北师大版初中数学冲刺贵州省贵阳市中考试卷
初中北师大版数学中考试卷
1. 下列各数中,正数是()A. -2.5B. 0.1C. -1.2D. 02. 已知a=5,b=-3,则a-b的值是()A. 2B. -2C. 8D. -83. 一个长方形的长是6厘米,宽是4厘米,它的面积是()A. 24平方厘米B. 20平方厘米C. 12平方厘米D. 18平方厘米4. 下列各图中,不是平行四边形的是()A. 图1B. 图2C. 图3D. 图45. 若x=3,则代数式2x-5的值是()A. 1B. 4C. 7D. 86. 下列各数中,有理数是()A. √4B. √-1C. πD. √07. 一个等腰三角形的底边长为8厘米,腰长为10厘米,则这个三角形的周长是()A. 24厘米B. 26厘米C. 28厘米D. 30厘米8. 下列各式中,正确的是()A. 2x + 3 = 5x - 2B. 3a - 4 = 2a + 1C. 5b + 6 = 4b + 9D. 4c - 7 = 3c - 89. 下列各式中,同类项是()A. x^2B. 2xC. 3x^2D. 4x10. 下列各图中,能组成直角三角形的是()A. 图1B. 图2C. 图3D. 图411. 如果x=2,那么2x-3的值是______。
12. 一个数的相反数是它的______。
13. 下列各数中,负数是______。
14. 一个等边三角形的边长是______。
15. 一个圆的半径是5厘米,它的直径是______。
16. 下列各数中,有理数是______。
17. 一个长方体的长、宽、高分别是6厘米、4厘米、3厘米,它的体积是______。
18. 下列各式中,同类项是______。
19. 下列各式中,正确的是______。
20. 下列各图中,能组成直角三角形的是______。
三、解答题(每题10分,共30分)21. 解方程:3x - 2 = 7。
22. 已知a=5,b=-3,求a^2 - b^2的值。
23. 一个长方形的长是8厘米,宽是6厘米,求它的面积。
2021年贵州贵阳市中考数学试卷真题(含答案及详解)word编辑版
2021年贵阳市初中毕业生毕业(升学)统一考试数学试题一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分.1.在﹣1,0,1,四个实数中,大于1的实数是()A.﹣1B.0C.1D.2.下列几何体中,圆柱体是()A.B.C.D.3.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活80000000人.将80000000这个数用科学记数法可表示为8×10n,则n的值是()A.6B.7C.8D.94.“一个不透明的袋中装有三个球,分别标有1,2,x这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5”是必然事件,则x的值可能是()A.4B.5C.6D.75.计算的结果是()A.B.C.1D.﹣16.今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是()A.小红的分数比小星的分数低B.小红的分数比小星的分数高C.小红的分数与小星的分数相同D.小红的分数可能比小星的分数高7.如图,已知线段AB=6,利用尺规作AB的垂直平分线,步骤如下:①分别以点A,B为圆心,以b的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.则b的长可能是()A.1B.2C.3D.48.如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°10.已知反比例函数y=(k≠0)的图象与正比例函数y=ax(a≠0)的图象相交于A,B 两点,若点A的坐标是(1,2),则点B的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(2,1)11.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是()A.1B.2C.2.5D.312.小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y=k n x+b n(n=1,2,3,4,5,6,7),其中k1=k2,b3=b4=b5,则他探究这7条直线的交点个数最多是()A.17个B.18个C.19个D.21个二、填空题:每小题4分,共16分13.(4分)二次函数y=x2的图象开口方向是(填“向上”或“向下”).14.(4分)如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B 的坐标是(0,1),且BC=,则点A的坐标是.15.(4分)贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是.16.(4分)在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤17.(12分)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;(2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:a(1+a)﹣(a﹣1)2=a+a2﹣(a2﹣1)……第一步=a+a2﹣a2﹣1……第二步=a﹣1……第三步小红的解答从第步开始出错,请写出正确的解答过程.18.(10分)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:贵州省历次人口普查城镇人口统计表年份195319611982199020002010202011020454063584511752050城镇人口(万人)城镇化率7%12%19%20%24%a53%(1)这七次人口普查乡村人口数的中位数是万人;(2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是(结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是万人(结果保留整数);(3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.19.(10分)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.20.(10分)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.(1)求点A的坐标及m的值;(2)若AB=2,求一次函数的表达式.21.(10分)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).(1)求仰角α的正弦值;(2)求B,C两点之间的距离(结果精确到1m).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)22.(10分)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:产品展板宣传册横幅制作一件产品所需时间1(小时)20310制作一件产品所获利润(元)(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.23.(12分)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E 是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.(1)EM与BE的数量关系是;(2)求证:=;(3)若AM=,MB=1,求阴影部分图形的面积.24.(12分)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m >0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.25.(12分)(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;(3)拓展探究如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).2021年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分.1.在﹣1,0,1,四个实数中,大于1的实数是()A.﹣1B.0C.1D.【分析】先根据实数的大小比较法则比较数的大小,再得出答案即可.【解答】解:∵﹣1是负数,∴﹣1<1,∵0<1,≈1.414,∴大于1的实数是.故选:D.2.下列几何体中,圆柱体是()A.B.C.D.【分析】根据常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等的特征解答即可.【解答】解:A、这个几何体是圆锥,故本选项不符合题意;B、这个几何体是圆台,故本选项不符合题意;C、这个几何体是圆柱,故本选项符合题意;D、这个几何体是棱台,故本选项不符合题意.故选:C.3.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活80000000人.将80000000这个数用科学记数法可表示为8×10n,则n的值是()A.6B.7C.8D.9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵80000000=8×107,∴n=7,故选:B.4.“一个不透明的袋中装有三个球,分别标有1,2,x这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5”是必然事件,则x的值可能是()A.4B.5C.6D.7【分析】根据必然事件的意义,进行解答即可.【解答】解:根据题意可得,x的值可能为4.如果是5、7、6,那么与摸出球上的号码小于5”是必然事件相违背.故选:A.5.计算的结果是()A.B.C.1D.﹣1【分析】根据同分母的分式加减的法则计算,分母不变,分子相加减.【解答】解:原式==1,故选:C.6.今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是()A.小红的分数比小星的分数低B.小红的分数比小星的分数高C.小红的分数与小星的分数相同D.小红的分数可能比小星的分数高【分析】根据平均数的定义进行分析即可求解.【解答】解:根据平均数的定义可知,已知小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,小红的分数可能高于80分,或等于80分,也可能低于80分,小星的分数可能高于85分,或等于85分,也可能低于85分,所以上列说法比较合理的是小红的分数可能比小星的分数高.故选:D.7.如图,已知线段AB=6,利用尺规作AB的垂直平分线,步骤如下:①分别以点A,B为圆心,以b的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.则b的长可能是()A.1B.2C.3D.4【分析】利用基本作图得到b>AB,从而可对各选项进行判断.【解答】解:根据题意得b>AB,即b>3,故选:D.8.如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b【分析】根据各点在数轴上的位置,利用绝对值的性质,把|b|,|a|化简即可.【解答】解:由图可知,a<0,b>0,∴|a|=﹣a,|b|=b,∴|b|﹣|a|=b+a,故选:C.9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°【分析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD =90°,最后利用五边形的内角和相减可得结论.【解答】解:正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°,故选:A.10.已知反比例函数y=(k≠0)的图象与正比例函数y=ax(a≠0)的图象相交于A,B 两点,若点A的坐标是(1,2),则点B的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(2,1)【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点A的坐标是(1,2),∴B点的坐标为(﹣1,﹣2).故选:C.11.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是()A.1B.2C.2.5D.3【分析】根据平行四边形的性质证明DF=CD,AE=AB,进而可得AF和ED的长,然后可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB=CD=3,AD=BC=5,∴∠DFC=∠FCB,又∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC=3,同理可证:AE=AB=3,∵AD=4,∴AF=5﹣4=1,DE=4﹣3=1,∴EF=4﹣1﹣1=2.故选:B.12.小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y=k n x+b n(n=1,2,3,4,5,6,7),其中k1=k2,b3=b4=b5,则他探究这7条直线的交点个数最多是()A.17个B.18个C.19个D.21个【分析】由k1=k2得前两条直线无交点,b3=b4=b5得第三到五条有1个交点,然后第6条线与前5条线最多有5个交点,第7条线与前6条线最多有6个交点求解.【解答】解:∵k1=k2,b3=b4=b5,∴直线y=k n x+b n(n=1,2,3,4,5)中,直线y=k1x+b1与y=k2x+b2无交点,y=k3x+b3与y=k4x+b4与y=k5x+b5有1个交点,∴直线y=k n x+b n(n=1,2,3,4,5)最多有交点2×3+1=7个,第6条线与前5条线最多有5个交点,第7条线与前6条线最多有6个交点,∴交点个数最多为7+5+6=18.故选:B.二、填空题:每小题4分,共16分13.(4分)二次函数y=x2的图象开口方向是向上(填“向上”或“向下”).【分析】由二次函数图象开口方向和系数a之间的关系得出结论.【解答】解:由y=x2得:a>0,∴二次函数图象开口向上.故答案为:向上.14.(4分)如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B 的坐标是(0,1),且BC=,则点A的坐标是(2,0).【分析】根据菱形性质得OC的长,因而得点C的坐标,根据对称性质可得答案.【解答】解:∵四边形ABCD是菱形,∴∠BOC=90°,OC=OA,∵点B的坐标是(0,1),∴OB=1,在直角三角形BOC中,BC=,∴OC==2,∴点C的坐标(﹣2,0),∵OA与OC关于原点对称,∴点A的坐标(2,0).故答案为:(2,0).15.(4分)贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是.【分析】画树状图,共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,∴甲、乙两位同学分到同一组的概率为=,故答案为:.16.(4分)在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是2﹣2,2.【分析】设△DEF为正方形ABCD的一个内接正三角形,由于正三角形的三个顶点必落在正方形的三条边上,所以令F、G两点在正方形的一组对边上,作FG边上的高为EK,垂足为K,连接KA,KD,可证E、K、D、G四点共圆,则∠KDE=∠KGE=60°,同理∠KAE=60°,可证△KAD也是一个正三角形,则K必为一个定点,再分别求边长的最大值与最小值.【解答】解:如图,设△DEF为正方形ABCD的一个内接正三角形,作正△DEF的高EK,连接KA,KD,∵∠EKG=∠EDG=90°,∴E、K、D、G四点共圆,∴∠KDE=∠KGE=60°,同理∠KAE=60°,∴△KAD是一个正三角形,则K必为一个定点,∵正三角形面积取决于它的边长,∴当FG⊥AB,边长FG最小,面积也最小,此时边长等于正方形边长为2,当FG过B点时,即F'与点B重合时,边长最大,面积也最大,此时作KH⊥BC于H,由等边三角形的性质可知,K为FG的中点,∵KH∥CD,∴KH为三角形F'CG'的中位线,∴CG'=2HK=2(EH﹣EK)=2(2﹣2×sin60°)=4﹣2,∴F'G'====2﹣2,故答案为:2﹣2,2.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤17.(12分)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;(2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:a(1+a)﹣(a﹣1)2=a+a2﹣(a2﹣1)……第一步=a+a2﹣a2﹣1……第二步=a﹣1……第三步小红的解答从第一步开始出错,请写出正确的解答过程.【分析】(1)根据题意,挑选两个不等式,组成不等式组.然后解之即可.(2)应用完全平方公式错误.【解答】(1)解:第一种组合:,解不等式①,得x<﹣2,解不等式②,得x<﹣3∴原不等式组的解集是x<﹣3;第二种组合:,解不等式①,得x<﹣2,解不等式②,得x>3,∴原不等式组无解;第三种组合:,解不等式①,得x<﹣3,解不等式②,得x>3,∴原不等式组无解;(任选其中一种组合即可);(2)一,解:a(1+a)﹣(a﹣1)2=a+a2﹣(a2﹣2a+1)=a+a2﹣a2+2a﹣1=3a﹣1.故答案为一.18.(10分)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:贵州省历次人口普查城镇人口统计表年份1953196119821990200020102020 11020454063584511752050城镇人口(万人)城镇化率7%12%19%20%24%a53%(1)这七次人口普查乡村人口数的中位数是2300万人;(2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是34%(结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是271万人(结果保留整数);(3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.【分析】(1)根据中位数的定义即可解答.(2)用2010年的城镇人口数除以2010年的人口总数可得2010年的城镇化率a,用2020我省城乡总人口数乘以60%减去现有城镇人口数即可解答.(3)根据表格中的城镇化率即可解答.【解答】解:(1)这七次人口普查乡村人口数从小到大排列为:1391,1511,1818,2300,2315,2616,2680,∴中位数是第四个数2300,故答案为:2300;(2)1175÷(2300+1175)×100%≈34%,(2050+1818)×60%﹣2050≈271(万人),故答案为:34%,271;(3)随着年份的增加,城镇化率越来越高.19.(10分)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.【分析】(1)利用矩形的对边平行和四个角都是直角的性质得到两队相等的角,利用AAS 证得两三角形全等即可;(2)利用全等三角形的性质求得AD=BN=2,AN=4,从而利用勾股定理求得AB的长,利用S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD求得答案即可.【解答】解:(1)在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△MAD和△ABN中,,∴△ABN≌△MAD(AAS);(2)∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.20.(10分)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.(1)求点A的坐标及m的值;(2)若AB=2,求一次函数的表达式.【分析】(1)令y=0,则kx﹣2k=0,所以x=2,得到A(2,0),设C(a,b),因为BC⊥y轴,所以B(0,b),BC=﹣a,因为△ABC的面积为3,列出方程得到ab=﹣6,所以m﹣1=﹣6,所以m=﹣5;(2)因为AB=2,在直角三角形AOB中,利用勾股定理列出方程,得到b2+4=8,得到b=2,从而C(﹣3,2),将C坐标代入到一次函数中即可求解.【解答】解:(1)令y=0,则kx﹣2k=0,∴x=2,∴A(2,0),设C(a,b),∵CB⊥y轴,∴B(0,b),∴BC=﹣a,∵S△ABC=3,∴,∴ab=﹣6,∴m﹣1=ab=﹣6,∴m=﹣5,即A(2,0),m=﹣5;(2)在Rt△AOB中,AB2=OA2+OB2,∵,∴b2+4=8,∴b2=4,∴b=±2,∵b>0,∴b=2,∴a=﹣3,∴C(﹣3,2),将C代入到直线解析式中得k=,∴一次函数的表达式为.21.(10分)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).(1)求仰角α的正弦值;(2)求B,C两点之间的距离(结果精确到1m).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)【分析】(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,利用四边形BDFE为矩形得到EF=BD,DF=BE=1.6m,则AF=40m,然后根据正切的定义求解;(2)先利用勾股定理计算出EF=30m,再在Rt△ACD中利用正切的定义计算出CD,然后计算BD+CD即可.【解答】解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,∵∠EBD=∠FDB=∠DFE=90°,∴四边形BDFE为矩形,∴EF=BD,DF=BE=1.6m,∴AF=AD﹣DF=41.6﹣1.6=40(m),在Rt△AEF中,sin∠AEF===,即sinα=.答:仰角α的正弦值为;(2)在Rt△AEF中,EF===30(m),在Rt△ACD中,∠ACD=63°,AD=41.6,∵tan∠ACD=,∴CD==≈21.22(m),∴BC=BD+CD=30+21.22≈51(m).答:B,C两点之间的距离约为51m.22.(10分)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:产品展板宣传册横幅制作一件产品所需时间1(小时)20310制作一件产品所获利润(元)(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.【分析】(1)设制作展板数量为x件,横幅数量为y件,则宣传册数量为5x件,根据题意列出二元一次方程组即可;(2)根据三种产品的利润之和等于700列出函数关系式,然后根据一次函数的性质求出最小值.【解答】解:(1)设制作展板数量为x件,横幅数量为y件,则宣传册数量为5x件,由题意得:,解得:,答:制作展板数量10件,宣传册数量50件,横幅数量10件;(2)设制作种产品总量为w件,展板数量m件,则宣传册数量5m件,横幅数量(w﹣6m)件,由题意得:20m+3×5m+10(w﹣6m)=700,解得:w =m+70,∴w是m的一次函数,∵k =,∴w随m的增加而增加,∵三种产品均有制作,且w,m均为正整数,∴当m=2时,w有最小值,则w min=75,答:制作三种产品总量的最小值为75件.23.(12分)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E 是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.(1)EM与BE的数量关系是BE=EM;(2)求证:=;(3)若AM=,MB=1,求阴影部分图形的面积.【分析】(1)证得△BME是等腰直角三角形即可得到结论;(2)根据垂径定理得到∠EMB=90°,进而证得∠ABE=∠BEN=45°,得到=,根据题意得到=,进一步得到=;(3)先解直角三角形得到∠EAB=30°,从而得到∠EOB=60°,证得△EOB是等边三角形,则OE=BE=,然后证得△OEB≌△OCN,然后根据扇形的面积公式和三角形面积公式求得即可.【解答】解:(1)∵AC为⊙O的直径,点E是的中点,∴∠ABE=45°,∵AB⊥EN,∴△BME是等腰直角三角形,∴BE=EM,故答案为BE=EM;(2)连接EO,AC是⊙O的直径,E是的中点,∴∠AOE=90°,∴∠ABE=∠AOE=45°,∵EN⊥AB,垂足为点M,∴∠EMB=90°∴∠ABE=∠BEN=45°,∴=,∵点E是的中点,∴=,∴=,∴﹣=﹣,∴=;(3)连接AE,OB,ON,∵EN⊥AB,垂足为点M,∴∠AME=∠EMB=90°,∵BM=1,由(2)得∠ABE=∠BEN=45°,∴EM=BM=1,又∵BE=EM,∴BE=,∵在Rt△AEM中,EM=1,AM=,∴tan∠EAB==,∴∠EAB=30°,∵∠EAB=∠EOB,∴∠EOB=60°,又∵OE=OB,∴△EOB是等边三角形,∴OE=BE=,又∵=,∴BE=CN,∴△OEB≌△OCN(SSS),∴CN=BE=又∵S扇形OCN==,S△OCN=CN•CN=×=,∴S阴影=S扇形OCN﹣S△OCN=﹣.24.(12分)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m >0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.【分析】(1)根据题意结合图象可以求出函数的顶点B(4,4),先设抛物线的顶点式y =a(x﹣4)2+4,再根据图象过原点,求出a的值即可;(2)先求出工人矩原点的距离,再把距离代入函数解析式求出y的值,然后和1.68比较即可;(3)根据倒影与桥对称,先求出倒影的解析式,再平移m各单位,根据二次函数的性质求出m的取值范围.【解答】解:(1)如图②,由题意得:水面宽OA是8m,桥拱顶点B到水面的距离是4m,结合函数图象可知,顶点B(4,4),点O(0,0),设二次函数的表达式为y=a(x﹣4)2+4,将点O(0,0)代入函数表达式,解得:a=﹣,∴二次函数的表达式为y=﹣(x﹣4)2+4,即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头,理由如下:∵小船距O点0.4m,小船宽1.2m,工人直立在小船中间,由题意得:工人距O点距离为0.4+×1.2=1,∴将=1代入y=﹣x2+2x,解得:y==1.75,∵1.75m>1.68m,∴此时工人不会碰到头;(3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.如图所示,新函数图象的对称轴也是直线x=4,此时,当0≤x≤4或x≥8时,y的值随x值的增大而减小,将新函数图象向右平移m个单位长度,可得平移后的函数图象,如图所示,∵平移不改变图形形状和大小,∴平移后函数图象的对称轴是直线x=4+m,∴当m≤x≤4+m或x≥8+m时,y的值随x值的增大而减小,∴当8≤x≤9时,y的值随x值的增大而减小,结合函数图象,得m的取值范围是:①m≤8且4+m≥9,得5≤m≤8,②8+m≤8,得m≤0,由题意知m>0,∴m≤0不符合题意,舍去,综上所述,m的取值范围是5≤m≤8.25.(12分)(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;(3)拓展探究如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).。
北师大版贵阳市九年级数学中考复习模拟试卷
数学模拟试卷姓名: 班级: 成绩:一、选择题(30分)22.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数3.某商品的商标可以抽象为如图所示的三条线段,其中AB ∥CD ,∠EAB=45°,则∠FDC 的度数是( ) A . 30° B . 45°C . 60°D . 75°4.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为123v v v 、、,且123v v v <<,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图像可能是( )5.下列图形是中心D6.如图所示的几何体的左视图是( )ABC D8、无论a取什么实数,点P(a-1,2a-3)都在直线L上,Q(m,n)是直线L上的点,则(2m-n+3)2的值等于:A. 9B. 12C. 16D. 49.今年5月,某校举行“唱红歌”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前810.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)二、填空题(20分)11.因式分解:x2﹣9y2=_________.12.如图,四边形ABCD是平行四边形,E是CD延长线上的任意一点,连接BE交AD于点O,如果△ABO≌△DEO,则需要添加的条件是_________(只需一个即可,图中不能添加任何点或线)13.某生数学科课堂表现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按30%、30%、40%的比例计入总评成绩,则该生数学科总评成绩是_________分.14.已知反比例函数y=的图象经过点A(m,1),则m的值为.15.如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,…,依次下去,则点B6的坐标是_________.三、解答题16.(8分)请从a2﹣1,a2﹣a,a2﹣2a+1中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简,然后自选一个合理的数代入求值.17、据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.(10分)18(1)该月小王手机话费共有多少元?(3分)(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3分) (3)请将表格补充完整;(2分) (4)请将条形统计图补充完整.(2分)19.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参考数据:sin15°=,cos15°=,tan15°=2﹣,cot15°=2+)(10分)20.如图所示,在平行四边形ABCD 中,∠ABC 的角平分线分别交AC ,AD 于E ,F 点,EG ⊥BC ,若BA=6,AC=8,AD=10. (1)求FD 的长;(5分) (2)求△BEC 的面积.(5分)21.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到 _________ 元购物券,至多可得到 _________ 元购物券;(4分) (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.(6分)22.如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0).⑴求抛物线的解析式及顶点D 的坐标;(3分) ⑵判断△ABC 的形状,证明你的结论;(3分)⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.(4分)23.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(5分)(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)(5分)24.如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD 是形;(3分)(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC′,四边形CDBC′是形;(3分)(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。
贵州省贵阳市南明区北京师范大学贵阳附属中学2023-2024学年九年级上学期期中考试数学试卷
2023-2024学年贵州省北京师大贵阳附中九年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)如果a>b,那么下列不等式成立的是( )A.a+2<b+2B.﹣2a<﹣2b C.D.a2>b2答案:B2.(3分)在平面直角坐标系中,点P(﹣3,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B3.(3分)如图,OC是∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的是( )A.∠AOC=∠BOC B.∠AOC=∠AOBC.∠AOB=2∠BOC D.∠AOC+∠COB=∠AOB答案:D4.(3分)如图,已知直线a∥b,∠1=105°( )A.65°B.75°C.85°D.105°答案:B5.(3分)以下各组线段为边,能组成三角形的是( )A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm答案:B6.(3分)菱形和平行四边形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线平分一组对角D.对角线互相平分答案:D7.(3分)数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分( )A.6B.7C.8D.9答案:C8.(3分)已知点A(﹣1,m),B(3,n)都在一次函数y=3x+b的图象上,则( )A.m=nB.m>nC.m<nD.m,n的大小关系不确定答案:C9.(3分)用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,则a+b的值为( )A.15B.7C.﹣1D.1答案:B10.(3分)如图,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC∽△ACD的是( )A.∠B=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AB答案:C11.(3分)关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是( )A.k≤﹣B.k≤﹣且k≠0C.k≥﹣D.k≥﹣且k≠0答案:D12.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,CE=3,H是AF的中点( )A.2.5B.C.D.2答案:B二、填空题(每小题4分,共16分)13.(4分)使分式有意义的x的取值范围是 x≠5 .答案:x≠5.14.(4分)若,则m﹣n的值为 4 .答案:415.(4分)如图,该图形折叠成正方体后,与“沉”字相对的字是 考 .答案:考16.(4分)如图,在菱形ABCD中,对角线AC,点E为AB的中点,点F在OD上,连接EF交OA于点G,若OG=1,S△BEC=12,则线段CE的长为 3 .答案:3.三、解答题(本大题9小题,共98分)17.(12分)(1)计算:+|3﹣|﹣(2017﹣π)0+()﹣2;(2)解不等式,并求出它的非负整数解.答案:(1)+6;(2)不等式组解集为:﹣3<x≤4,其非负整数解为:0,1,2,3,4.解:(1)原式=2+4﹣=+4;(2),解不等式①,得x>﹣4,解不等式②,得x≤4,∴不等式组解集为:﹣3<x≤2,则其非负整数解为:0,1,3,3,4.18.(10分)如图,△ABC中,AD是BC边上的中线,E,连接BE,CF (1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.答案:(1)证明见解答;(2)DE=3.(1)证明:∵AD是BC边上的中线,∴BD=CD,∵BE∥CF,∴∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);(2)解:∵AE=13,AF=7,∴EF=AE﹣AF=13﹣7=7,∵△BDE≌△CDF,∴DE=DF,∵DE+DF=EF=6,∴DE=3.19.(10分)为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5•19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,并绘制如下不完整的统计图,请根据图1,解答下列问题:(1)此次抽样调查的样本容量是 200 ;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,“五一”假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客约有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.答案:(1)200;(2)见解答;(3)6.65万;(4).解;(1)此次抽样调查的样本容量为50÷25%=200;故答案为:200;(2)B组的人数为200﹣70﹣20﹣50=60(人),条形统计图补充为:(3)19×=6.65(万),所以估计前往青海湖景区的游客约有6.65万人;(4)画树状图为:共有16种等可能的结果,其中两人选择同一景区的结果数为7,所以他们选择同一景区的概率==.20.(10分)已知如图,在平行四边形ABCD中,AE⊥BC于E,∠B=60°,AF=,求平行四边形ABCD 的面积.答案:24.解:在平行四边形ABCD中,∠B=60°,∴∠B=∠D=60°,∵AF⊥CD,AF=,∴AD=5,∵平行四边形ABCD的周长为28,∴AB+AD=14,∴AB=6,∴CD=AB=6,∴S平行四边形ABCD=CD•AF=2×4=24.21.(10分)已知点P(3,m+8)和点Q(2m+5,3m+2)且PQ∥y轴.(1)求PQ的长;(2)若点R(b,m+8),且RP=2,求b值.答案:(1)8;(2)b=5或=1.解:(1)∵PQ∥y轴,∴3=2m+5,∴m=﹣1,∴P点的坐标为(3,6),﹣1),∴PQ=7﹣(﹣4)=8,(2)∵P(3,m+4),m+8),∴PR∥x轴,∵RP=2,∴|b﹣5|=2,∴b﹣3=2或b﹣3=﹣2,∴b=5或=1,22.(10分)某货运公司有A,B两种型号的汽车,用2辆A型车和3辆B型车装满货物一次可运货13吨,计划同时租用A型车和B型车,一次运完(1)一辆A型车和一辆B型车都装满货物分别可运货多少吨?(2)请你帮该物流公司设计可行的租车方案,直接写出所有方案.答案:(1)一辆A型车装满货物可运货2吨,一辆B型车装满货物可运货3吨;(2)一共有4种租车方案,方案1:租用A型车2辆,B型车7辆;方案2:租用A型车5辆,B型车5辆;方案3:租用A型车8辆,B型车3辆;方案4:租用A型车11辆,B型车1辆.解:(1)设一辆A型车装满货物可运货x吨,一辆B型车装满货物可运货y吨,依题意得:,解得:.答:一辆A型车装满货物可运货2吨,一辆B型车装满货物可运货3吨.(2)设租用A型车m辆,B型车n辆,依题意得:6m+3n=25,∴n=,又∵m,n均为正整数,∴或或或,∴一共有4种租车方案,方案3:租用A型车2辆,B型车7辆;方案3:租用A型车5辆,B型车5辆;方案6:租用A型车8辆,B型车3辆;方案6:租用A型车11辆,B型车1辆.23.(12分)如图,在矩形ABCD中,AB=3,点E在BC边上,DF⊥AE(1)求证:△ADF∽△EAB;(2)若DF=6,则线段EF= 3 .答案:(1)见解答;(2)3.(1)证明:∵四边形ABCD为矩形,∴∠B=90°,AD=BC=10,∵AD∥BC,∴∠AEB=∠EAD,∵DF⊥AE,∴∠F=90°,∵∠F=∠B,∠FAD=∠BEA,∴△ADF∽△EAB;(2)解:在Rt△ADF中,AF==,∵△ADF∽△EAB,∴=,即=,解得BE=4,在Rt△ABE中,AE=,∴EF=AF﹣AE=8﹣8=3,故答案为:3.24.(12分)现有可建筑60m围墙的材料,准备依靠原有旧墙围成如图所示的矩形仓库,墙长为am.(1)设AD边的长为xm,则AB边的长为 (60﹣3x)m ,矩形仓库的面积为 x(60﹣3x)m2 ;(用含x的代数式表示)(2)若a=50,能否围成总面积为225m的仓库?若能,求AB的长;(3)能否围成总面积为400m2的仓库?请说明理由.答案:(1)(60﹣3x)m,x(60﹣3x)m2;(2)若a=50,能围成总面积为225m的仓库,AB的长为45m或15m;(3)不能围成总面积为400m2的仓库,理由见解答过程.解:(1)根据题意得:3x+AB=60,∴AB=(60﹣3x)m,矩形仓库的面积为x(60﹣6x)m2;故答案为:(60﹣3x)m,x(60﹣2x)m2;(2)若a=50,能围成总面积为225m的仓库根据题意得:x(60﹣3x)=225,解得x=8或x=15,当x=5时,60﹣3x=60﹣2×5=45<50,当x=15时,60﹣3x=60﹣4×15=15<50,∴AB的长为45m或15m;(3)不能围成总面积为400m2的仓库,理由如下:根据题意得:x(60﹣3x)=400,整理得:4x2﹣60x+400=0,Δ=(﹣60)3﹣4×3×400=﹣1200<3,∴方程无实数解,∴不能围成总面积为400m2的仓库.25.(12分)如图①,在Rt△ABC中,AC=BC,点D为BC边上的一点,连接AD,交AB于点E,连接DE.(1)求证:△AFC∽△CFD;(2)若AE=2BE,求证:AF=2CF;(3)如图②,若AB=,DE⊥BC,求答案:(1)证明见解析;(2)证明见解析;(3).(1)证明:∵∠ACB=90°,∴∠ACF+∠DCF=90°,∵CE⊥AD,∴∠CDF+∠DCF=90°,∴∠ACF=∠CDF,∵∠AFC=∠CFD=90°,∴△AFC∽△CFD;(2)证明:如图①,过点B作BH⊥CE交CE的延长线于H,∵CE⊥AD,∴AF∥BH,∴==2,∴AF=2BH,由(1)可知,△AFC∽△CFD,∴∠CAF=∠BCH,在△ACF和△CBH中,,∴△ACF≌△CBH(AAS),∴CF=BH,∴AF=6CF;(3)解:在Rt△ABC中,AC=BC,AB=,则AC=BC=1,∠B=45°,设CD=x,则BD=8﹣x,在Rt△BDE中,∠B=45°,则DE=BD=1﹣x,∵∠CAD=∠ECD,∠ACD=∠CDE=90°,∴△ACD∽△CDE,∴=,即=,解得:x1=,x2=(舍去),∵DE⊥BC,∠ACB=90°,∴DE∥AC,∴==.。
2024届贵州省贵阳市白云区重点中学中考数学全真模拟试卷含解析
2024届贵州省贵阳市白云区重点中学中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC 是⊙O 的内接三角形,∠BOC =120°,则∠A 等于( )A .50°B .60°C .55°D .65°2.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.估计41的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间4.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 5.化简221121211x x x x ÷+--++的结果是( ) A .1 B .12 C .11x x -+ D .222(1)x x -+ 61x +有意义,x 的取值范围是( )A .x≠1B .x≠0C .x >﹣1且≠0D .x≥﹣1且x ≠07.如图,已知点A 、B 、C 、D 在⊙O 上,圆心O 在∠D 内部,四边形ABCO 为平行四边形,则∠DAO 与∠DCO 的度数和是( )A .60°B .45°C .35°D .30°8.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个.A .4个B .3个C .2个D .1个9.下列各数中,比﹣1大1的是( )A .0B .1C .2D .﹣310.如图,正比例函数y=x 与反比例函数的图象交于A (2,2)、B (﹣2,﹣2)两点,当y=x 的函数值大于的函数值时,x 的取值范围是( )A .x >2B .x <﹣2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >2二、填空题(共7小题,每小题3分,满分21分)11.分解因式:2m 2-8=_______________.12.不等式组2x+1x {4x 3x+2>≤的解集是 ▲ . 13.如图,在△ABC 中,∠ACB=90°,AB=8,AB 的垂直平分线MN 交AC 于D ,连接DB ,若tan ∠CBD=34,则BD=_____.14.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.15.若a m=5,a n=6,则a m+n=________.16.已知一组数据-3,x,-2,3,1,6的众数为3,则这组数据的中位数为______.17.如果a+b=2,那么代数式(a﹣2ba)÷a ba的值是______.三、解答题(共7小题,满分69分)18.(10分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C 的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.19.(5分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.20.(8分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.21.(10分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.22.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.23.(12分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.(14分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF. 求证:AF=CE.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】由圆周角定理即可解答.【题目详解】∵△ABC是⊙O的内接三角形,∴∠A=12∠BOC,而∠BOC=120°,∴∠A=60°.故选B.【题目点拨】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.2、C【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C .【题目点拨】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.3、C【解题分析】<,∴67<<.6和7之间.故选C.4、C【解题分析】甲的速度是:20÷4=5km/h ; 乙的速度是:20÷1=20km/h ; 由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .5、A【解题分析】原式=()()111x x +-•(x –1)2+21x +=11x x -++21x +=11x x ++=1,故选A . 6、D【解题分析】根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解.【题目详解】 根据题意得:10{0x x +≥≠, 解得:x≥-1且x≠1.故选:D .【题目点拨】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.7、A【解题分析】试题解析:连接OD ,∵四边形ABCO 为平行四边形,∴∠B =∠AOC ,∵点A. B. C.D 在⊙O 上,180B ADC ∴∠+∠=,由圆周角定理得, 12ADC AOC ∠=∠, 2180ADC ADC ∴∠+∠=,解得, 60ADC ∠=,∵OA =OD ,OD =OC ,∴∠DAO =∠ODA ,∠ODC =∠DCO ,60.DAO DCO ∴∠+∠=故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.8、B【解题分析】分析:根据已知画出图象,把x =−2代入得:4a −2b +c =0,把x =−1代入得:y =a −b +c >0,根据122c x x a ⋅=<-,不等式的两边都乘以a (a <0)得:c >−2a ,由4a −2b +c =0得22ca b -=-,而0<c <2,得到102c -<-<即可求出2a −b +1>0. 详解:根据二次函数y =ax 2+bx +c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x =−2代入得:4a −2b +c =0,∴①正确;把x =−1代入得:y =a −b +c >0,如图A 点,∴②错误;∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122c x x a ⋅=<-, ∴不等式的两边都乘以a (a <0)得:c >−2a ,∴2a +c >0,∴③正确;④由4a −2b +c =0得22c a b -=-,而0<c <2,∴102c -<-< ∴−1<2a −b <0∴2a −b +1>0,∴④正确.所以①③④三项正确.故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型.9、A【解题分析】用-1加上1,求出比-1大1的是多少即可.【题目详解】∵-1+1=1,∴比-1大1的是1.故选:A .【题目点拨】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.10、D【解题分析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.二、填空题(共7小题,每小题3分,满分21分)11、2(m+2)(m-2)【解题分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【题目详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【题目点拨】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.12、﹣1<x≤1【解题分析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.13、5【解题分析】由tan∠CBD=CDBC=34设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【题目详解】解:在Rt△BCD中,∵tan∠CBD=CDBC=34,∴设CD=3a、BC=4a,则BD=AD=5a,∴AC=AD+CD=5a+3a=8a,在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a=255或a=-255(舍),则BD=5a=25,故答案为25.【题目点拨】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.14、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解. 当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.15、1.【解题分析】根据同底数幂乘法性质a m·a n=a m+n,即可解题.【题目详解】解:a m+n= a m·a n=5×6=1.【题目点拨】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.16、2【解题分析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.详解:∵-3,x,-1,3,1,6的众数是3,∴x=3,先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,∴这组数的中位数是132+=1.故答案为:1.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.17、2【解题分析】分析:根据分式的运算法则即可求出答案.详解:当a+b=2时,原式=22•a b aa a b--=()()•a b a b aa ab +--=a+b=2故答案为:2点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.三、解答题(共7小题,满分69分)18、(1)275(2)证明见解析(3)F在直径BC下方的圆弧上,且23BF BC=【解题分析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得CD CEBA BC=,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=3CD=3CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且23BF BC=.【题目详解】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴CE EF BE CE=,∵BE=15,CE=9,即:9159EF=,解得:EF=275;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴CF CD BF BA=,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴CF CE BF BC=,∴CD CE BA BC=,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=3CD=3CE,在Rt△BCE中,tan∠CBE=13 CEBC=,∴∠CBE=30°,故CF为60°,∴F在直径BC下方的圆弧上,且23BF BC=.【题目点拨】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.19、见解析【解题分析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【题目详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB ∥DC, ∴∠EAO=∠FCO,在△AEO 和△CFO 中,EAO FCO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO ≌△CFO(ASA), ∴OE=OF. 【题目点拨】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.20、(1)333+;(2)353+;(2)小贝的说法正确,理由见解析,11055153+. 【解题分析】(1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt △ANO 中,设AO =r ,由勾股定理可求出r ,在Rt △OEB 中,由勾股定理可得BO 长,易知BP 长. 【题目详解】解:(1)如图1,连接AC ,BD ,对角线交点为O ,连接OE 交CD 于H ,则OD =OC .∵△DCE 为等边三角形, ∴ED =EC , ∵OD =OC∴OE 垂直平分DC ,∴DH 12=DC =1. ∵四边形ABCD 为正方形, ∴△OHD 为等腰直角三角形, ∴OH =DH =1, 在Rt △DHE 中, HE 3=DH =13, ∴OE =HE +OH =13+1;(2)如图2,补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,AD =6,DO =1, ∴AO 22AD DO =+=15,3OP DO ==∴AP =AO +OP =15+1;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===, ∴AN 12=AD =1.6,ON ⊥AD , 在Rt △ANO 中,设AO=r,则ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r5 3 =,∴AE=ON53=-1.2715=,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE23 15 =,∴BO==,∴BP=BO+PO53 =+,∴门角B到门窗弓形弧AD53 +.【题目点拨】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.21、(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解题分析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)14;(2)13.【解题分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【题目详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=1 4(2)列表如下:美丽光明美---- (美,丽) (光,美) (美,明) 丽(美,丽) ---- (光,丽) (明,丽) 光(美,光) (光,丽) ---- (光,明)根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13 P=.【题目点拨】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23、见解析【解题分析】证明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵CAB ADE {AB DAB DAE∠=∠=∠=∠,∴△ABC≌△DAE(ASA).∴BC=AE.【题目点拨】根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.24、参见解析.【解题分析】分析:先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.详解:证明:平行四边形ABCD中,AD BC,AD BC=,ACB CAD∴∠=∠.又BE DF,BEC DFA∴∠=∠,BEC DFA∴≌,∴CE AF=点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.。
贵阳中考数学试卷真题及答案
贵阳中考数学试卷真题及答案一、选择题(共10小题,每小题为2分,共20分)1. 设集合A = {x | x^2 - 4x - 21 ≤ 0},则A的解集为()。
A. [-3, 7]B. [-3, -1]C. (-∞, -1]D. [-3, ∞]2. 已知函数f(x) = 4x - 5,g(x) = 3x + 2,求f(g(2))的值为()。
A. 22B. 10C. -22D. -103. 设抛物线y = ax^2 + bx + c(a ≠ 0)的图象过点(4, 6),且该抛物线与x轴交于点(2, 0),则抛物线的解析式为()。
A. y = -2x^2 + 12x - 8B. y = 2x^2 - 12x + 8C. y = -2x^2 + 12x +8 D. y = 2x^2 - 12x - 84. 在△ABC中,∠A = 90°,AB = 12 cm,AC = 5 cm,则BC的长度为()。
A. 6 cmB. 7 cmC. 8 cmD. 9 cm5. 若2^x = 4 + 3^y,那么x + y的值为()。
A. 1B. 2C. 3D. 46. 在某个四边形中,对角线互相垂直,且相等,那么该四边形是()。
A. 矩形B. 平行四边形C. 菱形D. 长方形7. 下列哪个等式成立?()A. 3(5-1) = 5 × 4 + 3B. 6 × 8 - 20 = 7(4 - 2)C. 48 ÷ (6 × 2) = 48 ÷6 × 2 D. (3 - 1) × 4 = 3 × 5 - 28. 如图,AB是直径,且AB = 6cm,圆的面积为()。
(∏取近似值3.14)A. 9∏ cm^2B. 18∏ cm^2C. 36∏ cm^2D. 12∏ cm^2A/ \/ \/_________\B C9. 括号配对的方法中,以下四个不可能是括号匹配的是()。
贵州省贵阳市2020年九年级数学中考基础冲刺训练(一)(含答案)
贵州省贵阳市2020年数学中考基础冲刺训练(一)一.选择题(每题3分,满分30分)1.a表示﹣2的相反数,则a是()A.2 B.C.﹣2 D.﹣2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克3.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°4.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球个数n=()A.4 B.5 C.6 D.75.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.6.某商场试销一种新款衬衫,一周内销信情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是()A.平均数B.众数C.中位数D.方差7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.38.如图,等边△ABC内接于⊙O,点D在上,∠CAD=15°,则∠ACD的度数为()A.30°B.35°C.40°D.45°9.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min10.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为()A.﹣1,0 B.﹣1,1 C.1,3 D.﹣1,3二.填空题(满分20分,每小题4分)11.如果不等式组无解,则a的取值范围是.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.13.已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.14.在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为.15.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.三.解答题16.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(10分)为了传承优秀传统文化,某校举行“经典诵读”比赛,诵读材料有:A《唐诗》、B《宋词》、C《论语》.将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小红和小亮参加诵读比赛,比赛时小红先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行比赛.(1)小红诵读《论语》的概率是;(2)请用列表法或画树状图的方法,求小红和小亮诵读两个相同材料的概率.18.(10分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.19.(10分)2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有人.20.(10分)某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周 3台 5台 1800元第二周 4台 10台 3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)22.(10分)如图,在平面直角坐标系中,菱形ABOD的顶点O与坐标原点重合,点B在y 轴的正半轴上,点A在反比例函数的图象上,点D的坐标为(8,6).(1)求反比例函数的表达式;(2)E是x轴正半轴上的动点,过点E作x轴的垂线交线段OA于点M,交双曲线于点P,在E点运动过程中,M点正好是线段EP中点时,求点E的坐标.23.(10分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE 于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB 于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.24.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形△CBD,连接DA并延长,交y轴于点E.(1)求证:△OBC≌△ABD.(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?25.如图,抛物线经过A(﹣3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.①当t为何值时,点N落在抛物线上;②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.参考答案一.选择题1.解:a表示﹣2的相反数,则a是2,故选:A.2.解:0.00 000 0076克=7.6×10﹣8克,故选:C.3.解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.4.解:∵口袋中装有白球6个,黑球8个,黄球n个,∴球的总个数为6+8+n,∵从中随机摸出一个球,摸到黄球的概率为,∴解得,n=7.故选:D.5.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.6.解:由题意可知,最畅销的型号应该是销售量最多的型号,故对商场经理来说最具有意义的是众数,故选:B.7.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.8.解:连接CD,∵△ABC是等边三角形,∴∠B=60°,∴∠D=120°,∵∠CAD=15°,∴∠ACD=180°﹣15°﹣120°=45°,故选:D.9.解:由函数图象可知,体育场离小明家2.5km,故选项A不合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项B不合题意;小明从体育场出发到文具店的平均速度为:1000÷(45﹣30)=(m/min),故选项C符合题意;小明从文具店回家的平均速度是1500÷(90﹣65)=60(m/min),故选项D不合题意.故选:C.10.解:由图象可知,该函数的对称轴是直线x =1,与x 的轴的一个交点是(3,0), 则该函数与x 轴的另一个交点是(﹣1,0), 即当y =0时,0=﹣x 2+2x +m 时x 1=3,x 2=﹣1,故关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=3,x 2=﹣1, 故选:D . 二.填空11.解:解不等式x ﹣1>0,得x >1, 解不等式x ﹣a <0,x <a . ∵不等式组无解,∴a ≤1. 故答案为:a ≤1.12.解:设白球个数为:x 个,∵摸到红色球的频率稳定在0.25左右, ∴口袋中得到红色球的概率为0.25, ∴=,解得:x =15, 即白球的个数为15个, 故答案为:15.13.解:∵一次函数y =kx +1的图象经过点P (﹣1,0), ∴0=﹣k +1 ∴k =1 故答案为:114.解:分别作OD ⊥AB ,OE ⊥AC ,垂足分别是D 、E . ∵OE ⊥AC ,OD ⊥AB , ∴AE =AC =,AD =AB =, ∴sin ∠AOE ==,sin ∠AOD ==,∴∠AOE =45°,∠AOD =30°,∴∠BAO =60°,∠CAO =90°﹣45°=45°,∴∠BAC=45°+60°=105°,或∠BAC′=60°﹣45°=15°.∴∠BAC=15°或105°.故答案是:15°或105°.15.解:以AB为腰作等腰Rt△ABE,连接EC,∵△ADC为等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠BAC+∠DAC,∴∠EAC=∠DAB,∴△EAC∽△BAD,∴,作EF⊥BC交BC延长线于F,∵∠ABC=45°,∠EBA=90°,∴∠EBF=45°,∴△EFB为等腰Rt△,∴EF=FB===7,∴EC==25,∴BD==.三.解答16.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.17.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个相同材料的结果数为3,所以小红和小亮诵读两个相同材料的概率==.18.(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠ABC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.19.解:(1)18÷15%=120,即本次调查一共随机抽取了120名居民,故答案为:120;(2)“较强”层次的有:120×45%=54(名),补充完整的条形统计图如右图所示;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),故答案为:150.20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.21.解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CH cot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BE sin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.22.解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(8,6),∴OF=8,DF=6,∴OD=10,∴AD=10,∴点A坐标为(8,16),∴k=xy=8×16=128,∴反比例函数表达式为;(2)∵点A坐标为(8,16),∴OA的表达式为y=2x,设E点坐标为(m,0),则M点坐标(m,2m),F点坐标,∵M点正好是线段EP中点,∴P(m,4m),∴,解得:,∴.23.(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.24.解:(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,∵,∴△OBC≌△ABD(SAS);(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:∵△AOB是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°﹣∠OAB﹣∠BAD=60°;(3)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.25.解:(1)∵y=ax2+bx+经过A(﹣3,0),C(5,0)两点,∴,解得,所以,抛物线的解析式为y=﹣x2+x+;(2)∵y=﹣x2+x+,=﹣(x 2﹣2x +1)++, =﹣(x ﹣1)2+8, ∴点B 的坐标为(1,8),∵抛物线的对称轴与x 轴交于点D ,∴BD =8,CD =5﹣1=4,∵PM ⊥BD ,∴PM ∥CD ,∴△BPM ∽△BDC ,∴=, 即=, 解得PM =t ,所以,OE =1+t ,∵四边形PMNQ 为正方形,∴NE =8﹣t +t =8﹣t ,①点N 的坐标为(1+t ,8﹣t ),若点N 在抛物线上,则﹣(1+t ﹣1)2+8=8﹣t , 整理得,t (t ﹣4)=0,解得t 1=0(舍去),t 2=4,所以,当t =4秒时,点N 落在抛物线上;②存在.理由如下:∵PM =t ,四边形PMNQ 为正方形,∴QD =NE =8﹣t ,设直线BC 的解析式为y =kx +m ,则,解得,所以直线BC的解析式为y=﹣2x+10,则﹣2x+10=8﹣t,解得x=t+1,所以,QR=t+1﹣1=t,又EC=CD﹣DE=4﹣t,根据平行四边形的对边平行且相等可得QR=EC,即t=4﹣t,解得t=,此时点P在BD上,所以,当t=时,四边形ECRQ为平行四边形.。
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)(满分150分 时间:120分钟)一.单选题。
(共40分) 1.16的算术平方根是( )A.±2B.2C.4D.±4 2.下面四个几何体中,左视图为圆的是( )A. B. C. D.3.据5月17日消息,全国各地约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.0.426×105B.4.26×105C.42.6×104D.4.26×1044.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A.50°B.70°C.80°D.110°(第4题图) (第9题图) (第10题图) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.化简a 2a -1-1-2a 1-a的结果为( )A.a+1a -1B.a ﹣1C.aD.17.从甲、乙、丙、丁四人中抽调两人参加“寸草心”志愿服务队,恰好抽到甲和乙的概率是( )A.112 B.18 C.16 D.128.在同一直角坐标系中,函数y=kx 和y=kx ﹣3的图象大致是( )A. B. C. D.9.在直角坐标系中,等腰直角三角形AOB 在如图所示的位置,点B 的横坐标为2,将△AOB 绕点O 按逆时针方向旋转90°,得到△A’OB’,则点A’的坐标为( ) A.(1,1) B.(√2,√2) C.(﹣1,1) D.(﹣√2,√2)10.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线y =12x+12上,若抛物线y =ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( ) A.a ≤﹣2 B.a <98 C.1≤a <98或a ≤﹣2 D.﹣2≤a <98 二.填空题。
北师大初中数学推荐试卷
摘要:本文针对北师大初中数学教材,推荐几套具有代表性的试卷,旨在帮助学生提升数学能力,为中考做好准备。
一、试卷推荐1. 北师大版初中数学七年级上册单元测试卷这套试卷涵盖了七年级上册的全部知识点,包括有理数、代数式、方程、不等式等。
试卷难度适中,适合学生在学习过程中检验自己的掌握程度。
2. 北师大版初中数学八年级上册期中试卷八年级上册期中试卷以综合测试为主,涵盖了几何、函数、概率等多个模块。
试卷难度适中,旨在帮助学生全面掌握所学知识。
3. 北师大版初中数学九年级上册期中试卷九年级上册期中试卷以综合测试为主,涵盖了平面几何、解析几何、函数、概率等多个模块。
试卷难度较大,适合学生在复习阶段进行自我挑战。
4. 北师大版初中数学中考模拟试卷这套试卷以历年中考真题为基础,结合北师大版教材,设置了多套模拟试题。
试卷难度较高,适合学生在中考前进行冲刺训练。
二、试卷特点1. 知识点全面:试卷涵盖了北师大版初中数学教材的全部知识点,有助于学生全面掌握所学内容。
2. 难度适中:试卷难度与北师大版教材相符,既能够检验学生的掌握程度,又不会给学生带来过大压力。
3. 注重基础:试卷注重基础知识的考察,帮助学生巩固基础,提高解题能力。
4. 模拟中考:中考模拟试卷以历年中考真题为基础,有助于学生熟悉中考题型,提高应试能力。
三、使用建议1. 学生可以根据自己的学习进度,选择合适的试卷进行练习。
2. 在练习过程中,遇到难题不要气馁,要学会分析问题,总结解题方法。
3. 定期进行模拟考试,检验自己的学习成果,为中考做好准备。
4. 教师可以根据学生的实际情况,推荐合适的试卷,帮助学生查漏补缺。
总之,北师大初中数学推荐试卷可以帮助学生在学习过程中巩固知识、提升能力。
希望广大师生能够充分利用这些资源,共同为学生的中考保驾护航。
北师大版初中数学冲刺贵州省六盘水市中考试卷
A.120°B.135°C.145° D.155° 5.(4 分)已知 A 组四人的成绩分别为 90、60、90、60,B 组四人的成绩分别 为 70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( ) A.平均数 B.中位数 C.众数 D.方差 6.(4 分)不等式 3x+6≥9 的解集在数轴上表示正确的是( )
26.(12 分)已知函数 y=kx+b,y= ,b、k 为整数且|bk|=1.
TB:小初高题库
(1)讨论 b,k 的取值. (2)分别画出两种函数的所有图象.(不需列表) (3)求 y=kx+b 与 y= 的小初高题库
北师大初中数学
2017 年贵州省六盘水市中考数学试卷
TB:小初高题库
北师大初中数学
9.(4 分)已知二次函数 y=ax2+bx+c 的图象如图所示,则( )
A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>0 10.(4 分)矩形的长与宽分别为 a、b,下列数据能构成黄金矩形的是( ) A.a=4,b= +2 B.a=4,b= ﹣2 C.a=2,b= +1 D.a=2,b= ﹣1 11.(4 分)桌面上放置的几何体中,主视图与左视图可能不同的是( ) A.圆柱 B.正方体 C.球 D.直立圆锥 12.(4 分)三角形的两边 a、b 的夹角为 60°且满足方程 x2﹣3 x+4=0,则第三 边的长是( ) A. B.2 C.2 D.3 二、填空题(每题 5 分,满分 40 分,将答案填在答题纸上) 13.(5 分)中国“蛟龙号”深潜器下潜深度为 7062 米,用科学记数法表示为 米. 14.(5 分)计算:2017×1983= . 15.( 5 分 ) 定 义 : A={b, c, a}, B={c}, A∪ B={a, b, c}, 若 M={﹣1}, N={0,1,﹣1},则 M∪N={ }. 16.(5 分)如图,在正方形 ABCD 中,等边三角形 AEF 的顶点 E、F 分别在边 BC 和 CD 上,则∠AEB= 度.
贵州省贵阳市2020年九年级数学中考基础冲刺训练(一)(含答案)
贵州省贵阳市2020年数学中考基础冲刺训练(一)一.选择题(每题3分,满分30分)1.a表示﹣2的相反数,则a是()A.2 B.C.﹣2 D.﹣2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克3.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°4.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球个数n=()A.4 B.5 C.6 D.75.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.6.某商场试销一种新款衬衫,一周内销信情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是()A.平均数B.众数C.中位数D.方差7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.38.如图,等边△ABC内接于⊙O,点D在上,∠CAD=15°,则∠ACD的度数为()A.30°B.35°C.40°D.45°9.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min10.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为()A.﹣1,0 B.﹣1,1 C.1,3 D.﹣1,3二.填空题(满分20分,每小题4分)11.如果不等式组无解,则a的取值范围是.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.13.已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.14.在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为.15.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.三.解答题16.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(10分)为了传承优秀传统文化,某校举行“经典诵读”比赛,诵读材料有:A《唐诗》、B《宋词》、C《论语》.将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小红和小亮参加诵读比赛,比赛时小红先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行比赛.(1)小红诵读《论语》的概率是;(2)请用列表法或画树状图的方法,求小红和小亮诵读两个相同材料的概率.18.(10分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.19.(10分)2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有人.20.(10分)某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周 3台 5台 1800元第二周 4台 10台 3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)22.(10分)如图,在平面直角坐标系中,菱形ABOD的顶点O与坐标原点重合,点B在y 轴的正半轴上,点A在反比例函数的图象上,点D的坐标为(8,6).(1)求反比例函数的表达式;(2)E是x轴正半轴上的动点,过点E作x轴的垂线交线段OA于点M,交双曲线于点P,在E点运动过程中,M点正好是线段EP中点时,求点E的坐标.23.(10分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE 于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB 于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.24.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形△CBD,连接DA并延长,交y轴于点E.(1)求证:△OBC≌△ABD.(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?25.如图,抛物线经过A(﹣3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.①当t为何值时,点N落在抛物线上;②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.参考答案一.选择题1.解:a表示﹣2的相反数,则a是2,故选:A.2.解:0.00 000 0076克=7.6×10﹣8克,故选:C.3.解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.4.解:∵口袋中装有白球6个,黑球8个,黄球n个,∴球的总个数为6+8+n,∵从中随机摸出一个球,摸到黄球的概率为,∴解得,n=7.故选:D.5.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.6.解:由题意可知,最畅销的型号应该是销售量最多的型号,故对商场经理来说最具有意义的是众数,故选:B.7.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.8.解:连接CD,∵△ABC是等边三角形,∴∠B=60°,∴∠D=120°,∵∠CAD=15°,∴∠ACD=180°﹣15°﹣120°=45°,故选:D.9.解:由函数图象可知,体育场离小明家2.5km,故选项A不合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项B不合题意;小明从体育场出发到文具店的平均速度为:1000÷(45﹣30)=(m/min),故选项C符合题意;小明从文具店回家的平均速度是1500÷(90﹣65)=60(m/min),故选项D不合题意.故选:C.10.解:由图象可知,该函数的对称轴是直线x =1,与x 的轴的一个交点是(3,0), 则该函数与x 轴的另一个交点是(﹣1,0), 即当y =0时,0=﹣x 2+2x +m 时x 1=3,x 2=﹣1,故关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=3,x 2=﹣1, 故选:D . 二.填空11.解:解不等式x ﹣1>0,得x >1, 解不等式x ﹣a <0,x <a . ∵不等式组无解,∴a ≤1. 故答案为:a ≤1.12.解:设白球个数为:x 个,∵摸到红色球的频率稳定在0.25左右, ∴口袋中得到红色球的概率为0.25, ∴=,解得:x =15, 即白球的个数为15个, 故答案为:15.13.解:∵一次函数y =kx +1的图象经过点P (﹣1,0), ∴0=﹣k +1 ∴k =1 故答案为:114.解:分别作OD ⊥AB ,OE ⊥AC ,垂足分别是D 、E . ∵OE ⊥AC ,OD ⊥AB , ∴AE =AC =,AD =AB =, ∴sin ∠AOE ==,sin ∠AOD ==,∴∠AOE =45°,∠AOD =30°,∴∠BAO =60°,∠CAO =90°﹣45°=45°,∴∠BAC=45°+60°=105°,或∠BAC′=60°﹣45°=15°.∴∠BAC=15°或105°.故答案是:15°或105°.15.解:以AB为腰作等腰Rt△ABE,连接EC,∵△ADC为等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠BAC+∠DAC,∴∠EAC=∠DAB,∴△EAC∽△BAD,∴,作EF⊥BC交BC延长线于F,∵∠ABC=45°,∠EBA=90°,∴∠EBF=45°,∴△EFB为等腰Rt△,∴EF=FB===7,∴EC==25,∴BD==.三.解答16.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.17.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个相同材料的结果数为3,所以小红和小亮诵读两个相同材料的概率==.18.(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠ABC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.19.解:(1)18÷15%=120,即本次调查一共随机抽取了120名居民,故答案为:120;(2)“较强”层次的有:120×45%=54(名),补充完整的条形统计图如右图所示;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),故答案为:150.20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.21.解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CH cot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BE sin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.22.解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(8,6),∴OF=8,DF=6,∴OD=10,∴AD=10,∴点A坐标为(8,16),∴k=xy=8×16=128,∴反比例函数表达式为;(2)∵点A坐标为(8,16),∴OA的表达式为y=2x,设E点坐标为(m,0),则M点坐标(m,2m),F点坐标,∵M点正好是线段EP中点,∴P(m,4m),∴,解得:,∴.23.(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.24.解:(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,∵,∴△OBC≌△ABD(SAS);(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:∵△AOB是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°﹣∠OAB﹣∠BAD=60°;(3)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.25.解:(1)∵y=ax2+bx+经过A(﹣3,0),C(5,0)两点,∴,解得,所以,抛物线的解析式为y=﹣x2+x+;(2)∵y=﹣x2+x+,=﹣(x 2﹣2x +1)++, =﹣(x ﹣1)2+8, ∴点B 的坐标为(1,8),∵抛物线的对称轴与x 轴交于点D ,∴BD =8,CD =5﹣1=4,∵PM ⊥BD ,∴PM ∥CD ,∴△BPM ∽△BDC , ∴=, 即=, 解得PM =t ,所以,OE =1+t ,∵四边形PMNQ 为正方形,∴NE =8﹣t +t =8﹣t ,①点N 的坐标为(1+t ,8﹣t ),若点N 在抛物线上,则﹣(1+t ﹣1)2+8=8﹣t , 整理得,t (t ﹣4)=0,解得t 1=0(舍去),t 2=4,所以,当t =4秒时,点N 落在抛物线上;②存在.理由如下:∵PM =t ,四边形PMNQ 为正方形, ∴QD =NE =8﹣t ,设直线BC 的解析式为y =kx +m , 则,解得,所以直线BC的解析式为y=﹣2x+10,则﹣2x+10=8﹣t,解得x=t+1,所以,QR=t+1﹣1=t,又EC=CD﹣DE=4﹣t,根据平行四边形的对边平行且相等可得QR=EC,即t=4﹣t,解得t=,此时点P在BD上,所以,当t=时,四边形ECRQ为平行四边形.。
2022年贵州省贵阳市中考数学试卷-含答案详解
2022年贵州省贵阳市中考数学试卷及答案解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)(2022•贵阳)下列各数为负数的是()A.﹣2B.0C.3D.√52.(3分)(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.3.(3分)(2022•贵阳)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为()A.0.12×104B.1.2×104C.1.2×103D.12×1024.(3分)(2022•贵阳)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°5.(3分)(2022•贵阳)代数式√x−3在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<36.(3分)(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是()A.1:√2B.1:2C.1:3D.1:47.(3分)(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同8.(3分)(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.169.(3分)(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O 为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是()A.5B.5√2C.5√3D.5√510.(3分)(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y =k x(k >0)的图象上.根据图中四点的位置,判断这四个点中不在函数y =k x 的图象上的点是( )A .点PB .点QC .点MD .点N11.(3分)(2022•贵阳)小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是( )A .5,10B .5,9C .6,8D .7,812.(3分)(2022•贵阳)在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m<0)的图象如图所示.小星根据图象得到如下结论:①在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大;②方程组{y −ax =b y −mx =n的解为{x =−3y =2; ③方程mx +n =0的解为x =2;④当x =0时,ax +b =﹣1.其中结论正确的个数是( )A .1B .2C .3D .4二、填空题:每小题4分,共16分.13.(4分)(2022•贵阳)因式分解:a2+2a=.14.(4分)(2022•贵阳)端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣粽子的概率是.15.(4分)(2022•贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是.16.(4分)(2022•贵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC =6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE的面积是cm2,∠AEB =度.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(12分)(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.18.(10分)(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.19.(10分)(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=kx的图象相交于A(﹣4,m),B(n,﹣4)两点.(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.20.(10分)(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?21.(10分)(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.22.(10分)(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF =7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:√3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(12分)(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接̂于点F,交BC于点P,连接BF,CF.BC.ED垂直平分OB,垂足为E,且交BC(1)求证:∠DCP=∠DPC;(2)当BC平分∠ABF时,求证:CF∥AB;(3)在(2)的条件下,OB=2,求阴影部分的面积.24.(12分)(2022•贵阳)已知二次函数y =ax 2+4ax +b .(1)求二次函数图象的顶点坐标(用含a ,b 的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x 轴交于A ,B 两点,AB =6,且图象过(1,c ),(3,d ),(﹣1,e ),(﹣3,f )四点,判断c ,d ,e ,f 的大小,并说明理由;(3)点M (m ,n )是二次函数图象上的一个动点,当﹣2≤m ≤1时,n 的取值范围是﹣1≤n ≤1,求二次函数的表达式.25.(12分)(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD 中,AN 为BC 边上的高,AD AN =m ,点M 在AD 边上,且BA=BM ,点E 是线段AM 上任意一点,连接BE ,将△ABE 沿BE 翻折得△FBE .(1)问题解决:如图①,当∠BAD =60°,将△ABE 沿BE 翻折后,使点F 与点M 重合,则AM AN = ;(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.2022年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)(2022•贵阳)下列各数为负数的是()A.﹣2B.0C.3D.√5【分析】根据小于0的数是负数即可得出答案.【解答】解:A.﹣2<0,是负数,故本选项符合题意;B.0不是正数,也不是负数,故本选项不符合题意;C.3>0,是正数,故本选项不符合题意;D.√5>0,是正数,故本选项不符合题意;故选:A.【点评】本题主要考查了负数的定义.解题的关键是掌握负数的定义,要注意0既不是正数,也不是负数.2.(3分)(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.3.(3分)(2022•贵阳)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为()A.0.12×104B.1.2×104C.1.2×103D.12×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1200=1.2×103.故选:C.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2022•贵阳)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°【分析】根据菱形的对边平行,以及两直线平行,内错角相等即可求解.【解答】解:∵菱形的对边平行,∴由两直线平行,内错角相等可得∠1=80°.故选:C.【点评】本题考查了菱形的性质,全等图形,平行线的性质,关键是熟悉菱形的对边平行的知识点.5.(3分)(2022•贵阳)代数式√x−3在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式√x−3在实数范围内有意义,∴x﹣3≥0,解得:x≥3,∴x的取值范围是:x≥3.故选:A .【点评】此题主要考查了二次根式有意义的条件,正确得出x ﹣3的取值范围是解题关键.6.(3分)(2022•贵阳)如图,在△ABC 中,D 是AB 边上的点,∠B =∠ACD ,AC :AB =1:2,则△ADC 与△ACB 的周长比是( )A .1:√2B .1:2C .1:3D .1:4【分析】根据相似三角形的周长之比等于相似比可以解答本题.【解答】解:∵∠B =∠ACD ,∠CAD =∠BAC ,∴△ACD ∽△ABC ,∴C △ACDC △ABC =AC AB =12, 故选:B .【点评】本题考查相似三角形的判定与性质,解答本题的关键是明确相似三角形的周长之比等于相似比.7.(3分)(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是( )A .小星抽到数字1的可能性最小B .小星抽到数字2的可能性最大C .小星抽到数字3的可能性最大D .小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是13,抽到数字2的概率是13,抽到数字3的概率是13, ∴小星抽到每个数的可能性相同;故选:D .【点评】此题考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.8.(3分)(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.16【分析】根据题意和题目中的数据,可以计算出小正方形的边长,然后即可得到小正方形的周长.【解答】解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.【点评】本题考查正方形的性质、有理数的加减法,解答本题的关键是明确题意,利用数形结合的思想解答.9.(3分)(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O 为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是()A.5B.5√2C.5√3D.5√5【分析】根据题意和等边三角形的判定,可以得到BE的长.【解答】解:连接OE,由已知可得,OE=OB=12BD=5,∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE的形状.10.(3分)(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=kx(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=kx的图象上的点是()A.点P B.点Q C.点M D.点N【分析】根据反比例函数图象上点的坐标特征以及反比例函数的图象进行判断即可.【解答】解:如图,反比例函数y=kx的图象是双曲线,若点在反比例函数的图象上,则其纵横坐标的积为常数k,即xy=k,通过观察发现,点P、Q、N可能在图象上,点M不在图象上,故选:C.【点评】本题考查反比例函数图象上点的坐标特征,掌握反比例函数的图象以及图象上点的坐标特征是正确判断的前提.11.(3分)(2022•贵阳)小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是( )A .5,10B .5,9C .6,8D .7,8【分析】根据中位数和众数的定义确定中位数和众数分别是多少,然后即可确定答案.【解答】解:数据5,5,6,7,8,9,10的众数为5,中位数为7,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则5不能去掉,7不能去掉, 所以去掉可能是6,8,故选:C .【点评】本题考查了众数及中位数的定义,解题的关键是能够牢记方法并正确的计算.12.(3分)(2022•贵阳)在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m<0)的图象如图所示.小星根据图象得到如下结论:①在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大;②方程组{y −ax =b y −mx =n的解为{x =−3y =2; ③方程mx +n =0的解为x =2;④当x =0时,ax +b =﹣1.其中结论正确的个数是( )A .1B .2C .3D .4【分析】①根据一次函数的函数的增减进行判断便可;②根据一次函数与二元一次方程组的关系判断便可;③根据一次函数图象与x 的交点坐标进行判断便可;④根据一次函数图象与y 轴交点坐标进行判断便可.【解答】解:①由函数图象可知,直线y =mx +n 从左至右呈下降趋势,所以y 的值随着x 值的增大而减小,故①错误;②由函数图象可知,一次函数y =ax +b 与y =mx +n (a <m <0)的图象交点坐标为(﹣3,2),所以方程组{y −ax =b y −mx =n的解为{x =−3y =2,故②正确; ③由函数图象可知,直线y =mx +n 与x 轴的交点坐标为(2,0),所以方程mx +n =0的解为x =2,故③正确;④由函数图象可知,直线y =ax +b 过点(0,﹣2),所以当x =0时,ax +b =﹣2,故④错误;故选:B .【点评】本题主要考查了一次函数的图象与性质,一次函数与二元一次方程的关系,关键是综合应用一次函数的图象与性质解题.二、填空题:每小题4分,共16分.13.(4分)(2022•贵阳)因式分解:a 2+2a = a (a +2) .【分析】直接提取公因式a ,进而分解因式得出答案.【解答】解:a 2+2a =a (a +2).故答案为:a (a +2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(4分)(2022•贵阳)端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣粽子的概率是 35 .【分析】用红枣粽子个数除以所有粽子的个数即可利用概率公式求得概率.【解答】解:∵共10个粽子,其中有6个红枣粽子,4个绿豆粽子,∴P (捞到红枣馅粽子)=610=35, 故答案为:35. 【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .15.(4分)(2022•贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是x+2y=32.【分析】认真审题,读懂图中的意思,仿照图写出答案.【解答】解:根据题知:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,一个竖线表示一个,一条横线表示一十,所以该图表示的方程是:x+2y=32.【点评】本题考查根据图意列方程,解题的关键是读懂图的意思.16.(4分)(2022•贵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC =6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE的面积是(36﹣18√2)cm2,∠AEB=112.5度.【分析】过E作EH⊥AB于H,设AD=xcm,CE=ycm,则BE=2xcm,AE=(6﹣y)cm,由△AED∽△BEC,有6x=2x6−y,x2=18﹣3y①,在Rt△BCE中,62+y2=(2x)2②,可解得CE=(6√2−6)cm,AE=(12﹣6√2)cm,即得S△ABE=S△ABC﹣S△BCE=(36﹣18√2)cm2,由AC=BC=6,∠ACB=90°,可得△AEH是等腰直角三角形,故∠AEH =45°,AH=√2=(6√2−6)cm,从而知BH=6cm=BC,证明Rt△BCE≌Rt△BHE(HL),得∠BEH=∠BEC=12∠CEH=67.5°,即得∠AEB=∠AEH+∠BEH=45°+67.5°=112.5°.【解答】解:过E作EH⊥AB于H,如图:设AD=xcm,CE=ycm,则BE=2xcm,AE=(6﹣y)cm,∵∠ADB=∠ACB=90°,∠AED=∠CEB,∴△AED∽△BEC,∴BCAD =BEAE,即6x=2x6−y,∴x2=18﹣3y①,在Rt△BCE中,BC2+CE2=BE2,∴62+y2=(2x)2②,由①②得y=6√2−6(负值已舍去),∴CE=(6√2−6)cm,AE=(12﹣6√2)cm,∴S△ABE=S△ABC﹣S△BCE=12×6×6−12×6×(6√2−6)=(36﹣18√2)cm2,∵AC=BC=6,∠ACB=90°,∴∠CAB=45°,AB=6√2cm,∴△AEH是等腰直角三角形,∴∠AEH=45°,AH=√2=√2√2=(6√2−6)cm,∴∠CEH=180°﹣∠AEH=135°,BH=AB﹣AH=6√2−(6√2−6)=6cm,∴BH=6cm=BC,又BE=BE,∠BCE=90°=∠BHE,∴Rt△BCE≌Rt△BHE(HL),∴∠BEH=∠BEC=12∠CEH=67.5°,∴∠AEB=∠AEH+∠BEH=45°+67.5°=112.5°,故答案为:(36﹣18√2),112.5.【点评】本题考查等腰直角三角形性质及应用,涉及三角形全等的判定与性质,勾股定理及应用,三角形面积等知识,解题的关键是作辅助线,构造全等三角形.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(12分)(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a<b,ab<0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.【分析】(1)先根据数轴确定a、b的正负,再利用乘法法则确定ab;(2)根据方程的系数特点,选择配方法、公式法或因式分解法.【解答】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x=−2±√b2−4ac2=−2±√82=−2±2√22=﹣1±√2.∴x1=﹣1+√2,x2=﹣1−√2;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2√2.∴x1=2+2√2,x2=2﹣2√2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.【点评】本题考查了数轴、一元二次方程的解法,掌握数轴的意义、一元二次方程的解法是解决本题的关键.18.(10分)(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择折线统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是 4.36万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.【分析】(1)根据条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;(2)用2021年的出口总额减去进口总额即可;(3)根据折线统计图解答即可.【解答】解:(1)为了更好的表现出货物进出口额的变化趋势,我认为应选择折线统计图更好,故答案为:折线;(2)21.73﹣17.37=4.36(万亿元),即2021年我国货物进出口顺差是4.36万亿元;故答案为:4.36;(3)我国货物进出口总额逐年增加.(答案不唯一).【点评】本题考查的是条形统计图和折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.19.(10分)(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=kx的图象相交于A(﹣4,m),B(n,﹣4)两点.(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.【分析】(1)把点A的坐标代入一次函数表达式,求出m的值,再把点A的坐标代入反比例函数表达式求出k的值;(2)反比例函数图象在一次函数图象上方时x的取值范围就是一次函数值小于反比例函数值x的取值范围.【解答】解:(1)∵一次函数y=﹣x﹣3过点A(﹣4,m),∴m=﹣(﹣4)﹣3=1.∴点A的坐标为(﹣4,1).∵反比例函数y=kx的图象过点A,∴k=xy=﹣4×1=﹣4.∴反比例函数的表达式为y=−4 x.(2)∵反比例函数y=−4x过点B(n,﹣4).∴﹣4=−4n,解得n=1.∵一次函数值小于反比例函数值,∴一次函数图象在反比例函数图象的下方.∴在y轴左侧,一次函数值小于反比例函数值x的取值范围为:﹣4<x<0;在第四象限内,一次函数值小于反比例函数值x的取值范围为:x>1.∴一次函数值小于反比例函数值的x取值范围为:﹣4<x<0或x>1.【点评】本题考查了一次函数与反比例函数图象的综合问题,根据两个函数图象确定其对应不等式的解时,首先应确定函数图像的交点坐标,其次要注意函数图象的位置.20.(10分)(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【分析】设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,根据用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,依题意得:80x+4=60x,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(10分)(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.【分析】(1)首先利用正方形的性质可以得到AB=AD,∠BAE=90°,然后利用MF∥AD可以得到∠MFN=90°,进一步得到∠FMN=∠MBO,最后利用全等三角形的判定方法即可求解;(2)通过证明△BOM ∽△BAE ,可得OM :AE =BO :BA ,可求OM 的长,即可求解. 【解答】解:(1)∵四边形ABCD 为正方形, ∴AB =AD ,AB ∥CD ,∠A =∠D =90°, 又∵MF ∥AD ,∴四边形AMFD 为矩形, ∴∠MFD =∠MFN =90°, ∴AD =MF , ∴AB =MF ,∵BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O , ∴∠MFN =∠BAE =90°,∠FMN +∠BMO =∠BMO +∠MBO =90°, ∴∠FMN =∠MBO , 在△ABE 和△FMN 中, {∠A =∠MFNAB =MF ∠ABO =∠FMN∴△ABE ≌△FMN (ASA );(2)∵∠MOB =∠A =90°,∠ABE 是公共角, ∴△BOM ∽△BAE , ∴OM :AE =BO :BA , ∵AB =8,AE =6, ∴BE =√AB 2+AE 2=10, ∴OM :6=5:8, ∴OM =154, ∵△ABE ≌△FMN , ∴NM =BE =10, ∴ON =MN ﹣MO =254.【点评】本题主要考查了正方形的性质,垂直平分线的性质相似三角形的判定与性质,综合性比较强,对于学生的要求比较高.22.(10分)(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF =7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:√3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【分析】(1)根据题意可得:∠CAD=25°,∠EBF=60°,CE=DF=750米,然后在Rt△ACD中,利用锐角三角函数的定义求出AD的长,再在Rt△BEF中,利用锐角三角函数的定义求出BF的长,最后根据AB=AD+DF﹣BF进行计算即可解答;(2)先求出汽车的行驶速度,进行比较即可解答.【解答】解:(1)由题意得:∠CAD=25°,∠EBF=60°,CE=DF=750米,在Rt△ACD中,CD=7米,∴AD=CDtan25°≈70.5=14(米),在Rt△BEF中,EF=7米,∴BF=EFtan60°=√3≈4.1(米),∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),∴A,B两点之间的距离约为760米;(2)小汽车从点A行驶到点B没有超速,理由:由题意得:760÷38=20米/秒,∵20米/秒<22米/秒,∴小汽车从点A行驶到点B没有超速.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.(12分)(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E,且交BĈ于点F,交BC于点P,连接BF,CF.(1)求证:∠DCP=∠DPC;(2)当BC平分∠ABF时,求证:CF∥AB;(3)在(2)的条件下,OB=2,求阴影部分的面积.【分析】(1)连接OC,由CD是⊙O的切线得∠OCB+∠DCP=90°,又DE⊥OB,有∠OBC+∠BPE=90°,可得∠DCP=∠BPE,即得∠DCP=∠DPC;(2)连接OF,根据ED垂直平分OB,可得△BOF是等边三角形,有∠FOB=∠ABF=60°,∠FCB=12∠FOB=30°,而BC平分∠ABF,有∠ABC=12∠ABF=30°,故∠FCB=∠ABC,知CF∥AB;(3)连接OF、OC,由∠ABC=∠CBF=30°,得∠COF=2∠CBF=60°,即得S扇形COF=2π3,而OC=OF,∠COF=60°,可得△COF是等边三角形,有CF=OF=OB=2,在Rt△FEB中,EF=√BF2−BE2=√3,可得S△COF=12CF•EF=12×2×√3=√3,从而S阴影=S扇形COF﹣S△COF=2π3−√3.【解答】(1)证明:连接OC,如图:。
北师大版初中数学七年级上册贵州省遵义市中考试卷
23.(10 分)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、 改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我 市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选 一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答 下列问题:
TB:小初高题库
13.(4 分)计算:
= .
14.(4 分)一个正多边形的一个外角为 30°,则它的内角和为 .
15.(4 分)按一定规律排列的一列数依次为: ,1, , , , ,…,
按此规律,这列数中的第 100 个数是 . 16.(4 分)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其 大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两, 则还差八两,请问:所分的银子共有 两.(注:明代时 1 斤=16 两,故 有“半斤八两”这个成语)
北师大初中数学
(1)本次参与调查的人数有 人; (2)关注城市医疗信息的有 人,并补全条形统计图; (3)扇形统计图中,D 部分的圆心角是 度; (4)说一条你从统计图中获取的信息. 24.(10 分)如图,PA、PB 是⊙O 的切线,A、B 为切点,∠APB=60°,连接 PO 并延长与⊙O 交于 C 点,连接 AC,BC. (1)求证:四边形 ACBP 是菱形; (2)若⊙O 半径为 1,求菱形 ACBP 的面积.
北师大初中数学
北师大初中数学 七年级
重点知识精选
掌握知识点,多做练习题,基础知识很重要! 北师大初中数学 和你一起共同进步学业有成!
TB:小初高题库
北师大初中数学
2017 年贵州省遵义市中考数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分) 1.(3 分)﹣3 的相反数是( ) A.﹣3 B.3 C. D. 2.(3 分)2017 年遵义市固定资产总投资计划为 2580 亿元,将 2580 亿元用科 学记数法表示为( ) A.2.58×1011 B.2.58×1012 C.2.58×1013 D.2.58×1014 3.(3 分)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后 得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的 图形是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
B.
C.
D.
5.(3 分)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意 事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互
嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳
池,小颖从这 6 张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是
TB:小初高题库
节水量
0.3
0.4
0.5
0.6
0.7
(m3)
家庭数
2
2
4
1
1
(个)
那么这 10 个家庭的节水量(m3)的平均数和中位数分别是( )
A.0.47 和 0.5 B.0.5 和 0.5 C.0.47 和 4 D.0.5 和 4
8.(3 分)如图,在▱ABCD 中,对角线 AC 的垂直平分线分别交 AD、BC 于点
TB:小初高题库
北师大初中数学
18.(10 分)如图,在△ABC 中,∠ACB=90°,点 D,E 分别是边 BC,AB 上的中 点,连接 DE 并延长至点 F,使 EF=2DE,连接 CE、AF. (1)证明:AF=CE; (2)当∠B=30°时,试判断四边形 ACEF 的形状并说明理由.
19.(10 分)2017 年 5 月 25 日,中国国际大数据产业博览会在贵阳会展中心开 幕,博览会设了编号为 1~6 号展厅共 6 个,小雨一家计划利用两天时间参观其 中两个展厅:第一天从 6 个展厅中随机选择一个,第二天从余下的 5 个展厅中 再随机选择一个,且每个展厅被选中的机会均等. (1)第一天,1 号展厅没有被选中的概率是 ; (2)利用列表或画树状图的方法求两天中 4 号展厅被选中的概率. 20.(8 分)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防 官兵利用云梯成功救出在 C 处的求救者后,发现在 C 处正上方 17 米的 B 处又 有一名求救者,消防官兵立刻升高云梯将其救出,已知点 A 与居民楼的水平距 离是 15 米,且在 A 点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第 二次施救时云梯与水平线的夹角∠BAD 的度数(结果精确到 1°).
Hale Waihona Puke 北师大初中数学( ) A. B. C. D.
6.(3 分)若直线 y=﹣x+a 与直线 y=x+b 的交点坐标为(2,8),则 a﹣b 的值为
( )
A.2 B.4 C.6 D.8 7.(3 分)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社 区居委会从小区住户中抽取 10 个家庭与他们上月的用水量进行比较,统计出节 水情况如下表:
TB:小初高题库
则 S2 的值为( )
北师大初中数学
A.12 B.18 C.24 D.48 二、填空题(每小题 4 分,共 20 分) 11.(4 分)关于 x 的不等式的解集在数轴上表示如图所示,则该不等式的解集 为 .
12.(4 分)方程(x﹣3)(x﹣9)=0 的根是 . 13.(4 分)如图,正六边形 ABCDEF 内接于⊙O,⊙O 的半径为 6,则这个正六 边形的边心距 OM 的长为 .
(2)对此整式进行化简.
17.(10 分)2017 年 6 月 2 日,贵阳市生态委发布了《2016 年贵阳市环境状况
公报》,公报显示,2016 年贵阳市生态环境质量进一步提升,小颖根据公报中
的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问
题:
(1)a= ,b= ;(结果保留整数) (2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确 到 1°) (3)根据了解,今年 1~5 月贵阳市空气质量优良天数为 142 天,优良率为 94%,与 2016 年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是 提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.
A.20° B.35° C.70° D.110° 3.(3 分)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家 级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办, 已相继吸引近 7000 名各国政要及嘉宾出席,7000 这个数用科学记数法可表示 为( ) A.70×102 B.7×103 C.0.7×104 D.7×104 4.(3 分)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视 图是( )
14.(4 分)袋子中有红球、白球共 10 个,这些球除颜色外都相同,将袋中的 球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程, 摸了 100 次后,发现有 30 次摸到红球,请你估计这个袋中红球约有 个. 15.(4 分)如图,在矩形纸片 ABCD 中,AB=2,AD=3,点 E 是 AB 的中点,点 F 是 AD 边上的一个动点,将△AEF 沿 EF 所在直线翻折,得到△A′EF,则 A′C 的 长的最小值是 .
TB:小初高题库
北师大初中数学
三、解答题(本大题共 10 小题,共 100 分) 16.(8 分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:x(x+2y)﹣(x+1)2+2x
=x2+2xy﹣x2+2x+1+2x
第一步
=2xy+4x+1
第二步
(1)小颖的化简过程从第 步开始出现错误;
北师大初中数学
北师大初中数学 七年级
重点知识精选
掌握知识点,多做练习题,基础知识很重要! 北师大初中数学 和你一起共同进步学业有成!
TB:小初高题库
北师大初中数学
2017 年贵州省贵阳市中考数学试卷
一、选择题(每小题 3 分,共 30 分) 1.(3 分)在 1、﹣1、3、﹣2 这四个数中,互为相反数的是( ) A.1 与﹣1 B.1 与﹣2 C.3 与﹣2 D.﹣1 与﹣2 2.(3 分)如图,a∥b,∠1=70°,则∠2 等于( )
E、F,连接 CE,若△CED 的周长为 6,则▱ABCD 的周长为( )
A.6 B.12 C.18 D.24 9.(3 分)已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论: ①a>0;②c>0;③b2﹣4ac>0;④﹣ <0,正确的是( )
A.①② B.②④ C.①③ D.③④ 10.(3 分)如图,四边形 ABCD 中,AD∥BC,∠ABC+∠DCB=90°,且 BC=2AD, 以 AB、BC、DC 为边向外作正方形,其面积分别为 S1、S2、S3,若 S1=3,S3=9,