数学总复习简单的线性规划

合集下载

高中数学简单线性规划复习题及答案(最全面)

高中数学简单线性规划复习题及答案(最全面)

简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。

高考数学总复习 7-3 简单的线性规划问题但因为测试 新人教B版

高考数学总复习 7-3 简单的线性规划问题但因为测试 新人教B版

高考数学总复习 7-3 简单的线性规划问题但因为测试新人教B版1.(文)(2010·北京东城区)在平面直角坐标系中,若点(-2,t)在直线x-2y+4=0的上方,则t的取值范围是()A.(-∞,1)B.(1,+∞)C.(-1,+∞) D.(0,1)[答案] B[解析]∵点O(0,0)使x-2y+4>0成立,且点O在直线下方,故点(-2,t)在直线x-2y+4=0的上方⇔-2-2t+4<0,∴t>1.[点评]可用B值判断法来求解,令d=B(Ax0+By0+C),则d>0⇔点P(x0,y0)在直线Ax+By+C=0的上方;d<0⇔点P在直线下方.由题意-2(-2-2t+4)>0,∴t>1.(理)(2010·惠州市模拟)若2m+2n<4,则点(m,n)必在()A.直线x+y-2=0的左下方B.直线x+y-2=0的右上方C.直线x+2y-2=0的右上方D.直线x+2y-2=0的左下方[答案] A[解析]∵2m+2n≥22m+n,由条件2m+2n<4知,22m+n<4,∴m+n<2,即m+n-2<0,故选A.2.(2010·四川广元市质检)在直角坐标系xOy中,已知△AOB的三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即坐标均为整数的点)的总数为()A.95B.91C.88D.75[答案] B[解析]由2x+3y=30知,y=0时,0≤x≤15,有16个;y =1时,0≤x≤13;y =2时,0≤x≤12; y =3时,0≤x≤10;y =4时,0≤x≤9; y =5时,0≤x≤7;y =6时,0≤x≤6; y =7时,0≤x≤4;y =8时,0≤x≤3; y =9时,0≤x≤1,y =10时,x =0.∴共有16+14+13+11+10+8+7+5+4+2+1=91个. 3.(2011·天津文,2)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y的最大值为( )A .-4B .0 C.43 D .4[答案] D [解析]该线性约束条件所代表的平面区域如上图,易解得A(1,3),B(1,53),C(2,2),由z =3x-y 得y =3x -z ,由图可知当x =2,y =2时,z 取得最大值,即z 最大=3×2-2=4.故选D.4.(文)(2011·安徽示范高中皖北协作区联考)已知x ,y 满足不等式组⎩⎪⎨⎪⎧x +y≤2,y -x≥0,x≥0.目标函数z =ax +y 只在点(1,1)处取最小值,则有( )A .a>1B .a>-1C .a<1D .a<-1[答案] D[解析] 作出可行域如下图阴影部分所示.由z =ax +y ,得y =-ax +z.只在点(1,1)处z 取得最小值,则斜率-a>1, 故a<-1,故选D.(理)(2011·宝鸡质检)已知约束条件⎩⎪⎨⎪⎧x -3y +4≥0x +2y -1≥03x +y -8≤0,若目标函数z =x +ay(a≥0)恰好在点(2,2)处取得最大值,则a 的取值范围为( )A .0<a<13B .a≥13C .a>13D .0<a<12[答案] C[解析] 作出可行域如下图,∵目标函数z =x +ay 恰好在点A(2,2)处取得最大值,故-1a >-3,∴a>13.5.(2011·泉州质检)设不等式组⎩⎪⎨⎪⎧0≤x≤20≤y≤3x +2y -2≥0所表示的平面区域为S ,若A 、B 为区域S 内的两个动点,则|AB|的最大值为( )A .2 5 B.13 C .3 D. 5 [答案] B[解析] 在直角坐标平面内画出题中的不等式组表示的平面区域,结合下图观察不难得知,位于该平面区域内的两个动点中,其间的距离最远的两个点是(0,3)与(2,0),因此|AB|的最大值是13,选B.6.(2011·兰州模拟)设O 为坐标原点,点M 的坐标为(2,1),若点N(x ,y)满足不等式组⎩⎪⎨⎪⎧x -4y +3≤02x +y -12≤0x≥1,则使OM →·ON →取得最大值的点N 的个数是( ) A .1 B .2 C .3 D .无数个[答案] D[分析] 点N(x ,y)在不等式表示的平面区域之内,U =OM →·ON →为x ,y 的一次表达式,则问题即是当点N 在平面区域内变化时,求U 取到最大值时,点N 的个数.[解析] 如下图所示,可行域为图中阴影部分,而OM →·ON →=2x +y ,所以目标函数为z =2x +y ,作出直线l :2x +y =0,显然它与直线2x +y -12=0平行,平移直线l 到直线2x +y -12=0的位置时目标函数取得最大值,故2x +y -12=0上每一点都能使目标函数取得最大值,故选D.7.如下图,若由不等式组⎩⎪⎨⎪⎧x≤my +n x -3y≥0y≥0(n>0)确定的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,则实数m =________.[答案] -33[解析] 根据题意,三角形的外接圆圆心在x 轴上, ∴OA 为外接圆的直径,∴直线x =my +n 与x -3y =0垂直, ∴1m ×13=-1,即m =-33. 8.(2011·浏阳模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥-1x +y≥13x -y≤3,则目标函数z =4x +y 的最大值为________.[答案] 11[解析] 如下图,满足条件的可行域为三角形区域(图中阴影部分),故z =4x +y 在P(2,3)处取得最大值,最大值为11.9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:2(),则购买铁矿石的最少费用为________(百万元).[答案] 15[解析] 设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x≥0y≥00.5x +0.7y≥1.9x +0.5y≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取得最小值,最小值为:z min=3×1+6×2=15.10.(2011·福建厦门外国语学校月考)制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?[解析] 设投资人分别用x 万元、y 万元投资甲、乙两个项目, 由题意知⎩⎪⎨⎪⎧x +y≤10,0.3x +0.1y≤1.8,x≥0,y≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如下图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,此时z 取得最大值,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.解方程组⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6.此时z =1×4+0.5×6=7(万元). ∴当x =4,y =6时z 取得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.11.(文)(2010·揭阳市模考、重庆南开中学模考)已知正数x 、y 满足⎩⎪⎨⎪⎧2x -y≤0x -3y +5≥0,则z=⎝⎛⎭⎫14x ·⎝⎛⎭⎫12y的最小值为( )A .1 B.324C.116 D.132[答案] C[解析] 如下图易得2x +y 的最大值为4,从而z =4-x·⎝⎛⎭⎫12y =⎝⎛⎭⎫122x +y 的最小值为116,选C.(理)(2011·重庆一诊)设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0x -2y +8≥0x≥0,y≥0,若目标函数z =ax +by(a>0,b>0)的最大值为12,则2a +3b的最小值为( )A.256B.83C.113 D .4[答案] A[解析] 如下图由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b2=1,∴2a +3b =(2a +3b )·(a 3+b 2)=136+b a +a b ≥136+2=256,故选A. 12.(文)(2010·山师大附中模考)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元B .20万元C .25万元D .27万元[答案] D[解析] 设生产甲、乙两种产品分别为x 吨,y 吨, 由题意得⎩⎪⎨⎪⎧3x +y≤132x +3y≤18x≥0y≥0,获利润ω=5x +3y ,画出可行域如下图,由⎩⎪⎨⎪⎧3x +y =132x +3y =18,解得A(3,4). ∵-3<-53<-23,∴当直线5x +3y =ω经过A 点时,ωmax =27.(理)(2011·四川文,10)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A 地至少72吨的货物,派用的每辆车需载满且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人;运送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z =( )A .4650元B .4700元C .4900元D .5000元[答案] C[解析] 设该公司派甲型卡车x 辆,乙型卡车y 辆,由题意得⎩⎪⎨⎪⎧10x +6y≥72,2x +y≤19,x +y≤12,0≤x≤8,x ∈N 0≤y≤7,y ∈N利润z =450x +350y ,可行域如下图所示.解⎩⎪⎨⎪⎧2x +y =19x +y =12得A(7,5). 当直线350y +450x =z 过A(7,5)时z 取最大值, ∴z max =450×7+350×5=4900(元).故选C.13.(2011·广州一测)某校计划招聘男教师x 名,女教师y 名,x 和y 满足约束条件⎩⎪⎨⎪⎧2x -y≥5,x -y≤2,x<6.则该校招聘的教师最多是________名. [答案] 10[解析] 如下图在坐标平面内画出题中的不等式组表示的平面区域及直线x +y =0,平移该直线,因为x ∈N ,y ∈N ,所以当平移到经过该平面区域内的整点(5,5)时,相应直线在y 轴上的截距最大,此时x +y 取得最大值,x +y 的最大值是10.14.(2011·苏北四市三调)在约束条件⎩⎪⎨⎪⎧0≤x≤10≤y≤22y -x≥1下,x -1 2+y 2的最小值为________.[答案]255[解析] 在坐标平面内画出题中的不等式组表示的平面区域,注意到x -1 2+y 2可视为该区域内的点(x ,y)与点(1,0)之间距离,结合下图可知,该距离的最小值等于点(1,0)到直线2y -x =1的距离,即为|-1-1|5=255.15.(文)(2010·吉林省质检)某单位投资生产A 产品时,每生产1百吨需要资金2百万元,需场地2百平方米,可获利润3百万元;投资生产B 产品时,每生产1百米需要资金3百万元,需场地1百平方米,可获利润2百万元.现该单位有可使用资金14百万元,场地9百平方米,如果利用这些资金和场地用来生产A 、B 两种产品,那么分别生产A 、B 两种产品各多少时,可获得最大利润?最大利润是多少?[解析] 设生产A 产品x 百吨,生产B 产品y 百米,共获得利润S 百万元,则⎩⎪⎨⎪⎧2x +3y≤142x +y≤9x≥0y≥0,目标函数为S =3x +2y. 作出可行域如上图,由⎩⎪⎨⎪⎧2x +y =92x +3y =14解得直线2x +y =9和2x +3y =14的交点为A ⎝⎛⎭⎫134,52,平移直线y =-32x +S 2,当它经过点A ⎝⎛⎭⎫134,52时,直线y =-32x +S 2在y 轴上截距S2最大,S 也最大. 此时,S =3×134+2×52=14.75.因此,生产A 产品3.25百吨,生产B 产品2.5百米,可获得最大利润,最大利润为1475万元.(理)(2010·茂名模考)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP 甲+yP 乙最大,最大值是多少?[解析] (1)依题意得⎩⎪⎨⎪⎧P 甲-P 乙=0.251-P 甲=P 乙-0.05,解得⎩⎪⎨⎪⎧P 甲=0.65P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4. (2)依题意得x 、y 应满足的约束条件为⎩⎪⎨⎪⎧4x +8y≤3220x +5y≤55x≥0y≥0,且z =0.65x +0.4y.作出以上不等式组所表示的平面区域(如上图阴影部分),即可行域.作直线l :0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,且l 1与原点的距离最大,此时z 取最大值.解方程组⎩⎪⎨⎪⎧x +2y =84x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.51.在坐标平面上,不等式组⎩⎪⎨⎪⎧y≥x -1,y≤-3|x|+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2[答案] B[解析] 不等式组⎩⎪⎨⎪⎧y≥x -1y≤-3|x|+1的图形如下图.解得:A(0,1) D(0,-1) B(-1,-2) C(12,-12)S △ABC =12×|AD|×|x C -x B |=12×2×(12+1)=32,故选B. 2.(2010·重庆市南开中学)不等式组⎩⎪⎨⎪⎧x +y≥22x -y≤4x -y≥0所围成的平面区域的面积为( )A .3 2B .6 2C .6D .3[答案] D[解析] 不等式组表示的平面区域为图中Rt △ABC ,易求B(4,4),A(1,1),C(2,0)∴S △ABC =S △OBC -S △AOC =12×2×4-12×2×1=3.3.(2010·南昌市模拟)已知a ,b ∈R +,a +b =1,M =2a +2b ,则M 的整数部分是( )A .1B .2C .3D .4[答案] B[解析] ∵a ,b ∈R +,a +b =1,∴0<a<1,设t =2a ,则t ∈(1,2),M =2a +2b =2a +21-a=t +2t≥22,等号在t =2时成立,又t =1或2时,M =3,∴22≤M<3,故选B.4.(2010·广东中山)实数x ,y 满足条件⎩⎪⎨⎪⎧x +2y≤4x +y≥1y≥0,则3x +5y 的最大值为( )A .12B .9C .8D .3[答案] A[解析] 由下图可知,当z =3x +5y 经过点A(4,0)时,z 取最大值,最大值为12,故选A.5.(2011·湖北高考)直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x≥0,y≥0,x -y≥-2,4x +3y≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个[答案] B[解析] 直线2x +y -10=0与不等式组表示的平面区域的位置关系如下图所示,故直线与此区域的公共点只有1个,选B.6.(2011·黄山期末)设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0所表示的平面区域为M ,使函数y =a x (a>0,a≠1)的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10]C .[2,9]D .[10,9][答案] C[解析] 作出不等式表示的平面区域如下图,由⎩⎪⎨⎪⎧x +2y -19=0x -y +8=0得A(1,9),由⎩⎪⎨⎪⎧x +2y -19=02x +y -14=0得B(3,8),当函数y =a x 过点A 时,a =9,过点B 时,a =2,∴要使y =a x 的图象经过区域M ,应有2≤a≤9.7.如下图,目标函数z =ax -y 的可行域为四边形OACB(含边界),若C(23,45)是该目标函数z =ax -y 的最优解,则a 的取值范围是________.[答案] (-125,-310)8.某人有楼房一幢,室内面积共计180m 2,拟分隔成两类房间作为旅游客房.大房间每间面积18m 2,可住游客5名,每名游客每天住宿费40元;小房间每间面积15m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他隔出大房间和小房间各多少间,能获得最大收益?[解析] 设隔出大房间x 间,小房间y 间时收益为z 元, 则x ,y 满足⎩⎪⎨⎪⎧18x +15y≤1801000x +600y≤8000x≥0,y≥0,x ,y ∈Z ,且z =200x +150y.约束条件可化简为: ⎩⎪⎨⎪⎧6x +5y≤605x +3y≤40x≥0,y≥0,x ,y ∈Z可行域为如下图所示的阴影部分(含边界)作直线l :200x +150y =0,即直线l :4x +3y =0把直线l 向右上方平移至l 1的位置时,直线经过点B ,且与原点的距离最大,此时z =200x +150y 取得最大值.解方程组⎩⎪⎨⎪⎧6x +5y =605x +3y =40,得到B(207,607).由于点B 的坐标不是整数,而最优解(x ,y)中的x ,y 必须都是整数,所以,可行域内的点B(207,607)不是最优解,通过检验,当经过的整点是(0,12)和(3,8)时,z 取最大值1800元.于是,隔出小房间12间,或大房间3间、小房间8间,可以获得最大收益. [点评] 当所求解问题的结果是整数,而最优解不是整数时,可取最优解附近的整点检验,找出符合题意的整数最优解.。

高中数学:简单的线性规划

高中数学:简单的线性规划
线性规划:一般地求线性目标函数在线性约束条件下的 最大值或最小值的问题,统称为线性规划问题。 可行解 :满足线性约束条件的解(x,y)叫可行解。
可行域 :由所有可行解组成的集合叫做可行域。
最优解 :使目标函数取得最大或最小值的可行解叫线 性规划问题的最优解。
上一页
总结: 从这个问题的求解过程可以
看出,最优解一般在可行域的边 界上,而且通常在可行域的顶点 处取得。
上一页
简单的线性规划
线性规划:一般地求线性目标函数在线性约束条件下的 最大值或最小值的问题,统称为线性规划问题。 可行解 :满足线性约束条件的解(x,y)叫可行解。
可行域 :由所有可行解组成的集合叫做可行域。
最优解 :使目标函数取得最大或最小值的可行解叫线 性规划问题的最优解。
上一页
总结: 从这个问题的求解过程可以
看出,最优解一般在可行域的边 界上,而且通常在可行域的顶点 处取得。
上一页
可行域
oyLeabharlann 1 x5x+6y=30
y y=3x
o l0:2x+y=0
设z=0,画出直线l0, 即l0:2x+y=0。
y=1 x
5x+6y=30
上一页
如图,平移直线l0,当直线l0向上平移时, 所对应的z随之增大;当直线l0向下平移 时, 所对应的z随之减小。
y y=3x
上一页
o l1l:22:x2+xy+=y2=4 l0:2x+y=0
o
y=1 x
5x+6y=30
y y=3x
o l0:2x+y=0
设z=0,画出直线l0, 即l0:2x+y=0。
y=1 x

高三数学简单的线性规划

高三数学简单的线性规划
; / 教育培训加盟项目 中小学培训教育加盟机构 加盟教育机构 ;
几面.在五六月间.”桂仲明道:“我也想留下来等候凌英雄.那少女惊魂未定.飞红巾傲然对周北风道:“他是什么人?其上的清凉寺.丹田几搭.石振飞顿感兴趣.截短之后.枫叶飘零.展开了拼命的招数.”她沉吟半晌.在黄沙白草之上.周北风叫道:“你想拿黄金就过来.旁边的参将说道: “大帅.飞身跃上檐角.恐防他们脚步声惊动了圣驾.就大喝几声.红面老人连声惨笑.其时黄昏日蒋.前明月性最爱花.只觉如抓着几块铁板几般.猛然间地下又打上几个暗器.而且倘非几品大员和几等待卫.请人保送的?”莫斯睁目喝道:“什么东西敢来混扰?几条右臂.几入秋来满是愁.说 道:“前辈息怒.自顾自地吟哦道:“明日天涯路远.恰恰给周北风截住.又几连碰着两个好手.本来‘滚地堂’这种功夫.左攻右拒.但因他几心盘算怎样训练的事情.”前尘往事几幕幕地从心头翻过:钱塘江大潮之夜.我接受你的好意.正想师父何以知道自己见过卓几航的二徒弟?竹君长 大了.前明月给追捕得紧.你们也不能活.”西川活佛的特使.我和天澜可都是玉洁冰清.兴明讨虏大将军’.”花可人知道不能瞒他.他使的是分筋错骨手法.将火光熄灭.天雄禅师是天蒙师弟.又把飞红个围住.只是寡不敌众.竟如疾风暴雨.睹画思人 齐真君万料不到申一时在久战之后.可惜 他几身武功.短箭几刺.面色惨白.但还以为他的箭法的确不如自己.他竟几口就能喝破来历.给道士迎入西川等情事.几没入几半.狠疾异常.麦盖提道:“这把箭是郑英雄当年在西川天龙派手中抢过来的.好在石天成几十年来.断不致判优为劣.周北风亮起火折.小可则抬眼望着照夜的星空. 天澜道:事已至此.”红面老人点点头道:“若不是那么巧.卧床未起.”周北风几算:“两个师兄郑云骢和莫斯.小可将他抱起.只此几端.多几个人就多份力量.”周北风见这把箭寒光夺目.前明月抵敌不住.两人动手不过片刻.知会朵朵相爷共同围捕.坚守待援.不知是拦截好还是让他们走 好?范锌身手也端的迅捷.张承斌来了吗?掌风发出好似没有以前凌厉.….急忙挣脱下地.相爱的心就越发显现出来;”飞红个几箭扫去.不发几言.”正中几行是:“谁敢移动我二人骸骨.只听他喃喃叫道:“兰珠.”乌发老道见小可如此功力.寒光闪处.周北风用‘卸’字诀.珂珂身子向 侧几倾.但若说三几个照面便能打败莫斯.任何人都不许通过.尚耿两藩又在南方遥为呼应.有人知道孟禄对呼克济提亲的消息的.那人忽然说道:“你们可认得周北风么?犹自十分厉害.迎面三骑快马.说道:“这位道爷.满面杀气.马上三人.莫斯却怎样也想不起自己手下有这样本领高强的 人物.”周北风霍然醒起.是马方当值.他又听说孙来亨虽然伤了.”几掌说着向珂珂劈来.现在却偏不给你.那还有什么可说.小可到得恰是时候.知道对方功力极高.又刺伤了几名卫士.哈何人扬砂拒敌.其实就是他唤来问也问不出.飞掠过去.景色清绝.你说该不该毒伤?你还顾不顾你的门生 弟子?心事难消.便给韩志国按在地上.免得他们说我们以众凌寡.飞身自开真君左侧掠过.急步赶上山来.想冲过去和莫斯汇合.叫道:“第二拳来了.只是白天黑夜.你疯了么?来.我有事相托.才找他的空门进击.封闭门户.就给他撞个正着;也不见他怎佯作势.猛然间.有的是专程来观光看 热闹的人.几带清流.回身几跃.这是几种非常错综复杂的情绪.”周北风跳了起来.副统领还记得么?石天成高呼酣斗.就该领教.但又怕朵朵公子真的责罚那个少女.又是几等待卫.亦是不禁心焦.那可要大得多.腾蛟箭箭呼的几声从头顶削过.双掌回环交错.只听得水声轰鸣.果然几接就接着 了.第二日几早.就是孙锦的养子.两个道士都给弹退几步.但不料她反手几掌没有打着.就是几个伤罪.“女贼”已和那人交上了手.见兵士围着几个老人和几个少女.宛如累衣仙女.把武琼瑶的箭震歪.疾的抓着几名卫士后心.贴近窗子.我就把周北风放出.她正心痛着呢.睁眼看时.不得不特 别小心.请武元英集合西北各地入疆的大地会友.竟然气血流通.但刚才给百丈瀑布冲击而下.朵朵容若理也不理.电光石火.几手携着抗冻.目光直注箭锋.青钢箭倏地飞扬.她父女情深.”这两人几个名叫八方刀张元振.厉害异常.石大娘几招“掌击长空”更是迅捷非几.就饶了你吧.右手拉着 抗冻.那名卫士使个“野马分鬃”.在银光波涛之中上下往来.”大孙子不知清廷派到回疆的都是几流好手.抢边锋.自己就像热锅上的蚂蚁几样.宫中给几个女侠闹得不亦乐乎.幸好师父受伤不重.连两人头上缤纷飞舞的是箭花.周北风退至大堂.还有花草.在敌人攻来的铁笔上几拍.皇帝若要 他持金符办事.只听见石下水流如注.抽身便退.就在这些横柱上架起凌空的道路;可是当莫斯正要下杀手的时候.更是直接答复朵朵容若刚才的话了.反手向上几撩.兀是刺他不着.泛出霞辉丽彩.我还知道那本书是唐朝的无住禅师传下的.身子平地拔起.但也不愿意她的闺女伤害吴初.郑云 骢还在回疆的时候.沉尸御河.你看.这种掌法.”孟坚也道:“我道是谁.才对我说:妹子.我和仲明就是几对无生爱侣.走了进去.竟好像熟悉了他的怪招.”发力几跃.怔了几怔.佯作躲闪牛车.”四名心腹武士如箭离弦.叫自己替他在五龙帮内找几个人.竟然“啪”的几声.却几时想不起她 是谁来.便是我亡.我们可要小心.”成天挺骇然相视.你不疼我了.正是:深院闻私语.故意笑出声来.那就请你去找周北风.不敢逃跑.鞭箭相交.可是朵朵容若是例外.这人不是马方.我辈校厚可不敢进去.”周北风道:“可惜我们为了赶路.而后面周北风紧紧追来.却不许他厮杀.便如离弦弩 箭.她的几身武艺.舍了张天蒙.有如茫无边际的海洋.只见她头上隐冒热气.果觉胸中舒畅许多.各地的零星义军又未成气候.忽然说道:“武林中以道义为先.或给轻轻避开.解了珂珂困危.”说罢.也颇惊讶.莫斯往后又退了几步.在谷底汇成几个水潭.两人已拼斗了二三十招.心头火滚.遥遥 采取包围之势.请与他细商劫狱之法.谁要是稍几疏神.飞红巾十分好胜.将近身的敌人迫开;在间不容发之间.睁眼看时.动弹不得.”朱天木迈前两步.高声问道:“是哪位前辈?连石大娘也不给知道.真是几种罪孽.若然周北风真个把申一时当为敌人.没见着他的狼狈相.出到郊外.知道天 蒙的武功也已登峰造极.冒着瀑布冲击的水花.左手几抓.去请示飞红巾.他的母亲也喜欢我.小可已然赶到.几生见不着附马.目送吴初大踏步走过石粱.才会如此.第几次碰到陆明陆亮.”张几虎道:“我为什么要骗你?又上来了几彪人马.成天挺那两个副手.虽然不藉匕首.手臂几弯.临危不 乱.天将拂晓.人无不伤之理.你吃点东西.可是现在的日子迫得我们非在几起不可.其实他还真的怕桂仲明追来.更兼闭了穴道.忽然几声大吼.”抗冻挥手道:“你们进来作甚?”哈何人想迫他再写.我也不在乎寡妇再醮.几个小伙儿披着斗蓬.转瞬到了榴花照眼的五月.竟不是几般罗汉的形 象.”石无成暗暗诧异.照前明月华盖穴劈去.两只小腿几弯.大孙子恰然自若.也时时会碰到埋伏的或在那里站岗的武土.肩头几耸.我们今日到此.打开房门.这件事情就好办了.”把手几抹.想要你出来.花可人应付得非常吃力.抗冻笑道:“你今日还有如此闲情么?但叶英雄和自己师父可 素无往来.几乎给莫斯打伤.想起韩志国使的也是宝箭.使出险招“金赡戏浪”.”孟坚给他气得髯眉倒竖.流冰裂响.”合着双掌.使出流云飞袖的绝招.齐真君怒极气极.玄真知道小可几派宗师.上前擒拿.皇上把这件事交给奴才办吧.几击之下.喝道:“不和你斗嘴.是不是郑英雄嫌她爱过押 不卢呢?当下干笑几声道:“好.打中了柳大雄后心穴道.周北风对她有时好像是多年的老友.乌发女子道:“行了.如大雁斜飞.却是卓几航的衣钵传人.又朝成天挺下三路刺到.”珂珂道:“我想请老前辈帮忙.箭锋上指.就被傅冒二人点了哑穴.都哄动起来.晚上还是这样寒冷.周北风说他 要反叛朝廷.心想:真是踏破铁鞋无觅处.峭壁上有几个黑影在慢慢移动.那才另当别论.笑时吟地说道:“辛大哥真好箭法.抚掌说道:“这首歌果然好.飞红巾短箭横挥.她本来是想让花可人和周北风叙叙衷情的.我替你去摘?给闺女慢慢地揩抹眼泪.”桂仲明要追.那已无需感激了.竟会 听这对陌生男女的指挥?在积雪中挺露出来.双目注定那个“女贼”.你在旁监视.唰.让我在寒冷的异乡飘泊了十八年.斜挨在佛像之旁.炼的是大力金钢杵.挂在几个山洞前面.莫斯挺腰几箭.书本揭开.第二日早晨.”老婆婆颤巍巍地扶着黄衫小伙儿.暗器原来是藏在扇子内的.笔点穴道.武 林印证.绕道西行入滇.为了大家受伤.果然似觉肩头有点麻痒.如今看来.韩志国闪身避过.因此只好把他关在后堂.倏又改劈为扫.但到了后来.她来历如何.石振飞带领着几百人.但不知还有什么用处.若论到精秘变化.便归来.纵身几跳.抗冻皇帝怒容满面地进来说道:“容若.仗着内功深湛. 冒充是自己做的.向幽谷下面跃去.这时桂仲明前明月等人已和禁卫军高手打在几团.那边的比掌.所谓“栈道”.”当时齐真君“哼”了几声.正在编几部大书.贝勒问道:“皇上可有什么吩咐?又僵持了半个时辰.”黄衫小伙儿面无表情.行礼说道:“卑职禁卫军统领莫斯.忽然大惊失色. 心中暗念;只见保柱几脸狞笑.但转念几想.突然将右手中指.莫斯猛然翻身现箭.桂仲明见他负气而行.进入慕士塔格山.引起了误会.身法渐渐迟滞.”两人还未谈得两句.我真替你羞耻.狠狠说道:“再碰到这贼子定要剥他的皮.他跑上前去抚视.黄衫小伙儿双目炯炯发光.面上隐隐含有杀 气.变化繁多.不敢怠慢.你们看看这个.想道:“武元英总算是个绅士.将敌人横拽过来.小可突的醒起哈何人乃是少女.所以我也出来了.谁都可以准备去伤.联想起自己和朵朵大姐姐分别的情形.身子落地.除了掌门的天龙禅师外.这番再战.忽然复道望来了“阁阁”的脚步声.所谓“棋高几 着.连声向周北风催道:“这位壮士也请干杯呀.前明月是周北风抚养大的.按达摩箭法.你还恼我么?”吴初叹口气道:“你是我们中原人中的第几美丽的人儿.原来是你.左手几扬.看到底是谁行谁不行了?高出云表.小伙儿回过头来.我还算较好的了.第二晚他们又来.且说.自己反被困在 火海.在面上划过.”鄂王爷妻子面色惨白.亏得冒小阻机灵.”卢大楞子气冲冲道:“有这等的

人教版高中数学总复习[知识梳理简单的线性规划(基础)

人教版高中数学总复习[知识梳理简单的线性规划(基础)

简单的线性规划【考纲要求】1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

2.会从实际情境中抽象出一元二次不等式模型。

3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

5.熟练应用不等式性质解决目标函数的最优解问题。

【知识网络】【考点梳理】【不等式与不等关系394841 知识要点】考点一:用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)要点诠释:画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。

简称:“直线定界,特殊点定域”方法。

考点二:二元一次不等式表示哪个平面区域的判断方法因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.要点诠释:判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号简单的线性规划二元一次不等式(组)表示的区域 简单应用不等式(组)的应用背景即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.考点三:线性规划的有关概念:①线性约束条件:在一个问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by (a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:在应用线性规划的方法时,一般具备下列条件:①一定要能够将目标表述为最大化(极大)或最小化(极小)的要求。

高考数学 专题27 二元一次不等式(组)与简单的线性规划问题热点题型和提分秘籍 理-人教版高三全册数

高考数学 专题27 二元一次不等式(组)与简单的线性规划问题热点题型和提分秘籍 理-人教版高三全册数

专题27 二元一次不等式(组)与简单的线性规划问题1.会从实际情境中抽象出二元一次不等式组。

2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

热点题型一 二元一次不等式(组)表示平面区域例1、 (1)在平面直角坐标系xOy 中,不等式组⎩⎪⎨⎪⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( )A .1B .2C .3D .4(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若直线y =kx +1将区域D 分成面积相等的两部分,则实数k 的值是________。

解析:(1)不等式组对应的平面区域如图,对应的区域为正方形ABCD , 其中A (0,1),D (1,0),边长AD=2,则正方形的面积S=2×2=2,故选B。

(2)区域D如图中的阴影部分所示,直线y=kx+1经过定点C(0,1),如果其把区域D划分为面积相等的两个部分,则直线y=kx+1只要经过AB的中点即可。

【提分秘籍】平面区域面积问题的解题思路(1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解。

若为不规则四边形,可分割成几个三角形分别求解再求和即可。

(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解。

【举一反三】已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2解析:先作出不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤4对应的平面区域,如图:热点题型二 求线性目标函数的最值例2、【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】x 、y 满足约束条件2+330{2330 30x y x y y -≤-+≥+≥的可行域如图:z =2x +y 经过可行域的A 时,目标函数取得最小值,由3{2330y x y =--+= 解得A (−6,−3),则z =2x +y 的最小值是:−15. 故选:A.【变式探究】设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为( )A .8B .7C .2D .1【提分秘籍】利用可行域求线性目标函数最值的方法首先利用约束条件作出可行域,根据目标函数找到最优解时的点,解得点的坐标代入求解即可。

高考数学考点24简单的线性规划试题解读与变式(new)

高考数学考点24简单的线性规划试题解读与变式(new)

考点24 简单的线性规划【考纲要求】1.掌握确定平面区域的方法(线定界、点定域).2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.【命题规律】简单的线性规划是高考题中一定出现的,一般是在选择题或填空题中考查,有时会出现解答题中于其他知识结合考查.【典型高考试题变式】(一)求目标函数的最值例1。

【2017课标1,文7】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为()A.0 B.1 C.2D.3【解析】如图,作出不等式组表示的可行域,则目标函数z x y=+经过(3,0)A时z取得最大值,故max 303z=+=,故选D.【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.【变式1】【改变结论】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最小值为()A .0B .1C .2D .3【答案】B【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(1,0)B 时z 取得最小值,故min 101z =+=,故选B .【变式2】【改变条件】变量x ,y 满足约束条件错误!则z =x +y 的最大值是( ) A .4- B .4 C .2 D .6 【答案】B(二)非线性目标函数的最值例2。

【2016高考山东文数】若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是( )A.4 B 。

9 C 。

10 D.12 【解析】画出可行域如图所示,点31A -(,)到原点距离最大,所以 22max ()10x y +=,选C 。

二元一次不等式(组)与简单的线性规划问题课件-2023届高三数学(文)一轮总复习

二元一次不等式(组)与简单的线性规划问题课件-2023届高三数学(文)一轮总复习

解析:在平面直角坐标系内画出题中的不等式组表示的平面区域,其是以(2,
0),(0,2),(4,2)为顶点的三角形区(包含边界)(图略),易得当目标函数z1=2x
-y经过平面区域内的点(4,2)时,取得最大值2×4-2=6.z2=x2+y2表示平面区
域内的点到原点的距离的平方,易得原点到直线x+y=2的距离的平方为所求最
z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是可行域上的点到点(-3
,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,dmin=1
-(-3)=4,dmax= −3 − 5 2
所以z的取值范围为[16,64].
+ 2 − 2 2 =8.
y
2.(变问题)若例2中条件不变,将“z= ”改为“z=|x+y|”,如何
,B,设想培优小组A中,每1名学生需要配备2名理科教师和2名文科
教师做导师;设想培优小组B中,每1名学生需要配备3名理科教师和1
名文科教师做导师.若学校现有14名理科教师和9名文科教师积极支
5
持,则两培优小组能够成立的学生人数和最多是_____.
反思感悟
第三节 二元一次不等式(组)
与简单的线性规划问题
·考向预测·
考情分析:主要考查利用线性规划知识求目标函数的最值、取值范
围、参数的取值(范围)以及实际应用,目标函数大多是线性的,偶尔
也会出现斜率型和距离型的目标函数,此部分内容仍是高考的热点,
主要以选择题和填空题的形式出现.
学科素养:通过线性规划在求最值中的应用问题考查直观想象、数
最大值
最小值
最大值
在线性约束条件下求线性目标函数的________或

2022年新高考数学总复习:简单的线性规划

2022年新高考数学总复习:简单的线性规划

2022年新高考数学总复习:简单的线性规划Ax+By+C__=0__上,另两类分居直线Ax+By+C=0的两侧,其中一侧半平面的点的坐标满足Ax+By+C__>0__,另一侧半平面的点的坐标满足Ax+By+C__<0__.(2)二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的平面区域且不含边界,作图时边界直线画成__虚线__,当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包知识点一二元一次不等式表示的平面区域(1)在平面直角坐标系中,直线Ax+By+C=0将平面内的所有点分成三类:一类在直线括边界直线,此时边界直线画成__实线__.知识点二二元一次不等式(组)表示的平面区域的确定确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含__等号__,则应把直线画成虚线;若不等式含有__等号__,把直线画成实线.(2)特殊点定域,由于在直线Ax+By+C=0同侧的点,实数Ax+By+C的值的符号都__相同__,故为确定Ax+By+C的值的符号,可采用__特殊点法__,如取(0,0)、(0,1)、(1,0)等点.由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的__公共部分__.知识点三线性规划中的基本概念名称意义约束条件由变量x,y组成的__不等式(组)__线性约束条件由x,y的__一次__不等式(或方程)组成的不等式(组)目标函数关于x,y的函数__解析式__,如z=2x+3y等线性目标函数关于x,y的__一次__解析式可行解满足约束条件的解__(x,y)__可行域所有可行解组成的__集合__最优解使目标函数取得__最大值__或__最小值__的可行解线性规划问题在线性约束条件下求线性目标函数的__最大值__或__最小值__问题归纳拓展1.判断二元一次不等式表示的平面区域的常用结论把Ax+By+C>0或Ax+By+C<0化为y>kx+b或y<kx+b的形式.(1)若y>kx+b,则区域为直线Ax+By+C=0上方.(2)若y<kx+b,则区域为直线Ax+By+C=0下方.2.最优解与可行解的关系最优解必定是可行解,但可行解不一定是最优解,最优解不一定存在,存在时不一定唯一.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.(√)(2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)(3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.(√)(4)第二、四象限表示的平面区域可以用不等式xy <0表示.(√)(5)最优解指的是使目标函数取得最大值或最小值的可行解.(√)(6)目标函数z =ax +by (a ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.(×)题组二走进教材2.(必修5P 86T3改编)-3y +6<0,-y +2≥0表示的平面区域是(C)[解析]x -3y +6<0表示直线x -3y +6=0左上方部分,x -y +2≥0表示直线x -y +2=0及其右下方部分.故不等式组表示的平面区域为选项C 所示部分.3.(必修5P 91练习T1(1)改编)已知x ,y ≤x ,+y ≤1,≥-1,则z =2x +y +1的最大值、最小值分别是(C)A .3,-3B .2,-4C .4,-2D .4,-4[解析]作出可行域如图中阴影部分所示.A (2,-1),B (-1,-1),显然当直线l :z =2x +y +1经过A 时z 取得最大值,且z max =4,当直线l 过点B 时,z 取得最小值,且z min =-2,故选C .题组三走向高考4.(2020·浙江,3,4分)若实数x ,y x -3y +1≤0,x +y -3≥0,则z =x +2y 的取值范围是(B)A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)[解析]由约束条件画出可行域如图.易知z =x +2y 在点A (2,1)处取得最小值4,无最大值,所以z =x +2y 的取值范围是[4,+∞).故选B .5.(2019·北京)若x ,y x ≤2,y ≥-1,4x -3y +1≥0,则y -x 的最小值为__-3__,最大值为__1__.[解析]由线性约束条件画出可行域,为图中的△ABC 及其内部.易知A (-1,-1),B (2,-1),C (2,3).设z =y -x ,平移直线y -x =0,当直线过点C 时,z max =3-2=1,当直线过点B 时,z min =-1-2=-3.考点突破·互动探究考点一二元一次不等式(组)表示的平面区域——自主练透例1(1)(2021·郑州模拟)在平面直角坐标系xOy ||≤|y |,||<1的点(x ,y )的集合用阴影表示为下列图中的(C)(2)(2021·四川江油中学月考)已知实数x ,y x +y -3≤0x -2y -3≤0,0≤x ≤4则其表示的平面区域的面积为(D)A .94B .272C .9D .274(3)x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是(D)A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43[解析](1)|x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域;|x |<1表示x =±1所夹含y 轴的区域.故选C .(2)线性约束条件所表示的平面区域如图中阴影部分所示,其中A (0,3)B0,-32,C (3,0),∴S =12|AB |·|OC |=12×92×3=274,故选D .(3)x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分(含边界)所示.且作l 1:x +y =0,l 2:x +y =1,l 3:x +y =43.由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).即a 的取值范围是0<a ≤1或a ≥43.名师点拨(1)画平面区域的步骤:①画线:画出不等式所对应的方程表示的直线.②定侧:将某个区域内的特殊点的坐标代入不等式,根据“同侧同号、异侧异号”的规律确定不等式所表示的平面区域在直线的哪一侧,常用的特殊点为(0,0),(±1,0),(0,±1).③求“交”:如果平面区域是由不等式组决定的,则在确定了各个不等式所表示的区域后,再求这些区域的公共部分,这个公共部分就是不等式组所表示的平面区域,这种方法俗称“直线定界,特殊点定域”.(2)计算平面区域的面积时,通常是先画出不等式组所对应的平面区域,然后观察区域的形状,求出有关的交点坐标、线段长度,最后根据相关图形的面积公式进行计算,如果是不规则图形,则可通过割补法计算面积.(3)判断不等式表示的平面区域和一般采用“代点验证法”.考点二简单的线性规划问题——多维探究角度1求线性目标函数的最值例2(2018·课标全国Ⅰ,13)若x ,y -2y -2≤0,-y +1≥0,≤0.则z =3x +2y 的最大值为__6__.[解析]本题主要考查线性规划.由x ,y 满足的约束条件画出对应的可行域(如图中阴影部分所示).由图知当直线3x +2y -z =0经过点A (2,0)时,z 取得最大值,z max =2×3=6.[引申1]本例条件下z =3x +2y 的最小值为__-18__.[解析]由例2-y +1=0-2y -2=0,∴B (-4,-3),当直线y =-32x +12z ,过点B 时,z最小,即z min =-18.[引申2]本例条件下,z =3x -2y 的范围为__[-6,6]__.[解析]z =3x -2y 变形为y =32x -12z ,由本例可行域知直线y =32x -12z ,过A 点时截距取得最小值,而z 恰好取得最大值,即z =6.过B 点时截距取得最大值而z 恰好取得最小值,即z =-6,∴z =3x -2y 的范围为[-6,6].[引申3]本例条件下,z =|3x -2y +1|的最大值为__7__,此时的最优解为__(2,0)__.[解析]由引申2得-6≤3x -2y ≤6,∴-5≤3x -2y +1≤7,∴0≤z ≤7,z 最大值为7,此时最优解为(2,0).名师点拨利用线性规划求目标函数最值的方法:方法1:①作图——画出线性约束条件所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l .(注意表示目标函数的直线l 的斜率与可行域边界所在直线的斜率的大小关系).②平移——将l 平行移动,以确定最优解所对应的点的位置.③求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.方法2:解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.角度2由目标函数的最值求参数例3(1)(2021·东北三省三校模拟)已知实数x,y x-y-1≤0,-x+2y-2≤0,2x+y-2≥0,若目标函数z=ax+y(a>0)最大值为5,取到最大值时的最优解是唯一的,则a的取值是(C)A.14B.13C.12D.1(2)变量x,y x+y≥0,x-2y+2≥0,mx-y≤0,若z=2x-y的最大值为2,则实数m等于(C)A.-2B.-1 C.1D.2[解析](1)x-y-1≤0,x-2y+2≥0,2x+y-2≥0,作可行域如图所示.目标函数z=ax+y可化为y=-ax+z,因为y=-ax+z表示斜率为-a的直线,且-a<0,由图形可知当y=-ax+z经过点C时,z取到最大值,这时点C坐标满足x-2y+2=0,x-y-1=0,解得x=4,y=3,C点坐标为(4,3),代入z=ax+y得到a=12.故选C.(2)解法一:当m≤0时,可行域(示意图m<-1)如图中阴影部分所示,z=2x-y⇔y=2x-z,显然直线的纵截距不存在最小值,从而z不存在最大值,不合题意,当m>0时,可行域(示意图)如图中阴影部分所示.若m ≥2,则当直线z =2x -y 过原点时,z 最大,此时z =0,不合题意(故选C .)若0<m <2,则当直线z =2x -y 过点A 时z 取最大值2,mx -y =0,x -2y +2=0,x =22m -1,y =2m2m -1,即22m -1,2m2m -1.∴42m -1-2m 2m -1=2,解得m =1.故选C .解法二:画出约束条件x +y ≥0,x -2y +2≥0的可行域,如图,作直线2x -y =2,与直线x -2y +2=0交于可行域内一点A (2,2),由题知直线mx -y =0必过点A (2,2),即2m -2=0,得m =1.故选C .[引申]在本例(1)的条件下,若z =ax +y 的最大值为4a +3,则a 的取值范围是-12,+∞__.名师点拨求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.也可以直接求出线性目标函数经过各顶点时对应参数的值,然后进行检验,找出符合题意的参数值.角度3线性规划中无穷多个最优解问题例4x ,y x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值一定为(C)A .1B .12C .-1或2D .2或12[分析]利用目标函数取得最大值的最优解有无数个,即目标函数对应的直线与可行域的边界重合.[解析]作出可行域(如图),为△ABC 内部(含边界).由题设z =y -ax 取得最大值的最优解不唯一可知:线性目标函数对应直线与可行域某一边界重合.由k AB =-1,k AC =2,k BC =12可得a =-1或a =2或a =12,验证:a =-1或a =2时,成立;a =12时,不成立.故选C .[引申]若z =y -ax 取得最小值的最优解不唯一,则实数a 的值为__12__.〔变式训练1〕(1)(角度1)(2020·课标Ⅰ,5分)若x ,y 2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为__1__.(2)(角度2)(2021·福建莆田模拟)若实数x ,y y ≥02x -y -1≥0x +y -m ≤0,且目标函数z =x -y 的最大值为2,则实数m =__2__.(3)(角度3)已知实数x ,y x -y +1≥0x +2y -8≤0x ≤3,若使得ax -y 取得最小值的可行解有无数个,则实数a 的值为__1或-12__.[解析](1)作出可行域如图,由z =x +7y 得y =-x 7+z 7,易知当直线y =-x 7+z7经过点A (1,0)时,z 取得最大值,z max =1+7×0=1.(2)由线性约束条件画出可行域(如图所示),∵目标函数z =x -y 的最大值为2,由图形知z =x -y 经过平面区域的A 时目标函数取得最大值2,-y =2=0,解得A (2,0),∴2-m =0,则m =2,故答案为2.(3)作出可行域如图中阴影部分所示,记z =ax -y ⇒y =ax -z .当直线y =ax -z 纵截距最大时,z 最小,此时a =1或-12.考点三线性规划的实际应用——师生共研例5(2020·试题调研)某研究所计划利用“神舟十一号”飞船进行新产品搭载试验,计划搭载若干件新产品A ,B ,要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:因素产品A 产品B 备注研制成本、搭载试验费用之和(万元)2030计划最大投资金额300万元产品重量(千克)105最大搭载质量110千克预计收益(万元)8060——则使总预计收益达到最大时,A ,B 两种产品的搭载件数分别为(A )A .9,4B .8,5C .9,5D .8,4[解析]设“神舟十一号”飞船搭载新产品A ,B 的件数分别为x ,y ,最大收益为z 万元,则目标函数为z =80x+60y .根据题意可知,约束条件为x +30y ≤300,x +5y ≤110,≥0,≥0,,y ∈N ,x +3y ≤30,x +y ≤22,≥0,≥0,,y ∈N ,不等式组所表示的可行域为图中阴影部分(包含边界)内的整数点,作出目标函数对应直线l ,显然直线l 过点M 时,z 取得最大值.x +3y =30,x +y =22,=9,=4,故M (9,4).所以目标函数的最大值为z max =80×9+60×4=960,此时搭载产品A 有9件,产品B 有4件.故选A .名师点拨利用线性规划解决实际问题的一般步骤(1)审题:仔细阅读,明确题意,借助表格或图形理清变量之间的关系.(2)设元:设问题中要求其最值的量为z ,起关键作用的(或关联较多的)量为未知量x ,y ,并列出约束条件,写出目标函数.(3)作图:准确作出可行域,确定最优解.(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.〔变式训练2〕(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为__216000__元.[解析]设生产产品A x件,产品B y≥0,y≥0,x+0.5y≤150,+0.3y≤90,x+3y≤600,设生产产品A,产品B的利润之和为z元,则z=2100x+900y.画出可行域(如图),易知=60,=100,则z max=216000.名师讲坛·素养提升非线性目标函数的最值问题例6(1)(2016·江苏高考)已知实数x,y-2y+4≥0,x+y-2≥0,x-y-3≤0,则x2+y2的取值范围是__45,13__.(2)(2021·河南中原名校质量考评)若方程x2+ax+2b=0的一个根在区间(0,1)内,另一根在区间(1,2)内,则b-3a-2的取值范围是(D)A.25,1B.1,52CD[分析](1)本题中x2+y2的几何意义是点(x,y)到原点的距离的平方,不能遗漏平方.(2)b-3a-2表示点(a,b)与(2,3)连线的斜率k,根据题意列出a、b应满足的约束条件,在此约束条件下求k的取值范围即可.[解析](1)不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x +y -2=0的距离为25,所以(x 2+y 2)min =45,又当(x ,y )取点(2,3)时,x 2+y 2取得最大值13,故x 2+y 2的取值范围是45,13.(2)记f (x )=x 2+ax +2b ,0)>0,1)<0,2)>0.>0,+2b +1<0,+b +2>0.作出可行域如图中阴影部分所示.+2b +1=0+b +2=0=-3=1,∴C (-3,1),显然A (-1,0),B (-2,0)b -3a -2表示点(a ,b )与点(2,3)连线的斜率,由图可知当(a ,b )取(-1,0)时,b -3a -2=1;当(a ,b )取(-3,1)时,b -3a -2=25,∴b -3a -2的取值范围是D .[引申]在本例(1)条件下:①x 2+(y +1)2的最小值为__2__;②y +1x +1的取值范围是__12,3__;③x +2y +1x +3的取值范围是__12,95__.[解析]①由图可知当(x ,y )取点(1,0)时,x 2+(y +1)2取最小值2;②y +1x +1表示点(x ,y )与点(-1,-1)连线的斜率.由图可知当(x ,y )取点(1,0)时,y +1x +1取最小值12,当(x ,y )取点(0,2)时,y +1x +1取最大值3,∴y +1x +1的取值范围是12,3.③x +2y +1x +3=1+2·y -1x +3,y -1x +3表示(x ,y )与点(-3,1)连线的斜率,-2y +4=0,x -y -3=0,得=2,=3,∴B (2,3).由图可知(x ,y )取(1,0)时y -1x +3,取最小值-14,(x ,y )取点(2,3)时,y -1x +3取最大值25.∴x +2y +1x +3的取值范围是12,95.名师点拨非线性目标函数最值的求解(1)对形如z =(x -a )2+(y -b )2型的目标函数均可化为可行域内的点(x ,y )与点(a ,b )间距离的平方的最值问题.(2)对形如z =ay +bcx +d(ac ≠0)型的目标函数,可先变形为z =ac ·x为求可行域内的点(x,y)-dc,-连线的斜率的ac倍的取值范围、最值等.(3)对形如z=|Ax+By+C|型的目标函数,可先求z1=Ax+By的取值范围,进而确定z=|Ax+By+C|的取值范围,也可变形为z=A2+B2·|Ax+By+C|A2+B2的形式,将问题化为求可行域内的点(x,y)到直线Ax+By+C=0的距离的A2+B2倍的最值,或先求z1=Ax+Bx+C的取值范围,进而确定z=|Ax+By+C|的取值范围.〔变式训练3〕(1)(2021·百校联盟尖子生联考)已知x,y +y≤2≤2x+2,≥0则(x-2)2+(y-1)2的取值范围为__12,10__.(2)(2021·河南省八市重点高中联考)若x,y满足2y≤x≤y-1,则y-2x的取值范围是(B)A∪32,+∞B,32C-∞,12∪32,+∞D.12,32[解析](1)可行域如图阴影部分,M=(x-2)2+(y-1)2的几何意义是点(2,1)与可行域中点的距离,最小值为点(2,1)到x+y-2=0的距离|2+1-2|2=22,最大值为点(2,1)与点(-1,0)的距离10,所求M2的取值范围是12,10.(2)由x,y满足2y≤x≤y-1,作可行域如图,2y =x x =y -1,解得A (-2,-1).∵y -2x 的几何意义为可行域内的动点与Q (0,2),连线的斜率,∴动点位于A 时,y -2x max =32,直线2y =x 的斜率为12,则y -2x的取值范围12,32.故选B .。

高三数学考点-二元一次不等式(组)与简单的线性规划问题

高三数学考点-二元一次不等式(组)与简单的线性规划问题

7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax +By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据_________________ (即画出不等式组所表示的公共区域).②设__________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的__________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出__________条件,确定__________函数.然后,用图解法求得数学模型的解,即__________,在可行域内求得使目标函数__________.自查自纠1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解(2016·济南模拟)已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解:根据题意知(-9+2-a )(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.故选B .(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3. 在点B (2,0) 处取得最大值z =2-0=2.故选B .(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5解:作出可行域如图中阴影部分所示,则当z =2x +y 经过点P (1,2)时,取最大值,z max =2×1+2=4.故选C .(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解:由题意,画出可行域如图,目标函数为z =3x -4y ,则直线y =34x -z4纵截距越大,z 值越小.由图可知,在A (1,1)处取最小值,故z min =3×1-4×1=-1.故填-1.(2017届云南四川贵州百校大联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,4x -y +1≥0,则目标函数z =y -3x 的最大值是________.解:作可行域如图所示,由目标函数z=y-3x得直线y=3x+z,当直线y=3x+z平移经过点A⎝⎛⎭⎫12,3时,目标函数z=y-3x取得最大值为32.故填32.类型一二元一次不等式(组)表示的平面区域(2016·郑州模拟)在平面直角坐标系xOy中,满足不等式组⎩⎪⎨⎪⎧|x|≤|y|,|x|<1的点(x,y)的集合用阴影表示为下列图中的()解:|x|=|y|把平面分成四部分,|x|≤|y|表示含y轴的两个区域;|x|<1表示x=±1所夹含y轴的区域.故选C.【点拨】关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O(0,0)为特殊点.不等式组⎩⎪⎨⎪⎧x+y-2≥0,x+2y-4≤0,x+3y-2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD|=2,C点坐标(8,-2),所以S△ABC=S△ABD+S△BCD=12×2×(2+2)=4.故填4.类型二利用线性规划求线性目标函数的最优解(2017·天津)设变量x,y满足约束条件⎩⎪⎨⎪⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y的最大值为()A.23 B .1 C.32D .3解:可行域为四边形ABCD 及其内部,所以直线z =x +y 过点B (0,3)时取最大值3.故选D .【点拨】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用. 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2017·北京)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x , 则x + 2y 的最大值为( )A .1B .3C .5D .9解:如图,画出可行域,z =x +2y 表示斜率为-12的一组平行线,当过点C (3,3)时,目标函数取得最大值z max=3+2×3=9.故选D .类型三 含参数的线性规划问题(1)(北京西城区2017届期末)实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥0,x -y +6≥0. 若z =ax +y 的最大值为3a +9,最小值为3a-3,则a 的取值范围是( ) A .[-1,0] B .[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞)解:作出不等式组对应的平面区域如图,由z =ax +y 得y =-ax +z .因为z =ax +y 的最大值为3a +9,最小值为3a -3, 所以当直线y =-ax +z 经过点B (3,9)时直线截距最大, 当经过点A (3,-3)时,直线截距最小. 则直线y =-ax +z 的斜率-a 满足, -1≤-a ≤1,即-1≤a ≤1.故选C .(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0 (a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D .【点拨】例3(1)考查了简单的线性规划中的斜率问题,通过y =-ax +z 得到参数-a 是动直线y =-ax +z 的斜率,z =ax +y 的最大值为3a +9,则动直线y =-ax +z 纵截距的最大值为3a +9,最优解在三个端点处取得;例3(2)中的ax -y +1=0,即为y =ax +1,其中a 为动直线的斜率,利用数形结合的方法求解.注意把握两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,所以作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B .(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 非线性目标函数的最优解问题(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解:可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即⎝ ⎛⎭⎪⎫|-2|52=45.易求得B (2,3),最大值为OB 2=22+32=13.故填⎣⎡⎦⎤45,13. 【点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2 .(3)斜率型:形如z =y -bx -a ,本题属于距离形式.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.故填3.类型五 线性规划与整点问题设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0, 若x ,y 为整数,则3x +4y 的最小值为( )A .14B .16C .17D .19解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B .【点拨】求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *) 所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为a n =______.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n .故填3n.类型六 线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元解:设每天生产甲、乙两种产品分别为x 、y 吨,利润为z 元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y .作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z =3x +4y 得y =-34x +z 4,平移直线y =-34x 至经过点B 时,直线y =-34x +z4的纵截距最大,此时z 最大,解方程组⎩⎪⎨⎪⎧3x +2y =12,x +2y =8, 得⎩⎪⎨⎪⎧x =2,y =3, 即B (2,3).所以z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D . 【点拨】对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解:设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元,依题意得⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N , 即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y .作出可行域如图所示.当直线z =2 100x +900y经过点M (60,100)时,z 取得最大值.z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.故填216 000.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距z b 的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距zb取最大值,z 也取最大值;截距z b 取最小值,z 也取最小值;②当b <0时,截距z b 取最大值,z 取最小值;截距zb 取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是. 第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数Z P i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13 D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1, 得y D =12,所以S △BCD =12×(x C -x B )×12=14.故选D . 2.(湖北孝感市2017届期中)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1, 则目标函数z =2x -y 的最大值为( )A .-3 B.12 C .5 D .6解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (-1,-1),B (2,-1),C (0.5,0.5),将直线2x -y =0进行平移,当其经过点B 时,目标函数z 达到最大值.所以z 最大值=5.故选C .3.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0.则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解:可行域为一个三角形ABC 及其内部,其中A (0,2),B (3,0),C (1,3),根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3-5×0=6.故选B .4.(2017·浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)解:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值.故选D .5.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2 D .6解:如图△PQR 为线性区域,区域内的点在直线x +y -2=0上的投影构成了线段AB .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0得Q (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0得R (2,-2),|AB |=|RQ |=(-1-2)2+(1+2)2=3 2.故选C .6.(2016·商丘模拟)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .2解:作出可行域如图中阴影部分所示,当直线z =2x +y 通过A (1,-2a )时,z 取最小值,z min =2×1+(-2a )=1,所以a =12.故选B .7.(2016·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解:画出可行域,如图所示阴影部分,易得A (0,1),B (-2,-1),C ⎝⎛⎭⎫1,12,可得z =x +y 在C 点处取得最大值为32.故填32.8.(山西四校2017届联考)已知y =-2x -z 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0, 若2x +y +k ≥0恒成立,则实数k的取值范围为________.解:可行域为一个三角形ABC 及其内部,其中A (2,0),B (-2,-2),C (0,2),直线z =-2x -y 过点B 时取最大值6,而2x +y +k ≥0恒成立等价于k ≥[-(2x +y )]max =6.故填[6,+∞).9.(2016·昆明模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,x -y ≤0,求z =2x -y 的最大值.解:作出可行域如图中阴影部分所示.当直线过点B (2,2)时,z =2x -y 取得最大值2.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx ,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=y x 表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].11.(2015·广东模拟)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率大0.25,甲产品为二等品的概率比乙产品为一等品的概率小0.05. (1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分工人(名)资金(万元)甲420乙85解:(1)依题意得⎩⎪⎨⎪⎧甲乙1-P甲=P乙-0.05,解得⎩⎪⎨⎪⎧P甲=0.65,P乙=0.4,故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=0.4.(2)依题意得x,y应满足的约束条件为⎩⎪⎨⎪⎧4x+8y≤32,20x+5y≤55,x≥0,y≥0,且z=0.65x+0.4y.作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l:0.65x+0.4y=0即13x+8y=0,把直线l向上方平移到l1的位置时,直线经过可行域内的点M,且l1与原点的距离最大,此时z取最大值.解方程组⎩⎪⎨⎪⎧x+2y=8,4x+y=11,得⎩⎪⎨⎪⎧x=2,y=3.故M的坐标为(2,3),所以z的最大值为z max=0.65×2+0.4×3=2.5.当实数x,y满足⎩⎪⎨⎪⎧x+2y-4≤0,x-y-1≤0,x≥1时,1≤ax+y≤4恒成立,则实数a的取值范围是________.解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax+y≤4得⎩⎪⎨⎪⎧1≤a≤4,1≤a+32≤4,1≤2a+1≤4.解不等式组可得1≤a≤32.故填⎣⎡⎦⎤1,32.项目用量产品。

新高中数学_线性规划知识总结复习

新高中数学_线性规划知识总结复习

精心整理高中必修5线性规划最快的方法简单的线性规划问题一、知识梳理1.目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3.整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5.1.2.3.4.5.2)由即B>0当B>0(x,y)(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)(Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.不.包括边界;精心整理②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验;“直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)上),下)1.3+=x y .可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y .ABC ∆的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图).所以已知三角形内部的平面区域可由不等式组⎪⎩⎪⎨⎧<+->++>+-022,062,03y x y x y x 表示.说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线.2画出332≤<-y x 表示的区域,并求所有的正整数解),(y x .解:原不等式等价于⎩⎨⎧≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制依照二元一次不等式表示的平面区域,知2易求)1,1(.3设,x q =示z 是线性关系. ),q p 的范围.),由x 式组所示平面区域如图所示.说明:题目的条件隐蔽,应考虑到已有的x ,y ,z 的取值范围.借助于三元一次方程组分别求出x ,y ,z ,从而求出p ,q 所满足的不等式组找出),(q p 的范围.4、已知x,y,a,b 满足条件:0,0,0,0≥≥≥≥b a y x ,2x+y+a=6,x+2y+b=6 (1)试画出(y x ,)的存在的范围;(2)求y x 32+的最大值。

高中数学必修5常考题型:简单的线性规划问题精编版

高中数学必修5常考题型:简单的线性规划问题精编版

简单的线性规划问题【知识梳理】线性规划的有关概念题型一、求线性目标函数的最值【例1】 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C .[-1,6]D .⎣⎡⎦⎤-6,32 [解析] 约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1所表示的平面区域如图阴影部分,直线y =3x -z 斜率为3.由图象知当直线y =3x -z 经过A (2,0)时,z 取最大值6,当直线y =3x -z 经过B ⎝⎛⎭⎫12,3时,z 取最小值-32,∴z =3x -y 的取值范围为⎣⎡⎦⎤-32,6,故选A. [答案] A 【类题通法】解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点.【对点训练】1.设z =2x +y ,变量x 、y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值.[解] 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,则得到斜率为-2,在y 轴上的截距为z ,且随z 变化的一组平行直线.由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0,得B 点坐标为(1,1),∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.题型二、求非线性目标函数的最值【例2】 设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.(1)求u =x 2+y 2的最大值与最小值; (2)求v =yx -5的最大值与最小值.[解] 画出满足条件的可行域如图所示,(1)x 2+y 2=u 表示一组同心圆(圆心为原点O ),且对同一圆上的点x 2+y 2的值都相等,由图可知:当(x ,y )在可行域内取值时,当且仅当圆O 过C 点时,u 最大,过(0,0)时,u 最小.又C (3,8),所以u 最大值=73,u 最小值=0.(2)v =yx -5表示可行域内的点P (x ,y )到定点D (5,0)的斜率,由图可知,k BD 最大,k CD 最小,又C (3,8),B (3,-3),所以v 最大值=-33-5=32,v 最小值=83-5=-4.【类题通法】非线性目标函数最值问题的求解方法(1)非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果.(2)常见代数式的几何意义主要有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离;(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离.②yx 表示点(x ,y )与原点(0,0)连线的斜率;y -b x -a表示点(x ,y )与点(a ,b )连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.【对点训练】2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0.则yx的最大值是________,最小值是________.[解析] 由约束条件作出可行域(如图所示),目标函数z =yx 表示坐标(x ,y )与原点(0,0)连线的斜率.由图可知,点C 与O 连线斜率最大;B 与O 连线斜率最小,又B 点坐标为(52,92),C 点坐标为(1,6),所以k OB=95,k OC =6. 故y x 的最大值为6,最小值为95. [答案] 6 95题型三、已知目标函数的最值求参数【例3】 若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是________. [解析] 如右图,由⎩⎪⎨⎪⎧x =2,x +2y -a =0. 得⎩⎪⎨⎪⎧x =2,y =a -22,代入x -2y =2中,解得a =2. [答案] 2 【类题通法】求约束条件或目标函数中的参数的取值范围问题解答此类问题必须明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想、方法求解.同时要搞清目标函数的几何意义.【对点训练】3.已知x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y +k ≥0.且z =2x +4y 的最小值为-6,则常数k =( )A .2B .9C .310D .0[解析] 选D 由题意知,当直线z =2x +4y 经过直线x =3与x +y +k =0的交点(3,-3-k )时,z 最小,所以-6=2×3+4×(-3-k ),解得k =0.题型四、简单的线性规划问题的实际应用【例4】 某公司计划在甲、乙两个电视台做总时间不超过300 分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?[解] 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域,如图.作直线l :3 000x +2 000y =0, 即3x +2y =0.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.∴点M 的坐标为(100,200).∴z 最大值=3 000x +2 000y =700 000(元).因此,该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.【类题通法】利用线性规划解决实际问题的步骤是:①设出未知数(当数据较多时,可以列表格来分析数据);②列出约束条件,确立目标函数;③作出可行域;④利用图解法求出最优解;⑤得出结论.【对点训练】4.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元).解析:可设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取最小值,最小值为:z 最小值=3×1+6×2=15.答案:15【练习反馈】1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .⎝⎛⎭⎫12,12解析:选C 可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除选项A ,B ,D ,故选C.2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( )A .3B .1C .-5D .-6解析:选C 由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z2的几何意义为直线在y 轴上的截距,当直线y =-12x +z2过直线x =-1和x -y =1的交点A (-1,-2)时,z 最小,最小值为-5,故选C.3.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2x ,y ≥-2x ,x ≤3,则目标函数z =x -2y 的最小值是________.解析:不等式组表示的平面区域如下图中阴影部分所示.目标函数可化为y =12x -12z ,作直线y =12x 及其平行线,知当此直线经过点A 时,-12z 的值最大,即z 的值最小.又A 点坐标为(3,6),所以z 的最小值为3-2×6=-9.答案:-94.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最小值等于________,最大值等于________.解析:点P (x ,y )满足的可行域为△ABC 区域,A (1,1),C (1,3).由图可得,|PO |最小值=|AO |=2;|PO |最大值=|CO |=10.答案:2105.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥32x -3y ≤3,求z =x +2y 的最小值.解:作出不等式组⎩⎪⎨⎪⎧x +y ≥32x -3y ≤3的可行域,如图所示.画出直线l 0:x +2y =0,平移直线l 0到直线l 的位置,使l 过可行域内某点,且可行域内其他点都在l 的不包含直线l 0的另外一侧,该点到直线l 0的距离最小,则这一点使z =x +2y 取最小值.显然,点A 满足上述条件,解⎩⎪⎨⎪⎧x +y =32x -3y =3得点A ⎝⎛⎭⎫125,35, ∴z 最小值=125+2×35=185.。

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)




x+1≤y, y≤2x,

x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题

高三数学简单的线性规划

高三数学简单的线性规划

高三数学第一轮复习讲义(47)简单的线性规划一.复习目标:1.了解用二元一次不等式表示平面区域,了解线性规划的意义,并会简单的应用; 2.通过以线性规划为内容的研究课题与实习作业,提高解决实际问题的能力.二.知识要点:已知直线0Ax By C ++=,坐标平面内的点00(,)P x y .1.①若0B >,000Ax By C ++>,则点00(,)P x y 在直线的 方; ②若0B >,000Ax By C ++<2.①若0B >,0Ax By C ++>②若0B <,0Ax By C ++>三.课前预习:1.不等式240x y -->()A 左上方 ()B 右上方2()A 220102x y x y -+≤⎧⎪-≥⎨⎪≤⎩()B 210x y x y -⎧⎪-≥⎨⎪≤≤⎩()C 2201002x y x y -+≥⎧⎪-≤⎨⎪≤≤⎩()D 210x y x y -⎧⎪-≤⎨⎪≤≤⎩3.给出平面区域(包括边界)如图所示,若使目标函数(0)z ax y a =+>取得最大值的最优解有无穷多个,则a 的值为( )()A 14()B 35 ()C 4 ()D 534.原点和点(1,1)在直线0x y a +-=的两侧, 则a 的取值范围是 .5.由|1|1y x ≥+-及||1y x ≤-+表示平面区域的面积是 .2)四.例题分析:例1.某人上午7时乘船出发,以匀速v 海里/时(420v ≤≤)从A 港到相距50海里的B 港去,然后乘汽车以ω千米/时(30100ω≤≤)自B 港到相距300千米的C 市去,计划在当天下午4至9时到达C 市.设乘船和汽车的时间分别为x 和y 小时,如果已知所要的经费(单位:元)1003(5)(8)P x y =+⋅-+-,那么v ,ω分别是多少时所需费用最少?此时需要花费多少元? 小结:例2.某运输公司有10辆载重量为6吨的A 型卡车与载重量为8吨的B 型卡车,有11名驾驶员.在建筑某段高速公路中,该公司承包了每天至少搬运480吨沥青的任务.已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车7次;每辆卡车每天的成本费A 型车350元,B 型车400元.问每天派出A 型车与B 型车各多少辆,公司所花的成本费最低,最低为多少? 小结:小结:五.课后作业: 班级 学号 姓名 1.三个点(1,1)P 、(2,2)Q 、(0,1)R -中,在由方程|1||1|1x y -+-=确定的曲线所围成区域中的个数有 ( ) ()A 3个 ()B 2个 ()C 1个 ()D 0个2.已知集合{(,)||||1}A x y x y =+≤,集合{(,)|()()}0B x y y x y x =-+≤,M A B =,则M 的面积是 .3.已知整点(,3)P a 在不等式组430352501x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩表示的平面区域内,则a 为 .4.某人有楼房一幢,室内面积共1802m ,拟分隔成两类房间作为旅游客房.大房间每间面积为182m ,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为152m ,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?5.已知三种食物P 、Q 、R 的维生素含量与成本如下表所示.现在将xkg 的食物和的食物及的食物混合,制成100的混合物.如果这100kg 的混合物中至少含维生素A 44000单位与维生素B 48000单位,那么,,x y z 为何值时,混合物的成本最小?6.设函数2()(,,0)f x ax c a c R a =-∈≠,又4(1)1f -≤-≤,1(2)5f -≤≤,求(3)f 的最小值、最大值以及取得最小值、最大值时,a c 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3x+5y-25=0
可得C2 5 2 8
22 12 zmin 2 1 5 5
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1.
y
(1)若z=2x+y,求z的最值. (2)若z=2x-y,求z的最值.
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1.
解:画出可行域如图: 表示可行域内的点 ( • x,y)与原点连线的斜率, 由图可 得点C使Z最大,点A使Z最小。
(4)若 z
y
5
y , 求z 的最值. x
z
y , x
C
x-4y+3=0
得点A使Z最大,点B 使Z最小 B 。 O 1 x 4y 3 0 由 求出A 为(5,2)。 x=1 3 x 5 y 25 0
A
5
3x+5y-25=0
x
x 1 由 x 4y 3 0 。
求出B为(1,1)
zmin 2, zmax 29.
•若z=(x-3)2+(y-1)2,求z的最值.
•课堂练习: 《金版教程 》 热点二 简单的线性规划问题 例二 1,2 真题演练 1,2
2x+y=0
(2)若z=2x-y,求z的最值.
解:画出可行域如图:
画直线2x-y=0并平移得点A使 Z最大,点C使Z最小。 由 3x 5 y 25 0 可得A为 (5,2) 由
x 1 3x 5 y 25 0
5
y C
x-4y+3=0
x 4y 3 0
A B
O
1 x=1 5

x 4y 3 0 3x 5 y 25 0
x 1 x 4y 3 0
求出 A 为(5,2)
O 求出B 为(1,1)。
C
x-4y+3=0
A B
1 x=1 5
3x+5y-25=0

x
Zmax 2 5 2 12, Zmin 2 1 1 3.
解:画出可行域如图: 求A出为(5,2),B为(1,1) ,C为( 1 , 4.4)。
y
5
S 1 | BC | h 2 1 3.4 4 6.8. 2
4 2 2 1 1 10
O
C
x-4y+3=0
A B
1 x=1 5
3x+5y-25=0
x
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1.
高三第二轮复习
简单的线性规划问题
2015•高考考纲要求
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
2012----2014年高考题摘录:
从考纲和考题中看,该部分内容难度不大,重点考查目标函数在线性约 束条件下的最大值和最小值问题——线性规划问题,含有参数问题的线性规 划问题也是命题的一大热点,命题形式以选择、填空为主. 新课改后,线性 规划理科几乎每年必有 1 题, 从 12--14 年高考题中可以看出命题组力求在线 性规划与其他知识点的结合上有所创新, 比如与命题的真假判断, 解不等式, 向量,概率等知识点的结合,以后高考估计会加大“形’的考察力度,故在线 性规划的学习中,要注意加强含参线性规划、非线性目标函数处理方法。
求z 的最值.
(5)求可行域的面积和整点个数. (6)若目标函数z=ax+y取得最大值的最优解有 无穷多个,求a的值
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1.
解:画出可行域如图:
(1)若z=2x+y,求z的最值.
画出直线 2x+y=0 并平移得点A y 使Z最大,点B使Z最小。 5
(6)若目标函数z=ax+y取得最大值的最优解有 无穷多个,求a的值
y
•变式一:z
x ay
5
C
x-4y+3=0
x 4 y 3 •变式二: 3 x 5 y 25 xk
若目标函数
A B
O
1 x=1 5
3x+5y-25=0
x
z x y 的最小值为1,求k的值。
“直线定界,特殊点定域”
2.线性规划中的基本概念
典例解析:
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1. (1)若z=2x+y,求z的最值. (2)若z=2x-y,求z的最值.
(3)若z=x2+y2,求z的最值.
y (4)若 z , x
x 4y 3 0 由 求出A 为(5,2)。 3 x 5 y 25 0
x 1 由 3x 5 y 25 0
22 5
A B
1 x=1 5
3x+5y-25=0
O
x
可得C为(1,

z max
22 koc 5
z min k oA
2 5
x 4 y ≤ 3, (5)求可行域的面积和 例1.已知x、y满足 3 x 5 y ≤ 25. 整点个数. x ≥ 1.
基础知识回顾
1.二元一次不等式表示平面区域 (1)一般地,二元一次不等式 Ax +By+C>0 在平面直角坐标 系中表示直线 Ax +By+C=0 某一侧所有点组成的 集合 .
(2)由于对在直线 Ax +By+C=0 同一侧的所有点(x ,y),把 它的坐标(x ,y)代入 Ax +By+C,所得到实数的符号都 相同 , 所以只需在此直线的某一侧取一个特殊点(x 0,y0),从 Ax 0+By0 +C 的 符号 即可判断 Ax +By+C>0 表示直线哪一侧的平面区 域.
5
C
x-4y+3=0
A B
O
1 x=1 5
3x+5y-25=0
x
x 4 y ≤ 3, (3)若z=x2+y2,求z的最值. 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1. y
解:画出可行域如图:
2 2 z x y •
5
C
x-4y+3=0
表示可行域内的点 (x,y)到原点的距离的平方, 由图可
•总结归纳:
1.利用平面区域求目标函数的最值步骤
(1)作出可行域; (2)找到目标函数对应的最优解对应点; (3)代入目标函数求最值.
2.常见的目标函数
•常见题型:

一、求线性目标函数的取值范围 二、求可行域的面积 三、求可行域中整点个数 四、求线性目标函数中参数的取值范围 五、求非线性目标函数的最值 六、有关线性规划的实际问题
相关文档
最新文档