上,则y1, y2的大小关系是 ___________ .46. 一棵新栽的树苗高1米,若平均每年都长高5厘米•请写出树苗的高度y (cm)与时间x (年)之间的函数关系式:__________ .三、计算题(本大题共5小题,共30.0分)47. 已知一次函数y=x+1的图象和二次函数 y=x 2+bx+c 的图象都经过 A B 两点,且点A 在y 轴上,B 点的纵坐标为5.(1) 求这个二次函数的解析式; 2)将此二次函数图象的顶点记作点巳求厶ABP 的面积;(3)已知点C 、D 在射线AB 上,且D 点的横坐标比 C 点的横坐标大2,点E 、F 在这个 二次函数图象上,且 CE DF 与y 轴平行,当CF // ED 时,求C 点坐标.-i ~O12 3 4 5I-1 --2 -48.商场销售一批衬衫,每天可售出 20件,每件盈利40元,为了扩大销售减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.① 设每件降价x 元,每天盈利y 元,列出y 与x 之间的函数关系式. ② 若商场每天要盈利 1200元,每件衬衫降价多少元?③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?_ 249. 如图,已知二次函数 y=ax +bx+c 的象经过 A (-1 , 0)、B (3, 0)、N (2, 3)三点,且与y 轴交于点C. (1) 求这个二次函数的解析式,并写出顶点M 及点C 的坐标;(2) 若直线y=kx+d 经过C 、M 两点,且与x 轴交于点D,试证明四边形 CDAN是平行四边形.50. 如图,在平面直角坐标系中,直线齐 ;&+2与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第二象限内作正方形 ABCD 过点D 作DELx 轴,垂足为 E . (1) 求点A 、B 的坐标,并求边 AB 的长; (2) 求点D 的坐标;(3) 你能否在x 轴上找一点 M 使厶MDB 的周长最小?如果能,请求出 M 点 的坐标;如果不能,说明理由.51. 如图,在平面直角坐标系中, A 、B 均在边长为1的正方形网格格点上.(1) 求线段AB 所在直线的函数解析式;6 - 5 -4 -32)将线段AB绕点B逆时针旋转90°,得到线段BC,指定位置画出线段线BC的函数解析式为y=kx+b,贝U y随x的增大而 _______ (填"增大”或"减小”)四、解答题(本大题共16小题,共128.0分)52. 如图,二次函数y=ax2- :x+2( a z0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A (-4 , 0).(1)求抛物线与直线AC的函数解析式;(2)若点D (m, n)是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A C、E、F 为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.253. 如图,抛物线y= (x+1) +k与x轴交于A、B两点,与y轴交于点C(0, -3 ).(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限.①当M点运动到何处时,△ AMB的面积最大?求出△ AMB的最大面积及此时点M的坐标;②过点M作PML x轴交线段AC于点P,求出线段PM长度的最大值.54. 已知二次函数y=-2x2+4x+6.(1)求该函数图象的顶点坐标.(2)求此抛物线与x轴的交点坐标.55. 如图,抛物线y=- ^x+bx+c经过A (-1 , 0), B (0, 2)两点,将△ OAB绕点B逆时针旋转90°后得到△ O A B',点A落到点A'的位置.(1)求抛物线对应的函数关系式;(2)将抛物线沿y轴平移后经过点A',求平移后所得抛物线对应的函数关系式;(3)设(2)中平移后所得抛物线与y轴的交点为C,若点P在平移后的抛物线上,且满足厶OCP的面积是厶O A'P面积的2倍,求点P的坐标;(4)设(2)中平移后所得抛物线与y轴的交点为C,与x轴的交点为D,点M在x轴上,点N在平移后所得抛物线上,直接写出以点C, D, M N为顶点的四边形是以CD为边的平行四边形时点N的坐标.56. 如图,已知抛物线的顶点坐标为M( 1, 4),且经过点N(2, 3),与x轴交于A B两点(点A在点B左侧),与y轴交于点C.(1)求抛物线的解析式;(2)若直线y=kx+t经过C M两点,且与x轴交于点D,试证明四边形CDAN 是平行四边形;(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.57. 我们把使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=-x+i,令y=0,可得x=1,我们就说x=1是函数y=-x+1的零点.己知函数y=x-2 (m+1) x-2 ( m+2) ( m为常数).(1)当m=-1时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;1 1 1(3)设函数的两个零点分别为X i和冷,且匸+ =-.,求此时的函数解析式,并判断点( n+2, n2-10 )是否在此函数的图象上.258. 抛物线y=ax+bx-4与x轴交于A,B两点,(点B在点A的右侧)且A, B 两点的坐标分别为(-2 , 0)、(8, 0),与y轴交于点C,连接BC,以BC为一边,点0为对称中心作菱形BDEC点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线I交抛物线于点Q,交BD于点M(1)求抛物线的解析式;(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQM是平行四边形?(3)在(2)的结论下,试问抛物线上是否存在点N(不同于点Q),使三角形BCN的面积等于三角形BCQ勺面积?若存在,请求出点N的坐标;若不存在,请说明理由.59. 如图,抛物线y=-x 2+bx+c 的顶点为Q 抛物线与x 轴交于A (-1 , 0), B( 5, 0) 两点,与y 轴交于点C. (1) 求抛物线的解析式及其顶点 Q 的坐标;(2) 在该抛物线上求一点 P ,使得S^AE F S M BC 求出点P 的坐标:(3)若点D 是第一象限抛物线上的一个动点,过点 D 作DEL x 轴,垂足为E .有 一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q 与x 轴相距最远,所以当点 D 运动至点Q 时,折线D-E-0的长度最长.”这个同学的说法正确吗?请说明理由.60.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件 分析发现,当销售单价在 40元至90元之间(含40元和90元)时,每月的销售量 单价 (1) (2) (3) x (元)之间的关系可近似地看作一次函数,其图象如图所示. 求y 与x 的函数关系式.设商场老板每月获得的利润为 P (元),求P 与x 之间的函数关系式;如果想要每月获得61.已知,如图,抛物线于A 、B 两点,点A 在点 (1) (2) 值.(3) 且以 40元,经过记录 y (件)与销售求抛物线的解析式.若点D 是线段AC 下方抛物线上的动点,求四边形 若点E 在x 轴上,点P 在抛物线上,是否存在以 AC 为一边的平行四边形?如存在,求点 P 的坐标;若不存在,请说明理由.B 左侧,点B 的坐标为(1, 0)、C (0, -3 ).ABCD 面积的最大A C 、E P 为顶点1 262. 如图1已知抛物线I仁y=- .X+X+3与y轴交于点A,过点A的直线12:y=kx+b与抛物线l i交于另一点B,点A, B到直线x=2的距离相等.(1)求直线I2的表达式;(2)将直线I2向下平移个单位,平移后的直线I3与抛物线l i交于点C, D (如图2),判断直线x=2 是否平分线段CD并说明理由;(3)已知抛物线y=ax2+bx+c (a, b, c为常数)和直线y=3x+m有两个交点M N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a, b之间的数量关系.63. 如图,在平面直角坐标系xOy中,二次函数y=- +bx+c的图象经过点A (1, 0),且当x=0和x=5时所对应的函数值相等.一次函数y=-x+3与二次函数y=-g/+bx+c的图象分别交于B, C两点,点B在第一象限.(1)求二次函数y=-二/ +bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC, M是线段AC的中点,将点B绕点M旋转180°得到点N连接AN CN判断四边形ABCN的形状,并证明你的结论.64. 我们给出如下定义:在平面直角坐标系xcy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线•如图,抛物线F2都是抛物线F i的过顶抛物线,设F i的顶点为A, F2的对称轴分别交F i、F2于点D B,点C是点A关于直线BD的对称点(1)如图i,如果抛物线y=x2的过顶抛物线为y=ax2+bx, C (2, 0),那么①a= _____ , b= _______ .②如果顺次连接A B、C、D四点,那么四边形ABCD为_________A平行四边形B矩形C菱形D正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2, B (2, c-i ).求四边形ABCD的面积.I 了(3)如果抛物线y/一[的过顶抛物线是F2,四边形ABCD的面积为2 ,请直接写出65. 如图,矩形OABC 在平面直角坐标系中, 并且OA 0C 的长满足:|0A-2 . |+ (0C-6)2=0.(1) 求A B C 三点的坐标.(2) 把厶ABC 沿AC 对折,点B 落在点B i 处,AB 与x 轴交于点 D,求直线BB 的解析式. (3)在直线AC 上是否存在点P 使PB+PD 的值最小?若存在,请找出点 P 的位置,并求出PB+PD 的最小值;若不存在,请说明理由. (4)在直线AC 上是否存在点P 使|PD-PB|的值最大?若存在,请找出点 P 的位置,并求出|PD-PB|最大值.(1)写出y 与x 之间的函数关系式,并在坐标系中画出这个函数的图象.(2) 求当x=4和x=18时的函数值.点B 的坐标. 图1 遛戈5 -43 一 2 一1-2 -1 ”◎12345-2备用图66.如图:已知一次函数 y= x+3的图象分别交X 轴、y 轴于A 点C (4, m )在一次函数 y= x+3的图象上,CD£ x 轴于点D. 求m 的值及A B 两点的坐标;2如果点E 在线段AC 上,且==;,求E 点的坐标; 如果点P 在x 轴上,那么当厶APC 与厶ABD 相似时,求点(1) (2) (3) 67.如图,长方形 ABCD 中,为x ,A PAD 的面积为(3)当x取何值时,y=20,并说明此时点P在长方形的哪条边上.1F>(3)如图2,设C 点横坐标为a ,则C 点坐标为(a ,a+1),D 点坐标为(a+2,a+3), E 点坐标为(a ,a 2-3 a+1),F 点坐标为(a+2, a 2+a-1), 由题意,得 CE=-a +4a , DF=a -4 , •••且CE DF 与y 轴平行, • CE// DF, 又••• CF / ED•四边形CEDF 是平行四边形, • CE=DF2 2• - a +4a=a -4,•C 点坐标为(, )•2 2当 CE=-a +4a , DF=-a +4, •••且CE DF 与y 轴平行, • CE// DF, 又••• CF / ED•四边形CEDF 是平行四边形,••C E=DF2 2• - a +4a=- a +4, 解得:a=1,故C 点坐标为:(1 , 2)当C 点坐标为(1, 2)时CF 不// ED 舍去.函数练习基础答案和解析1.C2.A3.A4.B5.C6.B7.B8.A9.B10.B 11.B 12.B 13.D 14.A 15.A 16.D 17.B18.B 19.C 20.B 21.D 22.C 23.C 24.B 25.C 26.C 27.B28.A 29.B30.D 31.D 32.B33.B 34.C 35.C136. x >3 或 x v -137.-5 38.- . _ 或 3 39. y 1v y 40.41 .42. (0,:)43. v ;>44.245. y 1 >y 246.y=5x+10047.解:(1 )• 二次函数解析式为 2y=x -3 x+1.(2) P 点坐标为( >,丄),抛物线对称轴与直线AB 的交点记作点G,则点3GJ , 二),•••PG=n ,48.解:① y= (40-x ) (20+2x ) 2=-2x +60x+800所以y 与x 之间的函数关系式为 y=-2 X 2+60X +800; ② 令 y=1200, 2 ••• -2x+60x+800=1200,整理得 X 2-30X +200=0,解得 x i =10 (舍去),X 2=20, 所以商场每天要盈利 1200元,每件衬衫降价 20元; ③ y=-2x 2+60x+800 =-2 (x-15 ) 2+1250, •/ a=-2 v 0,•••当x=15时,y 有最大值,其最大值为 1250 ,所以每件降价15元时,商场每天的盈利达到最大,盈利最大是 1250元.•这个二次函数的解析式为: y=- x 2+2x+3, •顶点 M( 1 , 4),点 C (0, 3).(2) 证明:•••直线 y=kx+d 经过C M 两点,即 k=1, d=3,•直线解析式为y=x+3. 令 y=0,得 x=-3 ,•- D( -3 , 0),• CD=3 , AN=3 , AD=2, CN=2 • CD=AN AD=CN•四边形CDAN 是平行四边形. 150.解:(1)莎一亍-+2 , 当 x=0 时,y=2 , 当 y=0 时,x=-4 ,由勾股定理得:AB= _ . =2 , •点A 的坐标为(-4 , 0 )、B 的坐标为(0 , 2),边AB 的长为2\号;(2)证明:•••正方形 ABCD X 轴丄Y 轴,• / DAB M AOB=90 , AD=AB综上所述: C 点坐标为(.-即厉49. (1)解:•二次函数y=ax 2+bx+c 的图象经过点 A (-1 , 0)、B (3, 0)、N (2, 3),•••/ DAE f BAO=90 / BAO # ABO=90 ,• △ DEA^^ AOB( AAS , • OA=DE=4 AE=OB=2 • OE=6所以点D 的坐标为(-6 , 4);•••点D (-6 , 4)关于x 轴的对称点F 坐标为(-6 , -4 ), 设直线BF 的解析式为:y=kx+b ,把B F 点的坐标代入得: 解得: •直线BF 的解析式为y=x+2, 当 y=0 时,x=-2 , • M 的坐标是(-2 , 0),答案是:当点 M( -2 , 0)时,使 MD+MB 勺值最小. 51•增大j52. 解:(1 )v A (-4 , 0)在二次函数 y=ax 2- . x+2 (0)的图象上, --0=16 a+6+2, 解得a=-,,•点C 的坐标为(0, 2),设直线AC 的解析式为y=kx+b ,则•直线AC 的函数解析式为:-;(2)v 点D( m , n )是抛物线在第二象限的部分上的一动点,I 2 #• D ( m ,- , m- , m+2),D /CA* <\声H 0X在厶DEA 与厶AOB 中,^DAE = z/mo:一. ■ ■'.,DA = BA(3)能,过D 关于X 轴的对称点F ,连接BF 交x 轴于M,•••抛物线的函数解析式为 ■- 2y=-亍 x - x+22 ,过点 D 作 DHL x 轴于点 H,贝 U DH=- m- m+2, AH=m+4, HO=m , •••四边形OCDA 勺面积=△ ADH 的面积+四边形OCDH 勺面积,!!2:L 2 ■••• S=〒(m+4)x(-孑 m- m+2) +卫(-_ m- m+2+2)x( -m ), 化简,得 S=- m -4 m+4 (-4 v m v 0); (3) ①若AC 为平行四边形的一边,则 C 、E 到AF 的距离相等, • I y E |=| y c |=2 , • y E =± 2.、 1 2 3当y E =2时,解方程-.x - , x+2=2得, X 1 = O , x 2=-3 ,•点E 的坐标为(-3 , 2);当 y E =-2 时,解方程-,x 2- ; x+2=-2 得,②若AC 为平行四边形的一条对角线,则 CE// AF,• y E =y C =2,•点E 的坐标为(-3 , 2).综上所述,满足条件的点 E 的坐标为(-3 , 2 )、, -2 )、(「"十, -2 ).253. 解:(1 )•••抛物线y= (x+1) +k 与x 轴交于 A B 两点,与y 轴交于点C (0, -3 ), • -3= ( 0+1) 2+k , 解得:k=-4 ,•抛物线的解析式为:y= (x+1) 2-4 , 故对称轴为:直线x=-1 ; (2)存在.如图,连接AC,交对称轴于点 P,此时PA+PC 的值最小, 0= (x+1) 2-4 , 解得:X 1=1, x 2=-3 , 由题意可得:△ ANP^A AOC2 P.V 故T = —故i解得:PN=2则点P 的坐标为:(-1 , -2 );(3) 点M 是抛物线上的一动点,且在第三象限, 故-3 v x v 0; ①如图,设点 M 的坐标为:[x , (x+1) 2-4], •/ AB=4•-S △AME T , X 4X | ( x+1) 2-4|=2| (x+1) 2-4| ,••点M 在第三象限,2• S △AM =8-2 (x+1),•点E 的坐标为(丁空,-2或(•:,■> -2 );X 2 =•••当x=-1时,即点M 的坐标为(-1 , -4 )时,△ AMB 的面积最大,最大值为 8; ②设点M 的坐标为:[x , (x+1) 2-4],设直线AC 的解析式为:y=ax+d , 将(-3,0),( 0,-3 )代入得:{芒['一", 解得:I-故直线 AC: y=-x-3 ,设点P 的坐标为:(x , -x-3 ),22故 PM=x-3- (x+1) +4=-x-3x=-( y=- : x+ ; x+1 , 当 x=0 时,y=1,.•.OC=A O' =1,根据点A (2, 2)可分三种情况: ①当a >2时,如图3,•S △OC [=2S ^O , A P ,当x=-:时,PM 最大,最大值为54. 解:(1) v y=-2 x 2+4x+6=-2 •顶点坐标为(1, 8);(2) 令 y=0,则-2 x 2+4x+6=0, 解得 x=-1 , x=3.所以抛物线与x 轴的交点坐标为 55. 解:(1)如图 1,把 A (-(x-1 ) 2+8, (-1 , 0), 0), B( 0, 2)两点坐标代入 y=-二x +bx+c■4 )得:解得:•抛物线对应的函数关系式: -2y=- . x + 三 x+2;(2)如图 2, •/ A ( -1 , 0), .•.OA=1 OB=2由旋转得:O' B=OB=2 O' A ■■-O ( 2 , 2) , A ( 2 , 1),所以由原抛物线从 O'平移到2),=OA=1 且旋转角/ OBO =90°, A'可知,抛物线向下平移 1个单位,•平移后所得抛物线对应的函数关系式: y=- : x 2^ x+1 ;(3)设 P (a , - . a 2+ . a+1), (3, 0)•Co图3I 1x 1 x a=2x x 1x( a-2), a=4,则y=- a2+ ' a+1=- X42+^ x 4+ 仁-②当O v a v 2时,如图4,•S △oc=2Sg A P ,.x i x a=2x 1 x 1x( 2-a),2 1则y=- ,a + ;a+仁-,x2卓珀弦+.x i+1=_ ,IJ27),③当a v 0时,如图5,同理得:,x 1x( - a) =2x ■ x( -a+2),a=4 (不符合题意,舍)综上所述,点P的坐标为(4,-=)或(.,*—2 1(4)设N ( m,-下m+ . m+1),如图6,过N作NE! x轴于E,••四边形CMN[是平行四边形,.CD// MN CD=MN•••/ CDO W MEN•/ COD W MEN=90 ,•••△COD^ NEM•EN=COm2- m-1=1解得:m=3或-1 ,当m=3 时,y=-1 ,当m=_1 时,y=_1 ,• N( 3 , -1 )或(-1 , -1 ),如图7就是点N( -1 , -1 )时,所成的平行四边形;如图8和如图9,.P (4, ),•••四边形CDMN是平行四边形,••• CN// DM•••点C与点N是对称点,•- N( 2, 1),综上所述,点N的坐标为(3,-1 )或(-1,-1 )或(2, 1).56. (1 )解:由抛物线的顶点是M (1, 4), 设解析式为y=a (x-1 ) 2+4(a v0),又•••抛物线经过点N( 2,3),2• 3=a (2-1 ) +4,解得即k=1, t=3,直线CD的解析式为y=x+3,当y=0 时,x=-3,即 D (-3 , 0);2当y=0 时,-x+2x+3=0,解得x=-1,即 A (-1 , 0),• AD=2•••C ( 0, 3), N (2, 3)• CN=2=AD,且CN// AD•四边形CDAN是平行四边形.X/P \(3)解:如图2: /\.^5 A 01禹2-C ( 0, 1),对称轴是x=-=1, a=-1 .直线y=kx+t 经过 C ( 0,3 )、M( 1, 4)两点,假设在X 轴上方存在这样的 P 点,使以P 为圆心的圆经过 A 、B 两点,并且与直线CD 相切,设P (1, u ) 其中u >0,则PA 是圆的半径且 P A=『+22,过P 做直线CD 的垂线,垂足为 Q,则PQ=PA 寸以P 为圆心的圆与直线 CD 相切.由第(2)小题易得:△ MDE 为等腰直角三角形,故△ PQM 也是等腰直角三角形,由 P (1, u )得 PE=u , PM=|4-u| , PQ= ' PM由 PQ=PA 得方程: [(4-u ) 2=U 2+22,解得u=: , u=人I 齐(不符合题意,舍).2 2所以,满足题意的点 P 存在,其坐标为(1, _ ).257. 解:(1 )当 m=-1 时,y=x 2-2 ( m+1) x-2 ( m+2)为 y=x 2-22当 y=0 时,x -2=o ,解得x=±护莎,当 m=-1 时,x=.亠 是函数 y=x 2-2 (m+1) x-2 (m+2)的零点;2(2) 证明:当 y=0 时,x-2 ( m+1) x-2 ( m+2) =0,a=1, b=-2 (m+1) , c=-2 (m+2),2 2/.△= b -4 ac=4 ( m+2m+1) -4X( -2 m-4 )2=4m +8m+4+8m+16 2=4 ( m +4m+4) +42=4 ( m+2) +4>4,••• x 2-2 (m+1) x-2 ( m+2) =0有两个不等实数根,即无论m 取何值,该函数总有两个零点;(3) 函数的两个零点分别为 X !和X 2,1 1 T| + 2(m \ L) 2x1+x2=2 (m+1), x1?x2=-2 (m+2)云 + 云=^7 = •二=-i ,解得m=1,当m=1时,函数解析式为 y=x 2-4x-6 ;当 x=n+2 时,y= (n+2) 2-4 ( n+2) -6=n 2-10 ,点(n+2, n 2-10 )在此函数的图象上.58. 解:(1 )将 A (-2 , 0), B (8, 0)代入抛物线 y=ax 2+bx-4 得:(4a - 26 - 4 -[i L/ - 7」1 I) 5•抛物线的解析式:y 詁x 2- x-4 ;(2) 当 x=0 时,y=-4 ,•-C ( 0, -4 ),•- OC=4•••四边形DECB 是菱形,• 0D=0C=4解得:1•- D( 0 , 4),设BD的解析式为:y=kx+b ,把 B ( 8, 0)、D ( 0, 4)代入得:••• BD 的解析式为:y=- , x+4,••T 丄x 轴,'2 ■• M ( m ,-小 m+4)、Q ( m , m — m-4 ),如图 1 ,T MQ CD•••当MQ=D (时,四边形CQMD!平行四边形,(-.m+4) <1 2 ,a "-(m - m-4)=4-( -4),化简得:m 2-4m=0,解得m i =O (不合题意舍去),m 2=4,.•.当m=4时,四边形 CQMDi 平行四边形;(3) 如图2,要使三角形 BCN 的面积等于三角形 BCQ 的面积,N 点到BC 的距离与Q 到BC 的距离相等;设直线BC 的解析式为:y=kx+b ,把 B (8, 0)、C (0, -4 )代入得: •直线BC 的解析式为:沪、x-4 ,由(2)知:当P (4, 0)时,四边形 DCQM 为平行四边形,• BIM/ QC BM=QC得厶 MFB2A QFC分别过M Q 作BC 的平行线l i 、12,所以过M 或Q 点的斜率为的.直线与抛物线的交点即为所求,当 m=4 时,y=- , m+4=- , X 4+4=2,• M( 4, 2),t 丄 1 2 :i 1 :!当 m=4 时,y= m- m-4= X 16- X4 -4=-6 ,J 4 2 丄 ?Q( 4, -6 ),①设直线l 1的解析式为:y= . x+b ,•••直线l 1过Q 点时,1• -6=不 X 4+b , b=-8 ,•直线l 的解析式为:y= . x-8 ,解得:从+右二朴解得X I =X 2=4 (与Q 重合,舍去),②•••直线12过M 点, 同理求得直线12的解析式为:y= x ,宀詁_4=厂,x - x-16=0 ,解得 X i =4+4^呵,X 2=4-4 , 代入y= x ,得则 N ( 4+4、羽,2+2 才勺),2( 4-4 V 空,2-2 雄),故符合条件的 N 的坐标为N (4+4 ,2+2 ),N 2(4-4 ,2-2 ).59. 解:(1 )•••抛物线 y=-x+bx+c 与 x 轴交于 A (-1 , 0), B (5, 0)两点,y=- (x+1) (x-5 ) =- x 2+4x+5,•••抛物线的解析为 y=- x 2+4x+5;2 2•/ y=-x +4x+5=- (x-2 ) +9,•顶点Q 的坐标为(2, 9);2(2) 在 y=- x +4x+5 中,当 x=0 时,y=5,•点C 的坐标为:(0, 5), 设点P 的纵坐标为a , 若 S ^PAB =S ^ABC ,则 | a|=5 , 解得a=±5.当a=5时,-X 2+4X +5=5,解得x=0 (舍去)或x=4,此时点p 的坐标为(4, 5);当 a=-5 时,-x +4x+5=-5,解得 x=2± I ,此时点 p 的坐标为(2+叮 I , -5 )或(2-,:、厂4 , -5 ); 综上,点P 的坐标为(4, 5)或(2+ , -5 )或(2- , -5 );(3) 这个同学的说法不正确理由:设D (t , -t 2+4t+5),折线D-E-0的长度为L ,n 「 2 5 2 I 吊则 L=-1 +4t+5+t=- (t- ) + .• a v 0,•••当t=,时,L 最大值=— 而当点D 与点Q 重合时,L=9+2=11v 〒,•••该同学的说法不正确.60. 解:(1 )设y 与x 的函数关系式为:y=kx+b (k z 0), 丄曲亠E \「册■ + A - KiO由题意得I ,故 y=-4 x+360 (40< X W 90);则■: x-8 ,则■: 解得(2)由题意得,p与x的函数关系式为:2p= (x-40 ) (-4X+360) =-4x+520X-14400 ,(3)当P=2400 时,-4X2+520X-14400=2400 ,解得:X i=60, x2=70,故销售单价应定为60元或70元.61. 解:(1)将点B、C的坐标代入抛物线的解析式得: 解得:a= ”,c=-3 .•••抛物线的解析式为x2+ :x-3工2”(2)令y=0,则” x + x-3=0 ,解得x i=1, X2=-4 • A (-4 , 0)、B ( 1, 0)令x=0,则y=-3• C ( 0, -3 )I l r»•S △ABC F X 5 X 3=—■?9设 D (m,过点D作DE// y轴交AC于E.直线AC的解析式为当m=-2时,DE有最大值为3此时,S MCD有最大值为'X DEX 4=2DE=6]5 了•四边形ABCD勺面积的最大值为6+ =,. y=- x-3,贝U E ( m, - m-3 )2+3①过点C 作CR // x 轴交抛物线于点 P i ,过点P i 作P i E i // AC 交x 轴于点巳,此时四边形 ACPE i 为平行四 边形,•/ C ( 0, -3 )•••设 P i (x , -3 )'2x + x-3=-3 4 4解得 x i =0, x 2=-3 •P i (-3 , -3 );②平移直线 AC 交x 轴于点E ,交x 轴上方的抛物线于点 P ,当AC=PE 寸,四边形ACEP 为平行四边形, •/ C ( 0, -3 )•••设 P (x , 3),c 2 /x + 彳 x-3=3 ,或x= -------•P 2 (八‘ ,3)或 P 3 ( ' 八,3) 2 9综上所述存在3个点符合题意,坐标分别是(-3 , -3 )或P 2 (皿 ,3)或P 3 ( 7 ;皿 3).62. 解:(i )当 x=0 时,y=3,•-A ( 0, 3),• A 到直线x=2的距离为2,•••点A, B 到直线x=2的距离相等,• B 到直线x=2的距离为2,• B 的横坐标为4,I 2当 x=4 时,y=- , X4 +4+3=-i ,•- B ( 4, -i ),把 A (0 , 3)和 B (4 , -i )代入 y=kx+b 中得: j k.— — 1解得: .,•直线12的表达式为:y=-x+3;(2)直线x=2平分线段CD 理由是:■直线 l a 表达式为:y=- x+3- . =-x+0.5 ,(3)如图所示:解得x= CPi当 x=2 时,y=-2+0.5=-1.5 ,••• C (-1 , 1.5 )、D ( 5, -4.5 ),•••线段CD 的中点坐标为:x==2, y= ------- — =-1.5 ,2 2 则直线x=2平分线段CD2 ax + ( b-3 ) x+c- m=0,则X i 、X 2是此方程的两个根,ft — 3X i +X 2=- ,Ll•••线段MN 都能被直线x=h 平分,设线段MN 的中点为P ,贝U P 的横坐标为h ,j" [ + j"L j 林 工根据中点坐标公式得:h==- .J 2u 63. 解:(1 )当 x=0 时,丫=0,即(0, c ).由当x=0和x=5时所对应的函数值相等,得(5, c ).遁十 将(5, c )(1, 0)代入函数解析式,得 <: 解得解得 即 B (2, 1), C ( 5, -2 ). 由勾股定理,得AB=.二. I ■■= ;y=-故抛物线的解析式为 y=- . x + . x-2 ;(2)联立抛物线与直线,得四边形ABCN 是平行四边形, 证明:TM 是AC 的中点,••• AM=CM•/点B 绕点M 旋转180°得到点 N, • BM=M ,•四边形ABCN 是平行四边形.64.1 ; -2 ; D65.解:(1 )T |0A-2|+ (OC-6) 2=0. • OA=2 , OC=6• A ( 0, 2 曲),C (6, 0),•••四边形OABC 为矩形,• BC=OA=2 ,• B ( 6, 2 );(2)设直线AC 的解析式为y=kx+b ,把A 、C 坐标代入可得| ' , 由折叠的性质可知 ACL BB , •可设直线BB 的解析式为y=h 你x+m , 把B 点坐标代入可得 2■ =6 ■ +m ,解得m=-4 , •直线BB 的解析式为y=J^x-4卡!;贝U PB=PB,• PD+PB=PD+RBBD•此时RD+RB 最小,(3)如图:圏1 (3)由如图1,•直线AC 的解析式为 y=^x+2-F , -<.i-由折叠的性质可知BC=BC=0A=2 AOD M CB i D=90°,i SAOD = ZCD L C在厶AOD和厶CBD中,〈厶码,I AO- BjC•••△AOD2^CB i D (AAS),••• AD=DC OD=DB设OD=c,贝U DC=AD=6x,且OA=2 ,在Rt△ AOD中,由勾股定理可得AO+OD=AD,即(2 ) 2+x2= ( 6-x) 2,解得x=2,• CD=AD=62=4,在Rt△ BCD中,由勾股定理可得BD= .-=:.]"十=2 .,综上可知存在使PB+PD的值最小的点P, PB+PD的最小值为 2 ;(4)如图2,连接PB PD BD,当p在点A时|PD-PB|最大,B与B1对称,|PD-PB|=|PD-PB i|,根据三角形三边关系|PD-PB i|小于或等于DB,故|PD-PB i|的最大值等于DB.•/ AB=AB=6AD=事*=4,• DB=2,•在直线AC上,存在点P使|PD-PB|的值最大,最大值为: 2 .66. 解:(1 )把x=0,代入一次函数的解析式中,可得:y=3,所以点B的坐标是(0, 3);把y=0代入一次函数的解析式中,可得:x=-4 ,所以点A的坐标是(-4 , 0),把x=4代入一次函数的解析式中,可得:y=6,所以m的值是6;(2)过E点作EF垂直x轴与F点,过C点作CDLx轴,如图1 ,• △AEF^A ACD•••根据题意得:EF//CD且AD=8 CD=6•… ,(3)当点P在OA的延长线上时,// BAD:/ PAC当点P在如图2的位置上时,贝UAP AD△ APC^ ABD , ,,贝UBBAD0D1 12• E点的坐标为”•”:当点P在如图3的位置上时,则厶APS A ABDAE = EFAC ~ CD 7>Z APC / BAD>Z ACP 且B0DA尸/ D菲=而,则AP=16,则P2= (12, 0),综上所述:符合条件的点P的坐标是/..II;67. 解:(1)当点P在线段AB上时,此时AP=x,AD=8根据三角形的面积公式可得:yj ?AD?AP= X 8X x=4x,当点P在线段BC上运动时,面积不变;当点P在线段CD上运动时,DP=6+8+6-x=20-x, AD=8根据三角形的面积公式可得:yj ?AD?DP= X 8X( 20-x) =80-4 x,'4x(0 < x < (i)••• y与x之间的函数关系式为y冷曰⑴冬卫冬⑷ [80 一4期1 I < J- < 20) (2)当x=4 时,y=4x=4X 4=16,当x=18 时,y=80-4 x=80- 4X 18=8;(3)当y=4x=20,解得x=5,此时点P在线段AB上,当y=80-4 x=20,解得x=15,此时点P在线段CD上.。
中考数学总复习《函数基础知识》专项测试卷-附参考答案
中考数学总复习《函数基础知识》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为().A.B.C.D.2.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.。
图描述了他上学的情景,下列说法中错误的是()A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米3.王师傅驾车到某地办事,汽车出发前油箱中有50升油.王师傅的车每小时耗油12升,行驶3小时后,他在一高速公路服务站先停车加油26升,再吃饭、休息,此过程共耗时1小时,则然后他继续行驶,下列图象大致反映油箱中剩余油量y(升)与行驶时间t(小时)之间的函数关系的是()A.B.C.D.4.小李和小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中的信息,有下列说法:(1)他们都行驶了20 km;(2)小陆全程共用了1.5h;(3)小李和小陆相遇后,小李的速度小于小陆的速度(4)小李在途中停留了0.5h。
其中正确的有A.4个B.3个C.2个D.1个5.在直角三角形ABC中,∠C=90∘,∠A=x,∠B=2y,则y与x之间的函数关系式是()A.B.C.D.6.如图,在平面直角坐标系中,直线y= 23x- 23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.3B.12C.6D.7.如图①,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,则△ABC的面积是()A.10B.16C.18D.208.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.10.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A.B.C.D.12.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作△BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(共6题;共9分)13.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA−PE=y,图2是点P运动时y随x变化的关系图象,则BC=14.已知点P从长方形的顶点A出发,沿A→B→C→D以2cm/s的速度匀速移动,如图1,设△PAD的面积为S(cm2),点P移动的时间为t(s),S关于t的函数图象如下图2所示,则a的值为.15.如图1,平行四边形ABCD边上一动点P,从点A出发,沿A→B→C→D方向,以每秒2个单位长度的速度运动,设点P的运动时间是t,△DAP的面积为S,S与t之间函数关系的图像如图2所示.(1)G点表示的横坐标为;(2)则点D到BC边的距离是.16.函数y= √2−x+ 1x+3中自变量x的取值范围是.17.日出日落,一天的气温随时间的变化而变化,在这一问题中,自变量是18.在“变量之间的关系”一章中,我们学习的“变量”是指自变量和因变量,而表达它们之间关系的通常有三种方法,这三种方法是指、和三、综合题(共6题;共75分)19.参照学习函数的过程方法,探究函数y=x−2x(x≠0)的图象与性质,因为y=x−2x=1−2x,即y=−2x+1,所以我们对比函数y=−2x来探究列表:x…-4-3-2-1−12121234…y=−2x…1223124-4-2-1−23−12…y=x−2x…3253235-3-201312…描点:在平面直角坐标系中以自变量x的取值为横坐标,以y=x−2x相应的函数值为纵坐标,描出相应的点如图所示:(1)请把y轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,则y随x的增大而;(“增大”或“减小”)②y=x−2x的图象是由y=−2x的图象向平移个单位而得到的;③图象关于点中心对称.(填点的坐标)(3)函数y=x−2x与直线y=−2x+1交于点A,B,求ΔAOB的面积.20.二次函数y=ax2+bx−3中的x,y满足如表x…−1012…y…0−3m−3…(2)求m的值.21.郑小舟在学习中遇到这样一个问题:“如图①,菱形ABCD的边长是4,∠ABC=120°,点P 为对角线AC上一动点,过点P作MN⊥AC,交边AD、AB于点M、N,把△AMN沿MN折叠得到△A′MN,若△A′DC恰为等腰三角形,求AP的长.”他尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点P在AC上的不同位置,画出相应的图形,测量线段AP,A′D的长度,得到下表几组对应值.AP cm⁄00.5 1.0 1.5 2.0 2.5 3.0 A′D cm⁄ 4.0 3.18 2.48 2.06 2.07 2.53 3.23操作中发现:“线段A′C的长度无需测量即可得到”.因为A′C与AP满足关系式:.(2)将线段AP的长度作为自变量x,A′D的长度是x的函数,记作y1,在图②所示的平面直角坐标系中画出函数y1的图象.(3)设A′C=y2,CD=y3,继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△A′DC为等腰三角形时,则线段AP长度的近似值(结果保留一位小数,√3≈1.73). 22.在压力不变的情况下,某物体所受的压强p(Pa)与它的受力面积S(m2)之间成反比例关系,其图像如图所示。
2020中考数学 函数基础专题训练(含答案)
2020中考数学 函数基础专题训练(含答案)一、单选题(共有10道小题)1.某公司准备与汽车租赁公司签订租车合同,以每月用车路程x km 计算,甲汽车租赁公司每月收取的租赁费为y 1元,乙汽车租赁公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是 ( )A .当月用车路程为2000km 时,两家汽车租赁公司租赁费用相同B .当月用车路程为2300km 时,租赁乙汽车租赁公车比较合算C .除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D .甲租赁公司平均每公里收到的费用比乙租赁公司少2.小明的爸爸早晨出去散步,从家走了20分到达距离家800米的公园,他在公园休息了10分,然后用30分原路返回家中,那么小明的爸爸离家的距离S (单位:米)与离家的时间t (单位:分)之间的函数关系图象大致是( ).3.小亮从家步行到公交车站台等公交陈,然后乘坐公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误..的是(A .他离家8km 共用了30minDC BAB .他等公交车时间为6minC .他步行的速度是100m/minD .公交车的速度是350m/min4. 下列各图中的变量关系,表示y 是x 的函数的是( )5.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 作0°~90°的旋转,那么旋转时露出的△ABC 的面积(S)随着旋转角度(n)的变化而变化,下面表示S 与n 的关系的图象大致是( )6.某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所)D C BA SxDOCBA.20kgB.25kgC.28kgD.30kg7.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
九年级数学中考复习:函数专题训练(含答案)
中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题训练 函数基础训练题(1)1. 函数y=x-31的自变量x 的取值范围是 ;函数y=1+x 的自变量x 的取值范围是 ;抛物线y x =-+3122()的顶点坐标是____________; 2. 抛物线y =3x 2-1的顶点坐标为 对称轴是 ; 3. 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________;4. 如果函数x x x f -+=15)(,那么=)12(f ________.5. 已知实数m 满足m 2-m -2=0,当m=_______,函数y=x m +(m+1)x+m+1的图象与x轴无交点。
6. 函数31--=x x y 的定义域是___________.若直线y=2x+b 过点(2,1),则b= ; 7. 如果反比例函数的图象经过点)3,2(-A ,那么这个函数的解析式为___________. 8. 已知m 为方程x 2+x-6=0的根,那么对于一次函数y =mx +m :①图象一定经过一、二、三象限;②图象一定经过二、三、四象限;③图象一定经过二、三象限;④图象一定经过点(-l ,0);⑤y 一定随着x 的增大而增大;⑤y 一定随着x 的增大而减小。
以上六个判断中,正确结论的序号是 (多填、少填均不得分)9. 有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与X 轴两个交点的横坐标都是整数;丙:与Y 轴交点的纵坐标也都是整数,且以这三个交点为顶点的三角形面积为3。
请你写出满足上述全部特点的一个二次函数解析式: ; 10. 已知二次函数()021≠++=a c bx ax y 与一次函()02≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)(如图所示),则能使1y >2y 成立的x 的取值范围是 .11. 在平面直角坐标系中,点P (-2,1)在( )A 、第一象限B 、第二象限 C、第三象限 D 、第四象限12. 二次函数y=x 2-2x+3的最小值为( )A 、4 B 、2 C 、1 D 、-1 13. 有意义,则x 的取值范围是( ) (A )x ≤3 (B )x ≠3 (C )x >3 (D )x ≥3 14. 二次函数 y =x 2+10x -5的最小值为( ) (A )-35 (B )-30(C )-5 (D )2015. 已知甲,乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k 1x +a 1和y =k 2x +a 2, 图象如右,设所挂物体质量均为2kg 时,甲弹簧长为y 1 ,乙弹簧长为y 2则y 1与y 2的大小关系为( ) (A )y l > y 2 (B )y 1=y 2 (C )y 1< y 2 (D)不能确定 16. 函数y=41-x 中自变量x 的取值范围是( )A .x 4-≤ B. 4-≥X C. x>-4 D. 4-≠x 17. 点P (-1,3)关于y 轴对称的点是( )A. (-1,-3)B. (1,-3)C. (1,3)D. (-3,1) 18. 函数y =21-x 中,自变量x 的取值范围是( ) A. x >2 B. x <2 C. x ≠2 D. x ≠-2 19. 抛物线y =x 2-2x -1的顶点坐标是( )A.(1,-1)B.(-1,2)C.(-1,-2)D.(1,-2) 20. 抛物线632--=x x y 的对称轴是直线 ( )23)(=x A 23)(-=x B3)(=x C 3)(-=x D21. 给出下列函数:(1)y=2x; (2)y=-2x+1; (3)y=x2(x>0) (4)y=x 2(x<-1)其中,y 随x 的增大而减小的函数是( ) A 、(1)、(2). B 、(1)、(3). C 、(2)、(4). D 、(2)、(3)、(4)22. 如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )23. A2.5米 B 2米 C 1.5米 D 1米 24. 当K <0时,反比例函数y =xk和一次函数y =kx +2的图象在致是图中的( )25. 已知正比例函数()x m y 12-=的图象上两点A (1x ,1y ),B (2x ,2y ),当1x <2x 时,有y 1>y 2那么m 的取值范围是( )A 、m <1/2B 、m >1/2C 、m >2D 、m <026. 已知圆柱的侧面积是100лcm 2,若圆柱底面半径为r (cm 2),高线长为h (cm ),则h关于r 的函数的图象大致是( )27. 下列函数关系中,可以看作二次函数()02≠++=a c bx ax y 模型的是( ) (A )在一定的距离内汽车的行驶速度与行驶时间关系(B )我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系(C )竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力) (D )圆的周长与圆的半径之间的关系 28. 又又又向高层建筑屋顶的水箱注水,水对水箱底部的压强p 与水深h 的函数关系的图象是(水箱能容纳的水的最大高度为H )。
29. 在直角坐标系中,点A 的坐标为(2+a,3-a ),当a>3时,点A 在( )A.第一象限B. 第二象限C. 第三象限D. 第四象限30. 已知y=x+a ,当x=-1,0,1,2,3时对应的y 值的平均数为5,则a 的值是( )(A )518(B )519(C )4(D )521 31. 抛物线c bx ax y ++=2与x 轴交于A ,B 两点,Q (2,k )是该抛物线上一点,且AQ ⊥BQ ,则ak 的值等于( )(A )-1(B )-2(C )2(D )332. 张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系( ):33. 反比例函数y=xk 3+的图象在二、四象限,那么K 的取值范围是( ) A.k≤3B. k 3-≥C. k>3D. k<-334. 已知直线b kx y +=经过点A (0,6),且平行于直线x y 2-=.(1) 求k 、b 的值;(2) 如果这条直线经过点P (m ,2),求m 的值;(3) 写出表示直线OP 的函数解析式; (4) 求由直线b kx y +=,直线OP 与x 轴围成的图形的面积.35. 已知反比例函数y mx=-3和一次函数y kx =-1的图象都经过点P m m (,)-3。
(1)P 的坐标和这个一次函数的解析式;(2)若点M a y (,)1和点N a y (,)+12都在这个一次函数的图象上,试通过计算或利用一次函数的性质,说明y 1大于y 2。
ABCD36.汽车有油箱中有余油量Q(升)与它行驶的时间t(小时)之间是一次函数关系,该汽车外出时,刚开始行驶时油箱中有油60升,行驶了4小时后发现已耗油20升。
(1)求:油箱中的余油Q与行驶时间t之间的函数关系式(2分)(2)求:这个实际问题中时间t的取值范围,并在右下角的直角坐标系中作出该函数图象(2分)(3)如果汽车每小时行驶40千米,那么汽车行驶多远必须加油?37.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。
(2)若点(x0,y0)在抛物线上,且0≤x0≤4,试写出y0的取值范围。
(3)设平行于y轴的直线x=t交线段BM于点P(点P能与点M重合,不能与点B重合)交x轴于点Q,四边形AQPC的面积为S。
①求S关于t的函数关系式以及自变量t的取值范围;②求S取得最大值时,点P的坐标;③设四边形OBMC 的面积S/,判断是否存在点P,使得S=S/ ,若存在,求出点P的坐标;若不存在,请说明理由。
38.中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800(纳税款=应纳税额所得额对应的税率)按此规定解下列问题:(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?39.已知抛物线过点A(-2,0)、B(1,0)、C(0,2)三点。
(1)求此抛物线的解析式;(2)在这条抛物线上是否存在点P,使∠AOP=450?若存在,请求出点P的坐标;若不存在,请说明理由。
40.已知:抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0),b(x2,0)(x1<x2),顶点M的纵坐标是-4。
若x1,x2是方程x2―2(m―1)+m2-7=0的两个实数根,且102221=+xx。
(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有合条件的点P的坐标;若不存在,请说明理由。
41.如图,已知平面直角坐标系中三点A(4,0),(0,4),P(x,0)(x<0),作PC⊥PB交过点A的直线l于点C(4,y)。
(1)求y关于x的函数解析式;(2)当x取最大整数时,求BC与PA的交点Q坐标;42. 如图已知一交函数y=-2x+6的图象与x 轴交于点A ,与y轴交于点C ;二次函数y=ax 2+bx+c(a≠0)的图象过A 、C 两点,并且与x 轴交于另一点B (B 在负半轴上)。
(1)当S △ABC =4S △B0C 时,求抛物线y=ax 2+bx+c 的解析式和此函数顶点坐标。
(2)以OA 的长为直径作⊙M,试判定⊙M 与直线AC 的位置关系,并说明理由。
43. 已知一次函数m x y +=43的图象分别交x 轴、y 轴于A 、B 两点,且与反比例函数xy 24=的图象在第一象限交于点C (4,n ),CD ⊥x 轴于D 。
(1)求m 、n 的值,并在给定的直角坐标系中作出一次函数的图象; (2)如果点P 、Q 分别从A 、C 两点同时出发,以相同的速度沿线段AD 、CA 向D 、A 运动,设AP =k 。
①k 为何值时,以A 、P 、Q 为顶点的三角形与△AOB 相似?②k 为何值时,△APQ 的面积取得最大值?并求出这个最大值。