2016年中考数学统计与概率复习课件试题(2)高品质版
2016中考数学-统计精品课件
3.在频数分布直方图中,一般涉及补全统计图(表),也就 是求未知组的频数(或频率),方法如下:
①未知组频数=样本总量-已知组频数之和; ②未知组频数=样本容量×该组频率; ③未知组频率=1-已知组频率之和;
该组频数 ④未知组频率=样本容量×100%.
1.(2015·葫芦岛)张老师随机抽取6名学生,测试他们的打字能力,
[对应训练] 2.(1)(2015·内江)有一组数据如下:3,a,4,6,7,它们 的平均数是5,那么这组数据的方差是( D ) A.10 B. 10 C. 2 D.2 (2)(2015·本溪)射击训练中,甲、乙、丙、丁四人每人射击 10次,平均环数均为8.7环,方差分别为s甲2=0.51,s乙2=0.41,s 丙2=0.62,s丁2=0.45,则四人中成绩最稳定的是( B ) A.甲 B.乙 C.丙 D.丁
解:(2)该校喜欢阅读“A”类图书的学生人数为960×35%=336(人) (3)抽出的所有情况如图:
两名参赛同学为1男1女的概率为23
数据的收集 【例1】 (1)(2015·鞍山)近年来,食品安全问题备受人们的关注,某 海关想检验一批进口食品的防腐剂含量是否符合国家标准,这种调查适 用__抽样调查__.(填“全面调查”或“抽样调查”) (2)(2015·聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄 范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情 况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中 ,样本是( C ) A.2400名学生 B.100名学生 C.所抽取的100名学生对“民族英雄范筑先”的知晓情况 D.每一名学生对“民族英雄范筑先”的知晓情况
频数的大小在总数中所占的份量,频率之和等于___1_. 4.统计图
2016中考数学复习课件试题 第六章 统计与概率
内容
抽样调查 (1)全面调查;(2)____________.
数据收集的 常用方法 数据的收集 总体 个体 样本 要考察的全体对象 组成总体的每一个考察对象 被抽查的那些个体组成一个样本 注意:在抽样调查中我们通常采用的方法是
简单随机抽样,即总体中的每一个个体都有
相等的机会被抽到
样本容量
样本中个体的数目
“五水共治”知识竞赛,在班里选取了若干名学生,分成人数
相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩
优秀的人数和优秀率分别绘制成如下统计图 6-1-2.
图 6-1-2
根据统计图,回答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完
整;
(2)已求得甲组成绩优秀人数的平均数- x 甲组=7,方差 s2 甲组=
果数据的个数是偶数,则称中间两个数据的 平均数为这组数据的中位数
众数 极差 数据的分析 (反映数据离
最多 的数据 一组数据中出现次数________
最大数-最小数
公式:设 x1,x2,„,xn 的平均数为- x ,则
方差
散程度的量)
1 这 n 个数据的方差为 s2=n[(x1-- x )2+(x2- - x )2+„+(xn-- x )2]
第六章 统计与概率
第1讲 抽样与数据分析
1.经历收集、整理、描述和分析数据的活动,了解数据处 理的过程;能用计算器处理较为复杂的数据. 2.体会抽样的必要性,通过实例了解简单随机抽样. 3.会制作扇形统计图,能用统计图直观、有效地描述数据. 4.理解平均数的意义,能计算中位数、众数、加权平均数, 了解它们是数据集中趋势的描述. 5.体会刻画数据离散程度的意义,会计算简单数据的方差.
2016年中考数学试题分项版解析(第03期)专题07 统计与概率
专题07 统计与概率一、选择题1.(2016四川省乐山市第3题)某班开展1分钟仰卧起坐比赛活动,5名同学的成绩如下(单位:个):37、38、40、40、42.这组数据的众数是()A.37 B.38 C.40 D.42【答案】C.【解析】试题分析:由题意得,40出现的次数最多,众数为40.故选C.考点:众数.2.(2016广东省茂名市第4题)下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在放动画片【答案】B【解析】考点:随机事件3.(2016广东省梅州市第2题)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为( )A.3 B.4 C.5 D.6【答案】B【解析】试题分析:因为众数为3,所以,x=3,原数据为:3,3,4,5,6,所以,中位数为4考点:(1)、众数的计算;(2)、中位数的计算4.(2016广东省深圳市第7题)数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A.71 B. 31 C. 211 D. 101【答案】A 【解析】试题分析:根据题意可得:共7个小组,第3小组是1个小组,所以,概率为71考点:概率的求法5.(2016广东省深圳市第8题)下列命题正确是( ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.两边及一角对应相等的两个三角形全等 C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和6 【答案】D 【解析】考点:(1)、命题的真假;(2)、平行四边形、三角形的判定;(3)、平方根、中位数、众数的概念 6.(2016广西省贺州市第5题)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A .B .C .D . 【答案】D 【解析】试题分析:由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案.∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:. 考点:(1)、概率公式;(2)、绝对值7.(2016贵州省毕节市第5题)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.54【答案】【解析】试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
中考数学(福建地区)专题复习:统计与概率题 课件
①若一人获胜,则甲向右移动3个单位长度,乙向左移动1个单位长度;②若平局,则甲向右移动1个单位长度,乙向左移动3个单位长度.
(1)第一轮竞猜后,乙的位置停留在2处的概率是_ _;
第二部分 福建中考专题过关
专题二 统计与概率题
1.每年的3月5日,某中学毕业班的每位学生都会收到一封任课老师写给自己的信.九(10)班有48名学生,数学、语文、英语3位任课老师分别给其中的16名学生写信,3位老师用抽签的方式选择写信的学生(每位学生被抽到的可能性相同).
(1)亦航特别希望自己能收到数学老师的信,当他看到同桌小越收到了数学老师的信后,心里很着急,认为自己收到数学老师的信的概率变小了.你同意他的想法吗?直接写出他收到数学老师的信的概率.
(2)第二轮竞猜后,分别取甲、乙停留的数作为点的横坐标和纵坐标,求该点落在第二象限的概率.
[答案] 画树状图如图所示.
(该点落在第二象限) .
3.[2023莆田质检] 在贯彻落实“五育并举”的工作中,某校在课后服务中开设了多门校本选修课.为了解全校学生对“莆田地方特色美食烹饪”“中华传统文化美德讲习”“莆田传统节日习俗赏析”和“莆田民俗体育项目传承”4门选修课的喜爱情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):
[答案] 设托塔李天王、哪吒、巨灵神、鱼肚将、药叉将分别为A,B,C,D, ,“选出的两人正好是哪吒和巨灵神”为事件 .
所有等可能出现的ห้องสมุดไป่ตู้果总数为20个,事件 所含的结果数为2个, , 选出的两人正好是哪吒和巨灵神的概率为 .
新课标人教版初中数学中考数学复习《概率与统计》精品课件
【例4】 某商店举办有奖销售活动,办法如下:凡购货满100元者得奖 券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一 等奖50个,二等奖100个,那么买100元商品的中奖概率应该是( )
A.
B.
C.
D.
【例5】 某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运
中考概率试题特点分析
一、考查对概率意义的理解以及频率和概率 关系的认识.
二、考查利用列举法计算事件发生的概率.
三、考查运用概率的知识和方法分析、说理, 解决一些简单的实际问题.
有6张写有数字的卡片,它们的背面都相同,现将它 们背面朝上(如图),从中任意摸出一张是数字3的概率 是( B ).
1
3
1
观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”
的概率为
.
某商场设立了一个可以自由转动的转盘, 并规定:顾客购物10元以上就能获得一次转动 转盘的机会,当转盘停止时,指针落在哪一区 域就可以获得相应的奖品.下表是活动进行中 的一组统计数据。
(1)计算并完成表格:
转动转盘的次数 n
100 150 200 500 800 1000
(1)求甲、乙、丙三名学生在同一个阅览室读书的概率; (2)求甲、乙、丙三名学生中至少有一人在B阅览室读书的 概率.
解:所有可能出现的结 甲 乙 丙
结果
果如右表:
A A A (A,A,A)
(1)甲、乙、丙三名学 A A B (A,A,B)
生在同一个餐厅用餐的概率 A B A (A,B,A)
是1;
A B B (A,B,B)
4(2)甲、乙、丙三名学 B A A (B,A,A)
生餐中的至概少 率有是一7 人.在B餐厅用
中考总复习第四单元统计与概率ppt、中考真题及模拟(附答案)
则这 10 个区县该日最高气温的众数和中位数分别是( A ) A.32,32 B.32,30 C.30,32 D.32,31
3.[2009,北京] 在每年年初的市人代会上,北京市财政局都要报告上一年度市财 政预算执行情况和当年预算情况.以下是根据 2004—2008 年报告中的有关数据制 作的市财政教育预算与实际投入统计图表的一部分. 2004—2008 年北京市财政教育预算与实际投入对比统计图
二、京考真题
【考情分析】
年份 2009 题型 选择 4分 解答 众数、 中位数 算术 平均数 平均数 方差 众数、 中位数 众数、 中位数 算术 平均数 加权平 均数 2010 2011 2012 2013 2014 猜猜看
【热考精讲】
► 热考一 统计方式的选择
例 1 下列采用的调查方式合适的是 ( C ) A.为了了解炮弹的杀伤力,采用普查的方式 B.为了了解全国中学生睡眠状况,采用普查的方式 C.为了了解人们保护水资源的意识,采用抽样调查的 方式 D.对载人航天器“神舟七号”零部件的检查,采用抽 样调查的方式
(1)方差是各个数据与平均数的差的平方的平均数. (2)方差反映了一组数据的波动大小,方差越大,数据 波动越大;方差越小,波动越小.
三、试金石
1.[2013,北京]某中学随机地调查了 50 名学生,了解他们一周在校 的体育锻炼时间,结果如下表所示: 时间 (小时) 人数 5 10 6 15 7 20 8 5
B
则这 50 名学生这一周在校的平均体育锻炼时间是( A.6 2 小时 B.6 4 小时 C.6
)
5 小时 D.7 小时
2.[2012,北京] 北京市今年 6 月某日部分区县的最高气温如下表: 区 县 最 高 气 温 (℃) 大 兴 32 通 州 32 平 谷 30 顺 义 32 怀 柔 30 门 头 延 沟 32 庆 29 昌 平 32 密 云 30 房 山 32
【3份】2016中考数学(人教版)备战策略课件:第九章 统计与概率 共228张PPT
1.下列四种调查: ①调查某班学生的身高情况;②调查某城市的空 气质量;③调查某风景区全年的游客流量;④调查某 批汽车的抗撞击能力. 其中适合用全面调查方式的是( A.① 答案: A B.② C.③ ) D.④
2.在一次中学生田径运动会上,参加跳高的 15 ቤተ መጻሕፍቲ ባይዱ 运动员的成绩如下表所示: 成绩 (米) 人数 (人) A. 4 C. 1.70 答案:D 1.50 1 1.60 2 1.65 4 1.70 3 1.75 3 ) 1.80 2
方法总结: 全面调查得到的数据准确,但费时费力;抽样调 查得到的数据不够准确,但省时省力. 具有破坏性的调 查要采用抽样调查 .
考点二 平均数、中位数、众数的计算 例 2(2015· 日照 )某市测得一周 PM2.5的日均值 ) (单位:微克 /立方米 )如下: 31,30,34,35,36,34,31. 对这 组数据下列说法正确的是( A.众数是 35 C.平均数是 35 B.中位数是 34 D.方差是 6
1 2 2 方差 s = [(30- 33) + 2× (31- 33) + 2× (34- 7 32 2 2 2 33) + (35- 33) +(36- 33) ]= ,故 D错误.故选 B. 7
2
【答案】 B
考点三 方差的计算 例 3(2015· 内江 )有一组数据如下: 3, a, 4,6,7, ) 它们的平均数是 5,那么这组数据的方差是 ( A. 10 B. 10 C. 2 D. 2
2.平均数、加权平均数 (1)如果有 n 个数 x1, x2, x3,„, xn,那么 x = 1 (x1+ x2+x3+„+ xn)叫做这 n 个数的算术平均数, 简 n 称平均数.
(2)若 n 个数 x1,x2, x3,„, xn 的权分别是 ω1, x1ω1+ x2ω2+„+ xnωn ω2, ω3,„, ωn,则 叫做这 ω1+ ω2+„+ ωn n 个数的加权平均数.数据的权能够反映数据的相对 “重要程度”.
2016年中考数学 微测试系列专题13 统计与概率(含解析)
专题13 统计与概率学校:___________姓名:___________班级:___________1.【黑龙江绥化2015年中考数学试卷】从长度分别为1、3、5、7的四条线段中任选三条作边 ,能构成三角形的概率为( ) A. 21 B. 31 C. 41 D.51 【答案】C 【解析】考点:简单事件的概率.2.【黑龙江大庆2015年中考数学试卷】某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )A .7,7B .8,7.5C .7,7.5D .8,6【答案】C .【解析】试题分析:在这一组数据中7是出现次数最多的,故众数是7;排序后处于中间位置的那个数是7,8,那么由中位数的定义可知,这组数据的中位数是(7+8)÷2=7.5;故选C .考点:1.众数;2.条形统计图;3.中位数.3.【2015届河北省保定市定州市中考三模】下列说法中错误的是( )A .掷一枚均匀的骰子,骰子停止转动后6点朝上是必然事件B .了解一批电视机的使用寿命,适合用抽样调查的方式C.若a为实数,则|a|<0是不可能事件D.甲、乙两人各进行10次射击,两人射击成绩的方差分别为S甲2=2,S乙2=4,则甲的射击成绩更稳定【答案】A.【解析】考点:1.随机事件;2.全面调查与抽样调查;3.方差.4.【2015届浙江省杭州市西湖区中考一模】下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是().A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B.【解析】试题分析:根据方差的意义可作出判断.通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定.故选:B.考点:1.方差;2.条形统计图.5.【黑龙江牡丹江2015年中考数学试题】一组数据1,4,6,x 的中位数和平均数相等,则x 的值是 .【答案】﹣1或3或9.【解析】考点:1.中位数;2.算术平均数.6.【湖北襄阳2015年中考数学试题】若一组数据1,2,x ,4的众数是1,则这组数据的方差为 .【答案】32. 【解析】试题分析:因为一组数据1,2,x ,4的众数是1,所以x =1.于是这组数据为1,1,2,4.该组数据的平均数为:14[1+1+2+4]=2. 方差2S =22221[(12)(12)(22)(42)]4-+-+-+-=32. 故答案为:32. 考点:1.方差;2.众数.7.【2015届山西省吕梁市孝义市中考一模】甲、乙两种水稻品种经过连续5年试验种植,每年的单位面积产量的折线图如图所示,经过计算,甲的单位面积平均产量甲=10,乙的单位面积平均产量乙=10,则根据图表估计,两种水稻品种产量比较稳定的是 .【答案】乙【解析】考点:1.方差;2.折线统计图.8.【2015届浙江省嘉兴市海宁市中考模拟】一个不透明的布袋里装有4个只有颜色不同的球,其中3个白球,1个红球.从中摸出1个球,记下颜色后放回搅匀,再摸出1个球.则两次都摸出红球的概率是.【答案】.【解析】试题分析:首先根据题意画出树状图,可知共有16种等可能的结果,两次都摸出红球的只有1种情况,∴两次都摸出红球的概率是:.故答案为:.考点:列表法与树状图法.9.【辽宁抚顺2015年中考数学试题】电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是.【答案】(1)200;(2)作图见试题解析;(3)600;(4)3 10.【解析】补全统计图,如图所示:(3)根据题意得:2000×30%=600(人),则全校喜欢“Angelababy”的人数为600人;考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.10.【2015届广东省湛江市中考二模】我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.组别成绩组中值频数第一组90≤x<100 95 4第二组80≤x<90 85 m第三组70≤x<80 75 n第四组60≤x<70 65 21根据图表信息,回答下列问题:(1)参加活动选拔的学生共有人;表中m= ,n= ;(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.【答案】(1)50,10,15;(2)74.4.(3)16.【解析】(2)95485107515652174.450x⨯+⨯+⨯+⨯==;(3)将第一组中的4名学生记为A、B、C、D,现随机挑选其中两名学生代表学校参赛,所有可能的结果如下表:A B C DA (B,A)(C,A)(D,A)B (A,B)(C,B)(D,B)C (A,C)(B,C)(D,C)D (A,D)(B,D)(C,D)由上表可知,总共有12种结果,且每种结果出现的可能性相同.恰好选中A和B的结果有2种,其概率为=21 126=.考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.。
专题07统计与概率(第02期)2016年中考数学试题(无答案) (1)
专题07 统计与概率一、选择题1.(2016上海市)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次B.3.5次C.4次D.4.5次2.(2016北京市)在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份3.(2016北京市)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A .①③B .①④C .②③D .②④4.(2016四川省凉山州)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定 5.(2016四川省巴中市)下列说法正确的是( )A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B .审查书稿中有哪些学科性错误适合用抽样调查法C .甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是2S 甲=0.4,2S 乙=0.6,则甲的射击成绩较稳定D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为126.(2016四川省广安市)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:那么被遮盖的两个数据依次是( )A .35,2B .36,4C .35,3D .36,37.(2016四川省成都市)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2S 如下表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁8.(2016四川省攀枝花市)下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查9.(2016四川省泸州市)数据4,8,4,6,3的众数和平均数分别是()A.5,4B.8,5C.6,5D.4,510.(2016四川省泸州市)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.12B.14C.13D.1611.(2016四川省资阳市)我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:则该班同学筹款金额的众数和中位数分别是()A.11,20B.25,11C.20,25D.25,2012.(2016山东省临沂市)某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.1213.(2016山东省临沂市)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4B.3C.2D.114.(2016山东省德州市)下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过由交通信号灯的路口,遇到红灯”是必然事件15.(2016山东省德州市)某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定16.(2016江苏省宿迁市)一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.617.(2016江苏省无锡市)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:这12名同学进球数的众数是()A.3.75B.3C.3.5D.718.(2016江苏省淮安市)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5B.6C.4D.219.(2016湖南省邵阳市)在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95B.90C.85D.8020.(2016福建省福州市)下列说法中,正确的是()A.不可能事件发生的概率为01B.随机事件发生的概率为2C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次21.(2016福建省福州市)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差二、填空题22.(2016上海市)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.23.(2016上海市)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.24.(2016北京市)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:估计该种幼树在此条件下移植成活的概率为.25.(2016四川省宜宾市)已知一组数据:3,3,4,7,8,则它的方差为.26.(2016四川省巴中市)两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为.27.(2016四川省成都市)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.28.(2016四川省攀枝花市)对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数是.29.(2016四川省自贡市)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.30.(2016四川省资阳市)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.31.(2016山东省菏泽市)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.32.(2016江苏省宿迁市)某种油菜籽在相同条件下发芽试验的结果如表:发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).33.(2016江苏省淮安市)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 .34.(2016湖北省黄冈市)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是 . 35.(2016湖南省邵阳市)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是 .36.(2016甘肃省兰州市)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个. 37.(2016福建省福州市)已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数1y x 图象上的概率是 .三、解答题38.(2016北京市)调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2-5之间,这300户家庭的平均人数均为3.4.小天、小东、小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表 (单位:3m )m)表2 抽样调查小区15户家庭5月份用气量统计表(单位:3m)表3 抽样调查小区15户家庭5月份用气量统计表(单位:3根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查地不足之处.39.(2016北京市)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由.40.(2016吉林省长春市)一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.41.(2016吉林省长春市)某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.42.(2016四川省凉山州)为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.43.(2016四川省宜宾市)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a= ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.44.(2016四川省巴中市)为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对1.英语客观题的“听力部分、单项选择、完型填空、阅读理解、口语应用”进行了问卷调查,要求每位考生都自主选择其中一个类型,为此随机调查了各考点部分考生的意向;2.并将调查结果绘制成如图的统计图表(问卷回收率为100%,并均为有效问卷).被调查考生选择意向统计表根据统计图表中的信息,解答下列问题:(1)求本次被调查的考生总人数及a、b、c的值;(2)将条形统计图补充完整;(3)全市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?45.(2016四川省广安市)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.46.(2016四川省成都市)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足222a b c +=的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.47.(2016四川省攀枝花市)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择) 请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为 度;条形统计图中,喜欢“豆沙”月饼的学生有 人;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有 人.(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼,现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法,求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.48.(2016四川省泸州市)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?49.(2016四川省自贡市)我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.50.(2016四川省资阳市)近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”(100km≤R<150km),B表示“纯电动乘用车”(150km≤R<250km),C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.51.(2016山东省临沂市)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表(1)填空:a= ,b= ;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?52.(2016山东省德州市)在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下: 甲:79,86,82,85,83 乙:88,79,90,81,72. 回答下列问题:(1)甲成绩的平均数是 ,乙成绩的平均数是 ;(2)经计算知2S 甲=6,2S 乙=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.53.(2016山东省菏泽市)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是 . (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是 .(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺序通关的概率. 54.(2016江苏省宿迁市)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.55.(2016江苏省宿迁市)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.56.(2016江苏省无锡市)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表根据以上图表信息,解答下列问题:(1)表中a= ,b= ;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?57.(2016江苏省无锡市)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)58.(2016江苏省淮安市)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.59.(2016江苏省淮安市)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.60.(2016江西省)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?61.(2016江西省)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;③游戏结束之前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.62.(2016湖北省黄冈市)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.63.(2016湖北省黄冈市)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m= %,n= %,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?。
2016届中考数学复习测试题频率概率统计图众数中位数平均数
2016届中考数学复习测试题频率概率统计图众数中位数平均数数据的统计与分析、概率【知识要点】1、把一组数据从小到大排列后,处在最中间的数据(数据有奇数个)或中间两个数据(有偶数个数据)的平均数就是这组数据的数;把一组数据先求和,再除以数据的总个数就可以得到该组数据的数;数是一组数据中出现次数最多的数据(一组数据的众数可能不只一个);是一组数据中最大值与最小值的差.平均数、中位数和众数都是反映一组数据集中趋势的量,平均数、中位数和众数所描述的角度不同,它们分别代表这组数据的“一般水平”、“中等水平”和“多数水平”;而极差反映的是一组数据的波动范围.2、是样本中各数据与样本平均数的差的平方和的平均数数据x1,x2, (x)n,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越,越不稳定;方差越小,波动越,越稳定.3、求概率的常用方法是列举法. 设A是随机事件,那么不发生A也是随机事件,记这个随机事件为A,称A,A互为对立事件.P(A)=1-P(A) 或P(A)=1-P(A) 称该公式为反概率公式,【典型例题】1、一组数据:2,3,4,x中,若中位数与平均数相等,则数x不可能是()A、1B、2C、3D、52、下表为某班成绩的次数分配表.已知全班共有38人,且众数为50分,中位数为60分,求x2-2y 之值为何()成绩(分)23456791次数(人)2 3 5 x 6 y 3 4A.33 B.50 C.69 D.90 3、某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为x甲、x乙错误!未找到引用源。
,方差依次为s甲2、s乙2,则下列关系中完全正确的是()甲 5.05 5.02 5 4.96 4.97(1)本次参与调查的市民共有人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请将图1的条形统计图补充完整;(4)根据调查结果.学校准备开展关于雾霾知识竞赛,某班要从小明和小刚中选一人参加,现设计了如下游戏来确定:在一个不透明的袋中装有2个红球和3个白球,它们除了颜色外都相同,小明先从袋中随机摸出一个球,小刚再从剩下的四个球中随机摸出一个球,若摸出的两个球颜色相同,则小明去;否则小刚去.现在,小明同学摸出了一个白球,则小明参加竞赛的概率为6、有四张正面分别标有数学﹣3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程有正整数解的概率为。
中考数学一轮复习专题7统计与概率7.2概率(试卷部分)课件
解析 (1)P(抽到不合格品)= = .
(2)解法一(列举法): 设1件不合格品为A,3件合格品分别为B1,B2,B3.任意抽取2件产品,所有可能出现的结果有(A,B1)、 (A,B2)、(A,B3)、(B1,B2)、(B1,B3)、(B2,B3),共有6种,它们出现的可能性相同.所有的结果
3 1 6 2
做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t ≤8),E类(t>8),绘制成尚不完整的条形统计图如图.
根据以上信息,解答下列问题:
(1)E类学生有 人,补全条形统计图; %; (2)D类学生人数占被调查总人数的 (3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4 中的概率.
定 C.“明天降雨的概率为 ”,表示明天有半天都在降雨 D.了解一批电视机的使用寿命,适合用普查的方式
1 2
答案 B 方差描述一组数据的稳定性,方差越小,数据越稳定,B选项正确,故选B.
3.(2014梅州,2,3分)下列事件中是必然事件的是 (
A.明天太阳从西边升起 B.篮球队员在罚球线上投篮一次,未投中 C.实心铁球投入水中会沉入水底 D.抛出一枚硬币,落地后正面朝上
)
答案 C
A项是不可能事件,B、D项为不确定事件,故选C.
考点二
概率
1.(2018广州,6,3分)甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,
分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率
是 ( A.
1 2
) B.
1 3
C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(2014 年新疆乌鲁木齐)下列说法正确的是( ) A.“明天降雨的概率是 80%”表示明天有 80%的时间降雨 B.“抛一枚硬币正面朝上的概率是 0.5”表示每抛硬币 2 次 就有 1 次出现正面朝上 C.“彩票中奖的概率是 1%”表示买 100 张彩票一定会中奖 D.“抛一枚正方体骰子朝上面的数为奇数的概率是 0.5” 表示如果这个骰子抛很多很多次,那么平均每 2 次就有 1 次出 现朝上面的数为奇数 答案:D
[易错陷阱]大量反复试验下频率稳定值为该事件的概率, 注意随机事件发生的概率在0 和1 之间,而不是一种必然的结 果.
利用公式求概率 例 1:(2015 年广东茂名)在一个不透明的袋中装有 2 个黄 球,3 个黑球和 5 个红球,它们除颜色外其他都相同. (1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球 的概率; (2)现在再将若干个红球放入袋中,与原来的 10 个球均匀 混合在一起,使从袋中随机摸出一个球是红球的概率是23,请求 出后来放入袋中的红球的个数.
图 6-2-1
A.15
B.25
C.35
D.45
答案C
5.(2015 年浙江金华)如图所示的四个转盘中,C,D 转盘分 成 8 等份,若让转盘自由转动一次,停止后,指针落在阴影区 域内的概率最大的转盘是( )
A.
B.
C.
D.
答案:A
[名师点评](1)概率的求法先找准两点:①全部情况的总数; ②符合条件的情况数目;二者的比值就是其发生的概率.
解:(1)画树状图(如图 D95)得
图 D95 ∵共有 4 种等可能的结果,两次传球后,球恰在 B 手中的 只有 1 种情况,∴两次传球后,球恰在 B 手中的概率为14.
(2)画树状图(如图 D96)得
图 D96 ∵共有 8 种等可能的结果,三次传球后,球恰在 A 手中的 有 2 种情况,∴三次传球后,球恰在 A 手中的概率为28=14. [易错陷阱]用列表法或画树状图法求概率时.注意列表法或 画树状图法可以不重复不遗漏地列出所有可能的结果,列表法 适合于两步完成的事件,树状图法适合两步或两步以上完成的 事件;注意概率等于所求情况数与总情况数之比.
=260=130.
【试题精选】 6.(2015 年安徽)A,B,C 三人玩篮球传球游戏,游戏规则 是:第一次传球由 A 将球随机地传给 B,C 两人中的某一人, 以后的每一次传球都是由上次的传球者随机地传给其他两人中 的某一人. (1)求两次传球后,球恰在 B 手中的概率; (2)求三次传球后,球恰在 A 手中的概率.
第2讲 事件的概率
1.能通过列表、画树状图等方法列出简单随机事件所有可 能的结果,以及指定事件发生的所有可能结果,了解事件的概 率.
2.知道大量的重复试验,可以用频率来估计概率.
知识点
内容
概率
表示一个事件发生的__可__能__性__大__小__的数
m
P(A)=____n____(m 表示试验中事件 A 出
思路分析:(1)用白球数除以总球数即可. (2)可列表格求出总结果数,及摸出的两个球都是红球的结 果数,再利用概率公式计算. 解:(1)从袋中任意摸出一个球,有五种等可能的结果,其 中有两种是白球, 则 P(从袋中任意摸出一个球,摸出的一个球是白球)=25.
(2)列表如下:
白
白
红
红
红
白
—
(白,白) (红,白) (红,白) (红,白)
白 (白,白)
—
(红,白) (红,白) (红,白)
红 (白,红) (白,红) — (红,红) (红,红)
红 (白,红) (白,红) (红,红) — (红,红)
红 (白,红) (白,红) (红,红) (红,红) —
所有等可能的情况有20 种,其中两次摸出的球都是红球的
情况有 6 种, 则P(从球中同时任意摸出两个球,摸出的两个球都是红球)
[思路分析](1)用黄球的个数除以所有球的个数即可求得概 率;
(2)根据概率公式列出方程求得红球的个数即可. 解:(1)∵共 10 个球,有 2 个黄球,∴P(黄球)=120=15. (2)设有 x 个红球,根据题意得150++xx=23,解得 x=5.
故后来放入袋中的红球有 5 个.
[思想方法]本题运用了方程思想解决实际问题.从分析问题 的数量关系入手,适当设定未知数,把所研究的数学问题中已 知量和未知量之间的数量关系,转化为方程或方程组的数学模 型,从而使问题得到解决的思维方法,这就是方程思想.
事件的类型 及其概率
确定性事件 必然事件
不可能事件
不确定性事件(随机事件)
随机事件概 率的计算
(1)一步完成:直接列举法. (2)两步完成:列表法、画树状图法. (3)两步以上:画树状图法
概率 1或0 ____1____ ____0____ 0<P(A)<1
事件的可能性及概率的意义 1.(2015 年湖北)下列说法中正确的是( ) A.“任意画出一个等边三角形,它是轴对称图形”是随机 事件 B.“任意画出一个平行四边形,它是中心对称图形”是必 然事件 C.“概率为 0.0001 的事件”是不可能事件 D.任意掷一枚质地均匀的硬币 10 次,正面向上的一定是 5 次 答案:B
【试题精选】 3.(2015 年广东佛山)一个不透明的盒子中装有 6 个大小相 同的乒乓球,其中 4 个是黄球,2 个是白球.从该盒子中任意摸 出一个球,摸到黄球的概率是( )
1
1
2
2
A.2
B.3
C.3
D.5
答案:C
4.(2015 年山东泰安)如图 6-2-1,在方格纸中,随机选择标 有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构 成轴对称图形的概率是( )
(2)求几何概率的方法:先利用几何性质求出整个几何图形 的面积 n,再计算出其中某个区域的几何图形的面积 m,然后 根据概率的定义计算出落在这个几何区域的事件的概率为mn .
利用列表或树状图求概率 例 2:(2014 年广东佛山)一个不透明的袋里有两个白球和 三个红球,它们除颜色外其他都一样. (1)求“从袋中任意摸出一个球,摸出的一个球是白球”的 概率; (2)直接写出“从袋中同时任意摸出两个球,摸出的两个球 都是红球”的概率.
概率的概念、不 同类型事件的概
概率公式 现的次数,n 表示所有等可能出现的结果 的次数) 一般地,在大量重复试验中,如果事件 A
率、概率的估计 用频率可以 发生的频率mn 会稳定在某个常数 p 附近,
估计概率
那么事件 A 发生的概率 P(A)=p=mn
(续表)
知识点
内容
事件类型
概率的概念、不 同类型事件的概 率、概率的估计