第六章平行四边形复习

合集下载

“第六章 平行四边形”素养提升(1)

“第六章  平行四边形”素养提升(1)

“第六章平行四边形”素养提升(满分:120分,时间:90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.四边形的外角和为A.180°B.360°C.540°D.720°2.一个多边形,从它的一个顶点最多可引6条对角线,那么这个多边形的边数是A.11 B.10 C.8 D.93.平行四边形的周长为10cm,其中一边长为3cm,则它的邻边长为A.2 cm B.3cm C.4cm D.7cm4.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC,BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形5.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是A.1:2:2:1 B.1:2:1:2 C.1:2:3:4 D.1:1:2:26.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使C到A,B 两点均可直接到达,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为A.3300 m B.2200 m C.1100 m D.550 m7.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为A.5cmB.4cmC.3cmD.不能确定8.如图,在四边形ABCD中,对角线AC,BD相交于点O.下列条件不能判定四边形ABCD为平行四边形的是A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AB=CD,AD=BC D.AB∥CD,AD=BC9.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3是外角,则∠1+∠2+∠3等于A.100°B.180°C.210°D.270°10.如图,在四边形ABCD中,点E,F分别是边AB,AD的中点,BC=10,CD=6,EF=4,∠AFE=52°,则∠ADC的度数为A.140°B.142°C.150°D.152°二、填空题(本大题共5小题,每小题3分,共15分)11.七边形的内角和为.12.如图给出了四边形的部分数据,再添加一条线段长为9的条件,可得此四边形是平行四边形,则这条线段是.(填序号)13.如图,在□ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的度数为.14.如图,在□ABCD中,AC,BD交于点O,BC=10,BD=14,AC=8,则△BOC的周长是.15.如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以PA,PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.若一个多边形的内角和的1比它的外角和多90°,那么这个多边形的边数是多少?417.如图,点E,F为▱ABCD的对角线BD上的两点,连接AE,CF,∠AEB=∠CFD.求证:AE=CF.18.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.求证:四边形ADEF是平行四边形.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,△ABC中,BC=20,AC=14,CE平分∠ACB,AE⊥CE,延长AE交BC于点F,D是AB的中点,求DE的长.20.如图所示,△ABC与△A′B′C′关于点O中心对称,但点O不慎被涂掉了.(1)请你找到对称中心O的位置;(2)连接线段BC′和线段B′C,试判断四边形BC′B′C的形状,并说明理由.21.小创做了一个数学实验,他先剪出一个长方形纸片,记为四边形ABCD,然后再剪去一个角,则剩下的多边形的内角和是多少度?五、解答题(三)(本大题共2小题,每小题12分,共24分)22.如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF.(1)求证:四边形ABDF是平行四边形;(2)若∠BDF=90°,AD=10,DF=6,求四边形BCDE的面积.23.如图,点E为平行四边形ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)求证:四边形AFHD为平行四边形;(2)连接EH,交BC于点O,若OB=OE,FG=8,直接写出OH的长度.“第六章平行四边形”素养提升参考答案一、1~5.BDAAB;6~10.BBDBB.二、11.900°.12.④.13.120°. 14.21.15.6.三、16.这个多边形的边数是12.17.根据AAS证明△ABE≌△CDF,∴AE=CF.18.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∵DE∥AB,∴∠ABD=∠BDE.∴∠DBE=∠BDE,∴BE=DE.∵BE=AF,∴AF=DE.∴四边形ADEF是平行四边形.四、19.根据ASA证明△ACE≌△FCE,∴AE=EF,FC=AC=14.∴BF=BC-FC=6.又D是AB的中点,∴AD=BD.∴DE是△ABF的中位线,∴DE=12BF=3.20.(1)如图,连接CC′,BB′交于O,则点O即为对称中心的位置.(2)四边形BC′B′C是平行四边形.理由:∵△ABC与△A′B′C′关于点O中心对称,∴OC=OC′,OB=OB′,∴四边形BC′B′C是平行四边形.21.若剪去一个角剩下的是三角形,此时其内角和为180°;若剪去一个角剩下的是四边形,此时(4-2)×180°=360°;若剪去一个角剩下的是五边形,此时(5-2)×180°=540°.综上,剩下的多边形的内角和是180°或360°或540°.五、22.(1)∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE. ∵点E是AD的中点,∴AE=DE.在△BEA和△FED中,{∠BAE=∠FDE,AE=DE,∠BEA=∠FED,∴△BEA ≌△FED (ASA ),∴EF=EB.又AE=DE ,∴四边形ABDF 是平行四边形. (2)易得BD =√BF 2−DF 2=√102−62=8, ∴S 四边形ABDF =DF ⋅BD=6×8=48,∴S △BED =14S 四边形ABDF =12. ∵四边形ABCD 是平行四边形,∴CD=AB=6, ∴S △BCD =12BD ⋅CD =12×8×6=24.∴S 四边形BCDE =S △BED +S △BCD =12+24=36.23.(1)∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∠BAE=∠BCD.∵BF=BE ,CG=CE ,∴BC 是△EFG 的中位线,∴BC ∥FG ,BC=12FG. ∵H 为FG 的中点,∴FH=12FG. ∴BC ∥FH ,BC=FH ,∴AD ∥FH ,AD=FH ,∴四边形AFHD 是平行四边形.(2)如图,连接BH ,EH ,CH.∵CE=CG ,FH=HG ,∴CH=12EF ,CH ∥EF.∵EB=BF=12EF ,∴BE=CH ,∴四边形EBHC 是平行四边形,∴OB=OC ,OE=OH.∵OB=OE ,∴OE=OH=OB=OC=12BC.又BC=12FG=12×8=4,∴OH=2.。

第6章 平行四边形(强化篇) (解析版)

第6章 平行四边形(强化篇) (解析版)

2020—2021八年级下学期专项冲刺卷(北师大版)第6章平行四边形(强化篇)姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,∠C=90°,AC=6,BC=8,若以A,B,C,D为顶点的四边形是平行四边形,则此平行四边形的周长为()A.28或32 B.28或36 C.32或36 D.28或32或36【答案】D【分析】由勾股定理可求AB=10,分别以AC,BC为边,AC,AB为边,AB,BC为边三种情况讨论可求解.【详解】∵∠C=90°,AC=6,BC=8,∴10AB=,⨯+=,若以AC,BC为边,则平行四边形的周长=2(AC+BC)=2(68)28⨯+=,若以AC,AB为边,则平行四边形的周长=2(AC+AB)=2(610)32⨯+=,若以AB,BC为边,则平行四边形的周长=2(AB+BC)=2(108)36故选:D.【点睛】本题考查了平行四边形的判定与性质,利用分类讨论思想解决问题是解本题的关键.2.若一个多边形的每一个外角都是40°,则这个多边形的内角的度数是()A.1080°B.1440°C.1260°D.1080°【答案】C【解析】分析:由一个多边形的每个外角都等于40°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.详解:设多边形的边数为n,∵多边形的每个外角都等于40°,∴n=360÷40=9,∴这个多边形的内角和=(9-2)×180°=1260°.故选C.点睛:本题考查了n边形的内角和定理:n边形的内角和=(n-2)•180°;也考查了n边形的外角和为360°.3.如图,以正六边形ABCDEF的对角线BD为边,向右作等边三角形BDG,若四边形BCDG的面积为4,则五边形ABCDEF的面积为()A.6 B.8 C.10 D.12【答案】C【分析】连接GC并延长交BD于点H,连接AE,根据正六边形和等边三角形的性质可得,△BCG≌△DCG,△GBC≌△DBC,所以得S△BCG=S△DCG=S△BCD=2,S△AEF=2,进而可得五边形ABDEF的面积.【详解】解:如图,连接GC并延长交BD于点H,连接AE,∵ABCDEF正六边形,∴AB=BC=CD=DE=EF=AF ,∠F=∠FAB=∠ABC=∠BCD=∠CDE=∠DEF=120°,∵△BDG 是等边三角形,∴BG=DG=BD又CG=CG ,∴△BCG ≌△DCG (SSS ),∵∠GBC=∠DBC=30°,∴△GBC ≌△DBC (SAS ),∴S △BCG =S △DCG =S △BCD =2,∴S △AEF =2,设CH=x ,则BC=CG=2x ,BH=3x , ∴BD=23x ,∴12CG•BH=2, 即12×2x×3x =2, ∴232x =,∴S 四边形ABDE =AB•BD=2x•23x =423x =8,∴五边形ABDEF 的面积为:2+8=10.故选:C .【点睛】本题考查了正多边形和圆、等边三角形的性质,解决本题的关键是掌握正多边形和圆的性质. 4.如图,平行四边形的两条对角线将平行四边形的面积分成四部分,分别记作S 1,S 2,S 3,S 4,下列关系式成立的是( )A .1234S S S S <<<B .1234S S S S ===C .1234S S S S +>+D .1324S S S S =<=【答案】B【解析】【分析】 由平行四边形的性质得出OA=OC ,OB=OD ,即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∴S 1=S 2=S 3=S 4,故选B .【点睛】此题主要考查了平行四边形的性质,三角形的面积;熟练掌握平行四边形的性质是解决问题的关键.5.如图,过正五边形ABCDE 的顶点A 作直线l ∥BE ,则∠1的度数为A .30°B .36°C .38°D .45°【答案】B【解析】 试题分析:∵ABCDE 是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°.∵AB=AE ,∴∠AEB=(180°﹣108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB=36°.故选B .6.如图,△ABC 中,AB =AC ,DE 垂直平分AC ,若△BCD 的周长是14,BC =6,则AC 的长是( )A .6B .8C .10D .14【答案】B【分析】 先根据线段垂直平分线的性质得出AD =CD ,再根据等腰三角形的性质解答即可.【详解】解:∵DE 垂直平分AC ,∴AD =CD .∵△BCD 的周长是14,BC =6,∴AB =BD+CD =14﹣6=8,∵AB =AC ,∴AC =8.故答案为B .【点睛】本题考查了线段的垂直平分线的性质,掌握垂直平分线上的点到线段两端点距离相等的性质是解答本题的关键.7.如图,已知点B 、C 、D 在同一条直线上,ABC 和CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G ,AD 交BE 于O 点.则下列结论中不一定正确的是( )A .AD=BEB .CO 平分∠BODC .BE ⊥ACD .FG ∥BC【答案】C【解析】 ∠BCA +∠ACE =∠DCE +∠ACE ,,,BCE ACD ∠∠∴=AC=BC ,CE=CD ,BCE ACD ∴≅,所以AD=BE ,A 正确.过C ,作CH,CI 分别垂直BE,AD, BCE ACD ≅所以CH=CI ,所以CO 平分∠BOD.B 正确.证明由BCE ACD ,∴≅∴∠CAD =∠FBC,BC=AC, ,BCF ABG ∴≅∠ACF=60°,∴∠ABG=∠ACB,是等边三角形,易得,FG ∥BC ,D 正确. 所以选C8.如图,直线EF 过平行四边形ABCD 对角线的交点O ,分别交AB 、CD 于E 、F ,那么阴影部分的面积是平行四边形ABCD 面积的()A .15B .14C .13D .310【答案】B【分析】由平行四边形的性质得到OA=OC ,OB=OD ,AB ∥DC ,证出△AOE 和△COF 全等,△AOB 和△COD 全等,得到面积相等,即可得到选项.【详解】∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AB ∥DC ,∴∠EAO=∠FCO在△△AOE 和△COF 中OA OC OB ODEAO FCO =⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF ,∴S △AOE =S △COF ,在△COB 和△AOD 中OA OC OB ODAOD COB =⎧⎪=⎨⎪∠=∠⎩∴△COB ≌△AOD ,∴S △AOD =S △BOC ,同理S △AOB =S △DOC∵OB=OD ,∴S △AOB =S △DOC ,∴阴影部分的面积是S △AOE +S △DOF =S △DOC=14S 平行四边形ABCD . 故选:B .【点睛】本题主要考查了平行四边形的性质,全等三角形的性质和判定等知识点,解此题的关键是证明两个三角形全等.9.如图,在平行四边形ABCD 中,EF 过两条对角线的交点O ,若1,7,3AB BC OE ===则四边形EFCD 的周长是( )A .17B .14C .11D .10【答案】B【分析】 由在平行四边形ABCD 中,EF 过两条对角线的交点O ,易证得AOE COF ∆≅∆,则可得DE CF AD ,26EF O E ,继而求得四边形EFCD 的周长.【详解】解:四边形ABCD 是平行四边形,//AD BC ∴,OA OC =,1CD AB ==,7AD BC ==EAO FCO ∴∠=∠,在AOE ∆和COF ∆中,EAO FCO OA OCAOE COF ∠=∠=∠=∠⎧⎪⎨⎪⎩, ()AOE COF ASA ∴∆≅∆,AE CF ∴=,3OE OF ==,6EF ∴=,∴四边形EFCD 的周长是:17614CD D E EF CF CD D E AE EF CD AD EF ,故选:B .【点睛】题考查了平行四边形的性质以及全等三角形的判定与性质,熟悉相关性质是解题的关键. 10.如果一个多边形的每个内角都为150°,那么这个多边形的边数是( )A .6B .11C .12D .18【答案】C【分析】根据多边形的内角和定理:180°•(n-2)求解即可.【详解】由题意可得:180°⋅(n−2)=150°⋅n , 解得n=12.所以多边形是12边形,故选C.【点睛】此题考查多边形内角(和)与外角(和),掌握运算公式是解题关键11.一个多边形内角和是外角和的2倍,它是( )A .五边形B .六边形C .七边形D .八边形 【答案】B【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×360°解得:n=6.故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.12.已知一个直角三角形的两边长分别为3和5,则第三边长为( )A.4 B.4或34 C.16或34 D.4或34【答案】D【解析】解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则x= ;②当5是此直角三角形的直角边时,设另一直角边为x,则x= .故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=13 CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为______________.【答案】6根据直角三角形斜边上的中线等于斜边的一半即可求出CD的长,结合已知条件即可求出DF的长,然后根据三角形中位线的性质即可求出结论.【详解】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AD=12AB=92∵CF=13CD∴CF=3 2∴DF=CD-CF=3∵BE∥DC,点D为AB的中点∴DF为△ABE的中位线∴BE=2DF=6故答案为:6.【点睛】此题考查的是直角三角形的性质和三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半和三角形中位线的性质是解决此题的关键.14.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.【答案】32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.15.如图,已知直线l∥AB,l与AB 之间的距离为2 ,C、D 是直线l上两个动点(点C在D 点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC 沿BC 折叠得到△A′BC.若以A′、C、B、D 为顶点的四边形为矩形,则此矩形相邻两边之和为____.【答案】57【解析】【分析】根据平行四边形的判定方法可得到四边形ABCD为平行四边形,当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=5,则S矩形A′CBD=10,根据勾股定理和完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5可得计算出结果.【详解】∵AB=CD=5,AB∥CD,∴四边形ABCD为平行四边形,∴四边形ABDC的面积=2×5=10,设矩形的边长分别为a,b,当∠CBD=90°,∵四边形ABDC是平行四边形,∴∠BCA=90°,∴S△A′CB=S△ABC=12×2×5=5,∴S矩形A′CBD=10,即ab=10,而BA′=BA=5,∴a2+b2=25,∴(a+b)2=a2+b2+2ab=45,∴a+b=35,当∠BCD=90°时,∵四边形ABDC是平行四边形,∴∠CBA=90°,∴BC=2,而CD=5,∴(a+b)2=(2+5)2=49,∴a+b=7,∴此矩形相邻两边之和为35或7.故答案是:35或7.【点睛】考查了四边形的判定与性质和折叠的性质,熟练掌握平四边形的判定与性质会运用折叠的性质确定相等的线段和角是解题的关键.16.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.17.图中∠1+∠2+∠3+∠4+∠5+∠6=__________.【答案】360°【分析】根据三角形外角的性质,四边形内角的性质,可得答案.【详解】如图:由三角形外角的性质,得:∠7=∠1+∠6,∠8=∠2+∠7.由等式的性质,得:∠8=∠2+∠1+∠6.∠1+∠2+∠3+∠4+∠5+∠6=∠8+∠3+∠4+∠5=(4﹣2)×180°=360°.故答案为:360°.【点睛】本题考查了多边形的内角与外角,利用三角形外角的性质得出∠8=∠2+∠1+∠6是解答本题的关键.18.如图,在△ABC中,∠A=55°,∠B=60°,则外角∠ACD=________度.【答案】115【分析】根据三角形的一个外角等于与它不相邻的两个内角的和即可得【详解】解:∠ACD=∠A+∠B=55°+60°=115°.故答案为:115°【点睛】本题主要考查了三角形外角性质,三角形的一个外角等于和它不相邻的两个内角的和.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接DE.(1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE=12(AB+BC+AC).(2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明;(3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为______.【答案】(1)证明见解析;(2)不成立.DE=12(AB+AC﹣BC),证明见解析;(3)4.5.【分析】(1)根据全等三角形的判定与性质,可得AB与BK,AC与CH的关系,根据等腰三角形的性质,可得AD与DK的关系,AE与EH的关系,根据三角形中位线的性质,可得答案;(2)都是内角平分线时,可根据等腰三角形三线合一的特点来求解,由于DB平分∠ABC,且AD⊥BD,如果延长AD 交BC于K,那么三角形ABK就是个等腰三角形,AD=DK,如果延长AE到H,那么同理可证AG =GH,AC=CH,那么DE就是三角形AHK的中位线,DE就是HK的一半,而HK=BK﹣BH=BK﹣(BC﹣CH),由于BK=AB,CH=AC,那么可得出DE=12(AB+AC﹣BC);(3)证法同(1),先根据题目给出的求法,得出GD是AC的一半,然后按(2)的方法,通过延长AF来得出DF是(BC﹣AB)的一半,由此可得出DE=12(BC+AC﹣AB),由此即可解决问题.【详解】(1)证明:如图1,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=1 2HK,又∵HK=BK+BC+CH=AB+BC+AC,∴DE=12(AB+AC+BC);(2)解:结论不成立.DE=12(AB+AC﹣BC).理由:如图2,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵ABD DBKBD BDBDA BDK∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=12HK,又∵HK=BK﹣BH=AB+AC﹣BC,∴DE=12(AB+AC﹣BC).(3)解:分别延长AE、AD交BC或延长线于H、K,在△BAD和△BKD中,∵ABD DBKBD BDBDA BDK∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB同理可证,AE=HE,AC=HC,∴DE=12KH又∵KH=BC﹣BK+HC=BC+AC﹣AB.∴DE=12(BC+AC﹣AB),∵AB=8,BC=10,AC=7,∴DE=12(10+7﹣8)=4.5,故答案为4.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的定义和性质,中位线的定义和性质,解决本题的关键是:(1)熟练掌握全等三角形的判定方法,从题干中提取有用的数学信息;(2)正确理解等腰三角形的性质正确理解中位线的概念和性质.20.已知:如图,等腰△ABC中,AB=AC,点D为△ABC的BC边上一点,连接AD,将线段AD 旋转至AE,使得∠DAE=∠BAC,连接CE.(1)求证:△ACE≌△ABD;(2)若∠BAC=∠DAE=90°,EC=3,CD=1,求四边形AECD的面积.【答案】(1)见解析;(2)4【分析】(1)求出∠CAE=∠BAD,AE=AD,根据SAS推出全等即可;(2)根据全等求出BD,求出BC,根据题意求得S AECD=S⊿ABC进而进行分析求解即可.【详解】解:证明(1) ∵∠DAE=∠BAC ,∴∠DAE-∠DAC= ∠BAC-∠DAC ,∴∠CAE= ∠BAD ,∵ 在⊿CAE 和⊿BAD 中,AB=AC ∠CAE= ∠BAD AD=AE ,∴⊿ACE ≌⊿ABD (SAS ).(2) ∵ ⊿ACE ≌⊿ABD∴S ⊿ACE =S ⊿ABD , EC=BD=3,∴S AECD =S ⊿ABC又BC=BD+DC=4,∠BAC=900,AB=AC,∴S AECD =S ⊿ABC =12AB×AC=12AB 2=182⨯=4, 【点睛】本题考查勾股定理以及全等三角形的性质和判定的应用,能求出△ACE ≌△ABD 是解此题的关键. 21.如图,,F C 是线段AD 上的两点,且AF CD =,点,,E F G 在同一直线上,且,F G 分别是,AC AB 的中点,.BC EF =求证:ABC DEF ∆≅∆【答案】见解析【分析】根据中位线的性质得到//EF BC ,再根据平行线的性质得到DFE ACB ∠=∠.根据等式的性质得到BC=EF ,即可证明ABC DEF ∆≅∆.【详解】证明:∵,F G 分别是,AC AB 的中点∴FG 是△ABC 的中位线//EF BC ∴DFE ACB ∴∠=∠AF CD =AC DF =∴BC EF =ACB DFE ∴∆≅∆.【点睛】本题考查了全等三角形的判定,中位线的性质.熟练掌握全等三角形的判定方法,中位线的性质是解答本题的关键.22.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠.(1)BEC ∆是否为等腰三角形?请给出证明;(2)若2AB =,45ABE ∠=︒,求BC 的长.【答案】(1)△BEC 为等腰三角形;理由见解析;(2)2【分析】(1)由矩形的性质得出∠A=90°,AD ∥BC ,证出∠BCE=∠CED ,再由已知条件得出∠BCE=∠BEC ,即可得出△BEC 是等腰三角形;(2)根据勾股定理可求BE 的长,即可求BC 的长.【详解】(1)△BEC 为等腰三角形;理由如下:∵四边形ABCD 是矩形,∴∠A=90°,AD ∥BC ,∴∠BCE=∠CED ,∵EC 平分∠BED ,∴∠BEC=∠CED ,∴∠BCE=∠BEC ,∴BC=BE ,即△BEC是等腰三角形;(2)在矩形ABCD中,∠A=90°,且∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=AB=2,∴BE=2222AE AB+=,由(1)知BC=BE,∴BC=22.【点睛】此题考查矩形的性质、等腰三角形的判定,勾股定理,熟练掌握矩形的性质,并能进行推理计算是解题的关键.23.如图,在平面直角坐标系中,直线AB经过点A(3,32)和B (23,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为3.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.【答案】(1)y 3+2;(2)△AOD为直角三角形,理由见解析;(3)t=2323【分析】(1)将点A、B的坐标代入一次函数表达式:y=kx+b,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12OP ,即可求解;③当PO =PM 时,故这种情况不存在.【详解】解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:320k b b ⎧+⎪⎨⎪=+⎩,解得:=2k b ⎧⎪⎨⎪=⎩故直线AB 的表达式为:y+2; (2)直线AB 的表达式为:y+2,则点D (0,2), 由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,故△AOD 为直角三角形;(3)直线AB 的表达式为:y+2,故点C1),则OC =2, 则直线AB 的倾斜角为30°,即∠DBO =30°,则∠ODA =60°,则∠DOA =30°故点C1),则OC =2,则点C 是AB 的中点,故∠COB =∠DBO =30°,则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =OC ﹣PC =2﹣t ,①当OP =OM 时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=3(2﹣t)=QH,OQ=QH+OH=3(2﹣t)+12(2﹣t)=t,解得:t=23;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=12OP,即t=12(2﹣t),解得:t =23; ③当PO =PM 时, 则∠OMP =∠MOP =30°,而∠MOQ =30°,故这种情况不存在;综上,t =23或23. 【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.24.如图,点A 、F 、C 、D 在一条直线上,已知//BC FE ,且BC FE =,B E ∠=∠. (1)求证:ABC ≌DEF ;(2)若7AF cm =,27FD cm =,求线段FC 的长.【答案】(1)见解析;(2)20FC cm =【分析】(1)根据ASA 即可证明△ABC ≌△DEF .(2)根据△ABC ≌△DEF 得AC=FD ,结合已知条件即可得到结论.【详解】(1)∵//BC FE ,∴ACB DFE ∠=∠.在ABC 和DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC ≌DEF (ASA )(2)由(1)得ABC ≌DEF ,∴AC FD =.∵27FD cm =,∴27AC cm =.∵FC AC AF =-,7AF cm =,∴27720FC cm cm cm =-=.【点睛】本题考查了全等三角形的判定和性质,解题的关键是先证明△ABC ≌△DEF .。

第6章 平行四边形- 北师大版数学八年级下册教材习题课件

第6章 平行四边形- 北师大版数学八年级下册教材习题课件

边数
3
4
5
6…
多边形的内角和 180° 360° 540° 720°
正多边形内角的度数 60° 90° 108° 120°
知识技能
13. 过多边形某个顶点的所有对角线,将这个多边形分 成7个三角形,这个多边形是几边形? 解:过n边形某个顶点的对角线,将这个多边形分 成(n-2)个三角形,根据题意,得n-2=7,解得n=9. 所以这个多边形是九边形.
位线定理可知连接各边的中点得到的三角形的三边长
分别是 1 a, 1 b, 1 c,所以此三角形的周长为 1(a+b+c),
222
同理,再次得到的三角形的周长为
2A
1 (a+b+c).
4
B
C
知识技能
12. 分别确定一般三角形、四边形、五边形、六边 形……的内角和,以及正三角形、正四边形、正五 边形、正六边形……内角的度数,并填入下表:
于点E,∠BCD的平分线交AD于点F,交BE于点G.
求证:AF=DE.
AF
ED
证明:∵四边形ABCD是平行四边形, G
∴AB=DC,AD∥BC.
B
C
∴∠AEB=∠EBC,∠DFC=∠FCB.
∵BE平分∠ABC,CF平分∠BCD,
知识技能
∴∠ABE=∠EBC,∠DCF=∠FCB.
∴∠AEB=∠ABE,∠DFC=∠DCF.
A
F
∴AB=AE,DF=DC.
ED
∵AB=DC,
G
∴AE=DF.
B
C
∴AE-EF=DF-EF,即AF=DE.
知识技能
11. 如图,△ABC的三边长分别为a,b,c,以它的三边 中点为顶点组成一个新三角形,再以这个新三角形

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习测试题第六章平行四边形一、选择题1、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是( )A.只有①和②相等 B.只有③和④相等 C.只有①和④相等 D.①和②,③和④分别相等2、如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的点,当点P在CD上从C向D移而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小 C.线段EF的长不变D.线段EF的长与点P的位置有关第二题图3、下面关于平行四边形的说法不正确的是() A.对边平行且相等 B.两组对角分别相等C.对角线互相平分 D.每条对角线平分一组对角4、四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD. 从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种5、如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为( ) A.5 B.7 C.10 D.146、如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( ) A.4 cm B.6 cm C.8 cm D.10 cm7、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG AE,垂足为G,BG=4,则的周长为()A. 8B.9.5C. 10D.11.58、如右图,在中,,平分交边于点,且,则的长为()A. 3B. 4C.D.29、如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A. 18° B. 36°C. 72° D. 108°10、如图,平行四边形纸片ABCD,CD=5,BC=2,∠A=60°,将纸片折叠,使点A落在射线AD上(记为点),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y与x之间关系的大致图象是()A.B. C. D.二、填空题11、已知:四边形ABCD的面积为1. 如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.12、如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE= cm.13、如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件_________ ,使四边形AECF是平行四边形(只填一个即可).14、如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 度.15、如图,在ABCD中,∠B的平分线BE交AD于E,AE=10,ED=4,那么ABCD的周长= 。

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。

八年级第六章平行四边形复习题

八年级第六章平行四边形复习题

新北师大版八年级下册数学第六章平行四边形复习题一、选择题1.如图1,在平行四边形ABCD 中,下列各式不一定正确的是( ).(A)︒=∠+∠18021 (B)︒=∠+∠18032 (C)︒=∠+∠18043(D)︒=∠+∠180422.如图2,在□ABCD 中,EF//AB ,GH//AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数共有( ). (A)7 个 (B)8个 (C)9个 (D)11个3.下列给出的条件中,能判定四边形ABCD 是平行四边形的是 ( ). (A)AB ∥CD ,AD=BC (B)AB=AD ,CB=CD (C)AB=CD ,AD=BC (D)∠B=∠C ,∠A=∠D4.如图3 ,在□ABCD 中, ∠B=110°,延长AD 至F,延长CD 至E,连接EF,则∠E+∠F 的值为( ). (A)110° (B)30° (C)50° (D)70°5.如图4,□ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,则图中与OA 相等的其它线段有( ) (A)1条 (B)2条 (C) 3条 (D) 4条6.如图5,点D 、E 、F 分别是AB 、BC 、CA 边的中点,则图中的平行四边形一共有( )(A)1个 (B)2个 (C)3个 (D)4个7.在平面上,四边形ABCD 的对角线AC 与BD 相交于O ,且满足AB=CD .有下列四个条件:(1)OB=OC ;(2)AD ∥BC ;(3)BODO CO AO =;(4)∠OAD=∠OBC .若只增加其中的一个条件,就一定能使∠BAC=∠CDB 成立,这样的条件可以是( )A .(2)、(4)B .(2)C .(3)、(4)D .(4)8.用两个形状大小相同的三角形按不同的方式拼成的平行四边形有( )个A. 1 B. 2 C. 3 D. 49.下列给出的条件中,能判断四边形ABCD 是平行四边形的是( )A.AB ∥CD ,AD=BCB.AB=AD ,CB=CDC.AB=CD ,AD=BCD.∠B=∠C ,∠A=∠D10.下列条件能组成一个平行四边形的是( )A.相邻的两边分别是5 cm 和7 cm ,一条对角线长是13 cmB.两组对边分别是3 cm 和4 cmC.一条边长是7 cm ,两条对角线长分别是3 cm 和4 cmD.一组对角都是135° ,另一组对角都是40°11.平行四边形ABCD 中,对角线AC 、BD 交于点O (如图),则图中全等三角形的对数为( )A .2B .3C .4D .512.下面平行四边形不具有的性质是( )A .对角线互相平分B .两组对边分别相等C . 对角线相等D .相邻两角互补13.平行四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的度数之比有可能是( )A .1∶2∶3∶4B .2∶2∶3∶3C .2∶3∶2∶3D .2∶3∶3∶214.在□ABCD 中,∠A 、∠B 的度数之比为5∶4,则∠C 等于( )A 60°B 80°C 100°D 120° 15.□ABCD 的周长为36 cm ,AB=75BC ,则较长边的长为( )A 15 cmB 7.5 cmC 21 cmD 10.5cm 16.如图,□ABCD 中,EF 过对角线的交点O ,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为( )A 8.3B 9.6C 12.6D 13.6 17.在四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值满足( )可以判定是平行四边形.A 1∶2∶3∶4B 1∶2∶2∶1C 1∶1∶2∶2D 2∶1∶2∶1 18.如图,△ABC 中,EF 是它的中位线,M 、N 分别是EB 、CF 的中点,若BC=8, 那么MN 为( ) A 4 B 6 C 7.5 D 5AB C D O E F C AB M E FN19.已知一个多边形的内角和等于它的外角和,则这个多边形是()A.三角形B.四边形 C.五边形D.六边形AB CD”,那么20.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“//可以判定四边形ABCD是平行四边形的是()①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形。

北师大版数学八年级下册第六章平行四边形小结与复习课件

北师大版数学八年级下册第六章平行四边形小结与复习课件

在△ABE和△2 CDF中
2
∠B=∠D
AB=CD ∠EAB=∠FCD ∴△ABE≌△CDF,∴BE=DF.
∵AD=BC ∴AF=EC.
例2 如图,在▱ABCD中,∠ODA=90°,
AC=10cm,BD=6cm,则AD的长为( A )
A.4cm B.5cm C.6cm D.8cm
【解析】∵四边形ABCD是平行四边形,
【解析】∵在▱ABCD中,对角线AC和BD交于点O, AC=24cm,BD=38cm,AD=28cm, ∴AO=CO=12cm,BO=19cm,AD=BC=28cm, ∴△BOC的周长是:BO+CO+BC=12+19+28=51(cm).
典例解析
例3 如图,四边形ABCD的对角线交于点O,下列哪组 条件不能判断四边形ABCD是平行四边形( D ) A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CD C.AD∥BC,AD=BC D.AB=CD,AO=CO
C.AB=CD
D.AC=BC
【解析】A.∵四边形ABCD是平行四边形,
∴AB∥CD,∴∠1=∠2,故A正确;
B.∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,故B正确; C.∵四边形ABCD是平行四边形, ∴AB=CD,故C正确;
总结归纳
主要考查了平行四边形的性质,关键是掌握 平行四边形对边相等且平行,对角相等.
AC=10cm,BD=6cm
∴OA=OC= 1 AC=5cm,OB=OD= 1 BD=3cm,
2
2
∵∠ODA=90°,
∴AD= OA2-OD2 =4cm.
总结归纳
主要考查了平行四边形的性质,平行四边形 的对角线互相平分,解题时还要注意勾股定理的 应用.

第六章 平行四边形复习题---解答题(含解析)

第六章 平行四边形复习题---解答题(含解析)

北师大版数学第六章平行四边形---解答题一.解答题1.(2018•济南)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.2.(2018•巴彦淖尔)如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.3.(2018•青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.4.(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.5.(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.(2018•曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.7.(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.8.(2018•临安区)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.9.(2018•重庆)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.10.(2018•淮安)已知:如图,▱ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F.求证:AE=CF.11.(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接EB,DF,判断四边形EBFD的形状,并说明理由.12.(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD =DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.13.(2018•无锡)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE.14.(2018•青岛)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.15.(2018•宿迁)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF 分别与AB、CD交于点G、H.求证:AG=CH.16.(2018•重庆)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.17.(2018•衢州)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.18.(2018春•罗山县期中)如图,∠MON=∠PMO,OP=x﹣3,OM=4,ON=3,MN=5,MP=11﹣x.求证:四边形OPMN是平行四边形.19.(2018春•三水区期末)已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.20.(2018春•沈阳期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,已知DE∥BC,∠ADE=∠EFC.求证:四边形BDEF是平行四边形.21.(2018春•无为县期末)如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.22.(2018春•黔东南州期末)如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.23.(2018春•吉安县期末)如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=.(2)当t为何值时,四边形APQB是平行四边形?24.(2018春•揭西县期末)如图,已知G、H是△ABC的边AC的三等分点,GE∥BH,交AB于点E,HF∥BG交BC于点F,延长EG、FH交于点D,连接AD、DC,设AC和BD交于点O,求证:四边形ABCD是平行四边形.25.(2018•河北二模)如图,已知∠A=∠D,AB=DC,AC、BD相交于O,(1)求证:△AOB≌△DOC;(2)若AB=BC,∠A=32°,求∠AOB的度数;(3)作△BDC关于直线BC的对称图形△BEC,求证:四边形ABEC是平行四边形.26.(2018春•西华县期中)如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q 分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?27.(2018•兰州)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.28.(2018•巴中)如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN ⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.29.(2018•孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.30.(2018•永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.31.(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.32.(2017•鞍山)如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.33.(2018秋•张家港市期中)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)求证:EF垂直平分AD.(2)若四边形AEDF的周长为24,AB=15,求AC的长;34.(2018春•罗山县期中)如图,在等腰三角形ABC中,CA=CB=5,AB=6,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DE、CD和EF.(1)求证:DE=CF.(2)求EF的长.(3)求四边形DEFC的面积.35.(2018春•海州区期中)如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD 于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.36.(2018春•三水区期末)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.37.(2018春•锦州期末)如图、在△ABC中,AB=AC,M,N分别为AC,BC的中点,以AC为斜边在△ABC的外侧作Rt△ACD,且∠CAD=30°,连接MN,DM,DN.(1)求证:△DMN是等腰三角形;(2)若AC平分∠BAD,AB=6,求DN的长.38.(2018春•龙岗区期末)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E 作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.39.(2018秋•昆明期末)如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.40.(2018秋•宜都市校级期中)一个n边形的内角和比四边形的外角和大540°,求n.41.(2018秋•襄州区期中)如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB =105°,求∠C+∠D的度数.42.(2018秋•武昌区校级月考)一个正多边形每个内角比外角多90°,求这个正多边形所有对角线的条数.43.(2018秋•顺河区校级月考)一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.44.(2018秋•老河口市期中)如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD 的度数.45.(2018秋•安徽期中)在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.46.(2018春•黄陂区期末)如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.①如图2,若∠BAE=70°,求∠F的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)北师大版数学第六章平行四边形---解答题参考答案与试题解析一.解答题1.(2018•济南)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.【分析】欲证明OB=OD,只要证明△EOD≌△FOB即可;【解答】证明:∵▱ABCD中,∴AD=BC,AD∥BC.∴∠ADB=∠CBD.又∵AE=CF,∴AE+AD=CF+BC.∴ED=FB.又∵∠EOD=∠FOB,∴△EOD≌△FOB.∴OB=OD.2.(2018•巴彦淖尔)如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.【分析】(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;(2)根据菱形的判定定理得到▱ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG和△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,AD=CD,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=6,∴DG==4.3.(2018•青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.【分析】(1)依据中点的定义可得到AE=BE,然后依据平行线的性质可得到∠ADE=∠F,接下来,依据AAS可证明△ADE≌△BFE,最后,依据全等三角形的性质求解即可;(2)过点D作DM⊥AB于M,则DM同时也是平行四边形ABCD的高,先求得△AED的面积,然后依据S四边形EBCD=S平行四边形ABCD﹣S△AED求解即可.【解答】解:(1)∵E是AB边上的中点,∴AE=BE.∵AD∥BC,∴∠ADE=∠F.在△ADE和△BFE中,∠ADE=∠F,∠DEA=∠FEB,AE=BE,∴△ADE≌△BFE.∴AD=BF.(2)过点D作DM⊥AB与M,则DM同时也是平行四边形ABCD的高.∴S△AED=•AB•DM=AB•DM=×32=8,∴S四边形EBCD=32﹣8=24.4.(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.【分析】利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.5.(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AF=CE,∴OE=OF,在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.6.(2018•曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.【分析】(1)利用平行线的性质,根据SAS即可证明;(2)利用全等三角形的性质可知∠NAF=∠ECM,求出∠ECM即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.7.(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.8.(2018•临安区)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.【分析】(1)要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD 是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等;(2)由全等可得到∠DF A=∠BEC,所以得到DF∥EB.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE.又ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DF A=∠BEC.∴DF∥EB.9.(2018•重庆)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG =90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.10.(2018•淮安)已知:如图,▱ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F.求证:AE=CF.【分析】利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.11.(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接EB,DF,判断四边形EBFD的形状,并说明理由.【分析】(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.12.(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD =DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠F AH=90°,∴∠F AH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.13.(2018•无锡)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE.【分析】根据平行四边形的性质以及全等三角形的性质即可求出答案.【解答】解:在▱ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,∴△ABF≌△CDE(SAS)∴∠ABF=∠CDE14.(2018•青岛)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠F AG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.15.(2018•宿迁)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF 分别与AB、CD交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.16.(2018•重庆)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.【分析】(1)依据BF⊥AC,∠ACB=45°,BC=12,可得等腰Rt△BCF中,BF=sin45°×BC =12,再根据勾股定理,即可得到Rt△ABF中,AF==5;(2)连接GE,过A作AP⊥AG,交BG于P,连接PE,判定四边形APEG是正方形,即可得到PF =EF,AP=AG=CH,进而得出△APB≌△HCE,依据AB=EH,AB=BE,即可得到BE=EH.【解答】解:(1)如图,∵BF⊥AC,∠ACB=45°,BC=12,∴等腰Rt△BCF中,BF=sin45°×BC=12,又∵AB=13,∴Rt△ABF中,AF==5;(2)如图,连接GE,过A作AP⊥AG,交BG于P,连接PE,∵BE=BA,BF⊥AC,∴AF=FE,∴BG是AE的垂直平分线,∴AG=EG,AP=EP,∵∠GAE=∠ACB=45°,∴△AGE是等腰直角三角形,即∠AGE=90°,△APE是等腰直角三角形,即∠APE=90°,∴∠APE=∠P AG=∠AGE=90°,∴四边形APEG是正方形,∴PF=EF,AP=AG=CH,又∵BF=CF,∴BP=CE,∵∠APG=45°=∠BCF,∴∠APB=∠HCE=135°,∴△APB≌△HCE(SAS),∴AB=EH,又∵AB=BE,∴BE=EH.17.(2018•衢州)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.【分析】由全等三角形的判定定理AAS证得△ABE≌△CDF,则对应边相等:AE=CF.【解答】证明:如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,,∴得△ABE≌△CDF(AAS),18.(2018春•罗山县期中)如图,∠MON=∠PMO,OP=x﹣3,OM=4,ON=3,MN=5,MP=11﹣x.求证:四边形OPMN是平行四边形.【分析】由题意可证∠MON=90°=∠PMO,根据勾股定理列出方程求出x的值,可得PM=ON,OP=MN,即结论可证.【解答】证明:在△MON中,OM=4,ON=3,MN=5,因此,OM2+ON2=42+32=25,MN2=52=25∴OM2+ON2=MN2∴△MON是直角三角形.∴∠MON=∠PMO=90°因此,在Rt△POM中,OP=x﹣3,OM=4,MP=11﹣x,由勾股定理可得,OM2+MP2=OP2即:42+(11﹣x)2=(x﹣3)2解得:x=8∴OP=x﹣3=8﹣3=5,MP=11﹣x=11﹣8=3∴OP=MN MP=ON∴四边形OPMN是平行四边形.19.(2018春•三水区期末)已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.【分析】只要证明AB∥CD即可解决问题.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形.20.(2018春•沈阳期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,已知DE∥BC,∠ADE=∠EFC.求证:四边形BDEF是平行四边形.【分析】想办法证明EF∥AB即可解决问题;【解答】证明:∵DE∥BC,∴∠ADE=∠B,∵∠ADE=∠EFC,∴∠EFC=∠B,∴EF∥AB,∴四边形BDEF是平行四边形.21.(2018春•无为县期末)如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.【分析】连接AE、DB、BE,BE交AD于点O,首先得出四边形ABDE是平行四边形,进而得出OF =OC得出四边形BCEF是平行四边形.【解答】证明:连接AE、DB、BE,BE交AD于点O,∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.22.(2018春•黔东南州期末)如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.【分析】首先利用平行线的性质与判定方法得出∠DAE=∠BCF,进而利用AAS得出△ADE≌△CBF,即可得出AD BC,即可得出答案.【解答】证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形.23.(2018春•吉安县期末)如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=t;DP=12﹣t;BQ=15﹣2t.(2)当t为何值时,四边形APQB是平行四边形?【分析】(1)直接利用P,Q点的运动速度和运动方法进而表示出各部分的长;(2)利用平行四边形的判定方法得出t的值.【解答】解:(1)由题意可得:AP=t,DP=12﹣t,BQ=15﹣2t,故答案为:t,12﹣t,15﹣2t;(2)∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形,∴t=15﹣2t,解得:t=5.24.(2018春•揭西县期末)如图,已知G、H是△ABC的边AC的三等分点,GE∥BH,交AB于点E,HF∥BG交BC于点F,延长EG、FH交于点D,连接AD、DC,设AC和BD交于点O,求证:四边形ABCD是平行四边形.【分析】首先利用三角形中位线定理的性质得出ED∥BH,FD∥BG,进而得出四边形BHDG是平行四边形,即可得出AO=CO,进而得出答案.【解答】证明:∵G、H是AC的三等分点且GE∥BH,HF∥EG,∴AG=GH=HC,EG、FH分别是△ABH和△CBG的中位线,∴ED∥BH,FD∥BG,∴四边形BHDG是平行四边形,∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,∴四边形ABCD是平行四边形.25.(2018•河北二模)如图,已知∠A=∠D,AB=DC,AC、BD相交于O,(1)求证:△AOB≌△DOC;(2)若AB=BC,∠A=32°,求∠AOB的度数;(3)作△BDC关于直线BC的对称图形△BEC,求证:四边形ABEC是平行四边形.【分析】(1)根据AAS即可证明;(2)利用全等三角形的性质求解即可;(3)证明两组对边分别相等即可解决问题;【解答】解:(1)证明:∵∠A=∠D,AB=DC,∠AOB=∠DOC,∴△AOB≌△DOC(AAS)(2)∵AB=BC,∠A=32°,∴∠ACB=∠A=32°,∵△AOB≌△DOC(AAS),∴OB=OC,∴∠OCB=∠OBC=32°,∴∠AOB=∠OCB+∠OBC=64°.(3)∵△AOB≌△DOC,∴OB=OC,∴∠OCB=∠OBC,∵∠A=∠D,AB=DC∴△ABC≌△DCB,∴AC=BD,∵△BDC、△BEC关于直线BC对称,∴DC=CE=AB,BD=BE,∴AC=BE,∴四边形ABEC是平行四边形.26.(2018春•西华县期中)如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q 分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?【分析】分别利用①当BQ=AP时以及②当CQ=PD时,得出答案.【解答】解:设点P,Q运动的时间为ts.依题意得:CQ=2t,BQ=6﹣2t,AP=t,PD=9﹣t.①当BQ=AP时,四边形APQB是平行四边形.即6﹣2t=t,解得t=2.②当CQ=PD时,四边形CQPD是平行四边形,即2t=9﹣t,解得:t=3.所以经过2或3秒后,直线PQ将四边形ABCD截出一个平行四边形.27.(2018•兰州)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.28.(2018•巴中)如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN ⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.【分析】(1)只要证明DN∥BM,DM∥BN即可;(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)解:∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===13.29.(2018•孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.【分析】由AB∥DE、AC∥DF利用平行线的性质可得出∠B=∠DEF、∠ACB=∠F,由BE=CF可得出BC=EF,进而可证出△ABC≌△DEF(ASA),根据全等三角形的性质可得出AB=DE,再结合AB∥DE,即可证出四边形ABED是平行四边形.【解答】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.30.(2018•永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,∴S平行四边形BCFD=3×=9.31.(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.32.(2017•鞍山)如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.【分析】(1)由平行四边形的性质,结合角平分线的定义可证得AE∥CF,结合AF∥CE,可证得结论;(2)由条件可证得△DCG∽△AFG,利用相似三角形的性质可求得DG与AG的关系,结合条件可求得AG的长,从而可求得答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE∥CF,∵AF∥CE,∴四边形AECF是平行四边形;(2)解:由(1)可知∠BCF=∠DCF=∠F,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF﹣AB=3,∵BF∥DE,∴∠DCG=∠F,∠D=∠F AG,∴△DCG∽△AFG,∴==,∴DG=AG,∴AD=AG+DG=AG=8,∴AG=3,∴AF+AG=3+3=6.33.(2018秋•张家港市期中)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)求证:EF垂直平分AD.(2)若四边形AEDF的周长为24,AB=15,求AC的长;【分析】(1)根据直角三角形的性质得到DE=AE,DF=AF,根据线段垂直平分线的判定定理证明;(2)根据直角三角形的性质得到DE=AE=AB=,DF=AF=AC,根据四边形的周长公式计算.【解答】(1)证明:∵AD是高,∴∠ADB=∠ADC=90°,又E、F分别是AB、AC的中点,∴DE=AB=AE,DF=AC=AF,∴EF垂直平分AD;(2)解:由(1)得,DE=AE=AB=,DF=AF=AC,∵四边形AEDF的周长为24,∴AE+ED+DF+F A=24,∴DF+F A=24﹣15=9,∴AC=9.34.(2018春•罗山县期中)如图,在等腰三角形ABC中,CA=CB=5,AB=6,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DE、CD和EF.(1)求证:DE=CF.(2)求EF的长.(3)求四边形DEFC的面积.【分析】(1)直接利用三角形中位线定理分析得出答案;(2)首先利用勾股定理得出CD的长,再利用已知得出DE CF,进而得出答案;(3)过点D作HD⊥BC,垂足为点H,求出DH的长,再得出CF的长,进而得出答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线.∴DE=BC.又∵CF=BC∴DE=CF;(2)解:EF=4.理由如下:∵在等腰三角形ABC中,CA=CB=5,AB=6,点D是AB的中点,∴CD⊥AB,BD=AB=3,∴在Rt△BCD中,BD=3,CB=5,由勾股定理可得,CD===4,由(1)可知,DE是△ABC的中位线.∴DE∥CF,又∵DE=CF,∴四边形CDEF是平行四边形.∴CD=EF=4;(3)解:四边形DEFC的面积为6,理由如下:过点D作HD⊥BC,垂足为点H.∵S△BCD=BD•CD=BC•DH∴×3×4=×5×DH∴DH=,∵DE=BC=,∴DE=CF=,∴S四边形DEFC=CF•DH=×=6.35.(2018春•海州区期中)如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD 于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.【分析】根据等腰三角形的判定和性质定理得到AB=AF=6,BD=DF,求出CF,根据三角形中位线定理计算即可.【解答】解:∵AD平分∠BAC,BD⊥AD,∴AB=AF=6,BD=DF,∴CF=AC﹣AF=4,∵BD=DF,E为BC的中点,∴DE=CF=2.36.(2018春•三水区期末)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.【分析】(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=,FH∥EC,FH=,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【解答】(1)证明:∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=FH∥EC,FH=∴FG=FH;(2)证明:由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)解:延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°37.(2018春•锦州期末)如图、在△ABC中,AB=AC,M,N分别为AC,BC的中点,以AC为斜边在△ABC的外侧作Rt△ACD,且∠CAD=30°,连接MN,DM,DN.(1)求证:△DMN是等腰三角形;(2)若AC平分∠BAD,AB=6,求DN的长.【分析】(1)依据三角形的中位线定理可得到MN=AB,由直角三角形斜边上中线的性质可得到DM=AM=AC,然后结合已知条件可得到DM=MN;(2)由AM=DM可得到∠CAD=∠ADM=30°,从而可得到∠DMC=60°,然后再证明∠CMN=30°,从而可得到∠DMN=90°,最后,依据勾股定理求解即可.【解答】解:(1)∵在△ABC中,M、N分别是AC、BC的中点,∴MN∥AB,MN=AB,AM=MC=AC.∵∠ADC=90°,DM为斜边上的中线,∴MD=AC.∵AC=AB,∴MN=DM.∴△DMN是等腰三角形.(2)∵∠CAD=30°,AC平分∠BAD,∴∠BAC=∠CAD=30°.∵MN∥AB,∴∠NMC=∠BAC=30°.由(1)DM=AM,∴∠DMC=60°.∴∠DMN=∠DMC+∠NMC=30°+60°=90°.在Rt△ABC中,DN2=DM2+MN2,DM=MN=AB=3,∴DN=3.38.(2018春•龙岗区期末)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E 作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出答案.【解答】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.39.(2018秋•昆明期末)如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【分析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.【解答】解:∵AB∥CD,∠C=60°,。

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

平行四边形及其性质【学习目的】1.理解平行四边形的概念,掌握平行四边形的性质定理和断定定理.2.能初步运用平行四边形的性质进展推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 理解平行四边形的不稳定性及其实际应用.4. 掌握两个推论:“夹在两条平行线间的平行线段相等〞。

“夹在两条平行线间的垂线段相等〞.【要点梳理】知识点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD〞,读作“平行四边形ABCD〞.要点诠释:平行四边形的根本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 知识点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:〔1〕平行四边形的性质定理中边的性质可以证明两边平行或者两边相等;角的性质可以证明两角相等或者两角互补;对角线的性质可以证明线段的相等关系或者倍半关系.〔2〕由于平行四边形的性质内容较多,在使用时根据需要进展选择.〔3〕利用对角线互相平分可解决对角线或者边的取值范围的问题,在解答时应联络三角形三边的不等关系来解决.知识点三、平行线的性质定理1.两条平行线间的间隔:〔1〕定义:两条平行线中,一条直线上的任意一点到另一条直线的间隔,叫做这两条平行线间的间隔 .注:间隔是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.【典型例题】类型一、平行四边形的性质1.如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即〔AO+OB+AB〕-〔BO+OC+BC〕=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.举一反三:【变式】如图:在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC =4.求AE:EF:FB的值.【答案】解:∵ ABCD是平行四边形,所以AB∥CD,∠ECD=∠CEB∵CE为∠DCB的角平分线,∴∠ECD=∠ECB,∴∠ECB=∠CEB,∴BC=BE∵BC=4,所以BE=4∵AB=6,F为AB的中点,所以BF=3∴EF=BE-BF=1,AE=AB-BE=2∴AE:EF:FB=2:1:3.2.平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,假如△CDM的周长是40cm,求平行四边形ABCD的周长.【思路点拨】由四边形ABCD是平行四边形,即可得AB=CD,AD=BC,OA=OC,又由OM⊥AC,根据垂直平分线的性质,即可得AM=CM,又由△CDM的周长是40cm,即可求得平行四边形ABCD 的周长.【答案与解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵OM⊥AC,∴AM=CM,∵△CDM的周长是40,即:DM+CM+CD=DM+AM+CD=AD+CD=40,∴平行四边形ABCD的周长为:2〔AD+CD〕=2×40=80〔cm〕.∴平行四边形ABCD的周长为80cm.【总结升华】此题考察了平行四边形的性质与线段垂直平分线的性质.解题的关键是注意数形结合思想的应用.举一反三:【变式】如图,平行四边形ABCD的对角线AC.BD相交于点O,EF过点O且与AB.CD分别相交于点E.F,连接EC.〔1〕求证:OE=OF;〔2〕假设EF⊥AC,△BEC的周长是10,求平行四边形ABCD的周长.【答案】〔1〕证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△FDO和△EBO中∵OD OBFOD EOFDO EBBO ⎧⎪=⎨⎪∠=∠∠∠⎩=∴△FDO≌△EBO〔AAS〕,∴OE=OF;〔2〕解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10∴BC+BE+CE=BC+AB=10,∴平行四边形ABCD的周长=2〔BC+AB〕=20.3.如图,口ABCD的周长为52cm,AB边的垂直平分线经过点D,垂足为E,口ABCD的周长比△ABD的周长多10cm.∠BDE=35°.〔1〕求∠C的度数;〔2〕求AB和AD的长.〔1〕由于DE是AB边的垂直平分线,得到∠ADE=∠BDE=35°,于是推出∠A═55°,【思路点拨】根据平行四边形的性质得到∠C=55°;〔2〕由DE是AB边的垂直平分线,得到DA=DB,根据平行四边形的性质得到AD=BC,AB=DC,由于口ABCD的周长为52,于是得到AB+AD=26,根据口ABCD的周长比△ABD的周长多10,得到BD=16,AD=16〔cm〕,于是求出结论.【答案与解析】解:〔1〕∵DE是AB边的垂直平分线,∴∠ADE=∠BDE=35°,∴∠A=90°﹣∠ADE=55°,∵口ABCD,∴∠C=∠A=55°;〔2〕∵DE是AB边的垂直平分线,∴DA=DB,∵四边形ABCD是平行四边形,∴AD=BC,AB=DC,∵口ABCD的周长为52,∴AB+AD=26,∵口ABCD的周长比△ABD的周长多10,∴52﹣〔AB+AD+BD〕=10,∴BD=16,∴AD=16〔cm〕,∴AB=26﹣16=10〔cm〕.【总结升华】此题主要考察了线段垂直平分线的性质,平行四边形的性质,能综合应用这两个性质是解题的关键.4.如图1,P为Rt△ABC所在平面内任一点〔不在直线AC上〕,∠ACB=90°,M为AB 的中点.操作:以PA.PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.〔1〕请你猜测与线段DE有关的三个结论,并证明你的猜测;〔2〕假设将“Rt△ABC〞改为“任意△ABC〞,其他条件不变,利用图2操作,并写出与线段DE有关的结论〔直接写答案〕.【思路点拨】〔1〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可;〔2〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可.【答案与解析】DE∥BC,DE=BC,DE⊥AC,证明:连接BE,∵M为AB中点,∴AM=MB,在△PMA和△EMB中∵===PM MEPMA EMB AM BM∠∠⎧⎪⎨⎪⎩,∴△PMA≌△EMB〔SAS〕,∴PA=BE,∠MPA=∠MEB,∴PA∥BE.∵四边形PADC是平行四边形,∴PA∥DC,PA=DC,∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形,∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.〔2〕解:DE∥BC,DE=BC.【总结升华】此题考察了平行四边形性质和断定,全等三角形的性质和断定,平行线的性质和断定的综合运用.举一反三:【变式】:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC于点P.〔1〕求证:∠ADE=∠CDF;〔2〕假如∠B=120°,求证:△DMN是等边三角形.【答案】证明:〔1〕∵四边形ABCD是平行四边形,∴∠DAB=∠C,DC∥AB,∵DE⊥AB于点E,DF⊥BC于点F,∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,∴∠ADE=∠CDF.〔2〕证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,∴∠DAP=∠BAP,∵DC∥AB,∴∠DPA=∠BAP,∴∠DAP=∠DPA,∴DA=DP,∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,∴△DAM≌△DPN,∴DM=DN,∵∠B=120°,∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,∴△DMN是等边三角形.类型二、平行线性质定理及其推论5.如图1,直线m∥n,点A.B在直线n上,点C.P在直线m上;〔1〕写出图1中面积相等的各对三角形:△CAB与△PAB.△BCP与△APC.△ACO与△BOP__________________;〔2〕如图①,A.B.C为三个顶点,点P在直线m上挪动到任一位置时,总有__________△PAB 与△ABC的面积相等;〔3〕如图②,一个五边形ABCDE,你能否过点E作一条直线交BC〔或者延长线〕于点M,使四边形ABME的面积等于五边形ABCDE的面积.【思路点拨】〔1〕找出图①中同底等高的三角形,这些三角形的面积相等;〔2〕因为两平行线间的间隔是相等的,所以点C.P到直线n间的间隔相等,也就是说△ABC 与△PAB的公一共边AB上的高相等,所以总有△PAB与△ABC的面积相等;〔3〕只要作一个三角形CEM与三角形CED的面积相等即可.【答案与解析】解:〔1〕∵m∥n,∴点C.P到直线n间的间隔与点A.B到直线m间的间隔相等;又∵同底等高的三角形的面积相等,∴图①中符合条件的三角形有:△CAB与△PAB.△BCP与△APC,△ACO与△BOP;〔2〕∵m∥n,∴点C.P到直线n间的间隔是相等的,∴△ABC与△PAB的公一共边AB上的高相等,∴总有△PAB与△ABC的面积相等;〔3〕连接EC,过点D作直线DM∥EC交BC延长线于点M,连接EM,线段EM所在的直线即为所求的直线.【总结升华】此题主要考察了三角形的面积及平行线的性质,利用平行线间的间隔相等得到同底等高的三角形是解题的关键.创作人:历恰面日期:2020年1月1日。

多边形、平行四边形复习 (2)

多边形、平行四边形复习 (2)

第六章多边形、平行四边形回顾与思考一、学生知识状况分析学生的知识技能基础:学生在前面的学习中已经掌握了全等三角形的性质和判定,在本章前几节课中,又对平行四边形的判定、性质做了进一步学习,通过一定题量的练习,学生已经对有关内容得以掌握。

在本章后面几节课中,又学习了三角形中位线的定义和性质,并探索了连接四边形各边中点所成的四边形的形状等结论,学生在初一时已经掌握了三角形内角和定理,本章学生也掌握了多边形的内角和、外角和公式,对如何探究内角和、外角和的问题有了一定的认识。

学生的能力基础:在相关知识的学习过程中,学生对推理证明的基本要求、基本步骤和基本方法已经掌握,已经能利用平行四边形的判定和性质解决特殊四边形的有关命题,并且也能利用有关知识对探究型题目加以分析和证明。

学生活动经验基础:在相关知识的学习过程中,已经经历了“探索——发现——猜想——证明”的过程,体会了合情推理与演绎推理在获得结论中各自发挥的作用。

掌握了简单证明的方法,解决了简单的现实问题,同时在以前的数学学习中学生已经经历很多合作学习的过程,具有一定的合作学习经验和合作与交流的能力。

二、教学任务分析本章的定理较多,在系统掌握平行四边形的性质及判定等的基础上,学生还学习了多边形的内角和、外角和公式,为了让学生进一步掌握这些定理,并能熟练应用,为此,本节课的教学目标是:(1)能够熟练掌握平行四边形的判定和性质定理,并能够应用数学符号语言表述证明过程。

(2)掌握多边形内角和、外角和定理,进一步了解转化的数学思想。

(3)会熟练应用所学定理进行证明。

体会证明中所运用的归类、类比、转化等数学思想,通过复习课对证明的必要性有进一步的认识。

(4)学会对证明方法的总结。

(5)通过讨论交流,进一步发展学生的合作交流意识。

三、教学过程分析本节课设计了五个教学环节:第一环节:教师和学生一起回顾本章的主要内容;第二环节:随堂练习,巩固提高;第三环节:回顾小结,共同提升;第四环节:分层作业,拓展延伸;第五环节:课后反思。

八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)

八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)

的有 _______________________(组合序号)
4.若平行四边形一边长为8cm,一条对角线长为6cm,则另一条
对角线长X的取值范围是_____________
5.M为□ABCD 的边AD上一点,若▲MBC的面积为8cm2,□ABCD
的面积为_______
A
D
6.如图,□ABCD中,AE⊥BC,AF⊥CD,E,
(1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是 矩形?并证明你的结论.
A
M E
B
O FN
D C
(1)证明 ∵ CE 平分∠ ACB ∴ ∠ ACE= ∠ ECB ∵ MN // BC ∴ ∠ ECB= ∠ OEC ∴ ∠ OEC= ∠ ECO ∴ OE=OC
同理OF=OC ∴ OE=OF
A、对角相等
B、对角线相 C、对边相等 D、对角线互相平分
2、菱形有而一般的平行四边形不具有的性质是( )
A、对角相等 B、对角线互相平分C、对边平行且相等 D、对角线互相垂直
3.下列性质中,平行四边形不一定具备的是( )
(A)对角相等
(B)邻角互补 (C )对角互补
(D)内角和是360°
(4).下面判定四边形是平行四边形的方法中,错误的是( )。
(B)两条对角线互相平分。
(C )两条对角线互相垂直。 (D)一对邻角的和为180°。
5.不能判定四边形ABCD是平行四边形的条件是( ) (A) AB =CD, AD =BC。(B) BC // AD。 (C ) AB//DC, AD//BC。 (D) AB =CD,AD//BC。
1、矩形具有而一般的平行四边形不具有的性质是( )
O

(完整版)第六章《平行四边形》回顾与思考(第一课时)教学设计

(完整版)第六章《平行四边形》回顾与思考(第一课时)教学设计

师生用“问答”的形式带领学生将表格完成。

应用性质和判定完成例题:例1.如图,在平行四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,且BE ∥DF 。

求证:BE =DF 。

教师在这里将这道题进行开放处理:由学生讲出证明思路,写出完整的证明过程,强调证明过程的规范性。

例2、 如图,在平行四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,连接DE 、BF ,_________,(添加一个条件)求证:四边形BEDF 是平行四边形。

由学生来填加适当的条件,使得命题成立并证明。

学生可以在证明的过程中找到针对条件最简单的判定定理。

目的:这个环节教师和学生一起回顾本章平行四边形的性质定理和判定定理,并通过对定理的分析,体会到了证明的必要性,掌握了一些常规证明方法和工具。

实际效果:教师通过开放例题给学生传递的是一种总结证明方法的信息:根据特殊四边形的性质,学生应该能够体会到,在证明命题时有了很多新的工具。

比如证明平行时,除了以前的同位角、内错角等,还可证明平行四边形;在证明边等时,除了全等,还可以分析所证线段是否为平行四边形的边等。

平行四边形的判定 (1)两组对边平行 (2)两组对边相等(3)一组对边平行且相等(4)两组对角相等 (5)对角线互相平分二、“三角形的中位线”内容:这一章节中,除学习了平行四边形相关的性质和判定定理,还学习了三角形中位线的定义和性质定理。

所以,这个环节上,老师选取了学生总结出的几道比较有代表性的例题,帮助学生加深对定理理解,增强恰当应用定理的意识。

例3.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关解析:由三角形中位线定理可知线段EF的长在P点的运动过程中,EF一定等于AR的一半,又由于AR的长不变,所以可做出正确的判断应选C.例4 .如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点。

人教版小学五年级上册第六章 平行四边形的周长知识点及习题

人教版小学五年级上册第六章  平行四边形的周长知识点及习题

人教版小学五年级上册第六章平行四边
形的周长知识点及习题
人教版小学五年级上册第六章平行四边形的周长知识点及题
知识点概述
平行四边形是指具有两两相对的边平行的四边形。

在本章中,我们将研究关于平行四边形的周长计算方法。

计算周长的公式
平行四边形的周长可以通过将所有边长相加得到。

公式如下:周长 = 边长₁ + 边长₂ + 边长₃ + 边长₄
题一
计算以下平行四边形的周长:
1. 边长₁ = 5 cm, 边长₂ = 8 cm, 边长₃ = 5 cm, 边长₄ = 8 cm
2. 边长₁ = 12 cm, 边长₂ = 6 cm, 边长₃ = 12 cm, 边长₄ = 6 cm
解答题一
1. 周长 = 5 cm + 8 cm + 5 cm + 8 cm = 26 cm
2. 周长 = 12 cm + 6 cm + 12 cm + 6 cm = 36 cm
题二
根据已知的周长计算平行四边形的边长:
1. 周长 = 32 cm, 边长₃ = 7 cm, 边长₄ = 7 cm
2. 周长 = 52 cm, 边长₂ = 16 cm, 边长₄ = 8 cm
解答题二
1. 边长₁ = 周长 - 边长₂ - 边长₃ - 边长₄
= 32 cm - 7 cm - 7 cm - 7 cm
= 11 cm
2. 边长₁ = 周长 - 边长₂ - 边长₃ - 边长₄
= 52 cm - 16 cm - 16 cm - 8 cm
= 12 cm
以上是关于人教版小学五年级上册第六章平行四边形的周长知识点及题的介绍。

八年级数学下册第六章平行四边形试题(新版)北师大版

八年级数学下册第六章平行四边形试题(新版)北师大版

第六章平行四边形1.平行四边形的性质(1)根据平行四边形对边相等,可知平行四边形相邻两边长之和是平行四边形周长的一半.(2)平行四边形的对角相等,邻角互补,这是根据平行线的性质进行推导得出的,可以用来求角的度数.(3)平行四边形的对角线互相平分,且一条对角线将平行四边形分成两个全等的三角形,两条对角线将平行四边形分成两组全等的三角形,可以应用全等三角形的性质进行解题.【例1】在▱ABCD中,AB=6cm,BC=8cm,则▱ABCD的周长为__________cm.【标准解答】∵在▱ABCD中,AB=6cm,BC=8cm,∴CD=AB=6cm,AD=BC=8cm,∴▱ABCD的周长为6+6+8+8=28(cm).答案:28【例2】在平面直角坐标系中,▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为( )A.(7,2)B.(5,4)C.(1,2)D.(2,1)【标准解答】选C.如图.∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),∴顶点D的坐标为(1,2).【例3】如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.【标准解答】∵四边形ABCD是平行四边形,∴AB=CD=3,AD=BC=4,∵EF⊥AB,∴EH⊥DC,∠BFE=90°,∵∠ABC=60°,∴∠HCB=∠B=60°,∴∠FEB=∠CEH=180°-∠B-∠BFE=30°,∵E为BC的中点,∴BE=CE=2,∴CH=BF=1,由勾股定理得:EF=EH=.∴△DEF的面积是EF·DH=2.答案:2【例4】如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.【标准解答】猜想:BE DF.证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF在△BCE和△DAF中,∴△BCE≌△DAF.∴BE=DF,∠BEC=∠DFA.∴BE∥DF,故BE DF.【例5】如图,在▱ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=( )A.40°B.50°C.60°D.80°【标准解答】选B.因为∠B=80°,所以∠BAD=100°,又AE平分∠BAD,所以∠BAE=∠DAE=∠BEA=50°,因为CF∥AE,所以∠1=∠BEA=50°.【例6】如图,在四边形ABCD中,AB∥CD,AD∥BC,AC,BD相交于点O.若AC=6,则线段AO的长度等于________.【标准解答】易知四边形ABCD是平行四边形,所以AO=OC=AC=3.答案:3【例7】如图所示,在▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是( )A.AC⊥BDB.AB=CDC.BO=ODD.∠BAD=∠BCD【标准解答】选A.∵四边形ABCD为平行四边形,∴AB=CD,则选项B正确;又根据平行四边形的对角线互相平分,∴BO=OD,则选项C正确;又∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠BCD=180°,∠BAD+∠ABC=180°,∴∠BAD=∠BCD,则选项D正确;由BO=OD,假设AC⊥BD,又∵OA=OA,∴△ABO≌△ADO,∴AB=AD与已知AB≠AD矛盾,∴AC不垂直BD,则选项A错误.1.已知▱ABCD的周长为32,AB=4,则BC=( )A.4B.12C.24D.282.若平行四边形ABCD的周长为22cm.AC,BD相交于O,△AOD的周长比△AOB的周长小3cm,则AD=________,AB=________.2.平行四边形的判定(1)利用“两组对边分别平行的四边形是平行四边形”来说明【例1】如图,在平行四边形ABCD中,点E是AB的延长线上的一点,且EC∥BD,试说明:四边形BECD 是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴AB∥CD,即BE∥CD,∵EC∥BD,∴四边形BECD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)利用“两组对边分别相等的四边形是平行四边形”来说明【例2】在平行四边形ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB,试说明:四边形AFCE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°,∴∠ADE=∠CBF=60°,又∵AE=AD,CF=CB,∴△AED,△CFB是等边三角形,又在平行四边形ABCD中,AD=BC,DC=AB,∴AE=CF,ED=BF,∴ED+DC=BF+AB,即EC=AF,∴四边形AFCE是平行四边形(两组对边分别相等的四边形是平行四边形)(3)利用“一组对边平行且相等的四边形是平行四边形”来说明【例3】如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.试判断四边形DBCF是怎样的四边形,说明你的理由.【标准解答】四边形DBCF是平行四边形.理由如下:∵△ADE绕点E顺时针旋转180°,得到△CFE,∴△ADE≌△CFE,且A,E,C和D,E,F在一条直线上,∴AD=CF,∠A=∠ECF,∴AB∥CF,又∵D是AB的中点,∴AD=DB=CF,∴四边形DBCF是平行四边形(一组对边平行且相等的四边形为平行四边形).(4)利用“两组对角分别相等的四边形是平行四边形”来说明【例4】如图,已知,在平行四边形ABCD中,∠ABC,∠ADC的平分线分别交CD,AB于点E,F,求证:四边形DFBE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴∠ABC =∠ADC,∠A=∠C,∵BE,DF分别平分∠ABC,∠ADC,∴∠1=∠3=∠ADC,∠2=∠4=∠ABC,∴∠1=∠2=∠3=∠4,又∵∠DEB=∠4+∠C,∠DFB=∠3+∠A,∠A=∠C,∴∠DEB=∠DFB,∴四边形DFBE是平行四边形(两组对角分别相等的四边形是平行四边形).(5)利用“对角线互相平分的四边形是平行四边形”来说明【例5】如图,平行四边形ABCD的对角线AC和BD交于O,点E,F分别为OB,OD的中点,过O任作一直线分别交AB,CD于点G,H.说明:四边形EHFG是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠BAO=∠DCO,又∵∠AOG=∠COH,∴△AOG≌△COH.∴OG=OH.又∵E,F分别为OB,OD的中点,∴OE=OF,∴四边形EHFG是平行四边形(对角线互相平分的四边形是平行四边形).1.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD是平行四边形.2.已知:如图,在四边形ABCD中,AB∥CD,点E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.3.三角形中位线(1)三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.(2)三角形的中位线定理中说明了三角形中位线与三角形第三边的位置关系与数量关系,为我们证明平行或求线段的长度提供了依据.【例1】如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O,再分别取OA,OB的中点M,N,量得MN=20m,则池塘的宽度AB为__________m.【标准解答】由三角形的中位线定理可知,AB=2MN=40m.答案:40【例2】已知:如图,在△ABC中,DE,DF是△ABC的中位线,连接EF,AD,其交点为O.求证:(1)△CDE≌△DBF.(2)OA=OD.【标准解答】(1)∵DE,DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中∴△CDE≌△DBF(SAS).(2)∵DE,DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD.1.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A,D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为________.2.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1的三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为________.4.多边形的有关问题(1)多边形的角度计算①利用多边形内角和公式计算多边形的内角和或边数【例1】一个多边形的内角和是900°,则这个多边形的边数为( )A.6B.7C.8D.9【标准解答】选B.设边数为n,由题意得(n-2)·180°=900°,解得n=7.②利用多边形外角和,计算多边形中各角的度数或边数.【例2】已知一个正多边形的一个内角是120°,则这个多边形的边数是________.【标准解答】外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.答案:六③利用多边形内角和公式和外角和,计算多边形中对角线条数【例3】若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是________.【标准解答】由题意可知(n-2)×180°=1260°,解得n=9,所以从一个顶点出发能引9-3=6(条)对角线. 答案:61.正八边形的每个内角为( )A.120°B.135°C.140°D.144°2.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A.12B.11C.10D.93.如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )A.六边形B.五边形C.四边形D.三角形(2)解决多边形问题的方法①将多边形问题转化为三角形问题解决在解决多边形问题时,如果无法直接应用内角和公式或外角和时,我们可以将多边形通过连接对角线转化成三角形问题解决.【例1】求五边形的内角和.【标准解答1】连接对角线AC,AD,将五边形ABCDE转化成三个三角形:△ABC,△ADC,△ADE,此时五边形ABCDE的内角和=3×180°=540°.【标准解答2】在五边形ABCDE内部任取一点O,连接AO,BO,CO,DO,EO,将五边形ABCDE转化为五个三角形△ABO,△BCO,△DCO,△DEO,△AEO,∴五边形ABCDE的内角和=5×180°-360°=540°.实际上点O的位置也可以放在五边形的任意一条边上,或五边形的外部.②将内角问题转化为外角来解决一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数,根据任何多边形的外角和都是360度,利用360除以多边形的边数就可以求出外角的度数,再转化为内角的度数.或者利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【例2】正五边形的每一个内角都等于________°.【标准解答】正五边形的外角是:360÷5=72°,则内角的度数是:180°-72°=108°.答案:1081.正多边形的一个内角为135°,则该多边形的边数为( )A.9B.8C.7D.42.正多边形的一个外角等于20°,则这个正多边形的边数是________.(3)多边形剪去一个角的三种情况①过多边形的一条对角线剪去一个角,则新多边形的边数比原多边形的边数少1.②过多边形的一个顶点剪去一个角,则新多边形的边数与原多边形的边数相同.③不过多边形的顶点剪去一个角,则新多边形的边数比原多边形的边数多1.【例】若把一个多边形剪去一个角,剩余部分的内角和为1440°,那么原多边形有________条边.【标准解答】设新多边形是n边形,由多边形内角和公式得(n-2)180°=1440°,解得n=10,原多边形边数是10-1=9或10+1=11或10.答案:9,10或11凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.(4)多边形的镶嵌问题判断多边形能否进行平面镶嵌,关键是检验拼接在同一点的各个角的和是否等于360°.若等于360°,则可以镶嵌;若不等于360°,则不能进行镶嵌.【例】下列正多边形中,不能铺满地面的是( )A.正三角形B.正方形C.正六边形D.正七边形【标准解答】选D.A.∵正三角形的内角是60°,6×60°=360°,∴正三角形能铺满地面;B.∵正方形的内角是90°,4×90°=360°,∴正方形能铺满地面;C.∵正六边形的内角是120°,3×120°=360°,∴正六边形能铺满地面;D.∵正七边形的内角是,同任何一个正整数相乘都不等于360°,∴正七边形不能铺满地面.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是( )跟踪训练答案解析1.平行四边形的性质【跟踪训练】1.【解析】选B.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.2.【解析】由平行四边形对角线互相平分知BO=OD,故△AOD周长比△AOB的周长小3cm,实际上就是AB-AD=3(cm).由平行四边形的周长为22cm可知AD+AB=11cm,解得AB=7cm,AD=4cm.答案:4cm 7cm2.平行四边形的判定【跟踪训练】1.【解析】∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.答案:BO=DO2.【证明】∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.3.三角形中位线【跟踪训练】1.【解析】由题意得:CE=CB=12,∵点F是AD的中点,FG∥CD,∴FG是△ADC的中位线,所以CG=AC=9,∵点E是AB的中点,∴EG是△ABC的中位线,∴GE=BC=6,∴△CEG的周长为:CE+GE+CG=12+6+9=27.答案:272.【解析】因为A2,B2,C2是△A1B1C1的三边中点,所以△A2B2C2的周长是=8,以此类推△A5B5C5的周长为=1.答案:14.多边形的有关问题(1)多边形的角度计算【跟踪训练】1.【解析】选B.根据多边形的内角和公式,可得正八边形内角和为:(8-2)×180°=1080°,又因为正八边形的每个内角都相等,所以正八边形的每个内角等于1080°÷8=135°. 2.【解析】选A.∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°-150°=30°,∴这个正多边形的边数==12.3.【解析】选D.根据题意,得(n-2)·180°=180°,解得:n=3.(2)解决多边形问题的方法【跟踪训练】1.【解析】选B.∵正多边形的一个内角为135°,∴外角是180°-135°=45°,∵360÷45=8,则这个多边形是八边形.2.【解析】因为外角是20°,360÷20=18,则这个正多边形是18边形.答案:18(3)多边形剪去一个角的三种情况【跟踪训练】【解析】∵六边形剪去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7,5,6三种情况,如图:(4)多边形的镶嵌问题【跟踪训练】【解析】选B.A.正八边形、正三角形内角分别为135°,60°,显然不能构成360°的周角,故不能铺满;B.正方形、正八边形内角分别为90°,135°,由于135×2+90=360,故能铺满;C.正六边形和正八边形内角分别为120°,135°,显然不能构成360°的周角,故不能铺满;D.正八边形、正五边形内角分别为135°,108°,显然不能构成360°的周角,故不能铺满.。

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案
∵AD=a, ∴a 的取值范围是:2<a<10. 故答案为:2<a<10. 15.【解答】解:∵四边形 ABCD 是平行四边形, ∴∠AEB=∠EBC,AD=BC=5cm, ∵BE 平分∠ABC,
∴∠ABE=∠EBC, ∴∠ABE=∠AEB, ∴AB=AE=3cm, 同理可得:DF=DC=3cm, ∴EF=AE+FD﹣AD=3+3﹣5=1(cm). 故答案为:1cm. 16.【解答】解:连接 DE 并延长交 AB 于 H. ∵CD∥AB, ∴∠C=∠A, ∵E 是 AC 中点, ∴DE=EH, 在△DCE 和△HAE 中,
新多边形的内角和为 720°,则对应的图形是( )
A.
B.
C.
D.
10.平面直角坐标系中一个平行四边形的三个顶点的坐标分别(0,0),(3,0),(1,3),
则第四个顶点的坐标可能是下列坐标:①(4,3)②(﹣2,3)③(﹣1,﹣3)④(2,
﹣3)中的哪几个( )
A.①②③
B.②③④
C.①②④
D.①③④
有( )
A.1 对
B.2 对
C.3 对
D.4 对
5.如图,在平行四边形 ABCD 中,AB⊥AC,若 AB=8,AC=12,则 BD 的长是( )
A.22
B.16
6.下列结论正确的是( )
C.18
D.20
A.平行四边形是轴对称图形
B.平行四边形的对角线相等
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
北师大版八年级数学下册第 6 章《平行四边形》章节综合测试含答案
一.选择题(共 10 小题,满分 30 分)
1.在▱ ABCD 中,∠A:∠B=7:2,则∠C 的度数是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章平行四边形复习课
【教学目标】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;
3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。

【教学重点】
1、平行四边形与各种特殊平行四边形的区别。

2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。

【教学难点】
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。

【教学模式】
以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率
【教具准备】三角板、实物投影仪、电脑、自制课件。

【教学过程】
一、以题代纲,梳理知识
(一)开门见山,直奔主题
同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。

(二)诊断练习
1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:
(1) AB=CD,AD=BC (平行四边形)
(2)∠A=∠B=∠C=90°(矩形)
(3)AB=BC,四边形ABCD是平行四边形(菱形)
(4)OA=OC=OB=OD ,AC⊥BD (正方形)
(5) AB=CD, ∠A=∠C ( ? )
2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。

3、顺次连结矩形ABCD各边中点所成的四边形是菱形。

4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。

5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。

(二)归纳整理,形成体系
1、性质判定,列表归纳
(1)矩形、菱形、正方形都具有的性质是(C)
A.对角线相等(距、正) B. 对角线平分一组对角(菱、正) C.对角线互相平分 D. 对角线互相垂直(菱、正)
(2)、正方形具有,矩形也具有的性质是(A)
A.对角线相等且互相平分 B. 对角线相等且互相垂直
C. 对角线互相垂直且互相平分
D. 对角线互相垂直平分且相等
(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D) A.正方形B.菱形C.矩形 D.平行四边形
都是中心对称图形,A、B、C都是平行四边形
(4)、矩形具有,而菱形不一定具有的性质是(B)
A. 对角线互相平分
B. 对角线相等
C. 对边平行且相等
D. 内角和为360
问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。

(5)、正方形具有而矩形不具有的特征是( D ) A. 内角为3600
B. 四个角都是直角
C. 两组对边分别相等
D. 对角线平分对角 问:那么正方形具有而菱形不具有的特征是什么?对角线相等
2、集合表示,突出关系
二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗
已知:如图1,□ABCD 的对角线AC 、BD 交于点O , EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF .
证明: ∵
变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。

B
B
B
变式2.在图1中,如果过点O 再作GH ,分别交AD 、BC 于G 、H ,你又能得到哪些新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。

变式3.在图1中,若EF 与AB 、CD 的延长线分别交于点E 、F ,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?
对角线互相平分的四边形是平行四边形。

变式4
.在图1中,若改为过A 作AH ⊥BC ,垂足为H ,连结HO 并延长交AD 于G ,连结GC ,则四边形AHCG 是什么四边形?为什么?
可由变式1可知四边形AHCG 是平行四边形, 再由一个直角可得四边形AHCG 是矩形。

变式5
.在图1中,若GH ⊥BD ,GH 分别交AD 、BC 于G 、H ,则四边形BGDH
是什么四边形?为什么?
可由变式1可知四边形BGDH 是平行四边形,
再由对角线互相垂直可得四边形BGDH 是菱形。

变式6.
在变式5中,若将“□
ABCD ”改为“矩形B
于G 、H ,则四边形BGDH 是什么四边形?若AB=6,BC=8,你能求出GH 的长吗?(这一问题相当于将矩形ABCD 对折,使B 、D 重合,求折痕GH 的长。


略解:∵AB=6,BC=8 ∴BD=AC=10。

设OG = x ,则BG = GD=252+x .
在Rt △ABG 中,则勾股定理得:
AB 2 + AG 2 = BG 2 , 即(
)(
)
2
2
2
2
2
252586+=+-+x x ,
解得 4
15
=x .
∴GH = 2 x = 7.5.
(二)一题多解,培养发散思维
〖例题2〗
已知:如图,在正方形ABCD ,E 是BC 边上一点,
F 是CD 的中点,且AE = DC + CE .
求证:AF 平分∠DAE .
证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)。

∵四边形ABCD
是正方形,
∴AD=CD ,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°,
∴∠C =∠GDF
在△EFC 和△GFD 中 ⎪⎩

⎨⎧=∠=∠∠=∠DF CF GDF C 2
1 ∴△EFC ≌△GFD (ASA )
∴CE=DG ,EF=GF

AE = DC + CE ,
∴AE = AD + DG = AG , ∴AF 平分∠DAE .
证法二:(延长法)延长BC ,交AF 的延长线于G (如图2-2)
∵四边形ABCD 是正方形,
∴AD // BC ,DA=DC ,∠FCG=∠D=90°
E B
C
A G
(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FCG=90°,
∴∠FCG =∠D
在△FCG 和△FDA 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF D
FCG 21
∴△△FCG 和△FDA (
ASA ) ∴CG=DA
∵AE = DC + CE ,
∴AE = CG + CE = GE ,
∴∠4 =∠G ,
∴∠3 =∠4,
∴AF 平分∠DAE

思考:如果用“截取法”,即在AE 上取点G ,
使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?
三、综合训练,总结规律 (一)综合练习,提高解题能力
1.在例2中,若将条件“AE = DC + CE ”和结论 “
AF 平分∠DAE
”对换,
所得命题正确吗?为什么?你有几种证法?
2.已知:如图,在□ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,
G 、H 分别是BC 、AD 的中点. 求证:四边形EGFH 是平行四边形.(用两种方法)
(二)课堂小结,领悟思想方法
1.一题多变,举一反三。

经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。

也只有这样,才能做到举一反三,提高应变能力。

2.一题多解,触类旁通。

在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的。

3.善于总结,领悟方法。

数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力。

四、测试练习,提高效率
1、完成《优化设计》第57、58页。

相关文档
最新文档