冀教版八年级第二学期期末数学试卷及答案
冀教版八年级下册数学期末测试卷及含答案
冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于 ( )A.90°B.135°C.270°D.315°3、在平面直角坐标系中,点(-3,-4)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①5、一个多边形的内角和是900°,则它是()边形.A.八B.七C.六D.五6、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB. αC.90°+ αD.360°﹣α7、如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()A. A处B. B处C. C处D. D处8、多边形的边数增加2,这个多边形的内角和增加()A.90°B.180°C.360°D.540°9、若一个多边形从一个顶点出发共有7条对角线,则这个多边形的边数为()A.8B.9C.10D.1110、若多边形的边数增加1,则其内角和的度数()A.增加180ºB.其内角和为360ºC.其内角和不变D.其外角和减少11、在平面直角坐标系中,点P(-3,b)到x轴的距离为4,则P点坐标为( )A.(-3,4)B.(-3,-4)C.(-3,4)或(-3,-4)D.(3,4)或(3,-4)12、若一个多边形的每个外角都是36°,则这个多边形是()A.九边形B.十边形C.十一边形D.以上都有可能13、下列统计活动中,不宜用问卷调查的方式收集数据的是()A.七年级同学家中电脑的数量。
【翼教版】初二数学下期末试卷(含答案)
一、选择题1.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ).A .1B .6C .1或6D .5或62.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( )A .10,12B .12,11C .11,12D .12,12 3.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( )A .12B .10C .2D .0 4.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变5.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .6.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 7.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D . 8.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 9.若2a 3<<,则22(2a)(a 3)---等于( )A .52a -B .12a -C .2a 1-D .2a 5- 10.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③ 11.矩形不一定具有的性质是( ) A .对角线互相平分 B .是轴对称图形 C .对角线相等 D .对角线互相垂直参考答案12.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定二、填空题13.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示: 应聘者网页制作 语言 甲80 70 乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 14.一组数据2、3、5、6、x 的平均数正好也是这组数据的中位数,那么正整数x 为_____.15.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.16.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 17.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为_____. 18.在ABCD 中,BE AD ⊥于E ,BF CD ⊥于F ,若60EBF ︒∠=,且3AE =,2DF =,则EC =_______.19.计算:22)=___________.20.已知O 为平面直角坐标系的坐标原点,等腰三角形AOB 中,A(2,4),点B 是x 轴上的点,则AOB 的面积为_____.三、解答题21.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.22.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少?(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?23.如图,在平面直角坐标系中,直线1:l 1y kx b =+经过(),0A a ,()0,B b 两点,且a 、b 满足2(4)20a b --=过点B 作//BP x 轴,交直线22:l y x =于点P ,连接PA .(1)求直线AB 的表达式;(2)求ABP △的面积:(3)在直线2l 上是否存在一点Q ,使得BPQ BPA S S =△△?若存在,求点Q 的坐标:若不存在,请说明理由.24.如图,在方格纸中,点A ,B ,P 都在格点上.请按要求画出以AB 为边的格点图形.(1)在图甲中画出一个三角形,使BP 平分该三角形的面积.(2)在图乙中画出一个至少有一组对边平行的四边形,使AP 平分该四边形的面积. 25.计算:(1)7(1227)333-⨯+; (2)01|12|(3)6(31)(31)2π-+---+-. 26.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.2.C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.3.A解析:A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,故选A.4.B解析:B【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.5.A解析:A【分析】根据正比例函数的增减性,确定k 的正负,再依据一次函数图象与系数的关系判断即可.【详解】解:∵函数(0)y kx k =≠中y 随x 的增大而减小,∴k<0,∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限,故选:A .【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限. 6.C解析:C【分析】根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x += ∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;故选:C .【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.7.D解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D .【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.8.D解析:D 【分析】先求出直线1y x42=-与x轴、y轴分别相交于A,B坐标,由点()1,2M m m+-在AOB内部,列出不等式组0184201(1)22mmm m⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③分别解每一个不等式,在数轴上表示解集,得出不等式组的解集即可.【详解】解:直线1y x42=-与x轴、y轴分别相交于A,B两点,当x=0,y=-4,B(0,-4),当y=0时,=-1x402,x=8,A(8,0),点()1,2M m m+-在AOB内部,满足不等式组0184201(1)22mmm m⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③,解不等式①得:-17m<<,解不等式②得:26m<<,解不等式③得:113m<,在数轴上表示不等式①、②、③的解集,不等式组的解集为:1123m<<.故选择:D.【点睛】本题考查一次函数,不等式组的解法,掌握一次函数,不等式组的解法,关键是根据点M 在△AOB内列出不等式组是解题关键.9.D解析:D【分析】先根据23<<a 给二次根式开方,得到()a 23a ---,再计算结果就容易了.【详解】解:∵23<<a , ∴22(2a)(a 3)---=|2||3|a a ---()a 23a =---a 23a =--+2a 5=-.故选:D【点睛】本题考查了化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.10.D解析:D【分析】①设∠EDC=x ,则∠DEF=90°-x 从而可得到∠DBE=∠DEB=180°-(90°-x )-45°=45°+x ,∠DBM=∠DBE-∠MBE=45°+x-45°=x ,从而可得到∠DBM=∠CDE ;③由△BDM ≌△DEF ,可知DF=BM ,由直角三角形斜边上的中线的性质可知BM=12AC ; ④可证明△BDM ≌△DEF ,然后可证明:△DNB 的面积=四边形NMFE 的面积,所以△DNB 的面积+△BNE 的面积=四边形NMFE 的面积+△BNE 的面积;【详解】解:①设∠EDC=x ,则∠DEF=90°-x ,∵BD=DE ,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x .∴∠DBM=∠CDE ,故①正确;②由①得∠DBM=∠CDE ,如果BN=DN ,则∠DBM=∠BDN ,∴∠BDN=∠CDE ,∴DE 为∠BDC 的平分线,∴△BDE ≌△FDE ,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.11.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.12.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.二、填空题13.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a 语言的权重为b 则甲的分数为80a+70b 乙的分数为70a+80b 而甲的分数高所以80a+70b >70a+80b 解得a >b 则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a ,语言的权重为b ,则甲的分数为80a +70b ,乙的分数为70a +80b ,而甲的分数高,所以80a +70b >70a +80b ,解得a >b ,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.14.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x 的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可得出答案.【详解】∵数据2、3、5、6、x 的平均数是23565x ++++=165x +, ∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】 此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次 解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键. 16.4【分析】首先求出直线y =x ﹣1向上平移m 个单位长度得到y =﹣1+m 结合y =x+3即可求得m 的值【详解】解:直线y =x ﹣1向上平移m 个单位长度得到直线y =x+3∴﹣1+m =3解得m =4故答案为4【点解析:4【分析】首先求出直线y=12x﹣1向上平移m个单位长度得到y=12x﹣1+m,结合y=12x+3,即可求得m的值.【详解】解:直线y=12x﹣1向上平移m个单位长度,得到直线y=12x+3,∴﹣1+m=3,解得m=4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b向上平移a个单位,则解析式为y=kx+b+a,向下平移a个单位,则解析式为y=kx+b-a.17.5【分析】根据勾股定理逆定理判断出三角形是直角三角形然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:∵62+82=100=102∴该三角形是直角三角形∴×10=5故答案为:5【点睛】解析:5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∴该三角形是直角三角形,∴12×10=5.故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.18.【分析】由▱ABCD中BE⊥ADBF⊥CD可得∠D=120°继而求得∠A与∠BCD 的度数然后由勾股定理求得ABBEBC的长继而求得答案【详解】解:∵BE⊥ADBF⊥CD∴∠BFD=∠BED=∠BFC【分析】由▱ABCD中,BE⊥AD,BF⊥CD,可得∠D=120°,继而求得∠A与∠BCD的度数,然后由勾股定理求得AB,BE,BC的长,继而求得答案.【详解】解:∵BE⊥AD,BF⊥CD,∴∠BFD=∠BED=∠BFC=∠BEA=90°,∵∠EBF=60°,∴∠D=120°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCD=∠A=60°,∵在△ABE中,∠ABE=30°,∴AB=2AE=2×3=6,∴CD=AB=6,=∴CF=CD-DF=6-2=4,∵在△BFC中,∠CBF=30°,∴BC=2CF=2×4=8,∴【点睛】此题考查了平行四边形的性质、勾股定理以及含30°角的直角三角形的性质.此题难度适合,注意掌握数形结合思想的应用.19.2【分析】根据二次根式的性质化简即可【详解】2故答案为:2【点睛】此题考查二次根式的性质掌握二次根式的性质:是解答此题的关键解析:2【分析】根据二次根式的性质化简即可.【详解】2=2,故答案为:2【点睛】==,是解答此题的关键.此题考查二次根式的性质.掌握二次根式的性质:2a a20.8或4或10【分析】根据已知画出坐标系进而得出AE的长以及BO的长即可得出△AOB的面积【详解】解:如图所示:过点A作AE⊥x轴于点E∵点O (00)A(24)∴AE=4OE=2OA=当OA=AB时∴解析:8或10【分析】根据已知画出坐标系,进而得出AE的长以及BO的长,即可得出△AOB的面积.【详解】解:如图所示:过点A作AE⊥x轴于点E,∵点O (0,0),A (2,4),∴AE =4,OE =2,OA 222425+=当OA =AB 时,∴AE 是△AOB 边OB 的垂直平分线,∴BE=OE=2,∴OB=4,∴B 的坐标为(4,0),此时S △AOB =12OB AE •=1442⨯⨯=8; 当OA =OB 时, ∴25OB OA ==,∴B 的坐标为(5±0),此时S △AOB =12OB AE •=12542⨯=45 当OB =AB 时, 设AB OB x ==,则2BE x =-,∴2224(2)x x =+-,解得:5x =,∴5OB =,∴B 的坐标为(5,0),此时S △AOB =12OB AE •=1542⨯⨯=10; ∴△AOB 的面积为:8或510.故答案为:8或510.【点睛】此题主要考查了三角形面积以及坐标与图形的性质,利用等腰三角形的性质求得OB 的长是解题关键.三、解答题21.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元); (3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.22.(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户.【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵) 中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵)答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵.(2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户.【点睛】 本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(1)122y x =-+;(2)2;(3)存在点Q ,1(0,0)Q ,2(4,4)Q 【分析】(1)利用平方式和算术平方根的非负性求出a 和b 的值,得到点A 和点B 坐标,再用待定系数法求出解析式;(2)用BP 长乘以BP 上的高得到三角形ABP 的面积;(3)根据三角形面积相等,得到Q 点的纵坐标,从而求出点Q 的坐标.【详解】解:(1)∵()240a -=,∴4a =,2b =,∴()4,0A ,()0,2B , ∵直线1y kx b =+过点()4,0A 、()0,2B ,则402k b b +=⎧⎨=⎩,解得122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵()0,2B ,//BP x ,∴()2,2P ,2BP =, ∴12222ABP S ⨯=⨯=; (3)存在点Q ,使BPQ BPA S S =△△,∵BPQ BPA S S =△△,∴Q 点的纵坐标为0或4,∴()10,0Q ,()24,4Q .【点睛】本题考查一次综合,解题的关键是掌握一次函数解析式的求解和三角形面积问题的解决方法.24.(1)画图见解析;(2)画图见解析.【分析】△即为所求;(1)连接AP延长至D点,使AP=DP,再连接BD,ABD(2)作EP平行且相等于AB,连接AE,四边形ABPE即为所求.【详解】(1)作图如下,连接AP延长至D点,使AP=DP,再连接BD,△即为所求,ABD=,AP DP∴和BDPABP△是等底同高的两个三角形,∴BP平分ABD△三角形的面积;(2)作图如下,作EP平行且相等于AB,连接AE,四边形ABPE即为所求,AB平行且相等于EP,∴四边形ABPE为平行四边形,∴AP为ABCD的对角线,∴AP平分ABCD的面积.【点睛】本题考查学生的作图能力,涉及三角形面积以及平行四边形面积相关的知识,根据题意作出图像是解题的关键.25.(1)6212)222-【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【详解】(1)原式21 (2327)333 =-⨯+⨯2322121 =⨯-+ 621=-;(2)原式22116(31)2=-+-⨯--2322=--222=--.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,另外有理数的运算律在实数范围内仍然适用.26.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x-1)尺,因为B'E=10尺,所以B'C=5尺,利用勾股定理求出x的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB=AB'=x尺,则水深AC=(x-1)尺,因为B'E=10尺,所以B'C=5尺,在Rt△ACB'中,52+(x-1)2=x2,解得:x=13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.。
八年级数学下学期期末考试卷-冀教版(含答案)
【答案】D
【2题答案】
【答案】B
【3题答案】
【答案】D
【4题答案】
【答案】D
【5题答案】
【答案】D
【6题答案】
【答案】A
【7题答案】
【答案】A
【8题答案】
【答案】C
【9题答案】
【答案】B
【10题答案】
【答案】D
【11题答案】
【答案】B
【12题答案】
【答案】C
【13题答案】
【答案】A
【14题答案】
4.下列结论中,矩形具有而平行四边形不一定具有的性质是( )
A.对边平行且相等B.对角线互相平分C.任意两个邻角互补D.对角线相等
5.如图,表示A点的位置,正确的是( )
A.距O点3km的地方
B.在O点的东北方向上
C.在O点东偏北40°的方向
D.在O点北偏东50°方向,距O点3km的地方
6.一次函数 图像如图所示,则k和b的取值范围是( )
学生测试成绩频数分布表
组别
成绩x(分)
频数(人)
频率A401B100.25
C
m
n
D
8
0.2
E
6
0.15
(1) ______, ______;
(2)补全频数分布直方图;
(3)若要画出该组数据的扇形统计图,计算组别C对应的扇形圆心角的度数;
(4)若测试成绩不低于80分就可以获得“防疫小达人”奖章,若该校共有2000人参加此次知识测试,请估计获得“防疫小达人”奖章的人数.
21.在平面直角坐标系中, 的位置如图所示.
(1)分别写出以下顶点的坐标:A______;B______;C______;
冀教版八年级数学(下)期末测试卷及答案
冀教版八年)期末测试 时间:90 分钟 满分:100 分 一、选择题(每小题 2 分,共 20 分) 1.以图(1)的右边缘所在的直线为轴将该图形向右翻转 180°后,再按顺 时针方向旋转 180°,所得到的图形是( ) 2.下列图形中,即是轴对称图形,又是中心对称图形的是( ) 3.如图是某人骑自行车的行驶路程 s(km)与 行使时间 t(h)的函数图像,下列说法不正 确的是( ) A.从 0h 到 3h,行驶了 30km B.从 1h 到 2h 匀速前进 C.从 1h 到 2h 原地不动
D.从 0h 到 1h 与从 2h 到 3h 的行驶速度相同 4.甲、乙、丙、丁四位同学来到木工厂参观时,一木工师傅拿尺子要他们 帮助检测一个窗框是否是矩形,他们各自做了如下检测,检测后,他们都说 窗框是矩形,你认为最有说服力的是( ) A.甲量的窗框两组对边分别相等 B.乙量的窗框的对角线长相等 C.丙量的窗框的一组邻边相等 线长相等 5.下列命题正确的是( ) A.用正六边形能镶嵌成一个平面 B.有一组对边平行的四边形是平行四 边形 C.正五角星是中心对称图形 D.对角线互相垂直的四边形是菱形 6.解方程的结果是..... D.丁量的窗框两组对边分别相等且对角
冀教版八年级下册数学期末测试卷及含答案
冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、一个多边形的内角和是720°,则这个多边形的边数为()A.4B.5C.6D.72、小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于()A.180°B.195°C.210°D.225°3、如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45°B.60°C.120°D.135°4、把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9B.10C.11D.以上都有可能5、一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6、在平面直角坐标系中,点P(2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7、一个多边形的外角和是内角和的一半,则它是()边形。
A.7B.6C.5D.48、八边形的内角和为()A.180°B.360°C.1080°D.1440°9、六边形共有几条对角线()A.6B.7C.8D.910、下列说法正确的是()A.长方体的截面一定是长方形B.了解一批日光灯的使用寿命适合采用的调查方式是普查C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360°11、如图,在中,高相交于点,若,则()A. B. C. D.12、在下列性质中,平行四边形不一定具有的性质是()A.对边相等B.对边平行C.对角互补D.内角和为360°13、如果用(2,15)表示会议室里的第2排15号座位,那么第5排9号座位可以表示为()A.(2,15)B.(2,5)C.(5,9)D.(9,5)14、不能作为正多边形的内角的度数的是( )A.120°B.108°C.144°D.145°15、如图所示,在四边形纸片ABCD中,∠A=80°,∠B=70°,将纸片沿着MN 折叠,使C,D分别落在直线AB上的,处,则∠+∠等于()A.50°B.60°C.70°D.80°二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,对角线AC、BD交于点O,延长CD至点G,使GD= CD,过点D作DE⊥AG,将△ADE沿着AD翻折得到△ADF,连结OF交CD 于点H.当CD=3时,求FH的长度为________.17、若正比例函数y=(k-2)x的图象经过点A(1,-3),则k的值是________.18、如图,在中,分别为边上的点(不与端点重合).对于任意,下面四个结论中:①存在无数个四边形,使得四边形是平行四边形;②至少存在一个四边形,使得四边形菱形;③至少存在一个四边形,使得四边形矩形;④存在无数个四边形,使得四边形的面积是面积的一半.所有正确结论的序号是________.19、三张完全相同的卡片上分别写有函数y=3x,,y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是________.20、如图,已知平面直角坐标系内,A(﹣1,0),B(3,0),点D是线段AB 上任意一点(点D不与A,B重合),过点D作AB的垂线l.点C是l上一点,且∠ACB是锐角,连结AC,BC,作AE⊥BC于点E,交CD于点H,连结BH,设△ABC面积为S1,△ABH面积为S2,则S1•S2的最大值是________.21、矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为________ cm.2422、如图,直线l:y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交y一轴于点A2;再过点A 2作y轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为________;点An的坐标为________.23、已知A(a﹣5,2b﹣1)在y轴上,B(3a+2,b+3)在x轴上,则C(a,b)向左平移2个单位长度再向上平移3个单位长度后的坐标为________.24、一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往B地,如表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x(时)之间的关系:行驶时间x/时0 1 2 2.5余油量y/升100 80 60 50则y与x的函数关系式为________,自变量x的取值范围为________.25、如图,在七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4的外角和等于225°,则∠BOD=________°.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。
冀教版数学八年级下学期期末测试卷二(含答案及解析)
冀教版数学八年级下学期期末测试卷二一、选择题(本大题共 12 个小题,每小题 3 分,共36 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)若点P(a,b)在第二象限,则点P 到x 轴,y 轴的距离分别是( )A.a,bB.b,aC.-a,-bD.b,-a2.(3 分)已知点A 与点B 关于y 轴对称,若点A 的坐标为(-1,a),点B 的坐标为(b,3),则ab 等于( )A.-3B.3C.-1D.13.(3 分)函数y= x−3中,自变量x 的取值范围是( )x−5A.x>5B.x≥3C.3≤x<5D.x≥3,x≠54.(3 分)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资 S(吨)与时间 t(时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A.4 小时B.4.4 小时C.4.8 小时D.5 小时5.(3 分)已知函数:①y=0.2x+6;②y=-x-7;③y=4-2x;④y=-x;⑤y=4x;⑥y=-(2-x),其中,y 的值随x 的增大而增大的函数有( )A.1 个B.2 个C.3 个D.4 个6.(3 分)若一次函数y=kx-b,kb<0,且函数值随x 的减小而增大,则它的大致图像是( )A B C D7.(3 分)如图所示,在直角坐标系中,直线l 所表示的一次函数是( )A.y=3x+3B.y=3x-3C.y=-3x+3D.y=-3x-38.(3 分)如图所示,小球从点 A 运动到点 B,速度 v(米/秒)和时间 t(秒)的函数关系式是 v=2t.如果小球运动到点 B 时的速度为 6 米/秒,那么小球从点 A 到点 B 的时间是()A.1 秒B.2 秒C.3 秒D.4 秒9.(3分)已知 x = 3, y =− 2点坐标是( )和 x = 2,是二元一次方程 ax+by=-3 的两个解,则一次函数 y=ax+b 与 y 轴的交y = 1 A.(0,-7) B.(0,4) C. 0, − 37D. - 3 ,0710.(3 分)平行四边形的一个内角是 70°,则其他三个内角分别是 ( )A.70°,130°,130°B.110°,70°,120°C.110°,70°,110°D.70°,120°,120°11.(3 分)如图所示,在四边形 ABCD 中,Q 是 CD 上的一定点,P 是 BC 上的一动点,点 E,F 分别是 PA,PQ 的中点,当点 P 在 BC 上移动时,线段 EF 的长度 ()A.先变大,后变小B.保持不变C.先变小,后变大D.无法确定12.(3 分)如图所示,矩形 ABCD 中,E 是 BC 的中点,且∠AED=90°.当 AD=10 cm 时,AB 等于 ( )A.10 cmB.5 cmC.5 2 cmD.5 3 cm二、认真填一填(本大题共 5 个小题,每空 3 分,共 18 分。
冀教版八年级下册数学期末测试卷及含答案(典型题)
冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、内角为108°的正多边形是()A.3B.4C.5D.62、如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.kB.2k+1C.2k+2D.2k-23、如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则么的度数为()A.120°B.180°C.240°D.300°4、六边形一共有对角线()A.7条B.8条C.9条D.10条5、根据下列表述,能确定位置的是( )A.光明剧院 2 排B.某市人民路C.北偏东 40°D.东经112°,北纬 36°6、一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为()A.5B.6C.7D.87、下列说法中,正确有()①估计的值在7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是﹣2;④若a>b,则a﹣b>0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';A.1个B.2个C.3个D.4个8、如图所示,∠1+∠2+∠3+∠4+∠5+∠6=_____()A.180°B.360°C.540°D.不能确定9、如图所示,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点()A.(1,3)B.(-2,0)C.(-1,2)D.(-2,2)10、如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为()A.10B.9C.8D.711、一个多边形的内角和与它的外角和相等,这个多边形的边数是()A.3B.4C.5D.612、一个正多边形的一个内角为150°,则正多边形的边数是()A.10B.11C.12D.1513、若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1B.1:1C.5:2D.5:414、已知△ABC的∠A=80 ,剪去∠A后得到一个四边形,则∠1+∠2的度数为( )A.100B.160C.260D.28015、一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7B.7或9C.8或9D.7或8或9二、填空题(共10题,共计30分)16、已知在一个样本中,40个数据分别在4个组内,第一、二、四组数据的频数分别为5,12,8则第三组的频率为________.17、如图,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是 ________.(填写所有正确结论的序号)18、如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC 的面积为6,则k的值等于________.19、如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,则线段AF 的长的最小值________.20、已知菱形ABCD的周长为20cm,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm,面积是________cm2.21、已知一个多边形的每个外角都是24°,此多边形是________边形.22、如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO 是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为________.23、点(-3,5)到x轴上的距离是________.24、直线一定不经过第________象限.25、点到轴的距离是________。
冀教版八年级下册数学期末测试卷及含答案
冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知一个n边形的每个外角都等于,则n的值是A.5B.6C.7D.82、正n边形的每个内角都是135 °,则n的值为().A.7B.8C.9D.103、已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3B.4C.5D.64、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)5、一个多边形的每个内角都等于144°,则这个多边形的边数是 ( )A.8B.9C.10D.116、一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7、一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8、一个多边形的每个内角都等于140°,则这个多边形的边数是()A.7B.8C.9D.109、己知一个多边形的内角和是360°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形10、多边形的内角和不可能是()A.360°B.720°C.810°D.2160°11、如图,有一个角是的三角形纸片,剪去这个角后得到一个四边形,则的度数为()A. B. C. D.12、如图,已知△ABC为等边三角形,若沿图中虚线剪去∠B,则∠1+∠2等于()A.120°B.135°C.240°D.315°13、下列说法中,正确的有()个①两点之间直线最短;②若,则a=b;③任何一个有理数都可以用数轴上的一个点来表示;④过n边形的每一个项点有(n﹣2)条对角线.A.1B.2C.3D.414、下列图形中,能镶嵌成平面图案的是( )A.正六边形B.正七边形C.正八边形D.正九边形15、已知一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数是()A.9B.10C.11D.12二、填空题(共10题,共计30分)16、请写出一个图象经过第一、三象限的正比例函数的解析式________ .17、如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1, P2, P3,…,Pn﹣1,过每个分点作x轴的垂线分别交直线AB于点T1, T2, T3,…,Tn﹣1,用S1, S2, S3,…,Sn﹣1分别表示Rt△T1OP1, Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= ________.18、为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别身高(cm)A x<150B 150≤x<155C 155≤x<160D 160≤x<165E x≥165根据图表中信息,回答下列问题:(1)在样本中,男生身高的中位数落在________ 组(填组别序号),女生身高在B组的人数有________ 人;(2)在样本中,身高在150≤x<155之间的人数共有________ 人,身高人数最多的在________ 组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生约有________ 人.19、如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD 的延长线于点F,则DF=________ cm20、今年夏天,重庆各区持续高温日数达到历史之最,受持续高温和连日无雨的影响,重庆某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).若总蓄水量不多于900万m3为严重干旱,则该水库发生严重干旱时的天数为________天.21、如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=________.22、已知点M(m,n)与点N(-2,-3)关于x轴对称,则m+n=________.23、如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1, S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为________.24、在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,设第秒运动到点为正整数),则点的坐标是________.25、如图,在平行四边形ABCD中,AB=10,BC=15,tan∠A= 点P为AD边上任意一点,连结PB,将PB绕点P逆时针旋转90°得到线段PQ.若点Q恰好落在平行四边形ABCD的边所在的直线上,则PB旋转到PQ所扫过的面积________(结果保留π)三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、一个凸多边形共有20条对角线,它是几边形?是否存在有15条对角线的多边形?如果存在,它是几边形?如果不存在,说明得出结论的过程.28、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x (元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)29、如图,在YABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.30、已知▱ABCD的周长为36cm,过点A作AE⊥BC,AF⊥CD,垂足分别为E、F.若AE=2cm,AF=4cm.求▱ABCD的各边长.参考答案一、单选题(共15题,共计45分)1、B2、B3、B5、C6、C7、B8、C9、A10、C11、C12、C13、A14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
冀教版八年级下册数学期末测试卷及含答案
冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若一个多边形的每一个外角都等于,则这个多边形的边数是()A.7B.8C.9D.102、如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来的多边形的边数是()A.5B.6C.7D.83、如图四边形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,则∠A 的度数是()A.60°B.76°C.77°D.78°4、设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>bB.a=bC.a<bD.b=a+180°5、在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A.30°B.40°C.80°D.120°6、如果一个多边形的内角和等于900°,这个多边形是()A.四边形B.五边形C.六边形D.七边形7、如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.260°C.180°D.140°8、若一个多边形有14条对角线,则这个多边形的边数是()A.10B.7C.14D.69、某同学在计算某n边形的内角和时,不小心少输入一个内角,得到和为2005°.则n等于()A.11B.12C.13D.1410、一个五边形的5个内角中,钝角至少有()A.5个B.4个C.3个D.2个11、下列说法正确的是()A.三角形的三条高线的交点一定在三角形的内部B.多边形外角和为C.在中,,则为钝角三角形D.三条线段长度分别为,,,则这三条线段可以组成一个三角形12、一个多边形的内角和等于,则它是()边形A.7B.8C.9D.1013、一个多边形有14条对角线,那么这个多边形的边数是()A.5B.6C.7D.814、若一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是()A.4B.5C.6D.715、若正多边形的一个内角是120°,则这个正多边形的边数为()A.8B.7C.6D.5二、填空题(共10题,共计30分)16、如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是________.17、如图,在平面直角坐标系中,正方形ABCD的顶点A、B的坐标分别为(0,2)、(1,0),顶点C在函数y=x2+bx-1的图象上,将正方形ABCD沿x轴正方向平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′之间的距离为 ________.18、函数y= + 中自变量x的取值范围是________.19、如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有一点P,当PA+PB+PC值最小时,PB的长为________.20、已知菱形的周长是20cm,一条对角线长为8cm,则菱形的另一条对角线长为________21、如图,直线y=x与双曲线y= 交于点A,将直线y=-x向右平移使之经过点A,且与x轴交于点B,则点B的坐标为________.22、如图,在长方形ABCD中,AB<BC,点P为长方形内部一点,过点P分别作PE⊥BC于点E、PF⊥CD于点F,分别以PF、CF为边作正方形PMNF,正方形GHCF,若两个正方形的面积之和为42,长方形PECF的面积为11,BE=DF=2,则长方形ABCD的面积为________.23、夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为________.24、关于x的函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是________.25、如图,有一菱形纸片,,将该菱形纸片折叠,使点恰好与的中点重合,折痕为,点、分别在边、上,联结,那么的值为________.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF为菱形.28、每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①写出A、B、C的坐标.②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B 1、C1.29、王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y 轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?30、平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,若CE=2,DF=1,∠EBF=60°,求平行四边形ABCD的面积.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、B5、C6、D7、B8、B9、D10、D11、B12、C13、C14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
冀教版八年级下册数学期末测试卷(附答案)
冀教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如下图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)2、若一个多边形的每个外角都等于60°,则它的内角和等于()A.360°B.540°C.720°D.960°3、一个多边形的外角和等于其内角和的,则它的边数为()A.12B.11C.10D.94、从n边形一个顶点出发,可以作()条对角线.A.nB.n﹣1C.n﹣2D.n﹣35、如图,⊙A、⊙B、⊙C、⊙D两两外离,且半径都是,则图中的四个扇形(即阴影部分)面积之和是()A. B. C. D.6、已知四边形ABCD中,∠A与∠B互补,∠D=70°,则∠C的度数为()A.70°B.90°C.110°D.140°7、已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4B.5C.6D.88、一个多边形的外角和是内角和的,这个多边形的边数为()A.5B.6C.7D.89、若从n边形的某个顶点引出的所有对角线,把这个n边形分成51个三角形,则n等于()A.49B.51C.53D.5610、如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个11、一个多边形的每一个外角都等于36 ,则该多边形的内角和等于()A.1080°B.900°C.1440°D.720°12、在平面直角坐标系中,点(-3,)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限13、如图,六边形ABCDEF的内角都相等,,则下列结论成立的个数是① ;② ;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF即是中心对称图形,又是轴对称图形()A.2B.3C.4D.514、一个五边形的5个内角中,钝角至少有()A.5个B.4个C.3个D.2个15、n边形所有对角线的条数有()A. 条B. 条C. 条D. 条二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A(4,0),B(0,2),反比例函数的图象经过矩形ABCD的顶点C,且交边AD于点E,若E为AD的中点,则k的值为________.17、点( ,2)关于原点对称的点的坐标是________.18、如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是________19、矩形是特殊的平行四边形.________(判断对错)20、如图,在平面直角坐标系中,点的坐标,将线段绕点O按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点O按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、,……,(n为正整数),则点的坐标是________.21、将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为________.22、如图,七边形ABCDEFG中,AB,ED的延长线交于点O,外角∠1,∠2,∠3,∠4的和等于220°,则∠BOD的度数是________度.23、如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=________°.24、在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为________.25、如图,平面直角坐标系中,已知点B(﹣3,2),将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是________.三、解答题(共5题,共计25分)26、已知,当时,;当时,. 求出k,b 的值;27、如图,矩形ABCD的两条对角线AC、BD相交于点O,∠AOD=120°,AB=2.求矩形边BC的长?28、如图,点A坐标为(﹣2,3),将点A绕原点O顺时针旋转90°得点A′,求A′的坐标.29、已知正比例函数图象(记为直线l1)经过(1,﹣1)点,现将它沿着y轴的正方向向上平移1个单位得到直线l2,(1)求直线l2的表达式;(2)若直线l与x轴、y轴的交点分别为A点、B点,求△AOB的面积.230、如图,已知正方形ABCD中,E为CD边上的一点,F为BC延长线上一点,且CE=CF.若∠BEC=60°,求∠EFD的度数.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、D5、A6、C7、C8、C9、C10、C11、C12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、30、。
冀教版八年级下册数学期末试题试卷含答案
冀教版八年级下册数学期末考试试卷一、选择题(第1~10小题各3分,第11~16小题各2分,共42分)1.下列调查中,比较适合用普查而不适合抽样调查方式的是 ()A.调查一批显像管的使用寿命B.调查“永春芦柑”的甜度和含水量C.调查某县居民的环保意识D.调查你所在学校数学教师的年龄状况2.为了考查一批电脑的质量,从中抽取100台进行检测,在这个问题中的样本是()A.电脑的全体B.100台电脑C.100台电脑的全体D.100台电脑的质量3.某校有300名学生参加毕业考试,其数学成绩在80~90分之间的有180人,则在80~90分之间的频率是()A.0.1B.0.3C.0.5D.0.64.在如图所示的象棋盘上,建立适当的平面直角坐标系,使“炮”位于点(-1,1)上,“相”位于点(4,-2)上,则“帅”位于点()A.(-3,3)B.(-2,2)C.(3,-3)D.(2,-1)5.若点P(a,b)在第二象限,则点P到x轴,y轴的距离分别是()A.a,bB.b,aC.-a,-bD.b,-a6.已知点A与点B关于y轴对称,若点A的坐标为(-1,a),点B的坐标为(b,3),则ab等于()A.-3B.3C.-1D.17.函数y=中,自变量x的取值范围是()A.x>5B.x≥3C.3≤x<5D.x≥3,x≠58.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时9.已知函数:①y=0.2x+6;②y=-x-7;③y=4-2x;④y=-x;⑤y=4x;⑥y=-(2-x),其中,y的值随x的增大而增大的函数有 ()A.1个B.2个C.3个D.4个10.若一次函数y=kx-b,kb<0,且函数值随x的减小而增大,则它的大致图像是 ()A BC D11.如图所示,在直角坐标系中,直线l所表示的一次函数是()A.y=3x+3B.y=3x-3C.y=-3x+3D.y=-3x-3(第11题图)(第12题图)12.如图所示,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,那么小球从点A到点B的时间是()A.1秒B.2秒C.3秒D.4秒13.已知和是二元一次方程ax+by=-3的两个解,则一次函数y=ax+b 与y轴的交点坐标是()A.(0,-7)B.(0,4)C.(0,7)D.(0,-4)14.平行四边形的一个内角是70°,则其他三个内角分别是 ()A.70°,130°,130°B.110°,70°,120°C.110°,70°,110°D.70°,120°,120°15.如图所示,在四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,点E,F分别是PA,PQ的中点,当点P在BC上移动时,线段EF的长度()A.先变大,后变小B.保持不变C.先变小,后变大D.无法确定(第15题图)(第16题图)16.如图所示,矩形ABCD中,E是BC的中点,且∠AED=90°.当AD=10 cm时,AB等于()A.10 cmB.5 cmC.5 cmD.5 cm二、填空题(第17~18小题各3分,第19小题4分,共10分)17.如图所示,在菱形ABCD中,对角线AC,BD相交于点O,AC=8 cm,BD=6 cm,则AB= cm,菱形ABCD的面积=cm2.(第17题图)(第18题图)18.如图所示,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,则∠BCF的度数为.19.在正方形ABCD所在的平面内,到正方形三边所在直线距离相等的点有个.三、解答题(共68分)20.(9分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):注:30~40为时速大于等于30千米而小于40千米,其他类同.数据段频数频率30~40 10 0.0540~50 3650~60 0.3960~7070~80 20 0.10合计 1(1)请你把表中的数据填写完整;(2)补全频率分布直方图;(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?21.(9分)如图所示,四边形ABCD的四个顶点的坐标分别为A(-2,2),B(-4,-3),C(3,-3),D(2,1),求四边形ABCD的面积.22.(9分)已知一次函数y=(m+3)x+m2-16,且y的值随x值的增大而增大.(1)求m的取值范围;(2)若此一次函数又是正比例函数,试m的值.23.(9分)[2016·北京中考]如图所示,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.(10分)为了号召市民向贫困山区的孩子捐赠衣物,某校七年(1)班的同学准备发放倡议书,倡议书的制作有两种方案可供选择:方案一:由复印店代做,所需费用y1与倡议书张数x满足如图(1)所示的函数关系;方案二:租赁机器自己制作,所需费用y2(包括租赁机器的费用和制作倡议书的费用)与倡议书张数x满足如图(2)所示的函数关系.(1)方案一中每张倡议书的价格是元;方案二中租赁机器的费用是元.(2)请分别求出y1,y2关于x的函数关系式;(3)从省钱角度看,如何选择制作方案?25.(10分)已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.(第25题图)(第26题图)26.(12分)如图所示,点M是正方形ABCD的边CD的中点,正方形ABCD的边长为4 cm,点P按A-B-C-M-D的顺序在正方形的边上以每秒1 cm的速度做匀速运动,设点P的运动时间为x(秒),△APM的面积为y(cm2).(1)直接写出点P运动2秒时,△AMP的面积;(2)在点P运动4秒后至8秒这段时间内,y与x的函数关系式;(3)在点P整个运动过程中,当x为何值时,y=3?【答案与解析】1.D2.D3.D4.D(解析:∵“炮”位于点(-1,1)上,“相”位于点(4,-2)上,∴可得原点的位置,即可得出“帅”位于点(2,-1)上.)5.D(解析:∵点P(a,b)在第二象限,∴a<0,b>0,∴点P到x轴、y轴的距离分别是b,-a.)6.B(解析:∵点A(-1,a)和B(b,3)关于y轴对称,∴a=3,b=1,∴ab=3×1=3.)7.D(解析:根据题意有解得x≥3,x≠5.)8.B(解析:解法1:调进物资共用4小时,且速度保持不变,则4小时共调进物资60吨;货物还剩10吨,说明在2小时内,调出物资50吨,可得调出物资的速度为25吨/时,则剩下10吨用时:=0.4(小时),故共用时间4.4小时.解法2:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时后,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2=25(吨/时),需要时间为:60÷25=2.4(小时),∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4(小时).)9.C10.B(解析:∵一次函数y=kx-b,函数值随x的减小而增大,∴k<0.又∵kb<0,∴b>0,-b<0,∴一次函数y=kx-b的图像经过第二、三、四象限.)11.A12.C13.C14.C15.B(解析:连接AQ,∵E,F分别为PA,PQ的中点,∴EF为△PAQ的中位线,∴EF=AQ.∵Q为定点,∴AQ的长度不变,∴EF的长度不变.)16.B(解析:∵矩形ABCD中,E是BC的中点,∴AB=CD,BE=CE,∠B=∠C=90°.在△ABE和△DCE中,∴△ABE≌△DCE,∴AE=DE.∵∠AED=90°,∴∠DAE=45°,∴∠BAE=90°-∠DAE=45°,∴∠BEA=∠BAE=45°.∴AB=BE=AD=×10=5(cm).)17.52418.105°(解析:过点A作AO⊥FB交FB的延长线于点O,连接BD,交AC于点Q.∵四边形ABCD是正方形,∴BQ⊥AC.∵BF∥AC,∴AO∥BQ 且∠QAB=∠QBA=45°,∴AO=BQ=AQ=AC.∵AE=AC,∴AO=AE,∴∠AEO=30°.∵BF∥AC,∴∠CAE=∠AEO=30°,∵BF∥AC,CF∥AE,∴四边形AEFC是平行四边形,∴∠CFE=∠CAE=30°.∵BF∥AC,∴∠CBF=∠BCA=45°,∴∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°.)19.5(解析:共有5个点.在正方形内,正方形的两条对角线的交点;在正方形外,分别以四条边为一边再作四个正方形,每个正方形的两条对角线交点也符合条件.)20.解:(1)如下表:数据段频数频率30~40 10 0.0540~50 36 0.1850~60 78 0.3960~70 56 0.2870~80 20 0.10合计200 1(2)频率分布直方图如图所示. (3)违章车辆共有200×(0.28+0.10)=76(辆).21.解:作AE⊥BC于E,过点D作DF⊥BC于F,=S△ABE++S△CDF=×2×5+×(4+5)×4+×1×4=5+18+2=25.22.解:(1)∵一次函数y=(m+3)x+m2-16,且y的值随x值的增大而增大,∴m+3>0,得出m>-3. (2)又∵此一次函数又是正比例函数,∴m2-16=0,解得m=±4.∵m>-3,∴m=4.23.(1)证明:在△CAD中,∵M,N分别是AC,CD的中点,∴MN∥AD,MN=AD.在Rt△ABC中,∵M是AC的中点,∴BM=AC.∵AC=AD,∴MN=BM. (2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°.由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=.24.解:(1)由函数图像,得方案一中每张倡议书的价格是:50÷100=0.5(元),方案二中租赁机器的费用是:120元.故填0.5,120. (2)设y1=kx,y2=k2x+b,由题意,得50=100k,解得k=0.5,∴y1=0.5x,y2=0.3x+120. (3)当y1>y2时,0.5x>0.3x+120,解得x>600;当y1=y2时,0.5x=0.3x+120,解得x=600;当y1<y2时,0.5x<0.3x+120,解得x<600.综上所述,当x<600时,方案一优惠;当x=600时,两种方案一样优惠;当x>600时方案二优惠.25.解:(1)四边形BNDM是平行四边形.证明如下:∵O是BD的中点,∴OB=OD.∵NO=MO,∴四边形BNDM是平行四边形. (2)四边形BNDM是菱形.理由如下:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM.∴平行四边形BNDM是菱形.26.解:(1)如图(1)所示,当x=2时,AP=2 cm.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4 cm,∠B=∠D=∠C=90°.∴S△AMP=×2×4=4(cm2).(2)如图(2)所示,当4<x≤8时,BP=x-4,PC=8-x,∴S△ABP=×4(x-4)=2x-8,S△PCM=×2×(8-x)=8-x,S△ADM=×2×4=4,∴y=16-4-(2x-8)-(8-x)=12-x.∴在点P运动4秒后至8秒这段时间内,y与x的函数关系式为y=12-x. (3)当0<x≤4时,y=×4x=2x;当4<x≤8时,y=12-x,当8<x ≤10时,如图(3)所示,y=20-2x,当10<x≤12时,如图所示,y=2x-20,∴y= ∴当y=3时,有2x=3,12-x=3,20-2x=3或2x-20=3,解得x=,x=9(不成立),x=8.5或x=11.5.∴在点P整个运动过程中,当x=1.5,x=8.5或x=11.5时,y=3.附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。
冀教版八年级数学下册期末测试卷及答案【全面】
冀教版八年级数学下册期末测试卷及答案【全面】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.107.如图,在数轴上表示实数15的点可能是()A.点P B.点Q C.点M D.点N8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2+的结果是________.a b()21a+8a=__________.32-+=,则m-n的值为________.m n3(1)04.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=6cm,BC=8cm,则AEF的周长=______cm .6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF=CE . 求证:BE=DF .6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、B6、B7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、13、44、2≤a+2b≤5.5、96、8三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、3 x3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、(1)略;(2)2.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
冀教版八年级数学下册期末试卷【及参考答案】
冀教版八年级数学下册期末试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为( )A .40海里B .60海里C .70海里D .80海里二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.若二次根式x 1 有意义,则x 的取值范围是 ▲ .3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、D5、A6、B7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、52、x 1≥.3、如果两个角互为对顶角,那么这两个角相等4、8.5、1(21,2)n n -- 6、7三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3x 3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、(1)略;(2)45°;(3)略.5、略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
冀教版八年级数学下册期末考试及答案【完美版】
冀教版八年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3 2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( ) A .48B .60C .76D .80 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.计算1273-=___________. 3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、D6、B7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-23、3m ≤.4、()()2a b a b ++.5、49136、132三、解答题(本大题共6小题,共72分)1、4x =2、4ab ,﹣4.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)略;(2)4.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.如图,若使菱形ABCD是正方形,则需添加的条件是________________(填上一个符合题目要求的条件即可)
14.甲、乙两名同学10次跳远的平均数相同,若甲10次立定跳远成绩的方差S2甲=0.006,乙10次立定跳远的方差S2乙=0.035,则成绩较为稳定的是_________(填“甲”或“乙”)
15..如图,在△ABC中,∠BAC=1200,如果PM、QN分别垂直平分AB、AC,那么∠PAQ=_______,若BC=10cm,则△APQ的周长为____________.
16..如果一次函数y=(k+1)x-1的y随x的增大而增大,那么k的取值范围是.
17.“平行四边形的对角线互相平分”的逆命题是_______________________
10“五一”期间,几名同学租一辆面包前去旅游,面包车的租价为80元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费,若设参加旅游的学生总数共有x人,则依题意所列方程为()
A、 B、
C、 D、
得分
评卷人
二、你能填得又快又准吗?(每小题3分,共计24分)
11.点M(a,2)是一次函数y=2x-3图像上的一点,则a=________.
证明略(写出两点即得满分)……………………………………………8分
5.如图,已知函数y=kx+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是()
A.x=-2B.x=-4
y=-4 y=-2
C.x=2 D.x=-4
y=-4 y=2
6.依次连接等腰梯形各边中点所得到的四边形是()
A.梯形B.菱形C.矩形D.正方形
7.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()
∴∠BAE=∠DCF……………………………………………4分
又∵AE=CF 5分
∴△ABE≌△CDF(SAS)……………………………………5分
∴BE=DF……………………………………………………6分
法二)如图,连接BF、DE及BD,BD交AC于点D.
∵AB=CD,BC=AD
∴四边形ABCD是平行四边形…………2分
1从平均数和众数相结合看(分析哪个年级成绩好些)
2从平均数和中位数相结合看(分析哪个年级成绩好些)
(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?请说明理由。
得分
评卷人
26(本小题满分8分)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连接PA、PB,构成∠PAC,∠APB∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是00角)
物资种类
食品
药品
生活用品
每辆汽车运载量∕吨
6
5
4
每吨所需运费∕元∕吨
120
160
100
(1)设装运食品的车辆数为x辆,装运药品的车辆数为y辆,求y与x的函数关系式。
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么,车辆的安排有几种方案?并写出每种安排方案。
(3)在(2)的条件下,若要求总运费最少,应采用哪种方案?并求出最少总运费。
去括号得1=2x-6-x
解得x=7………………………………………………4分
经检验x=7是原方程的解
所以原方程的解是x=7………………………………………………5分
20.(1)28……………………………………………………………………1分
(2)40,12………………………………………………………………3分
1.下列图形中,既是轴对称图形,又是中心对称图形的是( )
2.如果关于x的方程=无解,那么m的值为()
A.-2B.5C.2D.3
3.函数y=的自变量x的取值范围是()
A.x≠0B.x≠1C.x>1D.x<1且x≠0
4.菱形具有但矩形不具有的性质是()
A.四边都相等B.对边相等C.对角线互相平分D.对角相等
(3)如果每个年级选3名,七年级前三名的成绩分别为99,91,89,其平均分为93分;八年级前三名的成绩分别为97,88,88,其平均分为91分;九年级前三名的成绩分别为97,96,89,其平均分为94分,所以九年级的实力更强一些。……………………………………………………………………………8分
26.(1)证明:∵AC∥BD
(2)不成立…………………………………………………………4分
(3)①当动点P在射线BA的右侧时,结论为∠PBD=∠PAC+∠APB;
②当动点P在射线BA上时,结论为∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=00或∠PAC=∠PBD(任写一个即可);
③当动点P在射线BA的左侧时,结论为∠PAC=∠PBD+∠APB。
参考答案
题号
1
2
3
4
5
6
7
8
9
10
答案
C
D
B
A
B
B
A
D
A
D
一、你一定能选对!
二、你能填得又快又准吗?
11.12.四边形13.∠BAD=90或AO=BO或AC=BD14.甲15.60,10
16.K>-1,17.对角线互相平分的四边形是平行四边形18.两腰相等,同一底上两角相等,对角线相等
三、
19.解:去分母得1=2(x-3)-x……………………………………………3分
∴∠CAB+∠ABD=1800……………………………………1分
即∠PAC+∠PBD+∠PAB+∠PBA=1800
∴∠PAC+∠PBD=1800-(∠PAB+∠PBA)
又∵∠APB+∠PAB+∠PBA=1800
∴∠APB=1800-(∠PAB+∠PBA)…………………2分
∴∠APB=∠PAC+∠PBD………………………………3分
得分
评卷人
22.(本小题满分6分)已知一次函数的图像经过点(1,1)和(-1,-5)。
(1)求这个一次函数的表达式;
(2)求这个一次函数的图像与x轴、y轴的交点坐标,并求出该图像与两坐标轴围成的三角形的面积。
得分
评卷人
23.(本小题10分)
2009年8月8日我国台湾省遭受了50年罕见的“莫拉克”台风风暴。灾情牵动着大陆人民的心。“水灾无情人有情,我们都是中国人”。某市立即组织了20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点。按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满。根据下表提供的信息,解答下列问题:
∴y=3x-2……………………………………………4分
(2)图像与x轴的交点坐标为( ,0)
图像与y轴的交点坐标为(0,-2)………………5分
S= × ×2= …………………………………6分
23.(1)依题意得,6x+5y+4(20-x-y)=100…………………………2分
整理得,y=-2x+20…………………………………………4分
18.请写等腰梯形ABCD(AB//CD)具有而一般梯形不具有的三个特征:
三、好了,我们该做解答题了,相信你,能通过认真细致的思考,顺利地解答出这几个问题.(本大题共8小题,共计56分)
得分
评卷人
19.计算(5分)
解分式方程
得分
评卷人
20(本小题满分7分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B。市,二人离A市的距离与行驶时间的函数图像如图所示(y代表距离,x代表时间)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD。
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
____________
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论。选择其中一种结论加以证明。
得分
评卷人
24.(本小题满分6分)如图,在△ABC中,∠ABC=450,AD⊥BC于点D,点E在AD上,且BE=AC,观察并猜想线段DE与线段CD的大小关系,然后证明你的猜想。
得分
评卷人
25.(本小题满分8分)
为了迎接国庆60周年,提高中学生的爱国主义热情,我校特组织了以“唱爱国歌曲,颂革命精神”为主题的歌咏比赛活动,中学部三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:
8某次考试,5名学生的平均分是82,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是()
A.84B.86C.88D.90
9.如图,在△ABC中,已知∠ABC和∠ACB的角平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则DE的长为()
A.9B.8
C.7D.6
决赛成绩(单位:分)
七年级
80 86 88 80 88 99 80 74 91 89
八年级
85 85 87 97 85 76 88 77 87 88
九年级
82 80 78 78 81 96 97 88 89 86
(1)请你填写下表:
平均数
众数
中位数
七年级
85.5