中考数学培优(二元一次方程 组)解析

合集下载

中考数学第八章 二元一次方程组(讲义及答案)及答案

中考数学第八章 二元一次方程组(讲义及答案)及答案

中考数学第八章 二元一次方程组(讲义及答案)及答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy3.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩4.用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;用一块B 型钢板可制成1块C 型钢板、4块D 型钢板.某工厂现需14块C 型钢板、36块D 型钢板,设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,则下列方程组正确的是( ) A .2143436x y x y +=⎧⎨+=⎩B .3214436x y x y +=⎧⎨+=⎩C .2314436x y x y +=⎧⎨+=⎩D .2144336x y x y +=⎧⎨+=⎩5.已知2x y a =⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =-B .1a =C .23a =D .32a =6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩7.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是( )A.2128xy=⎧⎨=⎩B.98xy=⎧⎨=⎩C.714xy=⎧⎨=⎩D.9787xy⎧=⎪⎪⎨⎪=⎪⎩8.方程组22{?23x y mx y+=++=中,若未知数x、y满足x-y>0,则m的取值范围是( ) A.m>1 B.m<1 C.m>-1 D.m<-19.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种10.下列四组数值中,方程组2534a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A.11abc=⎧⎪=⎨⎪=-⎩B.121abc=-⎧⎪=⎨⎪=-⎩C.112abc=-⎧⎪=⎨⎪=-⎩D.123abc=⎧⎪=-⎨⎪=⎩二、填空题11.已知对任意a b,关于x y,的三元一次方程()()a b x a b y a b--+=+只有一组公共解,求这个方程的公共解_____________.12.小明今年五一节去三峡广场逛水果超市,他分两次购进了A、B两种不同单价的水果.第一次购买A种水果的数量比B种水果的数量多50%,第二次购买A种水果的数量比第一次购买A种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A、B水果的总费用比第一次购买A、B水果的总费用少10%(两次购买中A、B两种水果的单价不变),则B种水果的单价与A种水果的单价的比值是______.13.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x斤,燕每只重y斤,则可列方程组为________________14.如图,长方形ABCD被分成若干个正方形,已知32cmAB=,则长方形的另一边AD=_________cm.15.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.16.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 17.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)18.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________.19.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理. 你认为哪种方案既省时又省钱?试比较说明.22.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=.①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?25.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?26.已知12xy=⎧⎨=⎩是二元一次方程2x y a+=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x,y),如果过其中任意两点作直线,你有什么发现?x013 y620【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:方程组利用加减消元法求出解即可.详解:22x yx y+⎧⎨--⎩=①=②,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为02x y ⎧⎨⎩==, 故选B .点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.B解析:B 【解析】根据二元一次方程的定义对四个选项进行逐一分析. 解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .3.B解析:B 【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 4.A解析:A 【分析】根据“用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;一块B 型钢板可制成1块C 型钢板、4块D 型钢板及A 、B 型钢板的总数”可得 【详解】设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,得:2143436x y x y +=⎧⎨+=⎩,故选:A . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.5.B解析:B 【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值.【详解】解:根据题意,∵2x y a=⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.6.B解析:B 【分析】根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可. 【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩. 故选B.. 【点睛】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.7.C解析:C 【分析】先将111222327327a x b y c a x b y c +=⎧⎨+=⎩化简为11122232773277a x b y c a x b y c⎧+=⎪⎪⎨⎪+=⎪⎩,然后用“整体代换”法,求出方程组的解即可; 【详解】解:111222327327a x b y c a x b y c +=⎧⎨+=⎩,11122232773277a x b y c a x b y c ⎧+=⎪⎪∴⎨⎪+=⎪⎩,设3727x t y s ⎧=⎪⎪⎨⎪=⎪⎩,111222a t b s c a t b s c +=⎧∴⎨+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222a t b s c a t b s c +=⎧⎨+=⎩的解为34t s =⎧⎨=⎩,337247x y ⎧=⎪⎪∴⎨⎪=⎪⎩,解得:714x y =⎧⎨=⎩.故选C . 【点睛】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.8.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.9.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.10.B解析:B 【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0?25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.二、填空题11.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】 解:由已知得: ∴两式相加得:,即, 把代入得到,, 故此方程组的解为:. 故答案为:. 【点睛】 本题主要考解析:01x y =⎧⎨=-⎩ 【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】解:由已知得:(1)(1)0a x y b x y ---++= ∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =, 把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩.故答案为:01x y =⎧⎨=-⎩.【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.12.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255ax bx a x b x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.13.【分析】设每只雀有x 两,每只燕有y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可. 【详解】解:设每只雀有x 两,每只燕有y 两, 由题意得, 【解析:45561x y y xx y +=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.14.【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:76843【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:643322532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:768 43【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.15.26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册解析:26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册x本,购买大纪念册y本,则x,y为整数.则有题目可得二元一次方程:5x+7y=142,解得:x,y有4组整数解即:271xy=⎧⎨=⎩,206xy=⎧⎨=⎩,1311xy=⎧⎨=⎩,616xy=⎧⎨=⎩即有四种情况即:两种纪念册共买28、26、24或22本.故答案为28、26、24或22本.【点睛】本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.16.【解析】【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x解析:32 15【解析】【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可. 【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得:82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.17.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程解析:89【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a 袋,乙销售b 袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程进行整理即可得. 【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%+=45(元),甲中A 的成本为:3×6=18(元),则甲中B 、C 的成本之和为:45-18=27(元), 根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.18.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z=9.19.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .20.【分析】根据方程组解的定义,把x=5,y=10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组∵解为:x=5,y=10,∴,∴∵,∴,①−②,得3a解析:25 xy⎧⎨⎩==【分析】根据方程组解的定义,把x=5,y=10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩∵解为:x =5,y =10, ∴1122510=510=a c a c +⎧⎨+⎩,∴()12125a a c c -=- ∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩,∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②,①−②,得3a 1x−3a 2x =6a 1−6a 2, ∴x =2,把x =2代入①得,y =5,∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩,故答案为:=2=5x y ⎧⎨⎩. 【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键.三、解答题21.(1)60天,40天;(2)方案③既省时又省钱. 【分析】(1)设甲小组单独修完需要x 天,乙小组单独修完需要y 天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可. 【详解】解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天. 根据题意,得()16168,20.x y x y ⎧=+⎨-=⎩解得60,40.x y =⎧⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天. (2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元); 方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元).比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱. 【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解. 22.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m =【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可. 【详解】解:(1)224(1)16(4,1)413a b a bT ⨯+⨯-+-==-; 故答案为:163a b+; (2)①∵()2,02T -=-且()5,16T -=,∴42,225 6.4aa b ⎧=-⎪⎪-⎨+⎪=⎪⎩解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x yx y-+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--, ∴610610m m -=-+, 解得:53m =.【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键 23.(1)5040a b;(2)竖式无盖礼品盒200个,横式无盖礼品盒400个.【分析】(1)由图示利用板材的长列出关于a 、b 的二元一次方程组求解;(2)根据已知和图示计算出两种裁法共产生A 型板材和B 型板材的张数,然后根据竖式与横式礼品盒所需要的A 、B 两种型号板材的张数列出关于x 、y 的二元一次方程组,然后求解即可. 【详解】解:(1)由题意得:310200330200a b ab,解得:5040a b,答:图甲中a 与b 的值分别为:50、40;(2)由图示裁法一产生A 型板材为:3×625=1875,裁法二产生A 型板材为:1×125=125, 所以两种裁法共产生A 型板材为1875+125=2000(张),由图示裁法一产生B 型板材为:1×625=625,裁法二产生A 型板材为,3×125=375, 所以两种裁法共产生B 型板材为625+375=1000(张),设裁出的板材做成的竖式有盖礼品盒有x 个,横式无盖礼品盒有y 个, 则A 型板材需要(4x+3y )个,B 型板材需要(x+2y )个, 则有43200021000x y xy,解得200400x y.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a 、b 的值,根据图示列出算式以及关于x 、y 的二元一次方程组.+24.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元 【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可; (2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较. 【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩,答:A 种型号商品有5件,B 种型号商品有8件; (2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.25.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案. 【解析】 【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案. 【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨; (2)设租甲、乙两种车分别m 辆,n 辆, 由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆; 方案二:甲车3辆,乙车6辆; 方案三:甲车5辆,乙车3辆 方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆. 【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.26.(1)4;(2)见解析. 【解析】 【分析】(1)根据代入法,把已知的二元一次方程的解代入方程即可求解a 的值;(2)利用(1)中的a 值,得到二元一次方程组,代入求解完成表格,然后描点即可.【详解】(1)将12xy=⎧⎨=⎩代入2x+y=a,解得a=4.(2)完成表格如下:x-10123y6420-2由图可知,如果过其中任意两点作直线,其他点也在这条直线上.【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.。

初中数学 二元一次方程组解法和解 培优

初中数学 二元一次方程组解法和解 培优

初中数学 二元一次方程组解法和解 培优一.普通解法: 解下列方程组:⑴41216x y x y -=-⎧⎨+=⎩ ⑵()()41312223x y y x y --=--⎧⎪⎨+=⎪⎩二.含参数的二元一次方程组的解法二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。

现选取几道题略作讲解,供同学们参考。

1.、两个二元一次方程组有相同的解,求参数值。

例:已知方程 与 有相同的解,则a 、b 的值为 。

2、根据方程组解的性质,求参数的值。

例2:m 取什么整数时,方程组的解是正整数?略解:由②得x=3y2×3y-my=6 y=m-66 因为y 是正整数,x 也是正整数所以6-m 的值为1、2、3、6;m 的值为0、3、4、5。

方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。

3、由方程组的错解问题,示参数的值。

例3:解方程组⎩⎨⎧=-=+872y cx by ax 时,本应解出⎩⎨⎧-==23y x 由于看错了系数c,从而得到解⎩⎨⎧=-=22y x 试求a+b+c 的值。

(1) (2) ⎩⎨⎧=+=+4535y ax y x (3) (4) ⎩⎨⎧=+=-1552by x y x ①② ⎩⎨⎧=-=-0362y x my x方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而,求出参数的值。

8273=-⨯-⨯)(c 2-=c 把⎩⎨⎧-==23y x 和⎩⎨⎧=-=22y x 代入到ax+by=2中,得到一个关于a 、b 的方程组。

322222a b a b -=⎧⎨-+=⎩,解得45a b =⎧⎨=⎩ 所以7254=-+=++c b a4、根据所给的不定方程组,求比值。

例4:求适合方程组⎩⎨⎧=++=-+05430432z y x z y x 求 z y x z y x +-++ 的值。

略解:把z 看作已知数。

北师大版八年级上册 第五章二元一次方程组 二元一次方程组的解 培优专题( 解析版)

北师大版八年级上册 第五章二元一次方程组   二元一次方程组的解 培优专题( 解析版)
【点睛】
本题考查了解二元一次方程组,利用题干条件消去原方程组中的x是解题关键.
15.
【解析】
【分析】
根据题意将方程9x-6y+y=13变形为3(3x-2y)+y=13,再将 整体代入求解即可.
【详解】
解: ,
将方程②变形,得9x-6y+y=13,即3(3x-2y)+y=13③,
把方程①代入③,得12+y=13,解得y=1,
详解:方程组 的解与方程组 的解相同得 ① ②,
解①得 ,
把 代入②得 ,
解得 ,
当m=1,n=2时,方程组 与方程组 同解.
∴m=1,n=2.
点睛:本题考查了二元一次方程组的解,利用了方程组的解满足方程组.
17.(1)m=2;n=3;(2)方程组正确的解为
【解析】
【分析】
(1)将第一组解代入方程组的第一个方程求出m的值,将第二组解代入方程组的第二个方程求出n的值即可;
19.阅读理解:解方程组 时,如果设 =m, =n,则原方程组可变形为关于m,n的方程组 解这个方程组得到它的解为 由 , ,求得原方程组的解为 ,利用上述方法解方程组:
20.请你根据萌萌所给的如图所的内容,完成下列各小题.
(1)若m※n=1,m※2n=﹣2,分别求m和n的值;
(2)若m满足m※2≤0,且3m※(﹣8)>0,求m的取值范围.
23.已知方程组 中,x、y的系数部已经模糊不清,但知道其中□表示同一个数,△也表示同一个数, 是这个方程组的解,你能求出原方程组吗?
25.阅读探索
解方程组
解:设a1x,b2y,原方程组可变为
解方程组得 ,即 ,所以 .此种解方程组的方法叫换元法.
(1)拓展提高
运用上述方法解下列方程组:

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】一、解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来; (2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得x (或y )的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

【热点题型精练】1.(2023•无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( ) A .{x =1y =2B .{x =2y =0C .{x =0.5y =3D .{x =−2y =4解:A 、把x =1,y =2代入方程,左边=2+2=右边,所以是方程的解; B 、把x =2,y =0代入方程,左边=右边=4,所以是方程的解; C 、把x =0.5,y =3代入方程,左边=4=右边,所以是方程的解; D 、把x =﹣2,y =4代入方程,左边=0≠右边,所以不是方程的解. 答案:D .2.(2023•南通)若实数x ,y ,m 满足x +y +m =6,3x ﹣y +m =4,则代数式﹣2xy +1的值可以是( ) A .3B .52C .2D .32解:由题意可得{x +y =6−m 3x −y =4−m,解得:{x =5−m 2y =7−m 2, 则﹣2xy +1=﹣2×5−m 2×7−m2+1=−(5−m)(7−m)2+1 =−m 2−12m+352+1=−(m 2−12m+36)−12+1=−(m−6)22+32≤32,∵3>52>2>32,∴A ,B ,C 不符合题意,D 符合题意, 答案:D .3.(2023•眉山)已知关于x ,y 的二元一次方程组{3x −y =4m +1x +y =2m −5的解满足x ﹣y =4,则m 的值为( )A .0B .1C .2D .3解:∵关于x 、y 的二元一次方程组为{3x −y =4m +1①x +y =2m −5②,①﹣②,得:2x ﹣2y =2m +6, ∴x ﹣y =m +3, ∵x ﹣y =4, ∴m +3=4, ∴m =1. 答案:B .4.(2022•株洲)对于二元一次方程组{y =x −1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x ﹣1=7B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7解:{y =x −1①x +2y =7②,将①式代入②式,得x +2(x ﹣1)=7, ∴x +2x ﹣2=7, 答案:B .5.(2022•雅安)已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 .解:把{x =1y =2代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1. 答案:1.6.(2023•杭州二模)已知二元一次方程x +3y =14,请写出该方程的一组整数解 . 解:x +3y =14, x =14﹣3y , 当y =1时,x =11,则方程的一组整数解为{x =11y =1.答案:{x =11y =1(答案不唯一).7.(2023•苏州一模)若一个二元一次方程的一个解为{x =2y =−1,则这个方程可能是 .解:这个方程可能是:x +y =1,答案不唯一. 答案:x +y =1,答案不唯一. 8.(2023•连云港)解方程组{3x +y =8①2x −y =7②.解:{3x +y =8①2x −y =7②,①+②得:5x =15, 解得:x =3,将x =3代入①得:3×3+y =8, 解得:y =﹣1,故原方程组的解为:{x =3y =−1.二、由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。

初中数学培优:二元一次方程的整数解

初中数学培优:二元一次方程的整数解

初中数学培优:二元一次方程的整数解【知识精读】1、二元一次方程整数解存在的条件:在整系数方程ax+by=c 中,若a,b 的最大公约数能整除c,则方程有整数解。

即如果(a,b )|c 则方程ax+by=c 有整数解显然a,b 互质时一定有整数解。

例如方程3x+5y=1, 5x-2y=7, 9x+3y=6都有整数解。

返过来也成立,方程9x+3y=10和 4x-2y=1都没有整数解,∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。

一般我们在正整数集合里研究公约数,(a,b )中的a,b 实为它们的绝对值。

2、二元一次方程整数解的求法:若方程ax+by=c 有整数解,一般都有无数多个,常引入整数k 来表示它的通解(即所有的解)。

k 叫做参变数。

方法一,整除法:求方程5x+11y=1的整数解解:x=5111y -=y y y y 2515101--=-- (1) , 设k k y (51=-是整数),则y=1-5k (2) , 把(2)代入(1)得x=k-2(1-5k)=11k-2∴原方程所有的整数解是⎩⎨⎧-=-=k y k x 51211(k 是整数) 方法二,公式法:设ax+by=c 有整数解⎩⎨⎧==00y y x x 则通解是⎩⎨⎧-=+=ak y y bk x x 00(x 0,y 0可用观察法) 1, 求二元一次方程的正整数解:① 出整数解的通解,再解x,y 的不等式组,确定k 值② 用观察法直接写出。

【分类解析】例1求方程5x -9y=18整数解的能通解解x=53235310155918y y y y y -++=-++=+ 设k y =-53(k 为整数),y=3-5k, 代入得x=9-9k ∴原方程整数解是⎩⎨⎧-=-=k y k x 5399 (k 为整数) 又解:当x=o 时,y=-2,∴方程有一个整数解⎩⎨⎧-==20y x 它的通解是⎩⎨⎧--=-=k y y x 5290(k 为整数)从以上可知整数解的通解的表达方式不是唯一的。

专题二 一次函数与二元一次方程组问题 2020年中考数学冲刺难点突破 一次函数问题(解析版)

专题二 一次函数与二元一次方程组问题 2020年中考数学冲刺难点突破 一次函数问题(解析版)

2020年中考数学冲刺难点突破一次函数问题专题二一次函数与二元一次方程组问题【知识点总结】一、二元一次方程与一次函数的关系若k,b表示常数且k≠0,则y-kx=b为二元一次方程,有无数个解;将其变形可得y=kx+b,将x,y看作自变量、因变量,则y=kx+b是一次函数.事实上,以方程y-kx=b的解为坐标的点组成的图象与一次函数y=kx+b的图象相同.二、用图象法求二元一次方程组的近似解用图象法求二元一次方程组的近似解的一般步骤:1、先把方程组中两个二元一次方程转化为一次函数的形式:y1=k1x+b1和y2=k2x+b2;2、建立平面直角坐标系,画出两个一次函数的图象;3、写出这两条直线的交点的横纵坐标,这两个数的值就是二元一次方程组的解中的两个数值,横坐标是x,纵坐标是y.三、利用二元一次方程组确定一次函数的表达式每个二元一次方程组都对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.因此一次函数与二元一次方程组有密切联系.利用二元一次方程组确定一次函数的表达式的一般步骤如下:1、写出函数表达式:一次函数y=kx+b;2、把已知条件代入,得到关于k,b的方程组;3、解方程组,求出k,b的值,写出其表达式.【针对训练】1、在平面直角坐标系中,已知点A(x,y),点B(x﹣my,mx﹣y)(其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2)的“3族衍生点”B的坐标为(1﹣3×2,3×1﹣2),即B(﹣5,1).(1)点(2,0)的“2族衍生点”的坐标为;(2)若点A的“3族衍生点”B的坐标是(﹣1,5),则点A的坐标为;(3)若点A(x,0)(其中x≠0),点A的“m族衍生点“为点B,且AB=OA,求m的值;(4)若点A(x,y)的“m族衍生点”与“﹣m族衍生点”都关于y轴对称,则点A的位置在.解:(1)点(2,0)的“2族衍生点”的坐标为(2﹣2×0,2×2﹣0),即(2,4),故答案为(2,4);(2)设点A坐标为(x,y),由题意可得:,∴,∴点A坐标为(2,1);(3)∴点A(x,0),∴点A的“m族衍生点“为点B(x,mx),∴AB=|mx|,∴AB=OA,∴|x|=|mx|,∴m=±1;(4)∴点A(x,y),∴点A(x,y)的“m族衍生点”为(x﹣my,mx﹣y),点A(x,y)的“﹣m族衍生点”为(x+my,﹣mx﹣y),∴点A(x,y)的“m族衍生点”与“﹣m族衍生点”都关于y轴对称,∴,∴x=0,∴点A在y轴上,故答案为:y轴上.2、阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图∴:在∴ABC中,∴ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:∴ADC∴∴CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图∴,可得到结论;∴ADC∴∴CEB.请你说明理由.(2)学以致用:如图∴,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图∴,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若∴DPC 为直角三角形时,请你探究并直接写出BE的长.解:(1)理由:∴∴ACB=90°,∴∴ACD=∴BCE=90°,又∴∴ADC=90°,∴∴ACD+∴DAC=90°,∴∴BCE=∴DAC,且∴ADC=∴BEC=90°,∴∴ADC∴∴CEB;(2)如图,过点O作ON∴OM交直线CD于点N,分别过M、N作ME∴x轴NF∴x轴,由(1)可得:∴NFO∴∴OEM,∴,∴点M(2,1),∴OE=2,ME=1,∴tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∴设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∴CDP=90°时,如图,过点P作PH∴BC,交BC延长线于点H,∴∴ADC+∴CDP=180°,∴点A,点D,点P三点共线,∴∴BAP=∴B=∴H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∴将线段AE绕点E顺时针旋转90°,∴AE=EP,∴AEP=90°,∴∴AEB=∴PEH=90°,且∴BAE+∴AEB=90°,∴∴BAE=∴PEH,且∴B=∴H=90°,AE=EP,∴∴ABE∴∴EHP(AAS),∴BE=PH=3,当∴CPD=90°时,如图,过点P作PH∴BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∴将线段AE绕点E顺时针旋转90°,∴AE=EP,∴AEP=90°,∴∴AEB=∴PEH=90°,且∴BAE+∴AEB=90°,∴∴BAE=∴PEH,且∴B=∴EHP=90°,AE=EP,∴∴ABE∴∴EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∴∴DPC=90°,∴∴DPN+∴CPH=90°,且∴CPH+∴PCH=90°,∴∴PCH=∴DPN,且∴N=∴CHP=90°,∴∴CPH∴∴PDH,∴,∴∴x=∴点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,∴DPC为直角三角形.3、如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═x+6过点B和点C,且AC∴x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∴x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.解:(1)∴AC∴x轴,点A(5,0),∴点C的横坐标为5,对于y═x+6,当x=5时,y=×5+6=10,对于x=0,y=6,∴点C的坐标为(5,10),点B的坐标为(0,6),直线y=kx+b与x轴交于点A(5,0),与y轴交于点B(0,6),则,解得,,∴直线y=kx+b的函数表达式为y=﹣x+6,综上所述,直线y=kx+b的函数表达式为y=﹣x+6,点C的坐标为(5,10);(2)由题意得,BM=2t,AN=3t,∴OM=6﹣2t,∴OM∴AN,MN∴x轴,∴四边形MOAN为平行四边形,∴OM=AN,∴6﹣2t=3t,解得,t=,∴当MN∴x轴时,t=;(3)线段CD的长度不变化,理由如下:过点D作EF∴x轴,交OB于E,交AC于F,∴EF∴x轴,BM∴AN,∴AOE=90°,∴四边形EOAF为矩形,∴EF=OA=5,EO=F A,∴BM∴AN,∴∴BDM∴∴ADN,∴==,∴EF=5,∴DE=2,DF=3,∴BM∴AN,∴∴BDE∴∴ADF,∴==,∴=,∴OB=6,∴EO=F A=,∴CF=AC﹣F A=,∴CD==.4、如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线y=x+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∴y轴交直线y=x+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∴CGF=∴ABC时,求点G的坐标.解:(1)根据题意可得:,解得:∴点D坐标(2,4)(2)∴直线y=﹣2x+8分别交x轴,y轴于点A,B,∴点B(0,8),点A(4,0),∴直线y=x+3交y轴于点C,∴点C(0,3),∴AE∴y轴交直线y=x+3于点E,∴点E(4,5)∴点B(0,8),点A(4,0),点C(0,3),点E(4,5),∴BC=5,AE=5,AC==5,BE==5,∴BC=AE=AC=BE,∴四边形ACBE是菱形;(3)∴BC=AC,∴∴ABC=∴CAB,∴∴CGF=∴ABC,∴AGF=∴ABC+∴BFG=∴AGC+∴CGF∴∴AGC=∴BFG,且FG=CG,∴ABC=∴CAB,∴∴ACG∴∴BGF(AAS)∴BG=AC=5,设点G(a,﹣2a+8),∴(﹣2a+8﹣8)2+(a﹣0)2=52,∴a=±,∴点G在线段AB上∴a=,∴点G(,8﹣2)5、如图,在平面直角坐标系xOy中,直线l1:y=x+2与x轴交于点A,直线l2:y=3x﹣6与x轴交于点D,与l1相交于点C.(1)求点D的坐标;(2)在y轴上一点E,若S∴ACE=S∴ACD,求点E的坐标;(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与∴APD全等,求点F的坐标.解:(1)∴直线l2:y=3x﹣6与x轴交于点D,∴令y=0,则3x﹣6=0,∴x=2,∴D(2,0);(2)如图1,∴直线l1:y=x+2与x轴交于点A,∴令y=0.∴x+2=0,∴x=﹣2,∴A(﹣2,0),由(1)知,D(2,0),∴AD=4,联立直线l1,l2的解析式得,,解得,,∴C(4,6),∴S∴ACD=AD•|y C|=×4×6=12,∴S∴ACE=S∴ACD,∴S∴ACE=12,直线l1与y轴的交点记作点B,∴B(0,2),设点E(0,m),∴BE=|m﹣2|,∴S∴ACE=BE•|x C﹣x A|=|m﹣2|×|4+2|=4|m﹣2|=12,∴m=﹣2或m=6,∴点E(0,﹣2)或(0,6);(3)如图2,∴当点F在直线l1上方时,∴以A、P、F为顶点的三角形与∴APD全等,∴∴、当∴APF'∴∴APD时,连接DF',BD,由(2)知,B(0,2),由(1)知,A(﹣2,0),D(2,0),∴OB=OA=OD,∴∴ABO=∴DBO=45°,∴∴ABD=90°,∴DB∴l1,∴∴APF'∴∴APD,∴PF'=PD,AF'=AD,∴直线l1是线段DF'的垂直平分线,∴点D,F'关于直线l1对称,∴DF'∴l1,∴DF'过点B,且点B是DF'的中点,∴F'(﹣2,4),∴、当∴P AF∴∴APD时,∴PF=AD,∴APF=∴P AD,∴PF∴AD,∴点D(2,0),A(﹣2,6),∴点D向左平移4个单位,∴点P向左平移4个单位得,F(1﹣4,6),∴F(﹣3,3),∴当点F在直线l1下方时,∴∴P AF''∴∴APD,由∴∴知,∴P AF∴∴APD,∴∴P AF∴∴P AF'',∴AF=AF'',PF=PF'',∴点F与点F'关于直线l1对称,∴FF''∴l1,∴DF'∴l1,∴FF'∴DF',而点F'(﹣2,4)先向左平移一个单位,再向下平移一个单位,∴D(2,0),向左平移1个单位,再向下平移一个单位得F''(2﹣1,0﹣1),∴F''(1,﹣1),即:点F的坐标为(﹣3,3)或(﹣2,4)或(1,﹣1).6、如图1,在平面直角坐标系xOy中,点A(2,0),点B(﹣4,3).(1)求直线AB的函数表达式;(2)点P是线段AB上的一点,当S∴AOP:S∴AOB=2:3时,求点P的坐标;(3)如图2,在(2)的条件下,将线段AB绕点A顺时针旋转120°,点B落在点C处,连结CP,求∴APC的面积,并直接写出点C的坐标.解:(1)设直线AB的函数表达式为y=kx+b,∴点A(2,0),点B(﹣4,3),∴,解得:,∴直线AB的函数表达式为y=﹣x+1;(2)过B作BE∴x轴于E,过P作PD∴x轴于D,∴PD∴BE,∴S∴AOP:S∴AOB=2:3,∴=,∴点B(﹣4,3),∴BE=3,∴PD∴BE,∴∴APD∴∴ABE,∴==,∴PD=2,当y=2时,x=﹣2,∴P(﹣2,2);(3)点A(2,0)、点B(﹣4,3),点P(﹣2,2),则AP=2,AB=CA=3,过点P作HP∴AC交AC的延长线于点H,则AH=AP=,PH=AP sin60°=,∴APC的面积=AC×PH=×3×=;设点C(x,y),则PC2=PH2+HC2=15+(+3)2=95=(x+2)2+(y﹣2)2…∴,CA2=45=(x﹣2)2+y2…∴,联立∴∴并解得:x=,y=,故点C(,).7、如图,正方形AOBC的边长为2,点O为坐标原点,边OB,OA分别在x轴,y轴上,点D是BC的中点,点P是线段AC上的一个点,如果将OA沿直线OP对折,使点A的对应点A′恰好落在PD所在直线上.(1)若点P是端点,即当点P在A点时,A′点的位置关系是,OP所在的直线是,当点P在C点时,A′点的位置关系是,OP所在的直线表达式是.(2)若点P不是端点,用你所学的数学知识求出OP所在直线的表达式.(3)在(2)的情况下,x轴上是否存在点Q,使∴DPQ的周长为最小值?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,OP所在的直线是y轴;当点P在C点时,∴∴AOC=∴BOC=45°,∴A′点的位置关系是点B,OP所在的直线表达式是y=x.故答案为:A,y轴;B,y=x.(2)连接OD,∴正方形AOBC的边长为2,点D是BC的中点,∴==.由折叠的性质可知,OA′=OA=2,∴OA′D=90°.∴A′D=1.设点P(x,2),P A′=x,PC=2﹣x,CD=1.∴(x+1)2=(2﹣x)2+12.解得x=.所以P(,2),∴OP所在直线的表达式是y=3x.(3)存在.若∴DPQ的周长为最小,即是要PQ+DQ为最小.∴点D关于x轴的对称点是D′(2,﹣1),∴设直线PD'的解析式为y=kx+b,,解得,∴直线PD′的函数表达式为y=﹣x+.当y=0时,x=.∴点Q(,0).8、如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE =S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.解:(1)∵直线y=﹣x+b分别与x轴交于A(6,0),∴b=6,∴直线AB的解析式是:y=﹣x+6,∴B(0,6),∴OB=6,∵OB:OC=3:1,∴OC=2,∴C(﹣2,0)设BC的解析式是y=kx+b,∴解得,直线BC的解析式是:y=3x+6;(2)存在.理由如下:如图1中,∵S△BDF=S△BDE,∴只需DF=DE,即D为EF中点,∵点E为直线AB与EF的交点,∴∴点E(,)∵点F为直线BC与EF的交点,∴∴点F(,)∵D为EF中点,∴+,∴a=0舍去,a=(3)K点的位置不发生变化.理由如下:如图2中,过点Q作CQ⊥x轴,设PA=m,∵∠POB=∠PCQ=∠BPQ=90°,∴∠OPB+∠QPC=90°,∠QPC+∠PQC=90°,∴∠OPB=∠PQC,∵PB=PQ,∴△BOP≌△PCQ(AAS),∴BO=PC=6,OP=CQ=6+m,∴AC=QC=6+m,∴∠QAC=∠OAK=45°,∴OA=OK=6,∴K(0,﹣6).9、如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC﹣S△PAE=×8×8﹣×(2m﹣8)×(2m﹣8)=16m﹣2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m﹣8=4,∴m=6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10、已知:在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B,点C是x轴正半轴上一点,AB=AC,连接BC.(1)如图1,求直线BC解析式;(2)如图2,点P、Q分别是线段AB、BC上的点,且AP=BQ,连接PQ.若点Q的横坐标为t,△BPQ 的面积为S,求S关于t的函数关系式,并写出自变量取值范围;(3)如图3,在(2)的条件下,点E是线段OA上一点,连接BE,将△ABE沿BE翻折,使翻折后的点A落在y轴上的点H处,点F在y轴上点H上方EH=FH,连接EF并延长交BC于点G,若BG=AP,连接PE,连接PG交BE于点T,求BT长.解:(1)由已知可得A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB===5,∵AB=AC,∴AC=5,∴C(2,0),设BC的直线解析式为y=kx+b,将点B与点C代入,得,∴,∴BC的直线解析式为y=﹣2x+4;(2)过点Q作MQ⊥y轴,与y轴交于点M,过点Q作QE⊥AB,过点C作CF⊥AB,∵Q点横坐标是t,∴MQ=t,∵MQ∥OC,∴,∴,∴BQ=t,∵AP=BQ,∴AP=t,∵AB=5,∴PB=5﹣t,在等腰三角形ABC中,AC=AB=5,BC=2,∵AB×CF=AC×OB,∴CF=OB=4,∵EQ∥CF∴∴EQ=2t,∴S=×(5﹣t)=(0≤t≤2);(3)如图3,∵将△ABE沿BE翻折,使翻折后的点A落在y轴上的点H处,∴AH=AB=5,AE=EH,∴OH=BH﹣OB=1,∵EH2=EO2+OH2,∴AE2=(4﹣AE)2+1,∴AE==EH,∴OE=,∴点E(﹣,0)∵EH=FH=,∴OF=∴点F(0,)∴直线EF解析式为y=x+,直线BE的解析式为:y=3x+4,∴﹣2x+4=x+,∴x=,∴点G(,)∴BG==,∵BG=AP,∴AP=1,设点P(a,a+4)∴1=∴a=﹣,∴点P(﹣,),∴直线PG的解析式为:y=x+,∴3x+4=x+,∴x=﹣1,∴点T(﹣1,1)∴BT==11、如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.(1)求△AOB的面积:(2)在y轴上找一点C,使AC+BC最小,求最小值及C点坐标.(3)点P从O出发向B点以1个单位每秒的速度运动,点Q从B点出发向A点以同样的速度运动,两个点同时停止,当△BPQ为等腰三角形时,求Q点坐标.解:(1)∵一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.∴点B(7,0),﹣x+7=x∴x=3,∴点A(3,4)∴S△AOB=×7×4=14;(2)如图1,作点B关于y轴的对称点H(﹣7,0),连接AH,交y轴于点C,∴此时AC+BC最小值为AH,∵点A(3,4),点H(﹣7,0),∴AH==2,∴AC+BC最小值为2,设直线AH解析式为:y=kx+b,且过点A(3,4),点H(﹣7,0),∴,解得:∴直线AH解析式为:y=x+;(3)如图2,过点Q作QE⊥OB,∵以同样的速度运动,∴BQ=OP,∵一次函数y=﹣x+7与y轴交于点D,∴点D(0,7),∴OD=OB=7,且∠DOB=90°,∴∠DBO=45°,且QE⊥OB,∴∠QBE=∠EQB=45°,∴QE=BE,∴QB=QE=EB,若PB=QB,且OP=BQ,∴OP=PB==BQ,∴BE=EQ=,∴OE=7﹣,∴点Q(7﹣,),若QP=QB,且QE⊥OB,∴PE=BE,∵OB=7=OP+PE+BE,∴7=BE+2BE,∴BE==QE,∴OE=∴点Q(,),如图3,若BP=PQ,过点P作PF⊥BQ,∴BF=FQ=BQ,∵∠ABO=45°,PF⊥AB,∴∠FPB=∠ABO=45°,∴PF=BF,∴PB=BF,∴7﹣BQ=∴BQ=,∴BE=QE=,∴点Q坐标为(7﹣,).。

初中数学二元一次方程组提高题及常考题和培优题含解析

初中数学二元一次方程组提高题及常考题和培优题含解析

初中数学二元一次方程提高题与常考题和培优题(含解析)一.选择题〔共13小题〕1.关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.2.x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣63.x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.34.假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.135.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是〔〕A.8 B.5 C.2 D.07.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C .D .8.小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或510.电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A .B .C.D.11.假设方程组的解是,那么方程组的解是〔〕A. B.C. D.12."九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.13.如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2二.填空题〔共13小题〕14.方程组的解是.15.a、b满足方程组,那么=.16.假设方程组与的解一样,那么a=,b=.17.是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为.18.假设〔a﹣2b+1〕2与互为相反数,那么a=,b=.19.定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2=.20.我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于.22.如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=.23.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.24.如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三.解答题〔共14小题〕27.解方程组:.28.解方程组:.29.关于x,y的二元一次方程组的解互为相反数,求k的值.30.观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.32.某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班缺乏50人,2班超过50人.〔1〕假设以班为单位分别购票,一共应付1240元,求两班各有多少人?〔2〕假设两班联合购票可少付多少元?34.“最美女教师〞张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?35.某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:品名西兰花胡萝卜批发价〔元/kg〕 2.8 1.6零售价〔元/kg〕 3.8 2.5如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元.36.4月23日“世界读书日〞期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本"英汉词典"和"读者"杂志的单价.37.学生在素质教育基地进展社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植本钱共42元,还了解到如下信息:〔1〕请问采摘的黄瓜和茄子各多少千克?〔2〕这些采摘的黄瓜和茄子可赚多少元?38.某校住校生宿舍有大小两种寝室假设干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?39.某运发动在一场篮球比赛中的技术统计如表所示:技术上场时出手投篮投中〔次〕罚球得篮板〔个〕助攻〔次〕个人总间〔次〕分得分〔分钟〕数据46662210118 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运发动投中2分球和3分球各几个.40.在平面直角坐标系中,假设横坐标、纵坐标均为整数点称为格点,假设一个多边形的顶点都是格点,那么称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.〔1〕利用图中条件求a,b的值;〔2〕假设某格点多边形对应的n=20,l=15,求S的值;〔3〕在图中画出面积等于5的格点直角三角形PQR.初中数学二元一次方程提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题〔共13小题〕1.〔2016•毕节市〕关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,应选A【点评】此题考察了二元一次方程的定义,熟练掌握二元一次方程的定义是解此题的关键.2.〔2016•〕x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6【分析】直接利用二元一次方程的解的定义分别代入求出答案.【解答】解:将x=﹣3,y=1代入各式,A、〔﹣3〕+2×1=﹣1,正确;B、〔﹣3〕﹣2×1=﹣5≠1,故此选项错误;C、2×〔﹣3〕+3‧1=﹣3≠6,故此选项错误;D、2×〔﹣3〕﹣3‧1=﹣9≠﹣6,故此选项错误;应选:A.【点评】此题主要考察了二元一次方程的解,正确代入方程是解题关键.3.〔2016•〕x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.3【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,那么x+y=5,应选C【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.〔2016•〕假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.13【分析】将其中一个方程两边乘以一个数,使其与另一方程中x的系数互为相反数,再将两方程相加,消去一个未知数,到达降元的目的,求出另一个未知数,再用代入法求另一个未知数.【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,那么a+b=1+12=13,应选D.【点评】此题主要考察解二元一次方程组,熟练运用加减消元是解答此题的关键.5.〔2016•〕为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.6.〔2016•吴中区一模〕如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b 的值是〔〕A.8 B.5 C.2 D.0【分析】把x=a,y=b代入方程,再根据5﹣a+3b=5﹣〔a﹣3b〕,然后代入求值即可.【解答】解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,所以5﹣a+3b=5﹣〔a﹣3b〕=5+3=8,应选A【点评】此题考察了代数式的求值,正确对代数式变形,利用添括号法那么是关键.7.〔2017•河北一模〕父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C.D.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高〔1﹣〕x=儿子在水中的身高〔1﹣〕y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子没在水中的身高是相等的.8.〔2016•黔东南州〕小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,应选C【点评】此题主要考察了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.9.〔2016•〕足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,应选:C.【点评】此题主要考察二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.10.〔2016•泰安模拟〕电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A.B.C.D.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少〞的狗有x条,“三多〞的狗有y条,可得:,应选:B.【点评】此题考察二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.11.〔2016•高阳县一模〕假设方程组的解是,那么方程组的解是〔〕A. B.C. D.【分析】根据加减法,可得〔x+2〕、〔y﹣1〕的解,再根据解方程,可得答案.【解答】解:∵方程组的解是,∴方程组中∴应选:C.【点评】此题考察了二元一次方程组的解,解决此题的关键是先求〔x+2〕、〔y ﹣1〕的解,再求x、y的值.12.〔2016•乐山模拟〕"九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两〞,得到等量关系,即可列出方程组.【解答】解:根据题意得:,应选A【点评】此题考察了由实际问题抽象出二元一次方程组,解决此题的关键是找到题目中所存在的等量关系.13.〔2016•富顺县校级模拟〕如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2【分析】设小长方形的长为xcm,宽为ycm,根据题意可知x+y=40,大矩形的长可表示3x或3y+2x,从而得到3x=3y+2x,然后列方程组求解即可.【解答】解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.应选:B.【点评】此题主要考察的是二元一次方程组的应用,根据矩形的对边相等列出方程组是解题的关键.二.填空题〔共13小题〕14.〔2016•永州〕方程组的解是.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2〔2﹣2y〕+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.【点评】此题考察的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.15.〔2016•〕a、b满足方程组,那么= 3 .【分析】方程组利用加减消元法求出解得到a与b的值,代入原式计算即可得到结果.【解答】解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,那么原式=3.故答案为:3【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.〔2016•富顺县校级模拟〕假设方程组与的解一样,那么a= 33 ,b=.【分析】先求出x,y的值,再组成一个含a,b的新方程组.解这个方程组即可.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.【点评】此题主要考察了二元一次方程组的解,解题的关键是正确求出x,y的值,组成一个新的方程组.17.〔2016•〕是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为﹣8 .【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,那么原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣8【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.〔2016•富顺县校级模拟〕假设〔a﹣2b+1〕2与互为相反数,那么a= 3 ,b= 2 .【分析】根据得出〔a﹣2b+1〕2+=0,得出方程组,求出方程组的解即可.【解答】解:∵〔a﹣2b+1〕2与互为相反数,∴〔a﹣2b+1〕2+=0,〔a﹣2b+1〕2=0且=0,即,解得:a=3,b=2故答案为:3,2.【点评】此题考察了相反数,二元一次方程组,偶次方,算术平方根的应用,解此题的关键是得出关于x、y的方程组.19.〔2016•浦东新区二模〕定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2= 4 .【分析】等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a 与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,那么1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考察了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法那么是解此题的关键.20.〔2016•丰台区二模〕我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.【点评】此题考察了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.21.〔2016•龙岩模拟〕如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于16cm .【分析】仔细观察图形,发现此题中2个等量关系为:小长方形的长×3=小长方形的宽×5,〔小长方形的长+小长方形的宽×2〕2=小长方形的长×小长方形的宽×8+1.根据这两个等量关系可列出方程组,即可求出小长方形的周长.【解答】解:设这8个大小一样的小长方形的长为xcm,宽为ycm.由题意,得,解得.小长方形的周长为2×〔3+5〕=16,故答案为16cm.【点评】此题主要考察了二元二次方程组的应用,解题关键是弄清题意,找到适宜的等量关系,列出方程组.解决此题需仔细观察图形,发现大长方形的对边相等及正方形的面积=8个小长方形的面积+小正方形的面积是关键.22.〔2016春•单县期末〕如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b= ﹣2 .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:因为4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,可得:,解得:,所以a﹣b=﹣2,故答案为:﹣2【点评】主要考察二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.23.〔2016春•镇赉县期末〕一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.【分析】根据∠1的度数比∠2的度数大50°,还有平角为180°列出方程,联立两个方程即可.【解答】解:根据∠1的度数比∠2的度数大50°可得方程x﹣y=50,再根据平角定义可得x+y+90=180,故x+y=90,那么可得方程组:,故答案为:.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.24.〔2016•广陵区二模〕如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8 .【分析】由图形可看出:小矩形的2个长+一个宽=5.7,小矩形的2个宽+一个长=4.5,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.【点评】此题主要考察了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.25.〔2016•河南模拟〕一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为24 .【分析】设大正方形的边长为x,小正方形的边长为y,根据图①、图②给出的数据即可得出关于x、y的二元一次方程,解之即可求出x、y的值,再用大正方形的面积减去4个小正方形的面积即可得出结论.【解答】解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,解得:,∴图②的大正方形中未被小正方形覆盖局部的面积为52﹣4×=24.故答案为:24.【点评】此题考察了二元一次方程组的应用,根据数量关系列出关于x、y的二元一次方程组是解题的关键.26.〔2016•楚雄州模拟〕如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292 .【分析】设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1〞联立正三角形的个数比正六边形的个数多6个得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.【点评】此题考察了二元一次方程组的应用,解题的关键是列出关于x、y的二元一次方程.此题属于根底题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程〔或方程组〕是关键.三.解答题〔共14小题〕27.〔2016•〕解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.28.〔2016•威海一模〕解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.29.〔2016•莆田模拟〕关于x,y的二元一次方程组的解互为相反数,求k的值.【分析】方程组两方程相加表示出x+y,根据x与y互为相反数得到x+y=0,求出k的值即可.【解答】解:,①+②得:3〔x+y〕=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.30.〔2016•漳州模拟〕观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.【分析】〔1〕观察方程组,得到x与y的数量关系即可;〔2〕归纳总结得到第④个方程组,求出方程组的解,验证即可.【解答】解:〔1〕在以上3个方程组的解中,发现x+y=0;〔2〕第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,那么x+y=4﹣4=0.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.31.〔2016•龙岩模拟〕根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【分析】根据图知道,一个保温瓶和一个杯子的价钱是43元,2个保温瓶和3个杯子的价钱是94元;先用43×2求出2个保温瓶和2个杯子的价钱,再用2个保温瓶和3个杯子的价钱减去2个保温瓶和2个杯子的价钱就是一个杯子的价钱,进而求出一个保温瓶的价钱.【解答】解:设杯子的单价为x元,那么热水瓶单价为y元,那么解得,答:杯子的单价为8元,那么热水瓶单价为35元.【点评】此题考察方程组的应用,关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择适宜的方法进展计算.32.〔2016•长春模拟〕某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.【分析】设该班购置甲种门票x张,乙种门票y张,根据“该班一共35人,甲种门票每张24元,乙种门票每张18元,每人购置一种门票共花费750元〞列方。

初中数学培优辅导资料(11—20讲)(1)

初中数学培优辅导资料(11—20讲)(1)

初中数学竞赛辅导资料(11)二元一次方程组解的讨论甲内容提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。

(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。

(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。

3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。

(见例2、3)乙例题例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。

② 当 5∶a =1∶2≠7∶c 时,方程组无解。

解得a=10, c ≠14。

③当 5∶a ≠1∶2时,方程组有唯一的解,即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。

例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-0231502331a a解不等式组得⎪⎪⎩⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为6311051<<a 时,原方程组的解是正数。

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。

二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。

解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。

熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。

例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。

在解题时需要根据具体情况选择最合适的方法。

变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。

⑴2x+5y=16 - 是二元一次方程,符合三个条件。

⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。

02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。

根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。

03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。

例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。

根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。

2023年九年级中考数学专题培优训练:二元一次方程组 【含答案】

2023年九年级中考数学专题培优训练:二元一次方程组 【含答案】

2023年九年级中考数学专题培优训练:二元一次方程组一、单选题(本大题共15小题)1. (湖南省株洲市2022年中考数学真题)对于二元一次方程组,将①式127y x x y =-⎧⎨+=⎩①②代入②式,消去可以得到( )y A .B .217x x +-=227x x +-=C .D .17x x +-=227x x ++=2. (辽宁省抚顺本溪辽阳市2022年中考数学真题)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x 尺,木长y 尺,所列方程组正确的是( )A .B .C .D .4.521x y x y -=⎧⎨+=⎩ 4.521y x x y-=⎧⎨-=⎩ 4.5112x y x y -=⎧⎪⎨+=⎪⎩ 4.5112y x x y -=⎧⎪⎨-=⎪⎩3. (山东省聊城市2022年中考数学真题)关于,的方程组的解中x y 2232x y k x y k -=-⎧⎨-=⎩x 与y 的和不小于5,则k 的取值范围为( )A .8k ≥B .8k >C .8k ≤D .8k <4. (江苏省扬州市2022年中考数学真题)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有只,x 兔有只,那么可列方程组为( )y A .B .C .D .354494x y x y +=⎧⎨+=⎩354294x y x y +=⎧⎨+=⎩944435x y x y +=⎧⎨+=⎩352494x y x y +=⎧⎨+=⎩5. (湖南省湘潭市2022年中考数学真题)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有张桌子,有条凳子,根x y 据题意所列方程组正确的是( )A .B .404312x y x y +=⎧⎨+=⎩124340x y x y +=⎧⎨+=⎩C .D .403412x y x y +=⎧⎨+=⎩123440x y x y +=⎧⎨+=⎩6. (湖北省宜昌市2022年中考数学真题)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .227. (湖北省武汉市2022年中考数学真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是( )xy A .9B .10C .11D .128. (江苏省宿迁市2022年中考数学真题)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( )A .B .C .D .()7791x y x y-=⎧⎨-=⎩()7791x y x y+=⎧⎨-=⎩7791x y x y +=⎧⎨-=⎩7791x y x y-=⎧⎨-=⎩9. (浙江省宁波市2022年中考数学真题)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米35在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再春成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为( )A .B .C .D .10375x y x y +=⎧⎪⎨+=⎪⎩10375x y x y +=⎧⎪⎨+=⎪⎩75103x y x y +=⎧⎪⎨+=⎪⎩75103x y x y +=⎧⎪⎨+=⎪⎩10. (浙江省嘉兴市2022年中考数学真题)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A .B .C .D .7317x y x y +=⎧⎨+=⎩9317x y x y +=⎧⎨+=⎩7317x y x y +=⎧⎨+=⎩9317x y x y +=⎧⎨+=⎩11. (浙江省杭州市2022年中考数学真题)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .1032019xy =B .1032019yx =C .1019320x y -=D .1910320x y -=12. (黑龙江省齐齐哈尔市2022年中考数学真题)端午节前夕,某食品加工厂准备将生产的粽子装入A 、B 两种食品盒中,A 种食品盒每盒装8个粽子,B 种食品盒每盒装10个粽子,若现将200个粽子分别装入A 、B 两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A .2种B .3种C .4种D .5种13. (黑龙江省省龙东地区2022年中考数学真题)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( )A .5B .6C .7D .814. (广东省深圳市2022年中考数学真题)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为根,下等草x 一捆为根,则下列方程正确的是( )y A . B . C .D .51177255y x y x -=⎧⎨-=⎩51177255x y x y +=⎧⎨+=⎩51177255x y x y -=⎧⎨-=⎩71155257x y x y -=⎧⎨-=⎩15. (贵州省毕节市2022一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .B .C .D .46383548x y x y +=⎧⎨+=⎩46483538y x y x +=⎧⎨+=⎩46485338x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩二、填空题(本大题共11小题)16. (江苏省无锡市2022年中考数学真题)二元一次方程组的解为 .321221x y x y +=⎧⎨-=⎩17. (湖北省随州市2022年中考数学真题)已知二元一次方程组,则2425x y x y +=⎧⎨+=⎩的值为 .x y -18. (吉林省2022年中考数学真题)《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛.根据题意,可x y 列方程组为 .19. (四川省雅安市2022年中考数学真题)已知是方程ax +by =3的解,则代数12x y =⎧⎨=⎩式2a +4b ﹣5的值为 .20. (黑龙江省绥化市2022年中考数学真题)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有 种购买方案.21. (湖北省江汉油田、潜江、天门、仙桃2022年中考数学真题)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨.22. (山东省潍坊市2022年中考数学真题)方程组的解为 .2313320x y x y +=⎧⎨-=⎩23. (贵州省黔东南州2022年中考数学真题)若,则()2250x y +-=的值是 .x y -24. (贵州省贵阳市2022年中考数学真题)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数,的系数与相应的常数项,即可表示方程x y,则 表示的方程是 .423x y +=25. (重庆市2022年中考数学真题(B 卷))特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为 .26. (山东省威海市2022年中考数学真题)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =.三、解答题(本大题共6小题)27. (浙江省台州市2022年中考数学真题)解方程组:.2435x y x y +=⎧⎨+=⎩28. (广西柳州市2022年中考数学真题)解方程组:227x y x y -=⎧⎨+=⎩①②.29. (广西桂林市2022年中考数学真题)解二元一次方程组:13x y x y -=⎧⎨+=⎩.30. (湖北省荆州市2022年中考数学真题)已知方程组的解满足32x y x y +=⎧⎨-=⎩①②,求k 的取值范围.235kx y -<31. (辽宁省大连市2022年中考数学真题)2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?32. (山东省泰安市2022年中考数学真题)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.参考答案1. 【答案】B 【分析】将①式代入②式消去去括号即可求得结果.【详解】解:将①式代入②式得,2(1)227x x x x +-=+-=,故选B .2. 【答案】C 【分析】本题的等量关系是:绳长-木长=4.5,木长-绳长=1,据此可以列方程求解;12【详解】设绳子长x 尺,木长y 尺,依题意可得:,4.5112x y x y -=⎧⎪⎨+=⎪⎩故选:C 3. 【答案】A 【分析】由两式相减,得到3x y k +=-,再根据x 与 y 的和不小于5列出不等式即可求解.【详解】解:把两个方程相减,可得,3x y k +=-根据题意得:,35k -≥解得:.8k ≥所以的取值范围是.k 8k ≥故选:A .4. 【答案】D 【分析】一只鸡1个头2个足,一只兔1个头4个足,利用共35头,94足,列方程组即可【详解】一只鸡1个头2个足,一只兔1个头4个足设鸡有只,兔有只x y 由35头,94足,得:352494x y x y +=⎧⎨+=⎩故选:D5. 【答案】B 【分析】根据四条腿的桌子和三条腿的凳子共12个可列方程x +y =12,根据桌子腿数与凳子腿数的和为40条可列方程4x +3y =40,组成方程组即可.【详解】解:根据题意可列方程组,124340x y x y +=⎧⎨+=⎩故选:B .6. 【答案】B 【分析】设1艘大船与1艘小船分别可载x 人,y 人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x +y )即可.【详解】设1艘大船与1艘小船分别可载x 人,y 人,依题意:232246x y x y +=⎧⎨+=⎩①②(①+②)÷3得:26x y +=故选:B .7. 【答案】D 【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:根据题意可得:x +6+20=22+z +y ,整理得:x -y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22,∴x -y =-2+z -(2z -22)=-4+z ,解得:z =12,∴x +y =3z -24=12故选:D .8. 【答案】B 【分析】设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:,()7791x y x y+=⎧⎨-=⎩故选:B .9. 【答案】A 【分析】根据题意列出方程组即可;【详解】原来有米x 斗,向桶中加谷子y 斗,容量为10斗,则;10x y +=已知谷子出米率为,则来年共得米;35375x y +=则可列方程组为,10375x y x y +=⎧⎪⎨+=⎪⎩故选A .10. 【答案】A 【分析】由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场平场负场,得分总++9=和为17.【详解】解:设该队胜了x 场,平了y 场,根据题意,可列方程组为:,29317x y x y ++=⎧⎨+=⎩7317x y x y +=⎧∴⎨+=⎩故选:A .11. 【答案】C 【分析】根据题中数量关系列出方程即可解题;【详解】解:由10张A 票的总价与19张B 票的总价相差320元可知,1019320x y -=或1910320y x -=,∴1019320x y -=,故选:C .12. 【答案】C 【分析】设使用A 食品盒x 个,使用B 食品盒y 个,根据题意列出方程,求解即可.【详解】设使用A 食品盒x 个,使用B 食品盒y 个,根据题意得,8x +10y =200,∵x 、y 都为正整数,∴解得204x y =⎧⎨=⎩,158x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,516x y =⎧⎨=⎩,∴一共有4种分装方式;故选:C .13. 【答案】A 【分析】设设购买毛笔x 支,围棋y 副,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出购买方案的数量.【详解】解:设购买毛笔x 支,围棋y 副,根据题意得,15x +20y =360,即3x +4y =72,∴y =18-x .34又∵x ,y 均为正整数,∴或812x y =⎧⎨=⎩或129x y =⎧⎨=⎩或166x y =⎧⎨=⎩或203x y =⎧⎨=⎩,415x y =⎧⎨=⎩∴班长有5种购买方案.故选:A .14. 【答案】C 【分析】设上等草一捆为根,下等草一捆为根,根据“卖五捆上等草的根数减去11根,就x y 等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.”列出方程组,即可求解.【详解】解:设上等草一捆为根,下等草一捆为根,根据题意得:x y .51177255x yx y -=⎧⎨-=⎩故选:C15. 【答案】D 【分析】设马每匹x 两,牛每头y 两,根据马四匹、牛六头,共价四十八两与马三匹、牛五头,共价三十八两列方程组即可.【详解】设马每匹x 两,牛每头y 两,由题意得,46483538x y x y +=⎧⎨+=⎩故选D .16. 【答案】23x y =⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:.321221x y x y +=⎧⎨-=⎩①②①+②×2得:7x =14,解得:x =2,把x =2代入②得:2×2-y =1解得:y =3,所以,方程组的解为,23x y =⎧⎨=⎩故答案为:.23x y =⎧⎨=⎩17. 【答案】1【分析】直接由②-①即可得出答案.【详解】原方程组为,2425x y x y +=⎧⎨+=⎩①②由②-①得.1x y -=故答案为:1.18. 【答案】##5352x y x y +=⎧⎨+=⎩5253x y x y +=⎧⎨+=⎩【分析】根据题中两个等量关系:5个大桶加上1个小桶可以盛酒3斛;1个大桶加上5个小桶可以盛酒2斛,列出方程组即可.【详解】由题意得:5352x y x y +=⎧⎨+=⎩故答案为:5352x y x y +=⎧⎨+=⎩.19. 【答案】1【分析】把代入ax +by =3可得,而2a +4b ﹣5,再整体代入求值12x y =⎧⎨=⎩23a b +=()225a b =+-即可.【详解】解:把代入ax +by =3可得:12x y =⎧⎨=⎩,23a b += 2a +4b ﹣5∴()225a b =+-.2351=´-=故答案为:120. 【答案】3##三【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出,由于,3124y x =-1≥x 且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.1y ≥【详解】解:设:购买甲种奖品x 件,乙种奖品y 件,,解得,4348x y +=3124y x =-∵,且x ,y 都是正整数,1≥x 1y ≥∴y 是4的整数倍,∴时,,4y =341294x ⨯=-=时,,8y =381264x ⨯=-=时,,12y =3121234x ⨯=-=时,,不符合题意,16y =3161204x ⨯=-=故有3种购买方案,故答案为:3.21. 【答案】23.5【分析】设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,根据“3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨”,即可得出关于x ,y 的二元一次方程组,再整体求得(4x +3y )即可得出结论.解:设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,依题意,得:34225225x y x y +=⎧⎨+=⎩,两式相加得8x +6y =47,∴4x +3y =23.5(吨) ,故答案为:23.5.22. 【答案】23x y =⎧⎨=⎩【分析】用①×2+②×3,可消去未知数y ,求出未知数x ,再把x 的值代入②求出y 即可.【详解】解:,2313320x y x y +=⎧⎨-=⎩①②①×2+②×3,得13x =26,解得:x =2,把x =2代入②,得6-2y =0,解得y =3,故方程组的解为.23x y =⎧⎨=⎩故答案为:.23x y =⎧⎨=⎩23. 【答案】9【分析】根据非负数之和为0,每一项都为0,分别算出x ,y 的值,即可【详解】∵()2250x y +-≥0≥()2250x y +-=∴250240x y x y +-=⎧⎨++=⎩解得:143133x y ⎧=⎪⎪⎨⎪=-⎪⎩141327()9333x y --===-故答案为:924. 【答案】232x y +=根据横着的算筹为10,竖放的算筹为1,依次表示的系数与等式后面的数字,即,x y 可求解.【详解】解:表示的方程是232x y +=故答案为:232x y +=25. 【答案】4:3【分析】设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m 包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,根据三种特产的总利润是总成本的25%列得,计算220%30%320%225%232x m y m x m mx my mx ⋅⋅+⋅+⋅=++可得.【详解】解:设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m 包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,由题意得,220%30%320%225%232x m y m x m mx my mx ⋅⋅+⋅+⋅=++解得3y =4x ,∴y :x =4:3,故答案为:4:3.26. 【答案】1【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m ,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m -n +4,第三行中间数字为n -6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m 可得关于m ,n 方程组,解出即可.【详解】如图,根据题意,可得第二行的数字之和为:m +2+(-2)=m可知第三行左边的数字为:m -(-4)-m =4第一行中间的数字为:m -n -(-4)=m -n +4第三行中间数字为m -2-(m -n +4)=n -6第三行右边数字为:m -n -(-2)=m -n +2再根据对角线上的三个数字之和相等且都等于m 可得方程组为:6422n m m n m +=⎧⎨-++-+=⎩解得60m n =⎧⎨=⎩∴061n m ==故答案为:127. 【答案】21x y =⎧⎨=⎩【分析】用加减消元法解二元一次方程组即可;【详解】.2435x y x y +=⎧⎨+=⎩①②解:,得.-②①1y =把代入①,得.1y =2x =∴原方程组的解为.21x y =⎧⎨=⎩28. 【答案】31x y =⎧⎨=⎩【分析】用加减消元法解方程组即可.【详解】解:①+②得:3x =9,∴x =3,将x =3代入②得:6+y =7,∴y =1.∴原方程组的解为:31x y =⎧⎨=⎩.29. 【答案】21x y =⎧⎨=⎩【分析】利用加减消元法可解答.【详解】解:13x y x y -=⎧⎨+=⎩①②①+②得:2x =4,∴x =2,把x =2代入①得:2﹣y =1,∴y =1,∴原方程组的解为:21x y =⎧⎨=⎩.30. 【答案】1310k <【分析】先求出二元一次方程组的解,代入中即可求k ;235kx y -<【详解】解:令①+②得,,25x =解得:,52x =将代入①中得,,52x =532y +=解得:,12y =将,代入得,,52x =12y =235kx y -<5123522k ⨯-⨯<解得:.1310k <31. 【答案】冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.【分析】设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个元,y 元,再根据购买1个x 冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元,列方程组,再解方程组即可.【详解】解:设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个元,y 元,则x2400341000x y x y ì+=ïí+=ïî①②②-①得2⨯200,x =把代入①得:200x =100,y =解得:200,100x y ì=ïí=ïî答:冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.32. 【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A种茶每盒x元,B种茶每盒y元,根据题意,得30206000, 1.220 1.2155100.x yx y+=⎧⎨⨯+⨯=⎩解,得100,150. xy=⎧⎨=⎩A种茶每盒100元,B种茶每盒150元.∴。

中考数学冲刺复习二元一次方程组02二元一次方程组的解法

中考数学冲刺复习二元一次方程组02二元一次方程组的解法

二元一次方程组的解法一、相关概念1.二元一次方程:含有个未知数,且未知数的指数均为的方程叫做2.二元一次方程组:像⎧⎨⎩x+y=1383x+5y=540这样,把两个二元一次方程合在一起,就组成了一个。

3.使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的。

4.二元一次方程组的两个方程的,叫做二元一次方程组的解。

二、二元一次方程组解法我们必须熟练使用二元一次方程组这个工具,才能解决更多的问题。

那么我们究竟怎么解决一个二元一次方程组呢?它的解法是怎样的?归根究底,我们要把二元一次方程组回归到以前会处理的一元一次方程问题。

二元一次方程组→一元一次方程.那么现在的问题就是二元怎样变为一元问题?这就是要大家去掌握“消元”的办法。

1.像回顾的问题当中,由二元一次方程组中一个方程,将一个未知数用2.含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进3.而求得这个二元一次方程组的解,这种方法叫做代入消元法。

一般步骤:a、求表达式,代入消元,回代求解b、把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程.这种解方程组的方法叫做加减消元法,简称加减法.三、例题例1.方程m+13n2x+5y=1是二元一次方程,则m=______,n=______。

例2.写出二元一次方程组x+2y=5的所有正整数解。

例3.与方程组⎧⎨⎩x+y-2=0x+2y=0有完全相同的解的是()A.x+y-2=0B.x+2y=0C.(x+y-2)(x+2y)=0D.2x+y-2+(x+2y)=0例4.已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y。

例5.解方程组⎧⎨⎩x+2y=9(1) 3x-2y=-1(2)例6. 解方程组:⎧⎨⎩2x+5y=7(1) 3x+2y=5(2)例7.解方程:(1)⎧⎪⎨⎪⎩2x-3y=2(1)2x-3y+5+2y=9(2) 7(2)⎧⎨⎩x-4y=5(1) x:y=4:3(2)例8. (1)已知关于x、y的二元一次方程组:(1)⎧⎨⎩x+my=4nx+3y=2的解为⎧⎨⎩x=1y=-3,求m+n。

百度__第五讲_二元一次方程组解法及其简单应用辅导专题含答案

百度__第五讲_二元一次方程组解法及其简单应用辅导专题含答案

第五讲 二元一次方程组解法及其简单应用培优辅导【要点梳理】1、二元一次方程:含有 未知数(x 和y ),并且含有未知数的 次数都是 ,像这样的 方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.2、二元一次方程的解:一般地, ,叫做二元一次方程的解. 【二元一次方程有 个解】3、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.5、二元一次方程组的解法:代入消元法和加减消元法。

6、三元一次方程组及其解法:方程组中一共含有 个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。

解三元一次方程组的关键也是“ ”:三元→二元→一元 基础夯实 一.选择题:1、方程72=+y x 在自然数范围内的解( )A.有无数对B.只有3对C.只有4对D.以上都不对2、若方程组()⎩⎨⎧=+=-+143461y x y a ax 的解x 、y 的值相等,则a 的值为( )A .﹣4B .4C .2D .1 3、把一张50元的人民币换成10元或5元的人民币,共有 A. 4种换法B. 5种换法C. 6种换法D. 7种换法4、定义新运算“※”:abyb a x b a +-=*,已知,821=* 432=*,则=*43( ) A. 0 B. 1 C. 2 D.35、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242yx y x ( ) A. 2 B.21C. 1D. 1- 二.填空题:1、单项式8323y xnm +与n m y x 2322+-是同类项,则m+n=2、已知关于,x y 的方程组2647x ay x y -=⎧⎨+=⎩的解是正整数,那么正整数a =________。

培优练习(附答案) -二元一次方程组

培优练习(附答案) -二元一次方程组

∴ x1 x3 x5 x1999 1000 , x 2 x 4 x6 x1998 999 . 练 4: A ; 5: k 1 且 m 4 或 k 1 练 6:由方程组
4 x 3 y 6 6 x my 26
解得 y
二元一 次方程组
一、二元一次方程组的特殊解法 方法:运用数学元素的等量代换原理,把某一部分看成一个整体并用一个新字母代替来解题 的方法称为换元法. 例 1: 解 下 列 方 程 组
( 1)
x 2 3y 1 2x 3 y 3 8 11
2 1 x 1 6y 3 1 ( 2) 1 1 0 2x 2 2 y 1
练 1:
8 ; 9
x 0 2: (1) y 1
4 x 11 (2) y 1 22
3:解:易知 x1 x3 x5 x1999 A , x2 x4 x6 x1998 B , 则
A B 1 解得 A 1000 , B 999 . 1000 A 999 B 1999
34 51 3 ,x . m 是整数,若 y 为整数,则 2m 9 4m 18 2
2m 9 1 或 2 或 17 或 34 , 经 检 验 当 2m 9 1 或 17 时 , m 是 整 数 , 且 x 也 为 整 数 , ∴ m 4 ,-4,-5,-13.
3
2
mx 2 y 10 3 x 2 y 0
① ②
有整数解,且 x 、 y 均为整数,
10 . m3
10 15 代入②,得 y . m3 m3 10 要使 为整数,且 m 为正整数,∴ m 2或 m 7; m3 15 要使 为 整 数 , 且 m 为 正 整 数 , ∴ m 2 或 m 12 , m3

(完整版)二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案

(完整版)二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案

二元一次方程(组)补习、培优、竞赛归类讲解及练习答案知识点:1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。

2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。

3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。

4、二元一次方程组的解:二元一次方程组中各个方程的公共解。

(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)无论是二元一次方程还是二元一次方程组的解都应该写成⎩⎨⎧==y x 的形式。

5、二元一次方程组的解法:基本思路是消元。

(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。

主要步骤:变形——用一个未知数的代数式表示另一个未知数。

代入——消去一个元。

求解——分别求出两个未知数的值。

写解——写出方程组的解。

(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。

变形——同一个未知数的系数相同或互为相反数。

加减——消去一个元。

求解——分别求出两个未知数的值。

写解——写出方程组的解。

(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。

列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:① 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。

② 找:找出能够表示题意两个相等关系。

③ 列:根据这两个相等关系列出必需的代数式,从而列出方程组。

④ 解:解这个方程组,求出两个未知数的值。

⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。

6、二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。

二元一次方程组-中考数学复习知识讲解+例题解析+强化训练

二元一次方程组-中考数学复习知识讲解+例题解析+强化训练

2012年中考数学复习教材回归知识讲解+例题解析+强化训练二元一次方程组◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21x y =⎧⎨=⎩是方程组2(1)21x m y nx y +-=⎧⎨+=⎩的解,求(m+n )的值.【分析】由方程组的解的定义可知21x y =⎧⎨=⎩,同时满足方程组中的两个方程,将21x y =⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得 22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程.例2 (2008,长沙市)“5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y顶,则210523178x y x y +=⎧⎨+=⎩解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 (2006,海南)某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元.依题意,得214523280x yx y+=⎧⎨+=⎩解这个方程组,得12510xy=⎧⎨=⎩故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 (2004,昆明市)为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A 型,B•型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得:30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩ 答:每辆A 型汽车每次运土石10t ,每辆B 型汽车每次运土石15t .【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.◆强化训练一、填空题1.若2x m+n -1-3y m -n -3+5=0是关于x ,y 的二元一次方程,则m=_____,n=_____.2.在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.3.若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a+b=_______.4.已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x,y,其和x+y=1,则k_____.5.已知x,y,t满足方程组23532x ty t x=-⎧⎨-=⎩,则x和y之间应满足的关系式是_______.6.(2008,宜宾)若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么│a-b│=_____.7.某营业员昨天卖出7件衬衫和4条裤子共460元,今天又卖出9件衬衫和6条裤子共660元,则每件衬衫售价为_______,每条裤子售价为_______.8.(2004,泰州市)为了有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00•用电每千瓦时0.30元(“谷电”价),王老师家使用“峰谷”电后,•五月份用电量为300kW·h,付电费115元,则王老师家该月使用“峰电”______kW·h.二、选择题9.二元一次方程3x+2y=15在自然数范围内的解的个数是()A.1个 B.2个 C.3个 D.4个10.已知x ay b=⎧⎨=⎩是方程组||223xx y=⎧⎨+=⎩的解,则a+b的值等于()A.1 B.5 C.1或5 D.0 11.已知│2x-y-3│+(2x+y+11)2=0,则()A.21xy=⎧⎨=⎩B.3xy=⎧⎨=-⎩C.15xy=-⎧⎨=-⎩D.27xy=-⎧⎨=-⎩12.在解方程组278ax bycx y-=⎧⎨+=⎩时,一同学把c看错而得到22xy=-⎧⎨=⎩,正确的解应是32xy=⎧⎨=⎩,那么a,b,c的值是()A.不能确定 B.a=4,b=5,c=-2C.a,b不能确定,c=-2 D.a=4,b=7,c=213.(2008,河北)如图4-2所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是()A.20g B.25g C.15g D.30g14.4辆板车和5辆卡车一次能运27t货,10辆板车和3辆卡车一次能运20t 货,设每辆板车每次可运xt货,每辆卡车每次能运yt货,则可列方程组()A.452710327x yx y+=⎧⎨-=⎩B.452710320x yx y-=⎧⎨+=⎩C.452710320x yx y+=⎧⎨+=⎩D.427510203x yx y-=⎧⎨-=⎩15.七年级某班有男女同学若干人,女同学因故走了14名,•这时男女同学之比为5:3,后来男同学又走了22名,这时男女同学人数相同,那么最初的女同学有()A.39名 B.43名 C.47名 D.55名16.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,•捐款情况如下表:捐款/元 1 2 3 4人数 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组.()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩17.甲,乙两人分别从两地同时出发,若相向而行,则ah 相遇;若同向而行,则bh 甲追 上乙,那么甲的速度是乙的速度为( )A .a b b +倍B .b a b +倍C .b a b a +-倍D .b a b a-+倍 18.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,•信封个数分别为( )A .150,100B .125,75C .120,70D .100,150三、解答题19.解下列方程组:(1)(2008,天津市)35821x y x y +=⎧⎨-=⎩(2)(2005,南充市)271132x y y x -=⎧⎪⎨--=⎪⎩20.(2008,山东省)为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,•如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.(2008,重庆市)为支持四川抗震救灾,重庆市A,B,C三地现在分别有赈灾物资00t,100t,80t,需要全部运往四川重灾地区的D,E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20t.(1)求这批赈灾物资运往D,E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60t,A地运往D县的赈灾物资为xt(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25t.则A,B•两地的赈灾物资运往D,E两县的方案有几种?请你写出具体的运送方案:(3)已知A,B,C三地的赈灾物资运往D,E两县的费用如表所示:为及时将这批赈灾物资运往D,E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?22.(2003,常州市)甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?答案1.3;-1 2.-7 3.8 4.k=3355.15y-x=6 6.1 7.20元 80元 8.1009.•C 10.C 11.D 12.B 13.A 14.C 15.C 16.A 17.C 18.A19.(1)由②得y=2x -1 ③把③代入①得:3x+5(2x -1)=8即x=1把x=1代入③得y=1∴原方程组的解为11x y =⎧⎨=⎩(2)化简方程组,得2763x y x y =+⎧⎨+=⎩ ④代入⑤,得y=-3.将y=-3代入,得x=1故原方程组的解是:13x y =⎧⎨=-⎩ 20.设生产奥运会标志x 套,生产奥运会吉祥物y 套,根据题意,得4520000,31030000.x y x y +=⎧⎨+=⎩①×2-②得:5x=10000.∴x=2000.把x=2000代入①得:5y=12000.∴y=2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.21.(1)设这批赈灾物资运往D 县的数量为a (t ),运往E 县的数量为b (t ).由题意,得280,220.a b a b +=⎧⎨=-⎩解得180,100.a b =⎧⎨=⎩ 答:这批赈灾物资运往D 县的数量为180t ,运往E 县的数量为100t .(2)由题意,得1202225x x x-<⎧⎨--≤⎩解得40,45.xx>⎧⎨≤⎩即40<x≤45,∵x为整数,∴x的取值为41,42,43,44,45.则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41t,运往E县59t;B地的赈灾物资运往D县79t,运往E县21t.方案二:A地的赈灾物资运往D县42t,运往E县58t;B地的赈灾物资运往D县78t,运往E县22t.方案三:A地的赈灾物资运往D县43t,运往E县57t;B地的赈灾物资运往D县77t,运往E县23t.方案四:A地的赈灾物资运往D县44t,运往E县56t;B地的赈灾物资运往D县76t,运往E县24t.方案五:A地的赈灾物资运往D县45t,运往E县55t;B地的赈灾物资运往D县75t,运往E县25t.(3)设运送这批赈灾物资的总费用为w元,由题意,得w=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60800.因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值,则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).22.(1)乙班共付出70×2=140(元),乙班比甲班少付出189-140=49(元).(2)设甲班第一次买苹果xkg,第二次买苹果ykg(x<y).①当x≤30时,则y>30(否则,x+y≤60<70).依题意有703 2.5189x yx y+=⎧⎨+=⎩或者7032189x yx y+=⎧⎨+=⎩解之,得2842xy=⎧⎨=⎩或者4921xy=⎧⎨=⎩(不合题意,舍去)②若30<x≤50,则30<y≤50,或y>50,当y>50,x+y>80>70,不合题意.当30<y≤50时,70×2.5=175<189,也不合题意.③若x>50,y>x,则x+y>70,不合题意.故甲班第一次买苹果28kg,第二次买苹果42kg.。

二元一次方程培优50题含答案

二元一次方程培优50题含答案

二元一次方程培优50题含答案一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.32.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.323.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣164.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.345.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣16.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.28.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()第1页(共40页)A .16cm 2B .21cm 2C .24cm 2D .32 cm 2 9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有( )A .6种B .7种C .8种D .9种10.某商店将巧克力包装成方形、圆形礼盒出售,.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?( )A .360B .480C .600D .72011.二元一次方程x +3y =10的非负整数解共有( )对.A .1B .2C .3D .412.若2x +5y +4z =0,3x +y ﹣7z =0,则x +y ﹣z 的值等于( )A .0B .1C .2D .不能求出13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和16张D .9张和15张14.若2x +5y +4z =0,4x +y +2z =0,则x +y +z 的值等于( )A .0B .1C .2D .不能求出15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是( )A .150米B .200米C .300米D .400米16.已知m 为正整数,且关于x ,y 的二元一次方程组有整数解,则m 2的值为( )A .4B .1,4C .1,4,49D .无法确定17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .1818.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种19.若(a ﹣2)x|a |﹣1+3y =1是关于x ,y 的二元一次方程,则a =( ) A .2 B .﹣2 C .2或﹣2 D .020.若关于x ,y 的方程组有非负整数解,则正整数m 为( ) A .0,1 B .1,3,7C .0,1,3D .1,3 二.填空题(共21小题)21.“驴友”小明分三次从M 地出发沿着不同的线路(A 线,B 线,C 线)去N 地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等.B 线、C 线路程相等,都比A 线路程多32%,A 线总时间等于C 线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A 线,在B 线中穿越丛林、涉水行走和攀登所用时间分别比A 线上升了20%,50%,50%,若他用了x 小时穿越丛林、y 小时涉水行走和z 小时攀登走完C 线,且x ,y ,z 都为正整数,则= .22.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x 名(其中x >5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,名机器人,且将机器人每天工作时间延长至且将机器人每天工作时间延长至12小时,小时,并对每名机器人并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x 个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工 个包裹.23.定义一种新的运算“※”,规定:x ※y =mx +ny 2,其中m 、n 为常数,已知2※3=﹣1,328m n24.已知方程组,当m时,x+y>0.25.方程组:的解是.26.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.27.解方程组时,甲同学正确解得,乙同学因把c写错而得到,则a=,b=,c=.28.对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有对.29.有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.30.三轮摩托车的轮胎安装在前轮上行驶12000公里后报废,安装在左后轮和右后轮则分别只能行驶7500公里和5000公里.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3条轮胎最多可行驶公里.31.五羊公园门票规定为:每人20元;30人以上的团体购票,每人18元,每30人优惠1人免票(不足30人的余数不优惠).今有花城旅行社、穗城旅行社、羊城旅行社的三支旅游团前来参观:如果花城团、穗城团合起来作为一个团体购票,应购门票3834元;如果穗城团、羊城团合起来购票,应购门票4770元;如果羊城团、花城团合起来购票,应购门票5220元,那么三个团共有人.32.在一条街AB 上,甲由A 向B 步行,乙骑车由B 向A 行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A 开出向B 行进,且每隔x 分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,分有一辆公共汽车追上他,而乙感到每隔而乙感到每隔5分就碰到一辆公共汽车,分就碰到一辆公共汽车,那么在那么在始发站公共汽车发车的间隔时间x = 分钟.33.某校运动会在400米环形跑道上进行10000米比赛,米比赛,甲、甲、甲、乙两运动员同时起跑后,乙两运动员同时起跑后,乙两运动员同时起跑后,乙速乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是 分钟.34.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是 元,所住的三人间、双人间、单人间的间数依次是 .35.“雪龙”号科学考察船到南极锦绣科学考察活动,从上海出发以最快速度19节(1节=1海里/小时)航行抵达南极需要30多天时间.该船以16节的速度从上海出发,若干天后,顺利抵达目的地.在极地工作了若干天,以12节的速度返回,从上海出发后第83天由于天气原因航行速度为2节,2天后以14节的速度继续航行4天返回上海.那么,“雪龙”号在南极工作了 天.36.怡荣号渡轮时速40千米,单数日由A 地顺流航行到B 地,双数日由B 地逆流航行到A地.(水速为每小时24千米)有一单数日渡轮航行到途中的C 地时,失去动力,只能任船漂流到B 地,船长计得该日所用的时间为原单数日的倍.另一双数日渡轮航行到途中的C 地时,又失去动力,船在漂流过程中,维修人员全力抢修了1小时后船以2倍时速前进到A 地,地,结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问A 、B 两地的距离为多少千米?37.一个工厂得到任务,需要加工A 零件6000个和B 零件2000个,该厂共有工人214名,每个人加工A 零件5个的时间可以加工B 零件3个.现将工人分成两组,分别加工一种零件,同时开始,应怎样分组才能使任务最快完成 .38.若是方程组的解,则a +b = .39.设甲数为x ,乙数为y ,则甲数增加10%与乙数增加到原来的3倍后的和比甲、乙两数的和多8,则方程为 .40.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔分钟从起点开出一辆.41.某车间每天能生产甲种零件300个,或者乙种零件500个,或者丙种零件600个,甲、乙、丙三种零件各一个配一套.现在要用63天使产品成套,那么生产甲种零件应当用天,生产乙种零件应当用天,生产丙种零件应当用天.三.解答题(共9小题)42.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.43.若方程组和方程组有相同的解,求a,b的值.44.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.45.阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.46.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.47.某水果店购进苹果与橙子共50kg,这两种水果的进价、标价如下表所示,店主将这些水果按8折全部售出后,其获利258元,那么该水果点购进苹果和橙子分别多少kg?进价(元/kg)标价(元/kg)苹果615橙子51248.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?49.某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?50.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a+5b的值.二元一次方程培优50题含答案参考答案与试题解析一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.3【分析】方程组利用代入消元法求出解,然后把a、b的值代入即可求解.【解答】解:,由①得,y=1﹣2x③,把③代入②得,﹣x+3(1﹣2x)=2,解得,把代入③得,,∴,∴a+4b=.故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.32【分析】根据题意可以设出二元一次方程组,然后变形即可解答本题.【解答】解:设方形巧克力每块x元,圆形巧克力每块y元,小明带了a元钱,,①+②,得8x+8y=2a,∴x+y=a,∵5x+3y=a﹣8,∴2x+(3x+3y)=a﹣8,∴2x+3×a=a﹣8,∴2x=,∴8x=a﹣32,即他只购买8块方形巧克力,则他会剩下32元,故选:D.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,利用方程的知识解答.3.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣16【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a﹣b)的值.【解答】解:∵是关于x、y的方程组的解,∴,解得,∴(a+b)(a﹣b)=(﹣1+4)×(﹣1﹣4)=﹣15.故选:B.【点评】本题主要考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题的关键.4.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.34【分析】首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本8本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【解答】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.【点评】此题主要考查了方程组的应用,解答此题的关键是列出方程组,用加减消元法求出方程组的解.5.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣1【分析】把x、y的值代入方程,看看方程两边是否相等即可.【解答】解:A、把代入方程y=x+1,左边≠右边,所以不是方程y=x+1的解,故本选项不符合题意;B、把代入方程y=x﹣1,左边=右边,所以是方程y=x﹣1的解,故本选项符合题意;C、把代入方程y=﹣x+1,左边≠右边,所以不是方程y=﹣x+1的解,故本选项不符合题意;D、把代入方程y=﹣x﹣1,左边=右边,所以不是方程y=﹣x﹣1的解,故本选项不符合题意.故选:B.【点评】本题考查了二元一次方程的解,能理解二元一次方程的解的意义是解此题的关键.6.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种【分析】设甲种笔记本购买了x本,乙种笔记本y本,就可以得出15x+5y=90,根据解不定方程的方法求出其解即可.【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=18因为y是x的整数倍,所以当x=1时,y=15.当x=2时,y=12.当x=3时,y=9.综上所述,共有3种购买方案.故选:B.【点评】本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.2【分析】先解关于x,y二元一次方程组,求出x,y的值后,再代入x﹣y=m﹣1,建立关于m的方程,解方程求出m的值即可.【解答】解:方法1:,解得,∵满足x﹣y=m﹣1,∴﹣﹣=m﹣1,解得m=﹣1;方法2:方程两边分别相减就可以得到36x﹣36y=﹣72则x﹣y=﹣2所以m﹣1=﹣2所以m=﹣1.故选:A.【点评】考查了解二元一次方程组,解关于x,y二元一次方程组,求出x,y的值后,再求解关于m的方程,解方程组关键是消元.8.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()A.16cm2B.21cm2C.24cm2D.32 cm2【分析】设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长+3个宽=16cm,②小长方形的1个长﹣1个宽=4cm,进而可得到关于x、y的两个方程,可求得解,从而可得到小长方形的面积.【解答】解:设小长方形的长为x,宽为y,如图可知,,解得:.所以小长方形的面积=3×7=21(cm 2).故选:B.【点评】本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A.6种B.7种C.8种D.9种【分析】本题可设大绳买了x条,小绳买了y条,毽子买了z个.根据这三种体育用品的总价为30元,列出关于x、y、z的三元一次方程,根据x≤2,且x、y、z都是正整数,可求出x、y、z的取值,根据自变量的取值,可求出买法有多少种.【解答】解:设大绳买了x条,小绳买了y条,毽子买了z个.则有:10x+3y+z=30,根据已知,得x=1或2,当x=1时,有z=20﹣3y,此时有:y值可取1,2,3,4,5,6;共六种;当x=2时,有z=10﹣3y,此时有:y值可取1,2,3;共三种.所以共有9种买法.故选:D.【点评】此题主要考查了二元一次方程的应用,解决本题的关键能够根据题意列出三元一次方程,根据未知数应是正整数和x小于等于2这些条件,进行分析求解.10.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360B.480C.600D.720【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变得出方程3x+7y﹣240=7x+3y+240,化简整理得y﹣x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)﹣10x,化简得3(y﹣x)+240,将y﹣x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).C【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.11.二元一次方程x+3y=10的非负整数解共有()对.A.1B.2C.3D.4【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是非负整数,那么把最小的非负整数y=0代入,算出对应的x的值,再把y=1代入,再算出对应的x的值,依此可以求出结果.【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.【点评】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的非负整数解,即此方程中两个未知数的值都是非负整数,这是解答本题的关键.注意:最小的非负整数是0.12.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是()A.8张和16张B.8张和15张C.9张和16张D.9张和15张【分析】仔细读题,发现题中有一个等量关系:2×2元人民币的张数+5×5元人民币的张数=33,如果设2元和5元的人民币分别有x张和y张,则根据等量关系可得一个二元一次方程,此方程有无穷多组解,再根据x,y是正整数,则可以得出符合条件的有限几组解.【解答】解:设2元和5元的人民币分别有x张和y张,根据题意,得2x+5y=33,则x=,即x=16﹣2y+,又x,y是正整数,则有或或三种.因为14+1=15,9+3=12,4+5=9,15>12>9,所以最少和张数之和最多的方式分别是9和15.故选:D.【点评】考查了二元一次方程的应用,注意:根据未知数应是正整数进行讨论.14.若2x+5y+4z=0,4x+y+2z=0,则x+y+z的值等于()A.0B.1C.2D.不能求出【分析】由2x+5y+4z=0 ①,4x+y+2z=0 ②,利用整体的思想①+②即可解决问题.【解答】解:2x+5y+4z=0 ①,4x+y+2z=0 ②,①+②得到:6x+6y+6z=0,∴x+y+z=0,故选:A.【点评】本题考查三元一次方程组,解题的关键是学会利用整体的思想思考问题,属于中考常考题型.15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是()A.150米B.200米C.300米D.400米【分析】首先设每一块小矩形牧场的长为x米,宽为y米,根据题意可得等量关系:小矩形的1个长=2个宽,3个长+1个宽=700÷2,根据等量关系列出方程组,再解即可.【解答】解:设每一块小矩形牧场的长为x米,宽为y米,,解得,每一块小矩形牧场的周长是:100+100+50+50=300(米),故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程组.16.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4B.1,4C.1,4,49D.无法确定【分析】首先解方程组求得方程组的解是:,则3+m是10和15的公约数,且是正整数,据此即可求得m的值,求得代数式的值.【解答】解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m =2,则m 2=4.故选:A .【点评】本题考查了方程组的解,正确理解3+m 是10和15的公约数是关键. 17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .18 【分析】分别设设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,根据寒假结束开学时甲、根据寒假结束开学时甲、乙两校人数相同,乙两校人数相同,可得方程1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,所以开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人),即可解答.【解答】解:设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,∵寒假结束开学时甲、乙两校人数相同,∴1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人), ∴乙校开学时的人数与原有的人数相差;1028﹣1010=18(人),故选:D .【点评】本题考查了二元一次方程的应用,解决本题的关键是关键题意列出方程. 18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【解答】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学培优(二元一次方程组)解析4.1 解二元一次方程组1.(2012山东德州中考,5,3,)已知则等于()(A)3 (B)(C)2 (D)1【解析】对于此方程组,可将上下两式相加,得4a+4b=12,即a+b=3,故选A.【答案】A.【点评】对于解方程组的问题,不要急着去把未知数解出来,要善于观察要求的量和方程组之间的关系,化繁为简.2. (2012山东省临沂市,10,3分)关于x的方程组的解是,则|m-n|的值是()A.5B. 3C. 2D. 1【解析】将代入方程组可得,m=2,n=3.∴|m-n|=|2-3|=1.【答案】选D.【点评】本题主要考查二元一次方程组的解的意义与解一元一次方程知识,将x、y的值代入原方程,即可求出待定系数的值.3.(2012山东省荷泽市,4,3)已知是二元一次方程组的解,则2m-n的算术平方根为()A. B. C.2 D.4【解析】把代入方程得,解之得.所以2m-n=6-2=4,4的算术平方根是2,故选C.【答案】C【点评】利用方程组解的概念,把解代入方程求出未知字母的值,然后按照代数式的计算要求,求出代数式的值,注意一个正数正的平方根是它的算术平方根.4.(2012连云港,10,3分)方程组的解为。

【解析】观察方程,可用加减消元法,让两个方程相加消去y,得到关于x的一元一次方程,解出x后再代入求y.【答案】解:本题y的系数的绝对值相等,符号相反,可直接让第一个方程与第二个方程相加,得3x=9,x=3.把x=3代入第一个方程得,y=0.方程组的解为:【点评】当相同未知数的系数的绝对值相等,符号相反时,可直接用加法消元求解.5. (2012广州市,17, 9分)解方程组【解析】用加减消元法解方程组。

【答案】①+②得4x=20,x=5,代入①得y=-3.∴【点评】本题主要查二元一次方程组的解法。

主要由两种方法,代入消元法和加减消元法。

关键是消元。

减少未知数的个数。

6.(2012浙江省湖州市,18,6分)解方程组【解析】解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y,得到一个关于x的一元一次方程,解出x的值,再把x的值代入方程组中的任意一个式子,都可以求出y的值【答案】①+②得:3x=9x=3,把x=3代入①得:6+y=8, y=2,∴方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.7. (2012广东汕头,16,7分)解方程组:.【解析】先用加减消元法求出x的值,再用代入法求出y的值即可.【答案】解:①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=4,解得y=1,故此不等式组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次不等式组的加减消元法和代入消元法是解答此题的关键.8. (2012南京市,17,6)解方程组【解析】运用加减法解方程组,先消去未知数x,化二元为一元.【答案】将①×3-②,得11y=-11,解得y=-1,把y=-1代入②,得3x-1=8,解得x=3.于是,得方程组的解为.【点评】本题考查了二元一次方程组的解法.解方程组常用的解法是代入法和加减法.解题时应根据方程组的特点来选择方法.4.2 二元一次方程组的应用1. ( 2012年浙江省宁波市,24,10)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信:自来水销售价格污水处理价格每户每月用水量单价:元/单价:元/吨吨17吨及以下a0.80b0.80超过17吨不超过30吨的部分超过30吨的部分 6.000.80[说明:①每户产生的污水量等于该户的用水量;②水费=自来水费+污水处理费]已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a,b的值(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?【解析】(1)由题意,得a=2.2,b=4.2用加减法解此方程组,得(2)当用水量为30吨时,水费为:17×3+13×5=116元,9200×2%=184元,∵116﹤184,∴小王家六月份的用水量超过30吨,设小王家6月份用水量为x吨,由题题,得17×3+13×5+6.8(x-30)≦184,解得x≦40.∴小王家六月份最多用水40吨。

【答案】(1)a=2.2,b=4.2.(2)40吨【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.同时考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题干找出合适的等量关系.2.(2012山东省滨州,1,3分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是( )A. B. C. D.【解析】他骑车和步行的时间分别为x分钟,y分钟,骑车和步行的时间和为15分钟,他家离学校的距离是2900米,可列出方程组【答案】选D.【点评】本题考查由实际问题抽象出二元一次方程组的能力。

由骑车和步行的时间和以及他家离学校的距离,可列出方程组.列方程组解应用题在中考中常常考到.3.(2012湖南衡阳市,11,3)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得( )A.B. C.D.【解析】分别根据等量关系:购1副羽毛球拍和1副乒乓球拍共需50元,用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,可得出方程,联立可得出方程组.【答案】解:由题意得,.故选B.【点评】此题考查了由实际问题抽象二元一次方程组的知识,属于基础题,关键是仔细审题得出两个等量关系,建立方程组.4. (2012呼和浩特,23,8分)(8分)如图,某化工厂与A,B两地有公路和铁路相连。

这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。

已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米)。

这两次运输共支出公路运费15000元,铁路运费97200元。

请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列方程组,请你分别指出未知数x、y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组。

甲:x表示_____________________,y表示________________________乙:x表示_____________________,y表示________________________(2)甲同学根据他所列方程组解得x=300。

请你帮他解出y的值,并解决该实际问题。

【解析】二元一次方程组应用题【答案】解:(1)甲:x表示产品的重量,y表示原料的重量乙:x表示产品销售额,y表示原料费甲方程组右边方框内的数分别为15000,97200,乙同甲(2)将x=300代入原方程组解得y=400 ∴产品销售额为300×8000=2400000元原料费为400×1000=400000元又∵运输费为15000+97200=112200元∴这批产品的销售款比原料费和运输费的和多2400000–(400000+112200)=1887800元【点评】本题考查了列二元一次方程组求解的问题。

通过设不同的未知数,列出不同的方程组。

并利用方程组的解来计算其它问题。

5.(2012贵州黔西南州,16,3分)已知-2x m-1y3与x n y m+n是同类项,那么(n-m)2012=_______.【解析】由于―2x m―1y3与x n y m+n,所以有,由m―1=n得―1=n―m,所以(n―m)2012=(―1)2012=1.【答案】1.【点评】本题利用同类项的概念建立二元一次方程组解决问题,比较简单,最后幂的计算防止符号出错.6.(2012广东肇庆,21,7)顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?【解析】两个等量关系:①到德庆的人数+怀集的人数=200;②到德庆的人数=2×到怀集的人数-1【答案】解:设到德庆的人数为人,到怀集的人数为人依题意,得方程组:解这个方程组得:答:到德庆的人数为133人,到怀集的人数为67人.【点评】本题考查了二元一次方程组的应用,列二元一次方程组是解此类问题的常用方法.7.(2012江苏苏州,24,6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?【解析】设中国人均淡水资源占有量为xm3,美国人均淡水资源占有量为ym3,根据题意所述等量关系得出方程组,解出即可得出答案.【答案】解:设中国人均淡水资源占有量为xm3,美国人均淡水资源占有量为ym3.根据题意得:,解得:.答:中、美两国人均淡水资源占有量各为2300m3,11500m3.【点评】此题考查了二元一次方程组的应用,解答本题的关键是设出未知数,根据题意所述等量关系得出方程组,难度一般.8.(2012年吉林省,16,5分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度是28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.【解析】设演员的身高为xcm,高跷的长度为ycm,根据题意存在两个等量关系,一个是演员的身高是高跷2长度的2倍;二是演员的身高与高跷与腿重合部分的长度差等于演员踩在高跷上时,头顶距离地面的高度与高跷长度的差,由此列方程组.【答案】设演员的身高为xcm,高跷的长度为ycm,根据题意得解得答:演员的身高为168cm,高跷的长度为84cm.【点评】此题主要考查了二元一次方程组的应用,能够根据题意中的等量关系得出等式方程是解题关键.9.(2012·哈尔滨,题号26分值 8)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球的总费用不超过5 720元,这所中学最多可以购买多少个篮球?【解析】本题考查二元一次方程组、一元一次不等式的应用.(1)设足球、篮球单价分别为x、y元,根据等量关系“3个足球和2个篮球310元”和“2个足球5个篮球500”列方程组求解;(2)设足球买x个,则篮球(96-x)个,根据不等量关系“总费用不超过5720元”列不等式求整数解.【答案】解:设一个足球、一个篮球分别为x、y元,根据题意得,解得,∴一个足球、一个篮球各需50元、80元;(2)设足球买x个,则篮球(96-x)个,根据题意得50x+80(96-x)≤5720,解得x≥,∵x为整数,∴x最小取66,∴96-x=96-66=30,∴最多可以买30个篮球【点评】解应用题是中考数学中最常见的题型,一是列方程组解应用题,关键是找到题目中的相等关系,从而列出方程(组),二是根据不等量关系列不等式(组),它主要考查学生分析问题、解决问题的能力.10.(2012,黔东南州,18)解方程组【解析】这是一个三元一次方程组,在初中的课程中还没有学过,但是,我们可以利用解二元一次方程组的思想来解答.【答案】,将式变形得,然后把中可以得到:化简得(5)-(6)得,所以.将代入(5)得,再将代入(4)中得,所以原方程组的解为:.【点评】本题考查了解三元一次方程组,很多同学看到题目时可能会无从下手,但是,在初中数学中,学生学过了二元一次方程组的解法,有代入消元法和加减消元法,在这题中,就可以利用代入消元法的思想来解答,不仅考查了学生的变通性,还考查了学生的运算能力,难度中等.11.(2012湖北咸宁,13,3分)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需元.【解析】依条件求得一个单人间和一个双人间各需多少钱,进而相加后乘以5即可得到所求.设一个单人间需要x元,一个双人间需要y 元.有3x+6y=1020①及x+5y=700②,联立之,化简①得:x+2y=340③,②-③得:3y=360,y=120,把y=120代入③得:x=100,∴5(x+y)=1100,故答案为1100.【答案】1100【点评】本题主要考查了二元一次方程组的实际应用;找到相应的等量关系求出一个单人间及一个双人间各需多少元是解决本题的关键.12.(2012山东东营,21,9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【解析】(1)设该工厂从A地购买了x吨原料,运往B地的产品为y 吨,根据等量关系:①两次运输共支出公路运费15000元;②铁路运输97200元列方程组求解.然后用总售价-总进价-运输费用;(2)用销售款减原料费与运输费即可。

相关文档
最新文档