例谈函数单调性的应用
浅谈函数单调性在高中数学中的学习与运用
浅谈函数单调性在高中数学中的学习与运用1. 引言1.1 介绍函数单调性的概念函数单调性是高中数学中一个非常重要的概念,它在分析函数性质、求解极值和解不等式等问题中具有重要作用。
所谓函数单调性,指的是函数的增减性质,也就是函数在定义域内是单调递增还是单调递减。
具体来说,如果对于定义域内的任意两个实数a和b,当a小于b时,有f(a)小于等于f(b),则称函数f(x)在区间上是单调递增的;如果对于定义域内的任意两个实数a和b,当a小于b时,有f(a)大于等于f(b),则称函数f(x)在区间上是单调递减的。
函数单调性的概念非常直观和易懂,通过观察函数的图像我们也可以很容易地判断函数的单调性。
在学习函数单调性的过程中,我们需要掌握函数单调性的定义与分类、判断函数的单调性的方法,以及函数单调性在求极值和解不等式中的应用。
函数单调性不仅可以帮助我们更好地理解函数的性质,还可以在解决数学问题时提供重要的线索。
深入学习函数单调性是我们在高中数学学习中不可或缺的一部分。
1.2 为什么函数单调性在高中数学中重要函数单调性是研究函数变化规律的基本性质之一。
通过分析函数的单调性,可以帮助我们更好地理解函数的增减性质,从而更深入地理解函数在数学中的应用。
在解决实际问题时,函数的单调性也是确定函数取值范围和变化趋势的重要依据。
函数单调性是高中数学中求解极值和解不等式的重要工具。
根据函数的单调性,我们可以快速判断函数的最大值和最小值,进而求解极值问题。
通过函数的单调性可以帮助我们求解各类不等式,从而更好地解决数学中的实际问题。
函数单调性也与函数的图像密切相关。
通过研究函数的单调性,我们可以更好地理解函数的图像特征,包括函数的上升和下降区间,极值点位置等,从而更好地描绘函数的图像。
函数单调性在高中数学中的学习与运用具有重要的意义,可以帮助我们更深入地理解函数的特性,解决实际问题,并为学习其他数学内容打下扎实的基础。
掌握函数单调性不仅可以提高数学学习的效果,也可以在以后的学习和工作中发挥重要的作用。
浅谈数学中函数的单调性及其应用
浅谈数学中函数的单调性及其应用浅谈数学中函数的单调性及其应用摘要函数的单调性是高一数学课程中所接触到的函数的第一个性质,单调性的判断(用定义证明一个函数的单调性、求复合函数的单调性)及其应用(包括利用单调性求解不等式、利用单调性求函数的值域、利用单调性求函数的最值等)在高中数学中的作用和地位是非常重要的,它可以和高中阶段的很多知识点联系在一起,出题的方式、解题的方法也是多种多样的。
下面就我个人的理解和掌握,对函数的单调性判断及利用函数的单调性求解不等式、利用单调性求最值和参量等问题,举些具有代表性的例子。
关键词:函数;单调性;数学前言函数单调性是中学数学的重要内容之一,是高考的热点,常作为高考压轴题的考查内容,比如,本文通过整理发现陕西近年的高考数学题呈现一个现象,即多次要用函数单调性去做一些较难层次的题,分别是求参数范围、解不等式、证明不等式等。
同时,新课标对于函数单调性的教学目标是,要求学生能够熟练掌握单调性概念的证明方法,并应用单调性来求解一些基础题。
不管是高考趋势,还是新课标所倡导的教学理念,都对学生学习函数单调性提出了较高层次的要求。
但由于函数单调性的证明和应用的复杂性,使得学生在学习和做题过程中存在很多困难,例如,通常掌握单调性的概念证明是远远不够的。
那么,就出现了一个问题,除了它的的概念,是否还有其他可以证明函数单调性的方法,同时这些方法可以用来解决高考题。
针对于以上提到的两点,本文选择了函数单调性的判断和应用进行研究。
函数的单调性,是函数在它的定义域或其子集内如何增减的刻画。
它是研究函数必不可少的内容,不论是现实生活,还是学习其它理论知识,单调性都是一个很有用的工具。
函数是高中数学的中心内容,几乎渗透到数学的每一个角落,它不仅是一条重要的数学概念,而且是种重要的数学思想。
而函数的单调性则是函数的一条重要性质,它是历年高考重点考查的重要内容,它的应用十分广泛。
通过研究函数的单调性可以揭示函数值的变化特性,对于一些学问题,若解题中注意应用函数的单调性,合理巧妙地加以运用,定会带来快捷的解题思路,可以使问题的解决简捷明快。
函数的单调性及应用
contents
目录
• 函数的单调性定义 • 函数的单调性性质 • 函数的单调性应用 • 反函数的单调性 • 单调性在实际问题中的应用 • 总结与展望
01 函数的单调性定义
增函数的定义
增函数的定义
如果对于函数$f(x)$的定义域内的任 意$x_{1}, x_{2}$($x_{1} < x_{2}$), 都有$f(x_{1}) < f(x_{2})$,则称函数 $f(x)$在其定义域内是增函数。
06 总结与展望
函数单调性的重要性
数学基础
单调性是函数的重要性质之一,是数学分析、微积分等学科的 基础概念,对于理解函数的变化规律和性质具有重要意义。
解决实际问题
单调性在解决实际问题中也有广泛应用,如经济学、生物学、 工程学等领域的研究中,单调性可以帮助我们更好地理解和描
述事物的发展趋势和变化规律。
判断函数值大小
通过比较原函数和反函数的单调性,可以判 断两个函数值的大小关系。
优化问题
在某些优化问题中,可以利用反函数的单调 性来寻找最优解。
05 单调性在实际问题中的应 用
在经济问题中的应用
总结词
单调性在经济分析中有着广泛的应用,可以 帮助我们理解经济现象和预测未来的趋势。
详细描述
在经济学中,单调性可以用于研究商品价格 的变化趋势、消费者需求的变化趋势、劳动 力市场的供求关系等。通过分析这些经济变 量的单调性,我们可以更好地理解经济规律 ,预测未来的经济走势,为决策提供依据。
单调性法
利用函数的单调性,可以确定函数在某个区间 内的最大值或最小值,从而求解最值问题。
导数法
通过求导数,可以判断函数的单调性,从而确 定函数的最值。
函数的单调性在解题中十个方面的应用举例
函数的单调性在解题中十个方面的应用举例函数的单调性是函数的一条重要性质,通过研究函数的单调性可以揭示函数值的变化特性,对于一些数学问题,若解题中注意应用函数的单调性,可以使问题的解决简捷明快;它是历年高考重点考查的重要内容之一,它在中学数学的应用十分广泛。
本文通过利用函数的单调性解方程、解不等式、证明不等式等问题的例子,探讨函数单调性在解题中的应用。
1利用函数的单调性比较大小2利用函数的单调性解方程3利用函数的单调性解方程根的问题x2+x+1=0至多有一个实根。
4利用函数的单调性解不等式例4解不等式(2x-1)5+2x-1<x5+x解:原不等式两边的结构都是t5+t的形式,故令f(t)=t5+t,则原不等式可写为f(2x-1)<f(x)∵f(t)=t5+t在(-∞,+∞)上是增函数,由f(2x-1)<f(x)得2x-1<x,解得x<1∴原不等式的解是x<15利用函数的单调性求值6利用函数的单调性求最大(小)值例6 已知圆C:(x+4)2+y2=4,圆D的圆心D在y轴上且与圆C外切,圆D与y轴交于A、B两点,点P坐标为(-3,0)。
求当D在轴上移动时,得最大值。
7利用函数的单调性求取值范围例7若关于x的方程cos2x+2asinx-3a-1=0有实数解,求a的取值范围。
故当sinx=1时,a最小=-1,因此,a的取值范围是-1,<a<08利用函数的单调性证明条件等式9利用函数的单调性证明条件不等式10利用函数的单调性证明函数的性质例10试证函数f(x)=x-asinx(x∈R,0≤a,1)有反函数。
参考文献1谭森.函数单调性的应用花名册.高中数理化,2010(10)2胡岩火等.函数单调性在解题中的一些应用.数学通报,1993(02)3李国勤.巧用函数的单调性证明不等式./xxff/200510/gaoshu/42.htm4边锡栋.函数单调性的应用.学勉数学网5杨晓.函数的单调性在解题中的应用/wu51/keyan/shu15.doc2007-6-13。
函数的单调性的应用课件
详细描述
在许多优化算法中,如梯度下降法、牛顿法等,可以 利用函数的单调性来指导搜索方向,加速算法的收敛 速度。此外,在求解最优化问题时,可以利用单调性 来证明解的存在性和唯一性。
THANKS
感谢观看
导数与函数的单调性
导数与函数的单调性密切相关。导数大于零的区间内,函数单调递增;导数小于零的区间内,函数单 调递减。
通过求函数的导数,可以判断函数的单调性,进而研究函数的极值、拐点等性质。此外,导数还可以 用于求解函数的零点、近似计算等问题。
微积分中的单调性应用
单调性在微积分中有着广泛的应用。例如,在积分学中,可以利用单调性判断积分的符号和大小;在级数理论中,可以利用 单调性判断级数的收敛性和发散性。
02
在单调增函数中,随着自变量$x$的增大,函数值 $f(x)$也相应增大。
03
单调增函数在图像上表现为从左到右逐渐上升的曲 线。
单调减函数
01
单调减函数是指函数在某个区间内,对于任意$x_1 <
x_2$,都有$f(x_1) > f(x_2)$。
02
在单调减函数中,随着自变量$x$的增大,函数值
$f(x)$相应减小。
单调性在图像分析中的应用
判断极值点
通过单调性分析,可以确定函数的极值 点,即函数由递增转为递减或由递减转 为递增的点。
VS
确定函数值范围
根据单调性,可以确定函数在某个区间内 的最大值和最小值。
图像变换与单调性的关系
平移变换
函数图像的平移不影响函数的单调性,平移 后的图像仍保持相同的单调性。
伸缩变换
利用单调性进行投资决策分析
总Hale Waihona Puke 词投资决策分析中,函数的单调性可以用于评 估投资组合的风险和回报。
函数单调性的应用及解法
函数单调性的应用及解法函数的单调性是数学中的一个重要概念,它描述了函数随着自变量的增大或减小,函数值是递增还是递减的趋势。
掌握函数的单调性不仅对于理解函数的性质和行为有帮助,还可以在实际问题中进行正确的推导和解决。
本文将从函数单调性的概念、解法和应用方面进行详细论述,以便读者更好地理解和灵活运用。
首先,我们来具体定义函数的单调性。
设函数f(x)在区间I上有定义,如果对于任意x1和x2,若x1 < x2,则有f(x1) ≤f(x2),则称函数f(x)在区间I上是递增的;如果对于任意x1和x2,若x1 < x2,则有f(x1) ≥f(x2),则称函数f(x)在区间I上是递减的。
如果函数f(x)既是递增的又是递减的,则称函数f(x)在区间I上是严格单调的。
接下来,我们将介绍解决函数单调性的一般方法。
首先,我们需要找到函数的导数。
对于定义在区间I上的函数f(x),如果导数f'(x) ≥0,则f(x)在区间I上递增;如果导数f'(x) ≤0,则f(x)在区间I上递减。
如果导数f'(x) > 0,则f(x)在区间I上严格递增;如果导数f'(x) < 0,则f(x)在区间I上严格递减。
因此,解决函数单调性问题的一般步骤如下:首先,计算函数的导数;然后,找到导数的零点,即导数为0的点;最后,根据导数的正负情况,判断函数的单调性。
然而,由于计算函数的导数和求解导数的零点可能会比较复杂,所以在实际应用中,我们往往会借助一些简化的策略和技巧。
下面,我将以实际问题为例,具体介绍函数单调性的应用和解法。
第一个应用场景是求解函数极值问题。
对于一个凸函数(即导数的二阶导数大于等于0),如果在一个区间上函数的导数从正数变为负数,那么函数在该点上取得极大值;如果在一个区间上函数的导数从负数变为正数,那么函数在该点上取得极小值。
这是因为函数在这两种情况下都出现了斜率的变化,导致函数的增长或减小逐渐趋缓。
函数单调性的七种应用
函数单调性的七种应用
一、内容提要如果函数f()对于区间(a,b)内任意两个值1和2,当1
如果对于区间(a,b)内任意两个值1和2,当1f(2),那么f()叫做在区间(a,b)内是单调减少的,区间(a,b)叫做函数f()的单调减少区间。
在其中一区间单调增加或单调减少的函数叫做这个区间的单调函数,
这个区间叫做这个函数的单调区间。
二、函数单调性的应用
函数的单调性既属于数学的基础知识,也是解决数学问题的重要工具。
许多数学问题,比如,确定参变量的范围、证明不等式、求解三角方程、高
次方程、超越方程、求解高难度的不等式,以及确定函数的周期,都要用到
函数的单调性。
上面我所提到的这些问题看上去用初等方法解决起来都较
为困难。
但是,如果采用函数的单调性来求解的话,那将变得很简单、可行。
三、例题分析
例1:f()=,其中a是实数,n是任意给定的自然数且n≥2,如果f()当
∈(-∞,1]时有意义,求a的取值范围。
解:要使f()有意义必须且只须1+2+3…(n-1)+na>0恒成立,从而a>
①,令①右端为式g(),则g()在(-∞,1]上单调递增。
从而有
g()≤g(1),∈(-∞,1]而g(1)=
∴g()≤≤(∵n≥2)
由式①可得a>
例2:设00时,有f()在(0,1)上是增函数。
则f()0
解:改写原不等式为
()3+>3+5
令f()=3+5,则原不等式即为
f()>f()⑥
∵f()是实数集R上的单调增函数
∴不等式⑥等价于不等式>
解之得原不等式的解为-1。
函数单调性的应用
y=2x+1
性质: (1)当k>0时, y随x的增大而增大; (2)当k<0时, y随x的增大而减小。
二次函数y=ax2+bx+c的单调性
a>0
y y
a<0
x 0 0
x
反比例函数
y
1
k y x
的单调性
y y1
1 y x1x1o Nhomakorabeax
x
-1
o
K>0
K<0
2 例1:(1)若函数 f ( x) 4x mx 5 m在 [2, ) 上是增 函数,在 (, 2] 上是减函数,则实数m的值 为 ; (2)若函数 f ( x) 4x2 mx 5 m在 [2, ) 上是增函 数,则实数m的取值范围为 ; f ( x) 4x2 mx 5 m的单调递增区间 (3)若函数 为 [2, ) ,则实数m的值为 .
如果函数y=f(x)在区间M上是增函数或减函数, 那么就说函数y=f(x)在这一区间具有严格的单调性, 区间M叫做函数y=f(x)的单调区间.
证明:函数f(x)=-x3+1在(-∞,+∞)上是 减函数。 证明:设x1<x2,则
x x2 x1 0
y f ( x2 ) f ( x1 ) x13 x23 ( x1 x2 )(x12 x1 x2 x22 )
1 2 3 2 ( x1 x 2 )[(x1 x 2 ) x 2 ]. 2 41 3 2 2 由x1<x2,x1-x2<0且 ( x1 x2 ) x2 >0 2 4
y 0
因此,f(x)=-x3+1在(-∞,+∞)上是减函数。
一次函数y=kx+b的单调性
函数单调性及其应用的研究
函数单调性及其应用的研究
函数单调性指的是函数在其定义域上的增减性质。
具体来说,如果函数f的定义域上的任意两个自变量x1和x2满足x1<x2,则有f(x1)<f(x2)(即f单调递增),或者f(x1)>f(x2)(即f单调递减)。
如果函数既不单调递增也不单调递减,则称之为不单调。
函数单调性的研究在数学分析、微积分、数值分析、优化等领域中有着广泛的应用。
以下是一些具体的应用:
1. 函数单调性可以帮助我们确定函数的最值和极值,从而指导我们在实际问题中找到最优解。
2. 在微积分中,函数单调性可以帮助我们证明一些基本定理,例如中值定理、罗尔定理等。
3. 函数单调性还可以为数值计算提供依据。
如果我们知道函数f在一个区间上单调递增或递减,那么我们就可以使用二分法等技术来快速找到这个区间内的零点或极值点。
4. 在优化问题中,函数单调性可以帮助我们确定最优解空间的边界和方向,从而指导我们设计更加高效的优化算法。
总之,函数单调性是数学中一个非常重要的概念,它不仅可以帮助我们求解各种实际问题,还可以为理论研究提供有力的工具和方法。
浅谈函数单调性在高中数学中的学习与运用
浅谈函数单调性在高中数学中的学习与运用【摘要】在高中数学中,函数单调性是一个重要的概念,对于学生来说是必须掌握的知识点。
本文从函数单调性的定义和分类入手,详细介绍了函数单调性在高中数学中的学习方法,以及如何应用函数单调性解决实际问题。
文章还探讨了函数单调性与数学建模的关系,并列举了一些函数单调性在高中数学考试中常见的题型。
通过阅读本文,读者将更好地掌握函数单调性的相关知识,提高解题能力和应用能力。
函数单调性不仅是数学学习的重要内容,也在数学建模和实际问题中发挥着重要作用,帮助我们更好地理解数学知识的实际应用。
学习和掌握函数单调性是高中数学学习中必不可少的一部分。
【关键词】函数单调性、高中数学、学习方法、应用举例、数学建模、考试题型1. 引言1.1 引言函数单调性在高中数学中是一个非常重要的概念,它不仅涉及到数学理论的学习,还可以在实际问题中得到应用。
在学习函数单调性的过程中,我们需要了解其定义及分类,掌握学习方法,探讨其应用举例,探讨与数学建模之间的联系,以及在高中数学考试中常见的题型。
通过深入学习这些内容,可以帮助我们更好地理解函数的性质,提高解题效率,拓展数学思维,培养数学建模能力。
2. 正文2.1 函数单调性的定义及分类函数单调性是高中数学中重要的概念之一,它描述了函数在一定区间内的增减趋势。
具体来说,一个函数在某个区间内是单调递增的,意味着函数的值随着自变量的增加而增加;而单调递减则表示函数的值随着自变量的增加而减少。
在函数单调性的研究中,我们通常将函数分为严格单调递增、严格单调递减、非严格单调递增、非严格单调递减四类。
首先是严格单调递增函数,其定义为在定义域内的任意两个不同的数x1和x2,都有f(x1) < f(x2)成立。
这种函数图像呈现为严陡的上升趋势。
严格单调递减函数则正好相反,任意两个不同的数x1和x2,都有f(x1) > f(x2)。
这样的函数图像呈现为严陡的下降趋势。
函数的单调性及其应用
函数的单调性及其应用
函数的单调性是指函数在定义域内的取值增减情况。
具体地说,设函数$f(x)$在区间$I$内有定义,如果对于$I$内任意的$x_1$和
$x_2$,只要$x_1<x_2$,就有$f(x_1)<f(x_2)$,则称$f(x)$在区间$I$内单调递增;如果对于$I$内任意的$x_1$和$x_2$,只要
$x_1<x_2$,就有$f(x_1)>f(x_2)$,则称$f(x)$在区间$I$内单调递减。
应用方面,函数的单调性可以帮助我们判断函数的图像和性质,如:
1. 判断函数的最值及其取值范围:单调递增的函数在定义域内
最小值是在端点处取得,最大值是在定义域最大值处取得;单调递
减的函数则恰好相反。
2. 判断函数零点:若函数为单调递增,则只有一个零点;若函
数为单调递减,则只有一个零点。
3. 判断函数的奇偶性:若函数为奇函数,则当$x<0$时单调递减,$x>0$时单调递增;若函数为偶函数,则在整个定义域内都单调
递增或单调递减。
4. 判断函数解析式的符号:已知某函数在某区间单调递增或单
调递减,则我们可以根据函数图像的位置,得到函数解析式的符号。
函数的单调性和奇偶性的综合应用
精品资料欢迎下载函数的单调性和奇偶性的综合应用知识要点:对称有点对称和轴对称:O点对称:对称中心O轴对称:数的图像关奇函于原点成点对称,偶函数的图像关于y 轴成轴对称图形。
1、函数的单调性:应用:若y f ( x) 是增函数, f ( x1 )应用:若y f ( x) 是减函数, f ( x1 )f (x2 )x1x2 f (x2 )x1x2相关练习:若 y f (x) 是R上的减函数,则 f (1) f ( a2 2 a 2 )2、熟悉常见的函数的单调性:y kx b 、y k、 y ax2bx cb在 (x相关练习:若 f ( x) ax ,g ( x),0) 上都是减函数,则 f (x)ax 2bx 在 (0,) 上是函x数(增、减)3、函数的奇偶性:定义域关于原点对称, f (x) f (x) f (x) 是偶函数定义域关于原点对称, f (x) f ( x) f ( x) 是奇函数(当然,对于一般的函数,都没有恰好f ( x) f ( x) ,所以大部分函数都不具有奇偶性)相关练习:( 1)已知函数f ( x)ax2bx4a1是定义在 [a 1,2a] 上的奇函数,且 f (1) 5 ,求 a 、bb(2) 若f ( x)(K2) x2( K1)x 3 是偶函数,则 f ( x) 的递减区间是。
(3) 若函数 f ( x) 是定义在R 上的奇函数,则 f (0)。
(4)函数 y f (x) 的奇偶性如下:画出函数在另一半区间的大致图像奇函数偶函数奇函数奇函数y y y yo x o x o x o x精品资料欢迎下载例题分析:4、单调性和奇偶性的综合应用【类型 1转换区间】相关练习:( 1)根据函数的图像说明,若偶函数y f ( x) 在 (,0) 上是减函数,则 f ( x) 在 (0,) 上是函数(增、减)(2)已知 f ( x) 为奇函数,当x0时, f ( x)(1x) x ,则当x0 时, f (x)=(3)R 上的偶函数在(0,) 上是减函数, f (3) f ( a2a 1 )4(4) 设f (x)为定义在((,) 上的偶函数,且 f (x) 在 [0,) 为增函数,则 f (2) 、 f () 、f (3) 的大小顺序是()A. f () f (3) f (2)B. f () f (2) f (3)C. f () f (3) f (2)D. f () f (2) f (3)(5)如果奇函数 f (x) 在区间 [3,7] 上的最小值是5,那么 f ( x) 在区间 [ 7, 3]上 ()A.最小值是 5B. 最小值是-5C. 最大值是-5D. 最大值是 5(6)如果偶函数 f (x) 在 [3,7] 上是增函数,且最小值是-5那么 f (x) 在 [ 7,3]上是( )A.增函数且最小值为-5B. 增函数且最大值为-5C.减函数且最小值为-5D. 减函数且最大值为-5(7)已知函数 f ( x) 是定义在R 上的偶函数,且在(, 0)上 f (x) 是单调增函数,那么当x10 , x20 且x1x20 时,有()A. f (x1) f ( x2 )B. f ( x1 ) f (x2 )C. f ( x1) f ( x2 )D. 不确定(8)如果 f ( x) 是奇函数,而且在开区间( ,0) 上是增函数,又 f (2)0 ,那么 x f ( x) 0的解是()A. 2 x 0 或 0 x2B. 2 x 0 或 x 2C. x 2 或 0 x 2D. x 3 或 x 3(9)已知函数f ( x)为偶函数,xR ,当 x0 时,f ( x)单调递增,对于x1,x2,有| x1|| x2|,则()A. f ( x1)f ( x2)B.f ( x1) f ( x2)C.f ( x1)f ( x2 ) D. | f ( x1 ) | | f ( x2 ) |精品资料 欢迎下载5、单调性和奇偶性的综合应用【类型 2利用单调性解不等式】(1 相关练习: (1)已知y f ( x)是( 3,3)上的减函数,解不等式f (x 3) f (2 x)1 ,)2(0, 2 (2) 定义在( 1,1)上的奇函数f ( x)是减函数,且满足条件 f (1 a) f (1 2a) 0),求 a的取值范围。
浅谈函数单调性在高中数学中的学习与运用
浅谈函数单调性在高中数学中的学习与运用1. 引言1.1 引言在高中数学学习中,函数单调性是一个重要的概念。
它不仅在数学理论中有着重要的地位,而且在解决实际问题中也具有很大的应用价值。
本文将从函数单调性的概念入手,探讨在高中数学中函数单调性的学习与运用。
函数单调性是指函数在定义域上的增减性质。
在高中数学课程中,我们学习了很多种函数,如线性函数、二次函数、指数函数、对数函数等。
了解这些函数的单调性,可以帮助我们更好地理解函数的性质,进而解决各种数学问题。
在学习函数单调性时,我们需要掌握如何判断一个函数的单调性。
一般来说,可以通过求导数或者利用函数的增减性质来确定一个函数的单调性。
我们还需要注意函数在定义域上的特殊点,如奇点和间断点,这些点可能影响函数的单调性。
函数单调性在高中数学中有着广泛的应用。
比如在求函数的最值、解不等式、证明不等式等问题中,函数的单调性往往能起到关键作用。
在物理、化学等自然科学中,函数的单调性也常常被用来描述物理规律和现象。
2. 正文2.1 函数单调性的概念函数单调性是函数在定义域内具有特定的增减规律的性质。
简单来说,就是函数随着自变量的增大而增大,或随着自变量的减小而减小。
在数学中,函数单调性是对函数变化规律的一种重要描述,它能够帮助我们更好地理解和分析函数的性质。
具体来说,函数的单调性分为严格单调和非严格单调两种。
严格单调是指函数在整个定义域内严格递增或严格递减,即任意两个不同的自变量对应的函数值之间的大小关系是确定的。
非严格单调则是指函数在整个定义域内递增或递减,但可以存在相等的情况。
函数单调性的概念为我们提供了研究函数的新视角,通过研究函数的单调性,我们可以得到函数图像的大致形状和变化规律。
这对于解题和分析问题都有重要意义。
在高中数学中,函数单调性是一个重要的概念,通过对函数单调性的学习和理解,我们可以更深入地掌握函数的性质和特点。
函数单调性是数学中一个基础而重要的概念,它在高中数学中具有重要的教学意义和应用价值。
函数单调性定义应用例谈
函数单调性在生活中实际应用
函数单调性在生活中实际应用函数单调性在我们生活中有着广泛的应用,其中最常见的就是经济学中的供求关系。
例如在市场中,当价格上涨时,需求量会逐渐减少,反之价格下跌时,需求量会增加,这就是函数单调性的应用。
另外,函数单调性还可以应用在企业的生产管理方面,可以帮助企业确定生产规模,从而获取较大的经济效益,同时也可以有效的防止企业的生产成本过高。
此外,函数单调性也可以应用在社会管理方面,可以帮助政府有效的进行政策调整,以达到更好的社会效果。
例如,政府可以采取政策措施来控制房价,房价过高时政府可以采取控制房价的措施,从而降低房价;反之,如果房价过低时,政府可以采取政策手段来提高房价。
此外,函数单调性还可以应用在财政管理方面,可以帮助政府有效的调整财政支出和税率,从而获取较大的财政收入。
函数单调性作为一种运用自然现象的规律,其应用非常广泛,可以方便政府和企业更好的进行规划,实现更高效的管理。
此外,函数单调性也广泛应用在数学中,可以用来寻找极值点。
函数单调性可以帮助我们确定函数在某一点是最大值还是最小值,从而可以有效的计算函数的最大和最小值从而获得更好的结果。
因此函数单调性在解决数学难题方面也发挥着重要的作用。
另外,函数单调性在经济学的投资分析中也有重要作用,它可以帮助投资者对风险有效的进行评估和预测,以便于投资者采取更加谨慎的投资行为,从而获得最优投资收益。
总之,函数单调性在日常生活、社会管理、财政管理、数学以及投资分析中都发挥重要作用,它不仅可以帮助政府和企业更好的制定规划,同时也可以帮助投资者对风险有效的进行评估和预测。
此外,函数单调性在建筑设计、农业生产以及工程管理等领域也有着重要的作用。
在建筑设计中,函数单调性可以帮助建筑设计师确定合理的建筑尺寸,从而实现安全可靠的建筑设计。
在农业生产中,函数单调性可以帮助农民们确定合理的种植模式,从而最大化农作物的产量。
在工程管理中,函数单调性可以帮助工程管理者有效的完成复杂的工程,从而节约时间和金钱。
函数单调性的应用
函数单调性的应用 The latest revision on November 22, 2020函数单调性的应用一、比较大小例1若函数f(x)=x2+mx+n,对任意实数x都有f(2-x)=f(2+x)成立,试比较f(-1),f(2),f(4)的大小.解依题意可知f(x)的对称轴为x=2,∴f(-1)=f(5).∵f(x)在[2,+∞)上是增函数,∴f(2)<f(4)<f(5),即f(2)<f(4)<f(-1).评注(1)利用单调性可以比较函数值的大小,即增函数中自变量大函数值也大,减函数中自变量小函数值反而变大;(2)利用函数单调性比较大小应注意将自变量放在同一单调区间.二、解不等式例2已知y=f(x)在定义域(-1,1)上是增函数,且f(t-1)<f(1-2t),求实数t的取值范围.解依题意可得解得0<t<.评注(1)利用单调性解不等式就是利用函数在某个区间内的单调性,推出两个变量的大小,然后去解不等式.(2)利用单调性解不等式时应注意函数的定义域,即首先考虑使给出解析式有意义的未知数的取值范围.(3)利用单调性解不等式时,一定要注意变量的限制条件,以防出错.三、求参数的值或取值范围例3已知a>0,函数f(x)=x3-ax是区间[1,+∞)上的单调函数,求实数a的取值范围.解任取x1,x2∈[1,+∞),且x1<x2,则Δx=x2-x1>0.Δy=f(x2)-f(x1)=(x-ax2)-(x-ax1)=(x2-x1)(x+x1x2+x-a).∵1≤x1<x2,∴x+x1x2+x>3.显然不存在常数a,使(x+x1x2+x-a)恒为负值.又f(x)在[1,+∞)上是单调函数,∴必有一个常数a,使x+x1x2+x-a恒为正数,即x+x1x2+x>a.当x1,x2∈[1,+∞)时,x+x1x2+x>3,∴a≤3.此时,∵Δx=x2-x1>0,∴Δy>0,即函数f(x)在[1,+∞)上是增函数,∴a的取值范围是(0,3].四、利用函数单调性求函数的最值例4已知函数f(x)=,x∈[1,+∞).(1)当a=4时,求f(x)的最小值;(2)当a=时,求f(x)的最小值;(3)若a为正常数,求f(x)的最小值.解(1)当a=4时,f(x)=x++2,易知,f(x)在[1,2]上是减函数,在[2,+∞)上是增函数,∴f(x)min=f(2)=6.(2)当a=时,f(x)=x++2.易知,f(x)在[1,+∞)上为增函数.∴f(x)min=f(1)=.(3)函数f(x)=x++2在(0,]上是减函数,在[,+∞)上是增函数.当>1,即a>1时,f(x)在区间[1,+∞)上先减后增,∴f(x)min=f()=2+2.当≤1,即0<a≤1时,f(x)在区间[1,+∞)上是增函数,∴f(x)min=f(1)=a+3.。
函数单调性的应用
2
a≥(2-a)×1+1,
7. 已知函数 () = ቐ
( − 2), ≥ 2,
满足对任意的实数 1 ≠ 2 ,都有
− 1, < 2
13
(−∞, ]
8
(1 )−(2 )
< 0 成立,则实数 的取值范围为_______________.
1
( )
2
1 −2
2
1
,+∞.
2
a(x+2)+1-2a
1-2a
方法二:f(x)=
=a+
,∵f(x)在(-2,+∞)上单调递
x+2
x+2
1
增,∴1-2a<0,∴a>2.
(1,2)
4. 已知函数 y=loga(2-ax)在[0,
1]上是减函数,
则实数 a 的取值范围是________.
【解析】 设 u=2-ax,∵a>0,且 a≠1,
2 − > 0,
[解析] 由已知可得 ൞ + 3 > 0,
解得 −3 < < −1 或 > 3 ,所以实数 的
2 − > + 3,
取值范围为 (−3, −1) ∪ (3, +∞) .
1
2. 已知函数 () 为 上的减函数,则满足 (| |) < (1) 的实数 的取值范围
− 2 < 0,
1 2
[解析] 由题意知函数 () 是 上的减函数,于是有 ൝
( − 2) × 2 ≤ ( ) − 1,
2
由此解得 ≤
13
13
,即实数 的取值范围是 (−∞, ] .
函数单调性在高考中的应用归纳总结教师版
函数单调性在高考中的应用归纳总结教师版
一、在高考中函数的单调性的应用
1、函数的单调性应用于判断方程或不等式的解的存在性。
当函数
f(x)在[a,b]上单调递增或单调递减时,有f(a)≤f(x)≤f(b),可以得出
f(x)=0的解x在[a,b]上存在。
2、用函数的单调性来判断函数极值问题。
一个函数在[a,b]上单调递
增或单调递减,f(a)≤f(x)≤f(b)。
在[a,b]上存在极值点,即函数取得
最大值或最小值的点。
3、利用函数的单调性求解一元函数最值问题。
若函数f(x)在(a,b)
上连续且单调递增或单调递减,则函数f(x)在(a,b)上一定存在最大值和
最小值,且最大值或最小值一定取得上界或下界处。
4、用函数的单调性解答解析几何问题。
在求解解析几何中,有时要
利用函数f(x)的单调性来解决函数的最值问题。
比如求椭圆上的最小值
问题,由函数的单调性可以知道它的最小值是函数的上界或下界处取得的。
二、单调性在高考中的易错点
1、在判断函数的单调性时,不能仅依靠函数图像进行判断。
例如,
函数f(x)的图像如果在其中一区间内存在拐点,则该区间内函数一定是
不单调的;反之,函数图像上如果没有拐点,函数仍然可能是不单调的。
2、当函数中存在分段函数时,需要对每一段函数都进行单调性的判断。
函数的单调性的应用
例4:作出函数f(x)= x2 6 x 9 + x2 6 x 9 的图象,并指出函数f(x)的单调区间
分析:作出函数图象,直观地判断函数的单调区间 解: 原函数可化为: -2x f(x)=|x-3|+|x+3|= 6 2x x -3 -3<x<3 x3
Y=-2x 6 y
总结:此函数以下单调规律: 两边为增,中间为减.
-a
0
-a
点拨:含参函数,不能化为基本函数类型,常采用定义 法解题.
例3.已知定义在(0,+)上的函数f(x)满足 : 对x,y (0,+)都有f(xy)=f(x)+f(y), 当x>1时,f(x)>0. 试证明:f(x)在(0,+)上是增函数
a(x+2)-2a+1 2a 1 解: f(x)= a x2 x2 当-a+1>0时 a<1 f(x)在(-2,+)上是减函数 当-a+1<0时 a>1 f(x)在(-,-2)上是增函数
点拨:含参函数,能够化归为常见函数的单调性时,直接 讨论参数.
二.证明:根据函数单调性定义解题.
Y=2x
如图可得:在(-,-3]上为减函数, 在[3,+)上为增函数,
-3 3
x
在[-3,3]上为常函数,不具有单调性
例3:已知f(x)=8+2x-x , 若g ( x) f (2 x ),
2 2
试确定g ( x)的单调区间,及单调性
(重点班、实验班)
解:设u=2-x ,则 y g ( x) f (u ) 8 2u u (u 1) 7
函数的单调性的应用(201911整理)
函数的单调性
1.函数单调性的判定. 2.函数单调性的证明. 3.函数单调性的应用.
一.函数单调性的判定方法:
1.利用已知函数的单调性 2.利用函数图象 3.复合函数的判定方法 4.利用定义
例1.若函数f(x)在实数集上是减函数,求f(2x-x2) 的单调区间以及单调性.
x
在[3,+)上为增函数,
-3
3
在[-3,3]上为常函数,不具有单调性
例3:已知f(x)=8+2x-x2,若g(x) f (2 x2), 试确定g(x)的单调区间,及单调性
(重点班、实验班)
解:设u=2-x2,则 y g(x) f (u) 8 2u u2 (u 1)2 7
y u,u 1 ,v x2 2x 3 v
在(-,-1)上v是减函数且u,v恒为正
在(3,+)上是增函数且u,v恒为正
u=
x2
1 2x
3
在(-,-1)上是增函数
在(3,+)上是减函数
y=
1 在(-,-1)上是增函数,
x2 2x 3
在(3,+)上是减函数
; 宝宝起名字大全 https:/// 宝宝起名字大全
解:先求定义域:
y f (u)
u 2x x2
u在(-,1)上是增函数,在(1,+)上是减函数
而y=f(u)在R上是减函数
y f (2x x2 )在(-,1)上是减函数
在(1,+)上是增函数
例2:判断函数y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 也 存在 , 所 以 nlim ( nan ) 存在 . 于是 2n + 3
n
a1 1 2 = , 所以 q = 1 - a 1 . 1- q a1 注意 nlim S n 存在的条件, | q | < 1 且 q !
n lim ( nan ) = nlim [ ( 2 n + 3) a n ] ∀ lim n 2n+ 3 1 = 1. 2
+
所以 f ( x ) m in = f ( 2) = 5. 所以所求函数值域为 [ 5, + ). 例 5 已知 x & 2, 求函数 f ( x ) = x + 1 的最小值 . x+ 1 1 解 f ( x ) = ( x + 1) + - 1. x+ 1 1 考虑到 y = x + 在 [ 1, + ) 上单调 x 递增 , 又 x & 2, 则 x + 1 & 3. 1 所以 f ( x ) = x + 1+ - 1 在[ 2, + x+ 1 ) 上单调递增, 7 所以 f ( x ) & f ( 2) = . 3 7 故 f ( x ) 的最小值是 . 3 判断方程根的情况 例6 设 y = f ( x ) 在 R 上为单调函数,
27 ), 则 f( ) = f( ) =
) 时是增函数, 当 x ( ( -
2] 时是减函数, 求 f ( 1) . 函数图象是开口向上的抛物线, - m m 对称轴为 x = = , 其递减区间为 2# 2 4 m m (, ] , 递增区间为[ + ). 4 4 m 解 依题意得 = - 2, 所以 m = - 8, 4 所以 f ( 1) = 2 # 1 + 8 # 1 + 3 = 13. 3 求函数值域( 或最值)
函数 , f ( 2) = 1, f ( xy ) = f ( x ) + f ( y ) , 解不 等式 : f ( x ) + f ( x - 2) ∋ 3. 分析 利用 f ( x ) 的性质, 脱去函数的 符号 , 将问题化为解一般的不等式 . 解 因为 f ( xy ) = f ( x ) + f ( y ) , 所以 f ( x ) + f ( x - 2) = f [ x ( x - 2) ] = f ( x - 2x ) . 又因为 f ( 2) = 1, 所以 3 = f ( 2) + f ( 2) + f ( 2) = f ( 2 # 2) + f ( 2) = f ( 4 # 2) = f ( 8) . 所以不等式 f ( x ) + f ( x - 2) ∋ 3 即为 f ( x - 2 x ) ∋ f ( 8)
x + 2 x + a > 0 恒成立 . 设 y = x + 2 x + a , x ( [ 1, + ),则 2 2 y = x + 2 x + a = ( x + 1) + a - 1 递增 . 所以当 x = 1 时, y m in = 3+ a . 于是当且仅当 y min = 3+ a > 0 时, f ( xБайду номын сангаас) > 0 恒成立. 所以 a > - 3. 解 + ). 当 a & 0 时 , 函数 f ( x ) 的值恒为正; 当 a < 0 时 , 函数 f ( x ) 递增 , 故当 x = 1 时, f ( x ) m in = 3 + a . 于 是 , 当 且 仅 当 f ( x ) min = 3+ a > 0 时, f ( x ) > 0 恒成立 , 故 a > - 3. 法二 : f ( x ) = x + a + 2, x ( [ 1, x
平面向量与解析几何交汇综合题分类导析
湖北省襄樊市第一中学 441000 王 勇 ( 特级教师 )
平面向量具有代数 与几何形 式的 双重 身份 , 它 融数、 形于一体 , 已成为 中学数学知识的一 个重要交 汇点 . 平面向量 与解析几何的交汇 自然贴切 , 一脉相 承 , 是新课程高 考命题的必然趋势 . 下面精 选出十道 典型例题并予以分类导析 , 旨在探 索题型规律 , 揭示 解题方法 . 1 平面向量与直线的 交汇 例1 平面直角坐标系中 , O 为坐 标原点 , 已知 OA + = 1, 则点 C 的轨迹方程 此应选 D . 例2 O 是平面上一 定点 , A 、 B、 C 是 平面上 不 ( AB + | AB | 3) = ( 4 - 1, 3 - 2 ) , 所以 x = 4 - 1, y = 3- 2 . 消去 得 x + 2y - 5 = 0, 因 D x + 2y - 5 = 0 导析 又 OC = 设 C 的坐标为 ( x , y ) , OC = ( x , y ) . OA + OB = ( 3, 1) + ( 1) ( - 1,
+
). 因为函数 y = f ( x ) 在( 1 ,+ 4 3 ). 4 ) 上单
调递减, 所以 f ( a - a + 1) ∋ f (
2
2
求函数值 例3 函数 f ( x ) = 2 x - mx + 3, 当 x
2
中学数学杂志 ( 高中 ) ( [ - 2, + 分析
2004 年第 1 期 ,数根 0 、( (* ) <
28 7 证明不等式 例9 设 a、 b、 c 为 ) A BC 的三边长, 求
中学数学杂志 ( 高中 ) [ 1, +
2004 年第 1 期
) , f ( x ) > 0 恒成立 , 试求实数 a 的 ) 上, f ( x ) =
取值范围 . 解 法一 : 在区间 [ 1, + 2 x + 2x + a > 0 恒成立 x
5 5 5 5
例4 的值域 解 [ 2, +
求函数 f ( x ) = 2 x + 1+ 函数定义域为 [ 2, + ) 上均为增函数 , ).
x- 2
3) = x + x . 由于 f ( x ) = x + x 是 R 上的增函数 , 且 f ( 7 x + 3) = f ( x ) ,
因为函数 y = 2 x + 1 与 y = 所以 f ( x ) = 2 x + 1 + 域[ 2, + ) 上也是增函数,
) , 则 P 的轨迹 一定通 过
26 例 13 在等比数列 { a n } 中 , a 1 > 1, 且 1 , 那么 a 1 a1
中学数学杂志 ( 高中 )
2004 年第 1 期
3) a n ] = 2, 求 lim ( na n ) . ( 01 年安徽春招高 n 考题 ) 解 3) a n ∀ 因 nan = ( 2 n + 3) an 2n + 3 ∀ n = ( 2 n +
2 2
a b c 证: a + 1 + b + 1 > c + 1. x ( x > 0) . x+ 1 x + 1- 1 1 因为 f ( x ) = = 1, x+ 1 x+ 1 解 构造函数 f ( x ) = 所以 f ( x ) 在 ( 0, + ) 上递增. 又因为 a 、 b、 c 是 ) A BC 的三边长 , 所以 a + b > c > 0. a+ b 所以 f ( a + b ) > f ( c ) , 即 > a+ b + 1 c a b a , 所以 + > + c+ 1 a+ b a+ b a+ b+ 1 b a+ b c a + b + 1 = a + b + 1 > c + 1. 8 求函数解析式中参数的范围 例 10 已 知 函 数 f ( x) = 2 x + 2x + a , x ( [ 1, + ) . 若对任意 x ( x
2 2
4
又因为 f ( x ) 是 R 上 的增函数 , 所以 x ( x - 2) ∋ 8, x > 0, x - 2 > 0. 4. 所以原不等式的解集为{ x | 2 < x ∋ 4 | }. 解此不等式组, 得 2 < x ∋
+
试判断方程 f ( x ) = 0 在 R 上的根的情况. 解 方程 f ( x ) = 0 在 R 上至多有一 根. 因为假设方程 f ( x ) = 0 至少有两个实
2
312000
陈柏良 1 , + 4
f ( x ) 的一个单调递减区间是(
) ,比
2 3 较 f ( a - a + 1) 与 f ( 4 ) 的大小.
解 &
因为 a - a + 1 = ( a -
2
1 2 3 ) + 2 4
3 1 > , 4 4
2 3 1 所以两个数 a - a + 1 与 4 都属于 ( 4 ,
两点 A ( 3, 1) , B (- 1, 3) , 若点 C 满足OC = OB , 其中 、 ( R, 且 + 为( ). A 3 x + 2y - 11 = 0 B ( x - 1) 2 + ( y - 2) 2 = 5 C 2x - y = 0