2函数的单调性及其应用高三复习专题
2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值
2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。
总复习专题二:函数及其性质(第二部分:函数的单调性与奇函数偶函数)
镇(乡) 学校 班级 考号 姓名 ……○……题……○……不……○……得……○……超……○……过……○……此……○……密……○……封……○……总复习专题二:函数及其性质(含抽象函数的性质)编辑,整理:冉春第一部分:讲义部分:第一节、函数的单调性与奇偶性1、函数的单调性函数的单调性①定义及判定方法 函数的性 质定义图象判定方法 函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数....(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数的单调性(同增异减) 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... (1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数例1: 函数12+=x y 在区间),(∞∞+-是增函数;函数 22+-=x y 在区间),(∞∞+-是减函数。
例:证明函数12)(-=x x f 在区间),(∞∞+-是增函数。
证明:设2121),,(,x x x x <+∞-∞∈且,那么12)(,12)(2211-=-=x x f x x f )12()12()()(2121---=-x x x f x f ·)(221x x -=· 21x x <∵,021<-∴x x0)(2)()(2121<-=-∴x x x f x f ,即)()(21x f x f < ∴函数12)(-=x x f 在区间),(∞∞+-是增函数。
2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】
2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。
函数单调性高三复习知识点
函数单调性高三复习知识点函数单调性是高中数学中的重要知识点之一,它在数学分析、代数学等学科中有着广泛的应用。
本文将就函数单调性的定义、性质、证明方法等方面进行高中复习知识点的总结。
一、函数单调性的定义与性质在数学中,函数单调性是指函数对于定义域内的任意两个不同的自变量取值,其函数值的变化关系。
具体而言,若函数在定义域D上满足对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) < f(x_2),则称该函数在D上为递增函数;若对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) > f(x_2),则称该函数在D 上为递减函数。
函数的单调性可以用图像直观地表示出来。
对于递增函数,其图像从左往右呈上升趋势;对于递减函数,其图像从左往右呈下降趋势。
而对于函数的单调性来说,如果一个函数既是递增函数又是递减函数,那么它在整个定义域上是无单调性的。
二、函数单调性的证明方法1. 利用导数的符号进行证明函数的单调性与函数的导数有着密切的关系。
对于给定的函数,如果在定义域内的某个区间上导数的取值恒为正值,则函数在该区间上为递增函数;如果导数的取值恒为负值,则函数在该区间上为递减函数。
证明函数单调性的关键是分析函数的导数符号。
可以通过导数的定义及相关的数学推理,找出导数在某个区间上的符号,从而得出函数在该区间上的单调性。
2. 利用函数的增减性进行证明对于函数f(x),若在定义域内的任意两个不同的自变量取值x_1和x_2,若有f(x_1) < f(x_2),则函数在x_1和x_2之间取任意值时均满足f(x_1) < f(x) < f(x_2),则称函数在x_1和x_2之间是递增的。
反之,如果有f(x_1) > f(x_2),则称函数在x_1和x_2之间是递减的。
基于这个性质,可以通过选择不同的x_1和x_2来判断函数的单调性。
如果对于所有的x_1 < x_2,都有f(x_1) < f(x_2),则函数为递增函数;如果对于所有的x_1 < x_2,都有f(x_1) > f(x_2),则函数为递减函数。
高考专题函数单调性知识点
高考专题函数单调性知识点:函数单调性知识点详解导言:高考数学中,函数单调性是一个重要而常见的考点。
理解和掌握函数单调性的相关知识点,不仅是解题的关键,也是学习高中数学的基础。
本文将从函数单调性的定义、判定和应用三个方面详细介绍这一知识点。
一、函数单调性的定义函数的单调性是指函数在定义域内的全部或部分区间上是递增或递减的性质。
具体地说,对于定义在闭区间[a, b]上的函数f(x),如果对于任意的x1和x2(x1<x2),都有f(x1)≤f(x2),则称函数f(x)在闭区间[a, b]上是递增函数;如果对于任意的x1和x2(x1<x2),都有f(x1)≥f(x2),则称函数f(x)在闭区间[a, b]上是递减函数。
二、函数单调性的判定1. 导数法:对于可导函数,通过判断导数的正负性可以确定函数的单调性。
如果函数的导数f'(x)>0恒成立,则函数递增;如果函数的导数f'(x)<0恒成立,则函数递减。
2. 一阶导数法:对于一次可导函数,通过一阶导数的增减性可判断函数的单调性。
如果在某一区间上一阶导数f'(x)递增,则函数递增;如果一阶导数f'(x)递减,则函数递减。
3. 二阶导数法:对于二次可导函数,通过二阶导数的正负性可以判定函数的单调性。
如果二阶导数f''(x)>0恒成立,则函数为凹函数,即在该区间递增;如果二阶导数f''(x)<0恒成立,则函数为凸函数,即在该区间递减。
三、函数单调性的应用1. 求函数的单调增区间和单调减区间:通过判定函数的单调性,可以求出函数的单调增区间和单调减区间。
在解题时,常常需要利用函数的单调性来确定函数的取值范围、最值、零点等。
2. 求函数的最值:对于持续递增(递减)的函数来说,该函数的最小值(最大值)可以通过求出定义域的最小值(最大值)来得到。
这对于优化问题的解决非常有用。
专题2.2 函数的单调性与最值(重难点突破)(解析版)
专题2.2 函数的单调性与最值(重难点突破)(理科)一、考纲要求1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
二、考情分析三、考点梳理【基础知识梳理】1、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述1/ 112 / 11自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足 条件(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得()0f x M =(3)对于任意的x I ∈,都有()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论 M 为最大值 M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 【知识拓展】1、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与()y f x =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,b a ⎛-∞-⎝和,b a ⎫+∞⎪⎪⎭上单调递增,在,0b a ⎛⎫ ⎪ ⎪⎝⎭和b a ⎛ ⎝3 / 11上单调递减.四、题型分析(一) 判断函数的单调性 1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(2020·安徽省池州一中模拟)下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.【变式训练1】.(2020届陕西省咸阳市高三第一次模拟)函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是( )A .132,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z B .372,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z C .312,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z D .152,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z4 / 11【答案】C【解析】令()224k x k k Z πππππ-≤-≤∈,解得()312244k x k k Z -≤≤+∈, 因此,函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是()312,244k k k Z ⎡⎤-+∈⎢⎥⎣⎦,故选C 。
高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略-人教版高三全册数学素材
函数的单调性与最值备考策略主标题:函数的单调性与最值备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:函数,单调性,最值,备考策略 难度:3 重要程度:5 内容考点一 确定函数的单调性或单调区间【例1】 (1)判断函数f (x )=x +k x(k >0)在(0,+∞)上的单调性. (2)求函数y =log 13(x 2-4x +3)的单调区间.解 (1)法一 任意取x 1>x 2>0,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+kx 1-⎝ ⎛⎭⎪⎫x 2+k x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫k x 1-k x 2=(x 1-x 2)+k x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-k x 1x 2.当k ≥x 1>x 2>0时,x 1-x 2>0,1-kx 1x 2<0, 有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +k x(k >0)在(0,k ]上为减函数; 当x 1>x 2≥k 时,x 1-x 2>0,1-kx 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +k x(k >0)在[k ,+∞)上为增函数;综上可知,函数f (x )=x +k x(k >0)在(0,k ]上为减函数;在[k ,+∞)上为增函数. 法二 f ′(x )=1-k x 2,令f ′(x )>0,则1-k x2>0, 解得x >k 或x <-k (舍).令f ′(x )<0,则1-k x2<0,解得-k <x <k .∵x >0,∴0<x <k .∴f (x )在(0,k )上为减函数;在(k ,+∞)上为增函数, 也称为f (x )在(0,k ]上为减函数;在[k ,+∞)上为增函数.(2)令u =x 2-4x +3,原函数可以看作y =log 13u 与u =x 2-4x +3的复合函数.令u =x 2-4x +3>0.则x <1或x >3. ∴函数y =log 13(x 2-4x +3)的定义域为(-∞,1)∪(3,+∞).又u =x 2-4x +3的图象的对称轴为x =2,且开口向上,∴u =x 2-4x +3在(-∞,1)上是减函数,在(3,+∞)上是增函数.而函数y =log 13u 在(0,+∞)上是减函数,∴y =log 13(x 2-4x +3)的单调递减区间为(3,+∞),单调递增区间为(-∞,1).【备考策略】(1)对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:①可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;②可导函数则可以利用导数解之.(2)复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.考点二 利用单调性求参数【例2】 已知函数f (x )=ax -1x +1. (1)若a =-2,试证f (x )在(-∞,-2)上单调递减.(2)函数f (x )在(-∞,-1)上单调递减,求实数a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=-2x 1-1x 1+1--2x 2-1x 2+1=-x 1-x 2x 1+1x 2+1.∵(x 1+1)(x 2+1)>0,x 1-x 2<0,∴f (x 1)-f (x 2)>0, ∴f (x 1)>f (x 2),∴f (x )在(-∞,-2)上单调递减. (2)解 法一 f (x )=ax -1x +1=a -a +1x +1,设x 1<x 2<-1, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫a -a +1x 1+1-⎝ ⎛⎭⎪⎫a -a +1x 2+1 =a +1x 2+1-a +1x 1+1=a +1x 1-x 2x 1+1x 2+1,又函数f (x )在(-∞,-1)上是减函数, 所以f (x 1)-f (x 2)>0. 由于x 1<x 2<-1,∴x 1-x 2<0,x 1+1<0,x 2+1<0, ∴a +1<0,即a <-1.故a 的取值范围是(-∞,-1). 法二 由f (x )=ax -1x +1,得f ′(x )=a +1x +12,又因为f (x )=ax -1x +1在(-∞,-1)上是减函数,所以f ′(x )=a +1x +12≤0在x ∈(-∞,-1)上恒成立,解得a ≤-1,而a =-1时,f (x )=-1,在(-∞,-1)上不具有单调性,故实数a 的取值范围是(-∞,-1).【备考策略】利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.考点三 利用函数的单调性求最值【例3】 已知f (x )=x 2+2x +a x,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.审题路线 (1)当a =12时,f (x )为具体函数→求出f (x )的单调性,利用单调性求最值.(2)当x ∈[1,+∞)时,f (x )>0恒成立→转化为x 2+2x +a >0恒成立.解 (1)当a =12时,f (x )=x +12x +2,联想到g (x )=x +1x 的单调性,猜想到求f (x )的最值可先证明f (x )的单调性.任取1≤x 1<x 2, 则f (x 1)-f (x 2)=(x 1-x 2)+⎝⎛⎭⎪⎫12x 1-12x 2=x 1-x 22x 1x 2-12x 1x 2, ∵1≤x 1<x 2,∴x 1x 2>1,∴2x 1x 2-1>0. 又x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在[1,+∞)上是增函数,∴f (x )在[1,+∞)上的最小值为f (1)=72.(2)在区间[1,+∞)上,f (x )=x 2+2x +ax>0恒成立,则⎩⎪⎨⎪⎧x 2+2x +a >0,x ≥1⇔⎩⎪⎨⎪⎧a >-x 2+2x ,x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.只需求函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.φ(x )=-(x +1)2+1在[1,+∞)上递减,∴当x =1时,φ(x )最大值为φ(1)=-3. ∴a >-3,故实数a 的取值范围是(-3,+∞). 【备考策略】求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.。
高三数学一轮复习 第2章 函数、导数及其应用第2课时 函数的单调性与最值精品课件
3.若函数 y=ax 与 y=-bx在(0,+∞)上都是减函数,则 y=ax2
+bx 在(0,+∞)上是( )
A.增函数
B.减函数
C.先增后减
D.先减后增
解析: ∵函数y=ax与y=-bx在(0,+∞)上都是减函数,
∴a<0,b<0,
∴函数y=ax2+bx的图象的对称轴为x=-2ba<0,
∴函数y=ax2+bx在(0,+∞)上是减函数. 答案: B
解析: 要使函数有意义,则16-4x≥0.又因为4x>0,
∴0≤16-4x<16,即函数y= 16-4x的值域为[0,4).
答案: C
2.(2009·福建卷)下列函数f(x)中,满足“对任意的x1,x2∈(0,+
∞),当x1<x2时,都有f(x1)>f(x2)”的是( )
A.f(x)=1x
B.f(x)=(x-1)2
C.f(x)=ex
D.f(x)=ln(x+1)
解析: 由题意知函数f(x)在(0,+∞)上是减函数,
在A中,由f′(x)=-x12<0得x在(-∞,0)和(0,+∞)上为减函数;
在B中,由f′(x)=2(x-1)<0得x<1,所以f(x)在(-∞,1)上为减函
数;
在C中,由f′(x)=ex>0知f(x)在R上为增函数;
在D中,由f′(x)=
1 x+1
且x+1>0和f′(x)>0,所以f(x)在(-1,+∞)
上为减函数. 答案: A
x2+4x 3.(2009·天津卷)已知函数f(x)= 4x-x2
x≥0, x<0.
若f(2-a2)>
f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞)
B.(-1,2)
练规范、练技能、练速度
专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)
导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。
常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。
二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。
高考数学专题《函数的单调性与最值》习题含答案解析
专题3.2 函数的单调性与最值1.(2021·全国高一课时练习)函数f(x)=1,01,0x xx x+≥⎧⎨-<⎩在R上()A.是减函数B.是增函数C.先减后增D.先增后减【答案】B【解析】画出函数图像即可得解.【详解】选B.画出该分段函数的图象,由图象知,该函数在R上是增函数.故选:B.2.(2021·全国高一课时练习)若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有()-()-f a f ba b>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)先增后减D.函数f(x)先减后增【答案】A【解析】根据条件可得当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),从而可判断.【详解】练基础由()-()-f a f b a b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.3.(2021·全国高一课时练习)设函数f (x )是(-∞,+∞)上的减函数,则 ( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a )【答案】D 【解析】利用0a =排除ABC ,作差可知21a a +>,根据单调性可知D 正确. 【详解】当0a =时,选项A 、B 、C 都不正确; 因为22131()024a a a +-=-+>,所以21a a +>, 因为()f x 在(,)-∞+∞上为减函数,所以2(1)()f a f a +<,故D 正确.故选:D4.(2021·西藏高三二模(理))已知函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞C .(),3-∞-D .()3,-+∞【答案】C 【解析】根据函数为奇函数且在R 上单调递减可得()()32f m f m -<求解. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<, 得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C .5.(2021·广西来宾市·高三其他模拟(理))已知定义在R 上的偶函数()f x 满足在[0,)+∞上单调递增,(3)0f =,则关于x 的不等式(2)(2)0f x f x x++-->的解集为( )A .(5,2)(0,)--+∞ B .(,5)(0,1)-∞- C .(3,0)(3,)-⋃+∞ D .(5,0)(1,)-+∞【答案】D 【解析】根据题意作出函数()f x 的草图,将(2)(2)0f x f x x++-->,转化为2(2)0f x x +>,利用数形结合法求解. 【详解】因为定义在R 上的偶函数()f x 满足在(0,)+∞内单调递增, 所以()f x 满足在(,0)-∞内单调递减,又(3)0f =, 所以(3)(3)0f f -==. 作出函数()f x 的草图如下:由(2)(2)0f x f x x ++-->,得(2)[(2)]0f x f x x++-+>,得2(2)0f x x+>, 所以0,(2)0,x f x >⎧⎨+>⎩或0,(2)0,x f x <⎧⎨+<⎩所以0,23,x x >⎧⎨+>⎩或0,323,x x <⎧⎨-<+<⎩ 解得1x >或5x 0-<<, 即不等式(2)(2)0f x f x x++-->的解集为(5,0)(1,)-+∞.故选:D6.(2021·黑龙江哈尔滨市·哈师大附中高三三模(文))已知函数()22f x x x -=-( )A .是奇函数,0,单调递增B .是奇函数,0,单调递减C .是偶函数,0,单调递减D .是偶函数,0,单调递增【答案】D 【解析】利用奇偶性和单调性的定义判断即可 【详解】解:定义域为{}0x x ≠, 因为2222()()()()f x x x x x f x ---=---=-=,所以()f x 为偶函数,任取12,(0,)x x ∈+∞,且12x x <,则2222212211()()f x f x x x x x ---=--+212122121()()(1)x x x x x x =-++, 因为12x x <,12,(0,)x x ∈+∞,所以212122121()()(1)0x x x x x x -++>,所以21()()f x f x >,所以()f x 在0,单调递增,故选:D7.(2021·全国高三月考(理))若()f x 是奇函数,且在(,0)-∞上是减函数,又(4)0f -=,则(2)(2)0f x f x x+--->的解集是( )A .(4,0)(4,)-⋃+∞B .(6,2)(0,2)--⋃C .(6,2)(2,)--⋃+∞D .(,4)(0,4)-∞-⋃【答案】B 【解析】根据函数()f x 为奇函数,(4)0f -=得到(4)0f =,再由函数在(,0)-∞上是减函数,作出函数()f x 的图象,再由(2)(2)0f x f x x +--->,等价于2(2)0f x x+>,利用数形结合法求解.【详解】因为函数()f x 为奇函数, 所以(4)(4)0f f -=-=, 所以(4)0f =,因为函数()f x 在(,0)-∞上是减函数, 所以函数()f x 在(0,) +∞上是减函数. 作出函数()f x 的大致图象如图所示,而(2)(2)0f x f x x +--->,等价于(2)[(2)]0f x f x x +--+>,即2(2)0f x x+>,则0(2)0x f x <⎧⎨+<⎩或0(2)0x f x >⎧⎨+>⎩,所以0420x x <⎧⎨-<+<⎩或0024x x >⎧⎨<+<⎩,解得62x -<<-或02x <<. 综上,(2)(2)0f x f x x+--->的解集是(6,2)(0,2)--⋃.故选:B8.(2021·全国高三专题练习(文))已知函数()||2f x x x x =⋅-,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0-∞,B .()f x 是偶函数,递减区间是()1-∞,C .()f x 是奇函数,递减区间是(11)-, D .()f x 是奇函数,递增区间是(0)+∞,【答案】C 【解析】将函数解析式化为分段函数型,画出函数图象,数形结合即可判断; 【详解】解:将函数()||2f x x x x =⋅-去掉绝对值得2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,画出函数()f x 的图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,且在(11)-,上单调递减, 故选:C9.(2021·宁夏银川市·高三二模(文))设函数()21f x x x=-,则()f x ( )A .是偶函数,且在(),0-∞单调递增B .是偶函数,且在(),0-∞单调递减C .是奇函数,且在(),0-∞单调递增D .是奇函数,且在(),0-∞单调递减【答案】B 【解析】利用定义可判断函数()f x 的奇偶性,化简函数()f x 在(),0-∞上的解析式,利用函数单调性的性质可判断函数()f x 在(),0-∞上的单调性. 【详解】函数()21f x x x =-的定义域为{}0x x ≠,()()()2211f x x x f x x x-=--=-=-, 所以,函数()f x 为偶函数, 当0x <时,()21f x x x=+,由于函数2y x 、1y x=在(),0-∞上均为减函数,所以,函数()f x 在(),0-∞上单调递减, 故选:B.10.(2021·全国高一课时练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 【答案】1223⎛⎫- ⎪⎝⎭, 【解析】结合函数定义域和函数的单调性列不等式求解即可. 【详解】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,1.(2021·黑龙江大庆市·大庆实验中学高二月考(文))定义在*N 上的函数()22,3,3x ax a x f x ax x ⎧-+<=⎨≥⎩为递增函数,则头数a 的取值范围是( ) A .()1,2 B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .()1,3【答案】D 【解析】练提升根据定义域和单调性可知()()12f f <,再根据3x ≥时()f x 的单调性判断出()()32f f >,由此求解出a 的取值范围..【详解】因为*x ∈N ,所以3x <时,即{}1,2x ∈,由单调性可知()()21f f >,所以22142a a a a -+<-+,解得3a <;当3x ≥时,y ax =为增函数,若()f x 单调递增,则只需()()32f f >,所以2342a a a >-+,解得14a <<,综上可知a 的取值范围是:()1,3, 故选:D.2.(2021·上海高三二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】A 【解析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤-所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =也有最大值和最小值,故命题q 为真命题. 故选:A3.(2021·全国高三二模(理))已知实数a ,b ,c ,d 满足a b c >>,且0a b c ++=,220ad bd b +-=,则d 的取值范围是( ) A .(][),10,-∞-+∞B .()1,1-C .(D .(11--+【答案】D 【解析】先求解出方程的解1,2d ,然后利用换元法(bt a=)将d 表示为关于t 的函数,根据条件分析t 的取值范围,然后分析出d 关于t 的函数的单调性,由此求解出d 的取值范围. 【详解】因为220ad bd b +-=,所以1,2b b d a a -==-±2440b ab ∆=+≥,令bt a=,则1,2d t =-±20t t +≥,所以(][),10,t ∈-∞-+∞,又因为0a b c ++=且a b c >>,所以0a >且c a b b a =--<<, 所以2,a b b a -<<,所以112bt a-<=<,所以[)0,1t ∈,当[)0,1t ∈时,())10,1d t t =-==∈, 因为1y t=在()0,1上单调递减,所以y t =-()0,1上单调递增, 当0t =时,10d =,当1t =时,11d =,所以)11d ⎡∈⎣; 当[)0,1t ∈时,2d t =-,因为y t =、2y t t =+在[)0,1上单调递增,所以y t =-[)0,1上单调递减, 当0t =时,20d =,当1t =时,21d =-(21d ⎤∈-⎦,综上可知:(11d ∈---, 故选:D.4.【多选题】(2021·湖南高三三模)关于函数()111f x x x =++的结论正确的是( ) A .()f x 在定义域内单调递减 B .()f x 的值域为R C .()f x 在定义城内有两个零点 D .12y f x ⎛⎫=-⎪⎝⎭是奇函数 【答案】BD 【解析】根据所给函数结合函数性质,对各项逐个分析判断, 即可得解. 【详解】()111f x x x =++的定义域为(,1)(1,0)(0,)-∞--+∞, 而1x和11x +在各段定义域内均为减函数, 故()f x 在各段上为减函数,但不能说在定义域内单调递减,故A 错误; 当(1,0)x ∈- ,1x →-时,有()111f x x x =+→+∞+, 当0x →时,有()111f x x x =+→-∞+,所以()f x 的值域为R ,故B 正确; 令()2112101x f x x x x x+=+==++,可得12x =-,所以()f x 在定义城内有一个零点,故C 错误;2211128111241224x x y f x x x x x ⎛⎫=-=+== ⎪-⎝⎭-+-, 令28()41x g x x =-,易知12x ≠±,此时定义域关于原点对称,且28()()41xg x g x x --==--,故()g x 为奇函数, 所以12y f x ⎛⎫=- ⎪⎝⎭是奇函数,故D 正确, 故选:BD.5.【多选题】(2021·全国高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数 【答案】AC 【解析】取0x y ==,11,22x y ==-,12x y ==-得出(0)f ,12f ⎛⎫- ⎪⎝⎭,(1)f -的值进而判断A ;由(1)(0)f f -<判断B ;令y x =-结合奇偶性的定义判断C ;令1()()2=+g x f x ,结合g (x )为奇函数,得出()1()f x f x -+=-,从而判断D.【详解】由已知,令0x y ==,得1(0)(0)(0)2f f f =++,1(0)2f ∴=-,令11,22x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112f ⎛⎫∴-=- ⎪⎝⎭,再令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3(1)2f ∴-=-,A 正确;(1)(0)f f -<,()f x ∴不是R 上的减函数,B 错误;令y x =-,得1()()()2f x x f x f x -=+-+,11()()022f x f x ⎡⎤⎡⎤∴++-+=⎢⎥⎢⎥⎣⎦⎣⎦,故C正确;令1()()2=+g x f x ,由C 可知g (x )为奇函数,11()()22g x g x ∴-+=-+,即1111()()2222f x f x ⎡⎤⎡⎤-++=-++⎢⎥⎢⎥⎣⎦⎣⎦,()1()f x f x ∴-+=-,故D 错误. 故选:AC6.【多选题】(2021·全国高一单元测试)如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,]()x x a b x x ∈≠,则下列结论中正确的是( )A .1212()()0f x f x x x ->-B .1212()[()()]0x x f x f x -->C .12()()()()f a f x f x f b ≤<≤D .12()()f x f x >E.1212()()0f x f x x x -<-【答案】AB 【解析】利用函数单调性的定义:12x x -与12()()f x f x -同号,判断A 、B 、E 的正误;而对于C 、D 选项,由于12,x x 的大小不定,1()f x 与2()f x 的大小关系不能确定. 【详解】由函数单调性的定义知,若函数()y f x =在给定的区间上是增函数,则12x x -与12()()f x f x -同号,由此可知,选项A ,B 正确,E 错误;对于选项C 、D ,因为12,x x 的大小关系无法判断,则1()f x 与2()f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB.7.【多选题】(2021·全国高一课时练习)(多选题)已知函数()f x 的定义域为D ,若存在区间[,]m n D ⊆使得()f x :(1)()f x 在[,]m n 上是单调函数; (2)()f x 在[,]m n 上的值域是[2,2]m n , 则称区间[,]m n 为函数()f x 的“倍值区间”. 下列函数中存在“倍值区间”的有( ) A .2()f x x =; B .1()f x x=; C .1()f x x x=+; D .23()1x f x x =+.【答案】ABD 【解析】函数中存在“倍值区间”,则()f x 在[],m n 内是单调函数,()()22f m m f n n ⎧=⎪⎨=⎪⎩或()()22f m nf n m ⎧=⎪⎨=⎪⎩,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”. 【详解】函数中存在“倍值区间”,则(1)()f x 在[,]m n 内是单调函数,(2)()2()2f m m f n n =⎧⎨=⎩或()2()2f m nf n m=⎧⎨=⎩,对于A ,2()f x x =,若存在“倍值区间”[,]m n ,则()2()2f m m f n n =⎧⎨=⎩⇒2222m m n n⎧=⎨=⎩⇒02m n =⎧⎨=⎩,2()f x x ∴=,存在“倍值区间”[0,2];对于B ,1()()f x x R x =∈,若存在“倍值区间”[,]m n ,当0x >时,1212n m mn⎧=⎪⎪⎨⎪=⎪⎩⇒12mn =,故只需12mn =即可,故存在; 对于C ,1()f x x x=+;当0x >时,在区间[0,1]上单调递减,在区间[1,)+∞上单调递增, 若存在“倍值区间”1[],1][0,2n m n m m ⊆⇒+=,212210n m m mn n+=⇒-+=,222210n mn m n -+=⇒=不符题意;若存在“倍值区间”1[,][1,)2m n m m m ⊆+∞⇒+=,22121n n m n n+=⇒==不符题意,故此函数不存在“倍值区间“; 对于D ,233()11x f x x x x==++,所以()f x 在区间[0,1]上单调递增,在区间[1,)+∞上单调递减,若存在“倍值区间”[,][0,1]m n ⊆,2321m m m =+,2321n n n =+,0m ∴=,2n =, 即存在“倍值区间”[0,2; 故选:ABD .8.(2021·全国高三专题练习(理))已知1a >,b R ∈,当0x >时,[]24(1)102x a x b x ⎛⎫---⋅-≥ ⎪⎝⎭恒成立,则3b a +的最小值是_____.3 【解析】根据题中条件,先讨论10,1x a ⎛⎤∈ ⎥-⎝⎦,根据不等式恒成立求出114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦;再讨论1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭,求出114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦得到b ,再由基本不等式即可求出结果.【详解】当10,1x a ⎛⎤∈ ⎥-⎝⎦时,(1)10a x --<,即2402x b x--≤恒成立, 24222x x y x x-==-是10,1x a ⎛⎤∈ ⎥-⎝⎦上的增函数, ∴114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦, 当1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭时,(1)10a x -->,即2402x b x--≥恒成立,24222x x y x x-==-是1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭上的增函数, ∴114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦, ∴114(1)21b a a ⎡⎤=--⎢⎥-⎣⎦,∴13(1)332(1)b a a a +=+-+≥-,当12a =+时等号成立.3.9.(2021·全国高三专题练习)对于满足2p ≤的所有实数p ,则使不等式212x px p x ++>+恒成立的x的取值范围为______.【答案】()()13+-∞-⋃∞,,. 【解析】将不等式转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题. 【详解】解:原不等式可化为2(1)210x p x x -+-+>,令2()(1)21f p x p x x =-+-+,则原问题等价于()0f p >在[2,2]p ∈-上恒成立,则(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎨->⎩解得:1311x x x x ⎧⎪⎨-⎪⎩或或∴1x <-或3x >. 即x 的取值范围为()()13+-∞-⋃∞,,. 故答案为:()()13+-∞-⋃∞,,. 10.(2021·上海高三二模)已知a R ∈,函数()22,011,02x a x x f x x ax a x ⎧++-≥⎪=⎨-++<⎪⎩的最小值为2a ,则由满足条件的a 的值组成的集合是_______________.【答案】{3- 【解析】讨论a -与0、2的大小关系,判断函数()f x 在[)0,+∞、(),0-∞上的单调性与最小值,根据函数()f x 的最小值列方程解出实数a 的值.【详解】分以下三种情况讨论:①若0a -≤时,即当0a ≥时,()222,22,0211,02x a x f x a x x ax a x ⎧⎪+->⎪=+≤≤⎨⎪⎪-++<⎩,所以,函数()f x 在(),0-∞上单调递减,且()112f x a >+, 当0x ≥时,()min 1212f x a a =+>+, 此时,函数()f x 无最小值;②若02a <-≤时,即当20a -≤<时,()222,22,222,011,02x a x a a x f x x a x a x ax a x +->⎧⎪+-≤≤⎪⎪=⎨--+≤<-⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥+.22a a +>,所以,21242a aa -++=,整理可得2640a a +-=,20a -≤<,解得3a =-±; ③当2a ->时,即当2a <-时,()222,2,222,0211,02x a x a a x a f x x a x x ax a x +->-⎧⎪--≤≤-⎪⎪=⎨--+≤<⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥--.因为202a a -->>,所以,21242a aa -++=,整理可得2640a a +-=,2a <-,解得3a =-3a =-+.综上所述,实数a的取值集合为{3-.故答案为:{3-.1.(2020·全国高考真题(文))设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出. 【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .2.(2019·北京高考真题(文))下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A 【解析】函数122,log xy y x -==, 练真题1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .3.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .4.(2017课标II)函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.5.(2017天津)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<,本题选择C 选项.6.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③。
高三数学复习专题——函数的单调性
函数的单调性从近两年高考试题来看,函数单调性的判断和应用以及函数最值问题是高考的热点,各种类型都有,难度中等偏高,客观题主要考查函数的单调性或最值的灵活确定与简单应用,主观题注重综合考查函数性质,以及数学思想方法. 一、要点精讲 1.单调性对于给定区间I 上的函数()x f 及属于这个区间I 的任意两个自变量1x ,2x ,当21x x <时,如果都有()()21x f x f <(()()21x f x f >),那么就说()x f 在给定区间上是增函数(减函数);这个区间就叫做这个函数的单调递增(减)区间。
2. 判断函数单调性的方法 ⑴ 定义法⑵ 在公共定义域内: 增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。
⑶ 利用复合函数的单调性:同增异减⑷ 奇函数在其对称区间上的单调性相同;偶函数在其对称区间上的单调性相反; ⑸ 互为反函数的两个函数在各自定义域上有相同的单调性;3.求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 4、函数的最值:二、双基达标1.下列函数中,在区间(0,1)上为增函数的是( )A .y =tan xB .y =1xC .y =2-xD .y =-x 2-4x +12.若函数2)1(2)(2+-+=x a x x f 在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤3 D .a ≥3 解:x 对=1-a ,由在(-∞,4]上是减函数,故1-a ≥4. ∴a ≤-3. 3.函数y =5-4x -x 2的递增区间是( )A .(-∞,-2)B .[-5,-2]C .[-2,1]D .[1,+∞)解:定义域为{x |-5≤x ≤1}.函数的递增区间为[-5,-2].4.若f (x )为R 上的减函数,则满足f (1-a )<f (2a 2)的实数a 的取值范围是________. 解:∵f (x )在R 为减函数,∴1-a >2a 2,即2a 2+a -1<0. ∴-1<a <12.5.若f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________. 解:∵f (x )=a +1-2a x +2在(-2,+∞)是增函数,∴1-2a <0,即a >12.6、⑴ 函数3422)(-+-=x x x f 的递增区间为(],2-∞;⑵ 函数()()3,1)34(log )(221∈-+-=x x x x f 的递减区间为(]1,2 三.典例解析热点一:函数的单调性的定义1. 1x ,2x 是()x f 定义域内的两个值,且21x x <,有()()21x f x f >,则是 (A )增函数 (B )减函数 (C )常数函数 (D )增减性不定 2、有下列几个命题:①函数y =2x 2+x +1在(0,+∞)上不是增函数; ②函数y =11+x 在(-∞,-1)∪(-1,+∞)上是减函数; ③函数y =245x x -+的单调区间是[-2,+∞);④已知f (x )在R 上是增函数,若a +b >0,则有f (a )+f (b )>f (-a )+f (-b ). 其中正确命题的序号是___________________.④解:①函数y =2x 2+x +1在(0,+∞)上是增函数,∴①错;②虽然(-∞,-1)、(-1,+∞)都是y =11+x 的单调减区间,但求并集以后就不再符合减函数定义,∴②错;③要研究函数y =245x x -+的 单调区间,首先被开方数5+4x -x 2≥0,解得-1≤x ≤5,由于[-2,+∞)不是上述区间的子区间,∴③ 错;④∵f (x )在R 上是增函数,且a >-b ,∴b >-a ,f (a )>f (-b ),f (b )>f (-a ),f (a )+f (b )>f (-a )+f (-b ),因此④是正确的.3、下列函数f (x )中,满足“对任意x 1,x 2∈(-∞,0),当x 1<x 2时,都有f (x 1)<f (x 2)”的函数是( ) A .f (x )=-x +1 B .f (x )=x 2-1 C .f (x )=2xD .f (x )=ln(-x )解:f (x )=-x +1为减函数,f (x )=x 2-1在(-∞,1)上为减函数;f (x )=2x为增函数,f (x )=ln(-x )为减函数,由条件知f (x )在(-∞,0)上为增函数,故排除A 、B 、D 选C. 热点二:判断证明函数的单调性3.(2010北京)给定函数①21x y =,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①②B .②③C .③④D .①④解:易知y =x 12在(0,1)递增,故排除A 、D 选项;又y =log 12(x +1)的图象是由y =log 12x 的图象向左平移一个单位得到的,其单调性与y =log 12x 相同为递减的,所以②符合题意,故选B.4、⑴判断并证明函数)1,0(11log )(≠>+-=a a xxx f a的单调性 ⑵当a >1时,求使f (x )>0的x 的取值范围. 解:(1)定义域为{x |-1<x <1}.(2)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1.解得0<x <1.所以使f (x )>0的x 的取值范围是{x |0<x <1}. 5、判断函数xx e e x f -+=)(在区间),0(+∞上的单调性.解法一 设0<x 1<x 2,则f (x 1)-f (x 2)=e x 1+e -x 1-e x 2-e -x 2=(e x 2-e x 1)(1e x 1+x 2-1),∵0<x 1<x 2,∴e x 2-e x 1>0,又e>1,x 1+x 2>0,∴e x 1+x 2>1,故1e x 1+x 2-1<0,∴f (x 1)-f (x 2)<0,由单调函数的定义知函数f (x )在区间(0,+∞)上为增函数. 解法二 对f (x )=e x+e -x求导得f ′(x )=e x -e -x , ∵x >0 ∴e x >1,0<e -x<1 ∴f ′(x )>0在(0,+∞)恒成立,故f (x )在(0,+∞)上为增函数. 6、论函数f (x )=21++x ax (a ≠21)在(-2,+∞)上的单调性.解:设x 1、x 2为区间(-2,+∞)上的任意两个值,且x 1<x 2,则f (x 1)-f (x 2)=21212211++-++x ax x ax =)2)(2()2)(1()2)(1(211221++++-++x x x ax x ax =)2)(2()21)((2112++--x x a x x . ∵x 1∈(-2,+∞),x 2∈(-2,+∞)且x 1<x 2, ∴x 2-x 1>0,x 1+2>0,x 2+2>0. ∴当1-2a >0,即a <21时,f (x 1)>f (x 2),该函数为减函数; 当1-2a <0,即a >21时,f (x 1)<f (x 2),该函数为增函数. 法二:分离分式法7、已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a 、b ∈[-1,1],a +b ≠0时, 有ba b f a f ++)()(>0.判断函数f (x )在[-1,1]上是增函数还是减函数,并证明你的结论.解:任取x 1、x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1].又f (x )是奇函数,于是f (x 1)-f (x 2)=f (x 1)+f (-x 2)=)()()(2121x x x f x f -+-+·(x 1-x 2).据已知)()()(2121x x x f x f -+-+>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上是增函数.8.已知定义在R 上的函数f (x )对任意实数x 1,x 2满足f (x 1+x 2)=f (x 1)+f (x 2)+2,当x >0时,有f (x )>-2.求证:f (x )在(-∞,+∞)上是增函数.证明:设x 1<x 2,则Δx =x 2-x 1>0, 令x 2=Δx +x 1.则f (x 2)-f (x 1)=f (Δx +x 1)-f (x 1) =f (Δx )+f (x 1)+2-f (x 1) =f (Δx )+2.∵Δx >0,∴f (Δx )>-2. ∴f (Δx )+2>0,即f (x 2)-f (x 1)>0. ∴f (x )在(-∞,+∞)上是增函数.热点二:求函数的单调区间 9、求下列函数的单调区间.(1) y =-x 2+2|x |+3;(2) y =x +9x(x >0).解:(1)∵y =-x 2+2|x |+3=⎩⎪⎨⎪⎧-x 2+2x +3 x ≥0-x 2-2x +3x <0,即y =⎩⎪⎨⎪⎧-x -12+4 x ≥0-x +12+4 x <0.由图知,单调递增区间是(-∞,-1)和[0,1].递减区间是(-1,0)和(1,+∞).(2) y ′=1-9x 2=x 2-9x 2=x -3x +3x2, 令y ′≥0,即:(x -3)(x +3)≥0 得:x ≥3或x ≤-3(舍去),∴单调递增区间为[3,+∞). 令y ′<0即(x -3)(x +3)<0,又x >0,得:0<x <3, ∴单调递减区间为(0,3).10.定义在R 上的函数f (x )是偶函数,且f (x )=f (2-x ).若f (x )在区间[1,2]上是减函数,则f (x )( ) A .在区间[-2,-1]上是增函数,在区间[3,4]上是增函数 B .在区间[-2,-1]上是增函数,在区间[3,4]上是减函数 C .在区间[-2,-1]上是减函数,在区间[3,4]上是增函数 D .在区间[-2,-1]上是减函数,在区间[3,4]上是减函数解:∵f (x )=f (2-x ),∴f (x +1)=f (1-x ).∴x =1为函数f (x )的一条对称轴.又f(x+2)=f[2-(x+2)]=f(-x)=f(x),∴2是函数f(x)的一个周期.根据已知条件画出函数简图的一部分,如右:由图象可以看出,在区间[-2,-1]上是增函数,在区间[3,4]上是减函数.题型四:函数的单调性的应用11.(09辽宁)已知偶函数在区间单调增加,则满足<的x 取值范围是(A )(,) (B) [,) (C)(,) (D) [,) 由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x -1|)<f(),再根据f(x)的单调性得|2x -1|< 解得<x <12、已知)(x f y =是定义在R 上的偶函数,且)(x f 在(0,+∞)上是减函数,如果01<x ,02>x 且|,|||21x x <则有( )(A )0)()(21>-+-x f x f (B )0)()(21<+x f x f (C )0)()(21>---x f x f (D )0)()(21<-x f x f13、已知)(x f 是定义在R 上的偶函数,且在),0[+∞上为增函数,0)31(=f ,则不等式0)(log 81>x f 的解集为 ( )(A ))21,0( (B )),2(+∞ (C )),2()1,21(+∞⋃ (D )),2()21,0(+∞⋃ 14. 函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是A.(0,1)B.(0,2)C.(1,2)D.(2,+∞)解:题中隐含a >0,∴2-ax 在[0,1]上是减函数.∴y =log a u 应为增函数,且u = 2-ax在[0,1]上应恒大于零.∴⎩⎨⎧>->.02,1a a ∴1<a <2.15.已知函数⎩⎪⎨⎪⎧a -2x -1x ≤1log a x x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)解:(数形结合)∵f (x )在R 上单调增,∴⎩⎪⎨⎪⎧a >1a -2>0a -2×1-1≤log a 1,∴2<a ≤3,故选C.()f x [0,)+∞(21)f x -1()3f 13231323122312231313132316、已知函数f (x )=⎩⎪⎨⎪⎧12x x ≤0,log 2x +2 x >0.若f (x 0)≥2,则x 0的取值范围是____________.解:当x 0≤0时,f (x 0)≥2化为(12)x 0≥2,即:(12)x 0≥(12)-1,∴x 0≤-1,当x 0>0时,f (x 0)≥2化为log 2(x 0+2)≥2,即log 2(x 0+2)≥log 24,∴x 0+2≥4,∴x 0≥2,∴x 0的取值范围是(-∞,-1]∪[2,+∞). 法二:数形结合17.(09天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 解:∵x ≥0时,f (x )=x 2+4x =(x +2)2-4单调递增,且f (x )≥0;当x <0时,f (x )=4x -x 2=-(x -2)2+4单调递增,且f (x )<0,∴f (x )在R 上单调递增,由f (2-a 2)>f (a )得2-a 2>a ,∴-2<a <1. 18. 若a <0,>1,则 ( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <0 解:由得由得,所以选D 项。
高三函数单调性知识点汇总
高三函数单调性知识点汇总函数是数学中一个重要的概念,而函数的单调性是研究函数性质的一个重要方面。
在高三数学学习中,掌握函数的单调性是非常关键的。
本文将对高三函数单调性的相关知识点进行汇总介绍,帮助同学们更好地理解和应用。
一、函数的单调性概念函数的单调性是指函数在定义域上的取值随自变量的增减而增大或减小的特性。
如果函数在定义域上始终递增,则称其为递增函数;如果函数在定义域上始终递减,则称其为递减函数。
二、函数的单调性判断方法1. 导数法:对于连续可导的函数,可以通过求导数的正负来判断函数的单调性。
对于函数f(x),若f'(x)>0,则函数递增;若f'(x)<0,则函数递减。
2. 一阶差分法:对于离散的函数,可以通过计算相邻函数值之间的差来判断函数的单调性。
如果这些差值始终大于0,则函数递增;如果这些差值始终小于0,则函数递减。
3. 函数图像法:对于给定函数的图像,可以通过观察图像的趋势来判断函数的单调性。
如果图像从左向右逐渐上升,则函数递增;如果图像从左向右逐渐下降,则函数递减。
三、函数单调性的应用1. 利用函数的单调性寻找极值点:对于递增函数,极大值点对应函数曲线的拐点;对于递减函数,极小值点对应函数曲线的拐点。
2. 利用函数的单调性求不等式的解集:对于不等式 f(x)>0 或f(x)<0,可以先求出函数的零点,再根据函数的单调性确定满足条件的解集。
3. 利用函数的单调性进行证明:在数学证明中,可以根据函数的单调性来推导出一些结论,从而完成证明过程。
四、函数的单调性与其他概念的关系1. 函数的单调性与导数之间的关系:对于可导函数,函数递增则导数大于0,函数递减则导数小于0。
2. 函数的单调性与函数的增减性之间的关系:函数的单调性是函数的增减性的一种特殊情况。
函数的增减性包括递增、递减和不增不减三种情况,而函数的单调性只考虑递增和递减两种情况。
3. 函数的单调性与函数的凹凸性之间的关系:对于二阶可导函数,函数的凹凸性与函数的单调性有密切关系。
专题2.2 函数的单调性与最值(解析版)
第二篇函数、导数及其应用专题2.2 函数的单调性与最值【考纲要求】理解函数的单调性、最大值、最小值及其几何意义【命题趋势】函数的单调性和最值是高考中的热点问题,考查内容经常是利用单调性求最值或者求参数的取值范围【核心素养】本讲内容主要考查逻辑推理和数学运算的核心素养【素养清单•基础知识】1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.【素养清单•常用结论】在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f(x)单调递减,g(x)单调递减,则f(x)+g(x)是减函数;(3)函数f(x)单调递增,g(x)单调递减,则f(x)-g(x)是增函数;(4)函数f(x)单调递减,g(x)单调递增,则f(x)-g(x)是减函数;(5)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反;(6)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=1f(x)的单调性相反;(7)复合函数y=f[g(x)]的单调性与y=f(u)和u=g(x)的单调性有关.简记:“同增异减”.【真题体验】1.【2019年高考全国Ⅰ卷理数】已知,则()A.B.C .D.【答案】B【解析】即则.故选B.【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考天津理数】已知,,,则的大小关系为()A .B.C .D.【答案】A【解析】因为,,,即,所以.故选A.【名师点睛】本题考查比较大小问题,关键是选择中间量和利用函数的单调性进行比较.3.【2019年高考全国Ⅱ卷理数】若a>b,则()A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│【答案】C【解析】取,满足,但,则A错,排除A;由,知B错,排除B;取,满足,但,则D错,排除D;因为幂函数是增函数,,所以,即a3−b3>0,C正确.故选C.【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2−m1=,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为()A.1010.1 B.10.1C.lg10.1 D.10−10.1【答案】A【解析】两颗星的星等与亮度满足,令,则从而.故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.5.【2019年高考浙江】在同一直角坐标系中,函数,(a>0,且a≠1)的图象可能是()【答案】D【解析】当时,函数的图象过定点且单调递减,则函数的图象过定点且单调递增,函数的图象过定点且单调递减,D选项符合;当时,函数的图象过定点且单调递增,则函数的图象过定点且单调递减,函数的图象过定点且单调递增,各选项均不符合.综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.6.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为()A.B.C.D.【答案】D【解析】由,得,因为,所以,即,解得,所以故选D.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.7.下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3C.y=ln x D.y=|x|【答案】B【解析】由所给选项知只有y=x3的定义域是R且为增函数.故选B.8.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是()A.2 B.-2C.2或-2 D.0【答案】C【解析】当a>0时,由题意得2a+1-(a+1)=2,则a=2;当a<0时,a+1-(2a+1)=2,即a=-2,所以a=±2.故选C.9.函数f(x)=log12(x2-4)的单调递增区间为__________.【答案】(-∞,-2)【解析】函数y=f(x)的定义域为(-∞,-2)∪(2,+∞),因为函数y=f(x)由y=log12t与t=g(x)=x2-4复合而成,又y=log12t在(0,+∞)上单调递减,g(x)在(-∞,-2)上单调递减,所以函数y=f(x)在(-∞,-2)上单调递增.10.设a为常数,函数f(x)=x2-4x+3.若f(x+a)在[0,+∞)上是增函数,则a的取值范围是__________.【答案】[2,+∞)【解析】因为f(x)=x2-4x+3=(x-2)2-1,所以f(x+a)=(x+a-2)2-1,且当x∈[2-a,+∞)时,函数f(x+a)单调递增,所以2-a≤0,所以a≥2.【考法拓展•题型解码】考法一确定函数的单调性或单调区间解题技巧;确定函数单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性的定义求单调区间.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数值的正负确定函数的单调区间.【例1】判断并证明函数f(x)=axx-1(其中a≠0)在x∈(-1,1)上的单调性.【答案】见解析【解析】设-1<x1<x2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 【例2】 求下列函数的单调区间.(1)y =-x 2+2|x |+1;(2)y =log 12 (x 2-3x +2).【答案】见解析【解析】 (1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象,如图所示,则单调递增区间为(-∞,-1]和[0,1],单调递减区间为(-1,0)和(1,+∞).(2)令u =x 2-3x +2,则原函数是y =log 12 u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.所以函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴为x =32,且开口向上,所以u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数,而y =log 12 u 在(0,+∞)上是单调减函数,所以y =log 12 (x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1). 考法二 求函数的最值(值域)解题技巧:求函数最值(值域)的常用方法(1)单调性法:先确定函数单调性或函数的图象,再由单调性或函数的图象求最值(值域). (2)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值(值域). (3)分离常数法:形如y =cx +dax +b(ac ≠0)的函数的最值(值域)经常使用“分离常数法”求解.(4)配方法:配方法是求“二次函数型函数”最值(值域)的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的最值(值域)问题,均可使用配方法.另外,还可用判别式法、有界性法等来求最值(值域).【例3】 (1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为__________.(2)函数y =x +x -1的最小值为__________. 【答案】(1)2 (2)1【解析】 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.(2)令t =x -1,则t ≥0,且x =t 2+1,所以原函数变为y =t 2+1+t ,t ≥0.配方得y =⎝⎛⎭⎫t +122+34,又因为t ≥0,所以y ≥y (0)=1.故函数y =x +x -1的最小值为1. 【例4】 求下列函数的值域.(1)y =5x -14x +2,x ∈[-3,-1];(2)y =2x +1-2x ;(3)y =x +4+9-x 2;(4)y =2x 2+4x -7x 2+2x +3;(5)y =(x +3)2+16+(x -5)2+4. 【答案】见解析【解析】(1)(有界性法)由y =5x -14x +2,得x =2y +15-4y .因为-3≤x ≤-1,所以-3≤2y +15-4y≤-1,解得85≤y ≤3,所以函数的值域为⎣⎡⎦⎤85,3.(2)(代数换元法)令t =1-2x (t ≥0),则x =1-t 22,所以y =-t 2+t +1=-⎝⎛⎭⎫t -122+54.所以t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,所以函数的值域为⎝⎛⎦⎤-∞,54. (3)(三角换元法)令x =3cos θ,θ∈[0,π],则y =3cos θ+4+3sin θ=32sin ⎝⎛⎭⎫θ+π4+4.因为0≤θ≤π,所以π4≤θ+π4≤5π4,所以-22≤sin ⎝⎛⎭⎫θ+π4≤1.所以1≤y ≤32+4,所以函数的值域为[1,32+4]. (4)(判别式法)观察函数式,将已知的函数式变形为yx 2+2yx +3y =2x 2+4x -7,整理得(y -2)x 2+2(y -2)x +3y +7=0,显然y ≠2,将上式看作关于x 的一元二次方程,易知原函数的定义域为R ,则上述关于x 的一元二次方程有实根,所以[2(y -2)]2-4(y -2)(3y +7)≥0,解不等式得-92≤y ≤2,又y ≠2,所以原函数的值域为⎣⎡⎭⎫-92,2.(5)(数形结合法)如图,函数y =(x +3)2+16+(x -5)2+4的几何意义为平面内一点P (x,0)到点A (-3,4)和点B (5,2)的距离之和.由平面解析几何知识,找出点B 关于x 轴的对称点B ′(5,-2),连接AB ′交x 轴于一点P ,此时距离之和最小,所以y min =|AB ′|=82+62=10,又y 无最大值,所以函数的值域为[10,+∞).考法三 函数单调性的应用 归纳总结(1)含“f ”不等式的解法:首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.(2)比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (3)求参数的值或取值范围的思路:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.求参数时需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子区间上也是单调的.【例5】 (1)(2017·天津卷)已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .c <b <a D .c <a <b【答案】C【解析】由f (x )是奇函数可得a =-f ⎝⎛⎭⎫log 215=f (log 25).因为log 25>log 24.1>log 24=2>20.8,且函数f (x )是增函数,所以c <b <a .(2)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .⎝⎛⎭⎫-14,+∞ B .⎣⎡⎭⎫-14,+∞ C .⎣⎡⎭⎫-14,0 D .⎣⎡⎦⎤-14,0 【答案】D【解析】当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,得-14≤a <0.综上所述,得-14≤a ≤0.故选D .【例6】 (2019·兰州模拟)函数f (x )对任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2. 【答案】见解析【解析】(1)证明:设x 1,x 2∈R ,且x 1<x 2,所以x 2-x 1>0,因为当x >0时,f (x )>1,所以f (x 2-x 1)>1.f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,所以f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),所以f (x )在R 上为增函数. (2)因为m ,n ∈R ,不妨设m =n =1,所以f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4,所以f (1)=2,所以f (a 2+a -5)<2=f (1),因为f (x )在R 上为增函数,所以a 2+a -5<1⇒-3<a <2,即a ∈(-3,2). 【易错警示】易错点 混淆“单调区间”和“区间上单调”【典例】 若函数f (x )=x 2+2(a -1)x +4的单调减区间是(-∞,4],则实数a 的取值范围是__________. 【错解】:a ≤-3 函数f (x )的图象的对称轴为直线x =1-a ,由于函数在区间(-∞,4]上单调递减,因此1-a ≥4,即a ≤-3.【错因分析】:错解中混淆了“单调区间”和“区间上单调”两个概念,把单调区间误认为是在区间上单调. 【正解】:a =-3 因为函数的单调递减区间为(-∞,4],且函数图象的对称轴为直线x =1-a ,所以有1-a =4,即a =-3. 误区防范“单调区间”与“在区间上单调”的区分:(1)函数的单调区间是其定义域的子集,因此,讨论函数的单调性时,应先确定函数的定义域. (2)单调区间是完整的区间,在区间上单调可能只是部分单调区间.【跟踪训练】 若函数f (x )=a |b -x |+2的单调递增区间是[0,+∞),则实数a ,b 的取值范围分别为__________. 【答案】(0,+∞),{}0【解析】因为|b -x |=|x -b |,y =|x -b |的图象如下:因为f (x )的单调递增区间为[0,+∞),所以b =0,a >0. 【递进题组】1.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)【答案】D【解析】 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).又函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).2.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x -xD .f (x )=ln(x +1) 【答案】C【解析】由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,排除A ,D 项;B 项中,f (x )=|x -1|在(0,+∞)上不单调;C 项中,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.3.已知偶函数f (x )在区间(-∞,0]上单调递减,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( ) A .⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C .⎝⎛⎭⎫12,23 D .⎣⎡⎭⎫12,23 【答案】A【解析】由函数f (x )为偶函数且在区间(-∞,0]上单调递减,得函数f (x )在区间[0,+∞)上单调递增,于是将不等式f (2x -1)<f ⎝⎛⎭⎫13化为f (|2x -1|)<f ⎝⎛⎭⎫13.可知|2x -1|<13,解得13<x <23.故选A . 4.函数f (x )=x 3-ax 2+1在(0,2)内单调递减,则实数a 的取值范围为__________. 【答案】 [3,+∞)【解析】 因为函数f (x )=x 3-ax 2+1在(0,2)内单调递减,所以f ′(x )=3x 2-2ax ≤0在(0,2)内恒成立,即a ≥32x在(0,2)内恒成立,而32x <3,故a ≥3.5.若对∀x ,y ∈R ,有f (x +y )=f (x )+f (y ),则函数g (x )=2xx 2+1+f (x )+3在[-2 019,2 019]上的最大值M 与最小值m 的和M +m =__________. 【答案】 6【解析】 对任意x ,y ∈R ,有f (x +y )=f (x )+f (y ),令x =y =0,有f (0)=f (0)+f (0),则f (0)=0,令y =-x ,有f (0)=f (x )+f (-x ),则f (x )+f (-x )=0.所以f (x )为奇函数,又设函数φ(x )=2xx 2+1,φ(x )为奇函数,则g (x )=φ(x )+f (x )+3,而φ(x )+f (x )为奇函数,由于奇函数在关于原点对称的单调区间内的最大值与最小值互为相反数,所以奇函数g (x )-3的最大值为M -3,最小值为m -3,且M -3+m -3=0,所以M +m =6. 【考卷送检】 一、选择题1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】 当x ∈(0,+∞)时,f (x )=3-x 为减函数.当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数;当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数.当x ∈(0,+∞)时,f (x )=-1x +1为增函数.当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞)【答案】A【解析】 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,结合图象可知函数的单调减区间是[1,2].3.(2019·烟台九中期末)若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1D .1【答案】B【解析】 因为f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,所以f (3)=1,即m =-2.4.(2019·南昌二中月考)已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ) A .⎝⎛⎭⎫0,34 B .⎝⎛⎦⎤0,34 C .⎣⎡⎭⎫0,34 D .⎣⎡⎦⎤0,34 【答案】D【解析】 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数;当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3得0<a ≤34.综上,a 的取值范围是⎣⎡⎦⎤0,34. 5.(2019·黄石二中期中)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12【答案】C【解析】 由已知得当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因此f (x )在定义域内为增函数,所以f (x )的最大值为f (2)=23-2=6.6.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【答案】D【解析】 因为f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x ,此时x ≤-1;当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ),此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D .二、填空题7.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.【答案】 6【解析】 易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4,所以a +b =6.8.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 【答案】 [3,+∞)【解析】 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数在(-∞,-1]上单调递减,在[3,+∞)上单调递增.又因为y =t 在[0,+∞)上单调递增,所以函数f (x )的增区间为[3,+∞). 9.已知函数f (x )=log 12 (x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是________.【答案】 ⎝⎛⎦⎤-12,2 【解析】 令t =g (x )=x 2-ax +3a ,易知f (t )=log 12 t 在其定义域上单调递减,要使f (x )=log 12 (x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即⎩⎪⎨⎪⎧ --a 2≤1,g (1)>0,所以⎩⎪⎨⎪⎧a ≤2,a >-12,即-12<a ≤2. 三、解答题10.已知函数f (x )=x +2x .(1)写出函数f (x )的定义域和值域;(2)证明:函数f (x )在(0,+∞)上为单调递减函数,并求f (x )在x ∈[2,8]上的最大值和最小值.【答案】见解析【解析】 (1)定义域为{x |x ≠0}.又f (x )=1+2x ,所以值域为{y |y ≠1}.(2)证明:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫1+2x 1-⎝⎛⎭⎫1+2x 2=2x 1-2x 2=2(x 2-x 1)x 1x 2.又0<x 1<x 2,所以x 1x 2>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )在(0,+∞)上为单调递减函数,在x ∈[2,8]上,f (x )的最大值为f (2)=2,最小值为f (8)=54.11.(2019·福州一中期中)已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减 ,求a 的取值范围. 【答案】见解析【解析】 (1)证明:任取x 1<x 2<-2,则作差可得f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增. (2)任取1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,所以a ≤1.综上所述,a 的取值范围是(0,1]. 12.已知f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,用定义证明函数的单调性并求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 【答案】见解析【解析】 (1)证明:当a =12时,f (x )=x +12x +2,任取1≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)+⎝⎛⎭⎫12x 1-12x 2=(x 1-x 2)(2x 1x 2-1)2x 1x 2.因为1≤x 1<x 2,所以x 1x 2>1,所以2x 1x 2-1>0.又x 1-x 2<0,所以f (x 1)<f (x 2),所以f (x )在[1,+∞)上是增函数,所以f (x )在[1,+∞)上的最小值为f (1)=72.(2)因为在区间[1,+∞)上,f (x )=x 2+2x +ax>0恒成立,则⎩⎪⎨⎪⎧ x 2+2x +a >0,x ≥1⇔⎩⎪⎨⎪⎧a >-(x 2+2x ),x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.因为φ(x )=-(x +1)2+1在[1,+∞)上单调递减,所以当x =1时,φ(x )取最大值为φ(1)=-3,所以a >-3,故实数a 的取值范围是(-3,+∞).13.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 【答案】见解析【解析】 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)因为f (x )在(0,+∞)上是单调递减函数.所以f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.。
2023年新高考数学一轮复习3-2 函数的单调性与最值(真题测试)解析版
专题3.2 函数的单调性与最值(真题测试)一、单选题1.(2014·北京·高考真题(文))下列函数中,定义域是R 且为增函数的是( )A .x y e -=B .3y x =C .ln y x =D .y x = 【答案】B【解析】【分析】分别求出选项中各函数的定义域,并判断其单调性,从而可得结论.【详解】对于A ,1xx y e e -⎛⎫== ⎪⎝⎭,是R 上的减函数,不合题意; 对于B ,3y x =是定义域是R 且为增函数,符合题意;对于C ,ln y x =,定义域是()0,∞+,不合题意;对于D ,y x =,定义域是R ,但在R 上不是单调函数,不合题,故选B.2.(2020·山东·高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( ) A .奇函数B .偶函数C .增函数D .减函数 【答案】C【解析】【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立, 等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数.故选:C3.(2015·山东·高考真题)关于函数22y x x =-+,以下表达错误的选项是( )A .函数的最大值是1B .函数图象的对称轴是直线1x =C .函数的单调递减区间是[)1,-+∞D .函数图象过点()2,0【答案】C【解析】【分析】根据二次函数的图像与性质,直接进行求解即可.【详解】 ()22211y x x x =-+=--+,最大值是1,A 正确;对称轴是直线1x =,B 正确;单调递减区间是[)1,+∞,故C 错误;令2x =的22220y =-+⨯=,故()2,0在函数图象上,故D 正确,故选:C4.(2021·全国·高三专题练习)函数()232f x x x =-+的单调递增区间是( ) A . 3,2⎡⎫+∞⎪⎢⎣⎭B . 31,2⎡⎤⎢⎥⎣⎦和[)2,+∞C .(],1-∞和3,22⎡⎤⎢⎥⎣⎦D . 3,2⎛⎫-∞ ⎪⎝⎭和[)2,+∞ 【答案】B【解析】【分析】去绝对值符号表示出分段函数的解析式,根据函数的解析式作出函数图象,进而根据函数图象求出单调区间,即可求出结果.【详解】222232,13232,1232,2x x x y x x x x x x x x ⎧-+≤⎪=-+=-+-<<⎨⎪-+≥⎩如图所示:函数的单调递增区间是31,2⎡⎤⎢⎥⎣⎦和[)2,+∞. 故选:B.5.(2022·河北·模拟预测)已知2:10p x ax -+=无解,()2:()4q f x a x =-为增函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】 分别由210x ax -+=无解和()2()4f x a x =-为增函数解出a 的范围,即可判断. 【详解】由210x ax -+=无解可得240a -<,解得22a -<<;由()2()4f x a x =-为增函数 可得240a ->,解得22a -<<,故p 是q 的充要条件.故选:C.6.(2022·黑龙江·大庆实验中学模拟预测(理))已知函数()f x 对任意实数x 都有(2)(2)f x f x +=-,并且对任意12,(,2)x x ∈-∞,都有()()12120f x f x x x -<-,则下列说法正确的是( ) A .(0)(3)f f <B .(2)(2)f f =-C .(2)f f <-D .1)1)f f <【答案】C【解析】【分析】根据题意得到函数()f x 关于2x =对称,且在区间(,2)-∞上单调递减函数,在区间(2,)+∞上单调递增函数,结合函数的性质,逐项判定,即可求解.【详解】由函数()f x 对任意实数x 都有(2)(2)f x f x +=-,可得函数()f x 关于2x =对称, 又由对任意12,(,2)x x ∈-∞,都有()()12120f x f x x x -<-, 可得函数()f x 在区间(,2)-∞上单调递减函数,则在区间(2,)+∞上单调递增函数,由()(0)4(3)f f f =>,所以A 不正确;由(2)(2)f f <-,所以B 不正确;由()(6)2f f f <=-,所以C 正确;1212->-,所以))11f f >,所以D 不正确. 故选:C.7.(2022·安徽·合肥市第六中学模拟预测(文))已知定义在R 上的函数()f x 满足()()13f x f x -=-,且[)12,1,x x ∀∈+∞,12x x ≠,都有()()12120f x f x x x ->-,()33f =.若对()1,3x ∀∈,()230f x a -->恒成立,则a 的取值范围是( ) A .()1,9-B .[]1,7-C .()(),19,-∞-+∞ D .(][),17,-∞-+∞【答案】D【解析】【分析】 由抽象函数单调性和对称性的定义可得()f x 在[)1,+∞上单调递增,在(],1-∞上单调递减且()()133f f -==,由此可将恒成立的不等式化为23x a ->或21x a -<-,分离变量后,根据函数最值可得a 的范围.【详解】[)12,1,x x ∀∈+∞,12x x ≠,都有()()12120f x f x x x ->-,()f x ∴在[)1,+∞上单调递增;()()13f x f x -=-,()f x ∴图象关于1x =对称,()f x ∴在(],1-∞上单调递减;()33f =,()()133f f ∴-==;由()230f x a -->知:()()23f x a f ->或()()21f x a f ->-,23x a ∴->或21x a -<-,23a x ∴<-或21a x >+,()1,3x ∈,1a ∴≤-或7a ≥,即a 的取值范围为(][),17,-∞-+∞.故选:D. 8.(2022·江苏南京·三模)已知()22,0,0x x f x x x ⎧≥=⎨-<⎩,若∀x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是( )A .(-1,+∞)B .1,4⎛⎫-+∞ ⎪⎝⎭C .(0,+∞)D .1,12⎛⎫- ⎪⎝⎭【答案】B【解析】【分析】分0m ≥和0m <进行分类讨论,分别确定m 的取值范围,最后综合得答案.【详解】0m ≥时,()()()22220f x m mf x x m mx ++=++>,符合题意;0m <时,()()20f x m mf x ++>,即()())2f x m mf x f+>-=显然()f x 在R 上递增,则2x m +>对1x ∀≥恒成立 (120x m +>对1x ∀≥恒成立则:10104120m m ⎧⎪⇒-<<⎨>⎪⎩; 综上,1,4m ∞⎛⎫∈-+ ⎪⎝⎭, 故选:B .二、多选题9.(2022·全国·高三专题练习)函数()21x a f x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <- 【答案】AC【解析】分离常数()221a f x x +=-+,根据()f x 在区间()b +∞,上单调递增,可得201a b +>⎧⎨≥-⎩,从而可得出选项.【详解】()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b .故选:AC10.(2022·全国·高三专题练习)已知函数23()4x f x x +=+,则下列叙述正确的是( ) A .()f x 的值域为()(),44,-∞--+∞ B .()f x 在区间(),4-∞-上单调递增 C .()()84f x f x +--=D .若{}4,x x x x Z ∈>-∈,则()f x 的最小值为-3 【答案】BCD【解析】【分析】 将函数转化为()245235()2444x x f x x x x +-+===-+++,再逐项判断. 【详解】 函数()245235()2444x x f x x x x +-+===-+++, A. ()f x 的值域为()(),22,-∞+∞,故错误;B. ()f x 在区间(),4-∞-上单调递增,故正确;C. ()23()8134442x x x f x f x x ++=--++++=,故正确; D. 因为{}4,x x x x Z ∈>-∈,则()f x 的最小值为(3)3f -=-,故正确;故选:BCD11.(2022·全国·高三专题练习)已知函数(12)3221a x a y a x -++=+-(a 是常数)在[2,5]上的最大值是5,则a 的值可能是( )A .0B .1C .2D .3【答案】AB【解析】【分析】先化简解析式,再对参数进行分类讨论,即可求解.【详解】令(12)324()221211a x a f x y a a a x x -++==+=++---(a 是常数), 因为[2,5]x ∈,所以41[2,5]1x +∈+. 若1a ≤,44()212111f x a a x x =++-=+--的最大值为5,符合题意; 当512a <≤时,()f x 的最大值为(2)f 与(5)f 中较大的数,由(2)(5)f f =, 即2|52|2|22|a a a a +-=+-,解得74a =, 显然当714a <≤时,()f x 的最大值为5,当74a >时,()f x 的最大值不为定值. 综上,当74a ≤时,()f x 在[2,5]上的最大值是5,结合选项可知,a 的值可能是0或1, 故选AB . 12.(2022·江苏·二模)已知定义在[]1,6上的函数()4f x x x=+,则( ) A .任意[],,1,6a b c ∈,()f a ,f b ,()f c 均能作为一个三角形的三条边长B .存在[],,1,6a b c ∈,使得()f a ,f b ,()f c 不能作为一个三角形的三条边长C .任意[],,1,6a b c ∈,()f a ,f b ,()f c 均不能成为一个直角三角形的三条边长D .存在[],,1,6a b c ∈,使得()f a ,f b ,()f c 能成为一个直角三角形的三条边长【答案】AD【解析】【分析】根据给定条件,求出函数()f x 在定义区间上的最值,再结合构成三角形、直角三角形的条件判断作答.【详解】函数()4f x x x =+在[1,2]上单调递减,在[2,6]上单调递增,min ()(2)4f x f ==,max 20()(6)3f x f ==,任意[],,1,6a b c ∈,不妨令()()()f a f b f c ≥≥,则min max ()()2()2()()()f b f c f c f x f x f a +≥≥>≥,即()f a ,f b ,()f c 均能作为一个三角形的三条边长,A 正确,B 错误;取2,2a b c ===,满足[],,1,6a b c ∈,则()()4,()f a f b f c ===显然有222[()][()][()]f a f b f c +=,即()f a ,f b ,()f c 为边的三角形是直角三角形,C 错误,D 正确. 故选:AD三、填空题13.(2022·山东淄博·三模)设()()232,2x f x x x ⎧<<⎪=⎨-≥⎪⎩.若()()2f a f a =+,则=a __________. 【答案】19【解析】【分析】由分段函数各区间上函数的性质有02a <<3a =,即可求结果.【详解】由y =(0,2)上递增,3(2)y x =-在(2,)+∞上递增,所以,由()()2f a f a =+,则02a <<,3a =,可得19a =. 故答案为:19 14.(2022·湖北武汉·模拟预测)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.【答案】)+∞【解析】【分析】利用不等式的基本性质分离参数,利用函数的单调性求相应最值即可得到结论.【详解】由2210x x λ-+<可得,221x x λ>+,因为1,22x ⎡∈⎤⎢⎥⎣⎦,所以12x x λ>+,根据题意,min 12x x λ⎛⎫+ ⎪⎝⎭>即可, 设()12f x x x =+,易知()f x在12⎛ ⎝⎭单调递减,在2⎫⎪⎪⎝⎭单调递增, 所以()min f x f ==⎝⎭所以λ>故答案为:)+∞15.(2022·辽宁·大连市普兰店区高级中学模拟预测)已知函数()f x 为定义在R 上的函数,对任意的R x ∈,均有()()22f x f x +=-成立,且()f x 在[)2,+∞上单调递减,若()10f -=,则不等式()10f x -≥的解集为__________.【答案】[]0,6##}{06x x ≤≤【解析】【分析】根据函数的对称性及单调性之间的关系即可求解.【详解】由题意,因为函数()f x 对任意的R x ∈均有()()22f x f x +=-,所以可得函数()f x 的图象关于2x =对称,又由()f x 在[)2,+∞上单调递减,则()f x 在(,2)-∞上单调递增,因为()10f -=,可得()()510f f =-=,则不等式()10f x -≥,可得115x -≤-≤,解得06x ≤≤,所以不等式()10f x -≥的解集为[]0,6.故答案为:[]0,6.16.(2022·上海市七宝中学模拟预测)已知()f x 为定义在(0,)+∞上的增函数,且任意0x >,均有()()11f f x x f x ⎡⎤+=⎢⎥⎣⎦,则(1)f =_____.【解析】【分析】设(1)f a =,令1x =、1x a =+求得()1111f f a a ⎛⎫+= ⎪+⎝⎭,结合()f x 单调性求出a 值,代入()f x 验证即可得结果.【详解】设(1)f a =,令1x =得:()()()111111f f f a f a⎡⎤+=⇒+=⎣⎦; 令1x a =+得:()()()111111111f f a f a f a f a a a ⎡⎤⎛⎫++=⇒+== ⎪⎢⎥+++⎣⎦⎝⎭,因为()f x 为定义在(0,)+∞上的增函数,所以1111a a a +=⇒=+,当()1f a ==时,由()()11111101a f a f a a a a +>⇒+>⇒>⇒<-<<或矛盾.故()1f a ==.四、解答题17.(2021·江苏·高三)比较2ππ1+,103【答案】2ππ1013+<<【解析】【分析】构造()21x f x x+=,函数在()1,+∞上单调递增,3π<<. 【详解】设()21x f x x +=,故()211x f x x x x+==+,函数在()1,+∞上单调递增.故3π<<()()3πf f f <<,即2ππ1013+<< 18.(2022·上海市七宝中学模拟预测)甲、乙两地相距s 千米,汽车从甲地匀速地驶往乙地,速度不得超过c 千米/时.已知汽车每小时运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v (千米/时)的平方成正比,比例系数为b ,固定部分为a 元.(1)把全程运输成本y (元)表示为速度v (千米/时)的函数;(2)为了使全程运输成本最小,汽车应以多大的速度行驶?【答案】(1)()()20s y bv a v c v =+<≤ (2)答案见解析【解析】【分析】(1)首先确定全程运输时间,根据可变成本和固定成本可得解析式; (2)根据对号函数单调性可分类讨论得到结论.(1)由题意知:每小时可变部分的成本为2bv ,全程运输时间为s v时, ∴全程运输成本()()20s y bv a v c v=+<≤. (2)由(1)得:a y s bv v ⎛⎫=+ ⎪⎝⎭,c >时,y 在(]0,c 上单调递减;则当v c =时,y 取得最小值;c 时,y 在⎛ ⎝上单调递减,在c ⎤⎥⎦上单调递增;则当v =y 取得最小值;c >时,应以速度c c . 19.(2021·上海浦东新·一模)已知函数2()1=++f x x ax ,a R ∈.(1)判断函数()f x 的奇偶性,并说明理由;(2)若函数()()(0)f x g x x x=>,写出函数()g x 的单调递增区间并用定义证明. 【答案】(1)答案见解析(2)[)1,+∞,证明见解析【解析】【分析】(1)分0a =、0a ≠两种情况, 利用函数奇偶性的定义判断出结果;(2)求得1()g x x a x=++,可以确定()g x 的单调递增区间为[)1,+∞,之后利用函数单调性证明即可.(1)当0a =时,2()1f x x =+,定义域为R , 任选x ∈R ,都有2()1()f x x f x -=+=,所以0a =时函数()f x 为偶函数;当0a ≠,(1)2,(1)2f a f a -=-=+则(1)(1),(1)(1)f f f f -≠-≠-; 0a ≠时函数()f x 既非奇函数又非偶函数;(2)函数()g x 的单调递增区间为[)1,+∞. 证明:()1()f x g x x a x x==++, 任取[)12,1,,x x ∈+∞且12x x <,1212121212111()()()()(1)g x g x x a x a x x x x x x -=++-++=--1212121()()x x x x x x -=-, 由于12x x <,则120x x -<;由于[)12,1,x x ∞∈+,则121210x x x x ->; 所以1212121()()0x x x x x x --<,即12()()f x f x <. 函数()g x 的单调递增区间为[)1,+∞.20.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围. 【答案】(1)2(1)2f x x x =++ (2)913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)根据0∆≤,结合(1)0f -=可解;(2)结合图形,对对称轴和端点函数值进行分类讨论可得.(1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++,因为任意实数x ,()0f x ≥恒成立,则0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =,所以2(1)2f x x x =++.(2) 因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要 21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦. 21.(2021·陕西商洛·模拟预测(理))已知函数()f x 的定义域为R ,,a b ∀∈R ,()()()f a f a b f b -=,且当0x >时,()1f x >.(1)求(0)f ,并写出一个符合题意的()f x 的解析式;(2)若()()22248f m m f m +>-,求m 的取值范围. 【答案】(1)(0)1f =,()2x f x =(答案不唯一) (2)423,⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用特殊值求出()0f ,再根据指数的运算性质得到()f x 的一个解析式;(2)令2a b =,即可得到()0f x >,再利用单调性的定义证明函数的单调性,再根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;(1) 解:因为(),,()()f a a b f a b f b ∀∈-=R ,所以()0f x ≠. 令a b =,得()(0)1()f a f f a ==. 所以()f x 的一个解析式为()2x f x =(答案不唯一).(2) 解:令2a b =,则2()02a f a f ⎡⎤⎛⎫=> ⎪⎢⎥⎝⎭⎣⎦,即()0f x >. 令12x x <,则()()()2211f x f x x f x -=. 因为当0x >时,()1f x >,所以()()()22111f x f x x f x -=>. 因为()0f x >,所以()()12f x f x <,所以()f x 在R 上单调递增.不等式()()22248f m m f m +>-等价于22248m m m +>-, 即23280m m --<,解得423m -<<,即m 的取值范围是423,⎛⎫- ⎪⎝⎭. 22.(2022·上海市七宝中学模拟预测)已知定义在区间[0,2]上的两个函数()f x 和()g x ,其中2()24(1)f x x ax a =-+≥,2()1x g x x =+. (1)求函数()y f x =的最小值()m a ;(2)若对任意12,[0,2]x x ∈,21()()f x g x >恒成立,求a 的取值范围.【答案】(1)24,12()84,2a a m a a a ⎧-≤<=⎨-≥⎩(2)1a ≤<【解析】【分析】(1)先将()f x 的解析式进行配方,然后讨论对称轴与区间[0,2]的位置关系,可求出函数()y f x =的最小值()m a ;(2)根据函数的单调性求出函数()f x 的最小值和()g x 的最大值,然后使()()21min max f x g x >,建立关系式,解之即可求出答案.(1)由()()222244f x x ax x a a =-+=-+-,则二次函数的对称轴为x a =,则当12a ≤<时,()f x 在[)0,a 上单调递减,在(],2a 上单调递增,所以 ()()()2min 4m a f x f a a ===-;当2a ≥时,()f x 在[0,2]上单调递减,()()()min 284m a f x f a ===- ,所以()24,1284,2a a m a a a ⎧-≤<=⎨-≥⎩; (2)()()1121g x x x =++-+,当[0,2]x ∈时,[]11,3x +∈,又()g x 在区间[0,2] 上单调递增,所以()40,3g x ⎡⎤∈⎢⎥⎣⎦.若对任意12,[0,2]x x ∈,()()21f x g x >恒成立 则()()21min max f x g x >,故212443a a ≤<⎧⎪⎨->⎪⎩或24843a a ≥⎧⎪⎨->⎪⎩解得:1a ≤<.。
高三一轮复习函数单调性(题型大全)
高三一轮复习—函数的单调性(题型大全)一、判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数; (4)单调函数的性质法;(5)图象法;(6)复合函数的单调性结论等二、题型(1)求函数单调区间(2)证明函数单调性(3)利用函数单调性求值域、最值(4)利用函数单调性比较大小(5)利用函数单调性求参数值和参数的取值范围(6)抽象函数单调性三、分类练习(1)求函数单调区间1.32()23f x x x =-2.3()f x x ax =-3.3()f x ax x =-4.2237()(1)x f x x -=- 5.5()x f x x e -=⋅(2)证明函数单调性1、求证函数y=x ³+x 在R 上是增函数。
2、证明函数xx x f 1)(+=在)1,0(上是减函数。
3、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明. (3)利用函数单调性求值域、最值1、 y=-+2x x -6 2、 y=+x 1-x 3、 y=+3-x 2x + 4、 求函数12-=x y 在区间]6,2[上的最大值和最小值. (4) 利用函数单调性比较大小1、如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。
2、已知函数()f x 在区间()0+∞,上是减函数,那么()21f a a -+与34f ⎛⎫⎪⎝⎭的大小 关系为 3、已知f(x)在区间),(+∞-∞上是减函数,a,b ∈R,且a+b ≤0,则下列正确的是:A 、f(a)+f(b) ≤-[f(a)+f(b)]B 、f(a)+f(b) ≤f(-a)+f(-b)C 、f(a)+f(b) ≥-[f(a)+f(b)]D 、f(a)+f(b) ≥f(-a)+f(-b)(5)利用函数单调性求参数值和参数的取值范围1、已知函数3)3(422--+=x a x y 在区间(-∞,-3)上是减函数,则实数a 的取值范围是_________.2、函数32)(2--=ax x x f 在区间]2,1[上单调,求a 的取值范围.3、若函数)(x f y =在),0[+∞上单调递减,且0)()(2<-t f t f ,求t 的取值范围.(6)抽象函数单调性1、 )(x f 是定义在),0(+∞上的增函数,且)()(f y f x f y x -=⎪⎪⎭⎫⎝⎛。
高考数学单调性大题知识点
高考数学单调性大题知识点数学是高考中的一门重要科目,而单调性是其中的一个重点知识点。
掌握好单调性的概念和应用方法,对于高考数学的备考至关重要。
本文将围绕高考数学中的单调性知识点展开探讨,帮助读者加深对该知识点的理解和掌握。
一、单调性的概念单调性是指函数在定义域内的增减性质。
常见的单调性包括增函数、减函数和常函数。
1. 增函数:若对于定义域内的任意两个数x1和x2,当x1<x2时,有x(x1)<x(x2),则称函数x(x)为增函数。
增函数的图像呈现出从左下到右上的单调增加趋势。
2. 减函数:若对于定义域内的任意两个数x1和x2,当x1<x2时,有x(x1)>x(x2),则称函数x(x)为减函数。
减函数的图像呈现出从左上到右下的单调减少趋势。
3. 常函数:若对于定义域内的任意两个数x1和x2,有x(x1)=x(x2),则称函数x(x)为常函数。
常函数的图像是一条水平直线。
二、单调性的判断方法判断函数的单调性有三种常见的方法,分别是导数法、增减表法和二次导数法。
1. 导数法:给定一个函数x=x(x),如果它在某个区间上的导数恒大于零(或恒小于零),那么该函数在该区间上就是增函数(或减函数)。
2. 增减表法:通过求函数的一阶导数,并列出该函数在区间内的关键点,然后根据关键点填制增减表,可以直观地判断函数的单调性。
其中,关键点是指函数的极值点、驻点等。
3. 二次导数法:先找出函数的驻点,再求出二阶导数。
对于一阶导数为零的点,通过二阶导数的正负性可以判断该点是极小值点还是极大值点,从而判断函数的单调性。
三、单调性在高考数学中的应用高考数学中,单调性是一个重要的应用点。
以下是几个常见的单调性应用题:1. 函数在某个区间上的单调性可以用来证明不等式。
例如,对于x>0,我们有x^x>1+x,可以通过证明函数x(x)=x^x−(1+x)在x>0的区间上是增函数,进而得到不等式的成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性
1.单调性与单调区间:
例1.下列函数中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x ”的是( )
A .()f x =1x
B .()f x =2(1)x -
C .()f x =x e
D .()ln(1)f x x =+ 演变1.给定函数:①1
2y x =,②12
log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间
(0,1)上单调递减的函数序号是( )
A .①②
B .②③
C .③④
D .①④
例2.函数2()21
x f x x -=
-的单调区间为__________ 演变1.函数25---=a x x y 在),1(+∞-上单调递增,则a 的取值范围是__________ 例3.函数267)(x x x f --=的单调递增区间为__________
演变1.
函数()f x =__________
例4.函数2()2||3f x x x =--的单调递增区间为__________
演变1.函数|32|)(2--=x x x f 的单调递增区间为__________
2.利用单调性求参数范围:
例1.已知函数2)1(22+-+=x a x y 在)4,(-∞上是减函数,则实数a 的取值范围是_______
演变1.若ax x x f 2)(2+-=与1
)(+=x a x g 在区间[1,2]上都是减函数,则a 的取值范围是__________
例2.已知函数(31)4(1)()log (1)a
a x a x f x x x -+<⎧=⎨≥⎩为R 上的减函数,则a 的取值范围为_______ 演变1.已知函数(2)1,1(),1x a x x f x a x -+<⎧=⎨
≥⎩是R 上的增函数,那么a 的取值范围是______ 3.利用单调性求最值:
例1.
函数y =的值域为
演变1.已知()f x 的值域为34
[,]89
,则()y f x =的值域为
演变2.函数)10(12<<-=x x x y 的最大值为_______,此时x =_______
演变3.函数x
x x x f sin 1cos sin 2)(2+=的值域为 . 例2.函数4y x x
=+的值域为 演变1.函数231x x y x
++=的值域为 4.利用单调性解不等式:
例1.已知函数)(x f y =是定义在区间[0,1)上的增函数,若0)4()2(2<---a f a f ,则实数a 的取值范围为__________
演变1.已知)(x f 为R 上的减函数,则满足1(||)(1)f f x
<的实数x 的取值范围是__________ 例2.设函数0021
,1)(0
,,0,12)(x x f x x x x f x 则若>⎪⎩⎪⎨⎧>≤-=-的取值范围是___________________. 演变1.设函数2 2()2 2.3
x x f x x x x ⎧<⎪=⎨≥⎪+⎩,,, 若0()1f x >,则0x 的取值范围是 演变2.若函数1,0()1(),03
x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩,则不等式1|()|3f x ≥的解集为____________. 5.与单调性有关的恒成立问题:
例1.已知函数)(x f 是定义在(,3]-∞上的减函数,已知22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,则实数a 的取值范围为
演变1.已知函数()
lg 2,(x y b b =-为常数),若[)1,x ∈+∞时,0y ≥恒成立。
则实数b 的取值范围
演变2.定义在(1,0)-上的函数2()log (1)a f x x =+满足()0f x >,则a 的取值范围是_____ 演变3.函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+
⎪⎝⎭
恒成立,则实数m 的取值范围是 .
演变4.己知()2()lg 2lg f x x m x n =+++,且()12f -=-,又()2f x x ≥对任意x R ∈均成立,则m n +=________________________.
强化练习
1.若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭
是增函数,则a 的取值范围是( ) A .[-1,0] B .[1,)-+∞ C .[0,3] D .[3,)+∞
2.函数y =()63a -≤≤的最大值为( )
A.9
B.92
C.3 3.已知)(x f 为R 上的减函数,则满足)1()1
(f x f >的实数x 的取值范围是( )
A.(-∞,1)
B.(1,+∞)
C.(-∞,0)⋃(0,1)
D.(-∞,0)⋃(1,+∞)
4.若函数()y f x =的值域是1[,3]2,则函数1()()F x f x =+的值域是( ) A .1[,3] B .10[2,]3 C .510[,]23 D .10[3,]3
5.已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩
,若2(2)()f a f a ->,则实数a 的取值范围是( ) A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞
6.已知函数()()()()2222
22,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=( )
(A)2216a a -- (B)2216a a +- (C)16- (D)16
7.若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________
8.若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数
()(14g x =-在[0,)+∞上是增函数,则a =____.
9.已知)3)(2()(++-=m x m x m x f ,22)(-=x x g ,若R x ∈∀,0)(<x f 或0)(<x g ,
则m 的取值范围是_________
10.已知()(2)(3)f x m x m x m =-++,()22x
g x =-,若同时满足条件:
(1)x R ∀∈,()0f x <或()0g x <;(2)(,4)x ∃∈-∞-,()()0f x g x <,则m 的取值范围是________.
答案:D 、B 、D 、B 、C 、B 、6-、14、)0,4(-、(4,2)--。