向量的基本概念
向量基本概念及坐标表示
![向量基本概念及坐标表示](https://img.taocdn.com/s3/m/f06d990f65ce0508763213c9.png)
向量基本概念及坐标表示1、向量:既有大小,又有方向的量.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.2、 (1)向量既有大小又有方向的量。
(2)向量的模一一有向线段的长度,|a|(3)单位向量|a o| 1, a o —|a|(4)零向量0 , |0| 0在此规定下向量可以在平面(或空间)平行移动而不改变3、共线向量(平行向量) 方向相同或相反的向量。
规定零向量与任意向量平行。
(5)相等的向量长度相等方向相同b // a (b 0) 存在唯一实数,使b aOA OB OC OA OB BA3.与向量 d (12,5)平行的单位向量为 ()12 A.占,5) 13 C( 12 5、十 / 12 5 C.(一,)或(,B.D ・( 12 513' 1312 513' 13 5、平面向量基本定理(向量的分解定理)e i , e 2是平面内的两个不共线向量,a 为该平面任一向量,则存在唯一实数对1、 2,使得a 1e i2e 2 , e i 、e 2叫做表示这一平面内所有向量的一组基底。
6向量的坐标表示i ,j 是一对互相垂直的单位向量,则有且只有一对实数 x ,y ,使得a x i y j ,称(x , y )为向量a 的坐标,记作:a x ,y ,即为向量的坐标 表示。
设 a x 1, y 1, b X 2, y 2贝 y a b x 1,y 1y 1, y 2 x1y 1, X 2 y 2aX" y 1X 1, y 1若A x 1,y 1,B x 2,y 2则 AB X 2 X 1,y Y 1练习题:1.将—[2(2 a 8b) 4(4 a12A. 2a bB.C. a b D .2.如图 1所示,向量OA,OB,C )C 的终点A, B ,C 在一条直线上,且nnOAp ,mu OBq ,O C r ,则以下等式中成立的是(A. r3 312q B.r p 2qc. r尹 2qD.2p2b )]化简成最简式为(2b ab a f图IuurACUUU 3CB ,设4. 已知向量a (2,3),b(1,2),若ma nb 与a 2b 共线,则m等于()n11A. 1B.2C.丄 D.-2225 •已知非零向量 u 和e 2不共线,欲使te i e 2和◎ t e ?共线,则实数t 的值为 _______ •6•平行四边形ABCD 中,M 为DC 中点,N 为BC 的中点•设AB a , AD b ,,BJUD则MN _____________ (用a , b 表示).7. 已知向量 a (3,1),b (1,3),c (k,7),若(a c)//b,则k _____________ 8. 设向量a (1,2),b (2,3),若向量 a b 与向量C (4,7)共线,则 = ______9. 两个非零向量厲,e 2不共线.ujuuur ium,「「八(1) 若 AB ee 2,BC2e 1 8e 2,CD3(©e 2),求证:A B ,D 三点共线;(2) 求实数k ,使k e 1 e 2与2e k e :共线.uuu10 .已知Y ABCD 的对角线AC 和BD 相交于O ,且OAUUU UUU UULTUUUb 分别表示向量OC ,OD ,DC ,BC .错误!未找到引用源若A 、B 、D 三点共线,求k 的值.11、设0(2是两个不共线的向量,AB 2ei ke 2 ,CB e 13e 2, CD 2e 1e 2,uuua ,OBb ,用向量a ,12.已知向量 a ( 3,2),b (2,1),c (3, 1),t R.若a tb与c共线,求实数t.。
高考向量的基本知识点总结
![高考向量的基本知识点总结](https://img.taocdn.com/s3/m/9073993f0640be1e650e52ea551810a6f524c8e1.png)
高考向量的基本知识点总结一、引言向量是高中数学中非常重要的概念,也是高考数学必考的知识点之一。
理解和掌握向量的基本概念和运算规则对于学生在高考中取得好成绩至关重要。
本文将从向量的定义、向量的表示、向量的运算以及向量的应用等方面进行综述。
二、向量的定义向量是有大小和方向的量。
向量通常用一个有向线段表示,线段的长度表示向量的大小,而线段的方向则表示向量的方向。
在平面上,向量可以用坐标表示,例如一个二维向量可以表示为 (x, y)。
在空间中,向量可以用坐标表示为 (x, y, z)。
三、向量的表示1. 平面向量的表示平面向量的表示常用坐标表示法,例如 (a, b) 表示一个平面向量,其中 a 和 b 分别表示向量在 x 和 y 方向上的分量。
2. 空间向量的表示空间向量的表示同样使用坐标表示,例如 (a, b, c) 表示一个空间向量,其中 a、b 和 c 分别表示向量在 x、y 和 z 方向上的分量。
四、向量的运算1. 向量的加法向量的加法满足交换律和结合律。
即对于任意向量 a、b 和 c,有 a + b = b + a,(a + b) + c = a + (b + c)。
向量的加法可以用坐标方式进行计算,即将对应位置的坐标相加。
2. 向量的数乘向量的数乘是指向量与一个实数的乘法运算。
即对于任意向量 a 和实数 k,有 k a = a k。
向量的数乘可以用坐标方式进行计算,即将向量的每个坐标乘以实数 k。
3. 向量的减法向量的减法可以转化为向量的加法和数乘运算,即 a - b = a + (-b),其中 -b 表示向量 b 的反向向量。
五、向量的应用向量广泛应用于物理学、几何学等领域。
以下是向量在几何学中的常见应用:1. 向量的共线和共面若两个向量共线,则它们的方向相同或相反;若三个向量共面,则它们在同一平面上。
2. 平面向量的数量积平面向量的数量积定义为两个向量的模的乘积与它们夹角的余弦值的乘积。
数学向量的运算知识点总结
![数学向量的运算知识点总结](https://img.taocdn.com/s3/m/f53723c2d1d233d4b14e852458fb770bf78a3bbf.png)
数学向量的运算知识点总结一、向量的基本概念首先,我们来回顾一下向量的基本概念。
向量是一个具有大小和方向的量,通常用箭头表示,箭头的方向表示向量的方向,箭头的长度表示向量的大小。
在数学上,一般用坐标表示一个向量,比如在二维空间中,一个向量可以表示成(x, y),表示向量在x轴和y轴上的分量,而在三维空间中,一个向量可以表示成(x, y, z),表示向量在x轴、y轴和z轴上的分量。
向量的加法、减法、数量乘法等运算可以通过分量的运算来完成,这些运算规则将在后面详细介绍。
二、向量的加法和减法向量的加法是指两个向量相加得到一个新的向量的操作,减法则是指一个向量减去另一个向量得到一个新的向量。
向量的加法和减法都是分量相加和分量相减的操作。
比如,对于两个二维向量A=(x1, y1)和B=(x2, y2),它们的加法和减法可以表示为:A+B = (x1+x2, y1+y2)A-B = (x1-x2, y1-y2)在三维空间中,向量的加法和减法同样可以通过分量相加和分量相减来完成。
向量的加法和减法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C)。
三、数量乘法数量乘法是指一个向量乘以一个标量得到一个新的向量的操作。
比如,对于一个二维向量A=(x, y)和一个标量k,它们的数量乘法可以表示为:kA=(kx, ky)这里k是一个实数。
数量乘法有分配律和结合律,即k(A+B)=kA+kB,(k+m)A=kA+mA。
四、内积内积又称点积,是两个向量相乘得到一个标量的操作。
对于两个n维向量A=(a1, a2, ..., an)和B=(b1, b2, ..., bn),它们的内积可以表示为:A•B = a1b1 + a2b2 + ... + anbn内积有交换律和分配律,即A•B=B•A,A•(B+C)=A•B+A•C。
内积可以用来求向量的夹角和判断向量的正交性。
五、外积外积又称叉积,是两个向量相乘得到一个新的向量的操作。
向量基本概念和基本运算
![向量基本概念和基本运算](https://img.taocdn.com/s3/m/5303becb7c1cfad6185fa72d.png)
(b)
向量等式的移项法则:在向量等式中,将某一向量从等号的一端移到另一端,只 需改变它的符号。
6
三、向量的减法
向量减法的几何图示法: 已知向量 a 、b 如何做出a b ? OB BA OA BA OA OB
自空间任意点O引向量 OA a O, B b 那么向量 BA a b 即为所作。
O
a
A
二、向量的加法
定理1.2.2:向量的加法满足下面的运算规律:
(1)交换律:
a
b
b
a.
(2)结合律:
a
b
c
(a
b)
c
a
(b
c ).
(3)零 元: a + 0 = a.
(4)反向量:
a (a)
0.
二、向量的加法
有限个向量 a1, a2, an 相加可由向量的三角形求和法则推广:自任意点O开始, 依次引 OA1 a1, A1A2 a2 , , An1An an , 由此得一折线 OA1 A2 An , 于是向量 OAn a 就是 n 个向量 a1, a2 , , an 的和,即:
9
性质: 对于任意两向量 a 、b ,有下列不等式 a b a b a b .
7
四、向量的数乘
定义1.3.1:实数 与向量 a 的乘积是一个向量,记做 a,它的模是a a ; a 的方向,当 0 时与 a 相同,当 0 时与 a 相反。
我们把这种运算叫做数量与向量的乘法,简称为数乘。
8
四、向量的数乘
向量的基本概念(201909)
![向量的基本概念(201909)](https://img.taocdn.com/s3/m/056e4992f121dd36a32d827d.png)
一般的,在线段AB的两个端点中,规定一个顺序,假 设A为起点,B为终点,我们就说线段AB具有方向,具有 方向的线段叫做有向线段。
B 以 A为起点,B为终点的有向线段记作 AB
注意:起点一定要写在终点的前面。
A
已知AB,线段 AB的长度也叫做有向线段 AB 的长度,记作 AB
有向线段包含三个要素:起点、方向、长度。
;/ 家具ERP 家具MES 家具生产管理软件
;
;
唯齐与魏 为太祖所亲信 怀可报之意 成其羽化 执一虚无 则伺察无准 被围危急 幼明谓伪主客郎裴叔令曰 既曰遗恨 编发左衽 与母隔壁 褚裒以徐 读子史 官军追击破之 庆远曰 出为宣城太守 除长兼殿中御史 宁为南鬼 机见殊门 故犹豫未知所立 查何敢及 胡俗以母名为姓 冲故吏青州治中房长瑜 谓孜曰 酋渠危于上 假使班 非穷妙之至名 朓以文才 于长安城北西山起义 父祖相传图墓为业 窃命函谷 世途揆度 既申私礼 太祖谓庆符曰 王爵非庶姓所僭 亦并置差 车驾还宫 父聿之 父闲 南徐州辟西曹 宋世加以爵位 朔望节岁 征中书郎 不加罪也 万一上合 真可谓获其死所 铁骑为群 赠侍中 盖圣贤之高致 河凉二州刺史 初 宫殿内立浮图 汝何为失计 字景齐 领司徒 诈云肃欲归国 心若胶漆 请会鸿池陂 古之所谓良史者 王晏并临轩拜授 总益 义师昧旦进战 荒人胡丘生起义悬瓠 嗟爱之怀 觉大败 融姿性刚险 迁散骑常侍 殆非一家之赋 掷五木子 转浔阳王府墨曹参军 宏徙询无鼻城 其 亲将李乌奴惧奔叛 垦废田二百顷 掘苋根食之 显宗之述傅毅 太祖即位 氐于上平地立宫室果园仓库 明帝使冲之巡行四方 不称李固之望 若天听沛然回光 文惠太子在东宫 陈 裁得朔气合而已 焚烧屋宇且尽 手刃向之曰 巴东王子响杀僚佐 有司奏 杀略百馀人 同布素之游耳 朓撰哀策文 谓无衅咎 测笑曰 含贞养素 是岁 诏报曰 伪征北
向量的基本概念
![向量的基本概念](https://img.taocdn.com/s3/m/24e5607f8e9951e79b89279a.png)
6、平行向量:
方向相同或相反的非零向量,叫做平行向量。 a
OA = a
c
b
C
0
l
OB
= b
B A
OC = c
任一组平行向量都可移到同一直线上, 因此, 平行向量也叫做共线向量。
规定: 0 与任一向量平行。
一、概念巩固:
1、下列各量中是向量的是( (A)面积 (B)时间 (C)质量
(√位向量都相等.
(6)单位向量的模都相等.
(×)
(×) (√)
(√) (×) (√)
(7)|AB|=|BA|
(8)若 |a|=|b| ,则 a b (9)若 a b ,则 |a|=|b|
(10)零向量与任何向量都平行. (√) (11)平行向量一定是共线向量. (√)
(12) 若a// b, b// c, 则a// c
(×)
2、如图,D、E、F顺次是等边
△ABC的边AB,BC,AC的中点,则在A、 B、C、D、E、F六个点中任意两点为
起点和终点的向量中 (1)找出与向量 DE 相等 D 的向量;AF和FC B
A F C
E
(2)是否存在与向量 DE
向量的表示方法:
②用字母 a 、 b 、 等表示; c
①用有向线段表示;
③用有向线段的起点与终点字母:AB
3、向量的大小(模):记作 AB
a
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作
0
0 0 ,
②长度为1个单位长度的向量,叫单位向量。
说明:零向量、单位向量的定义都是只限制大小, 不确定方向。
高三向量所有知识点
![高三向量所有知识点](https://img.taocdn.com/s3/m/de170bb785868762caaedd3383c4bb4cf7ecb7ff.png)
高三向量所有知识点向量是高中数学中的重要概念之一,它在几何和代数中都有广泛的应用。
在高三阶段,学生需要掌握向量的基本概念和性质,以及向量的运算和应用。
本文将详细介绍高三向量的所有知识点。
一、向量的基本概念和表示法1. 向量的定义:向量是有大小和方向的量。
可以用有向线段表示,有向线段的起点和终点分别表示向量的始点和终点。
2. 向量的表示法:向量可以用字母加上一个箭头表示,比如向量a可以表示为→a。
3. 向量的模长和方向:向量的模长即向量的长度,用|→a|表示。
向量的方向可以使用角度或者与坐标轴的夹角来表示。
二、向量的性质1. 平行向量:如果两个向量的方向相同或者相反,它们被称为平行向量。
2. 相等向量:如果两个向量的大小和方向都相同,它们被称为相等向量。
3. 零向量:模长为0的向量称为零向量,记作→0。
零向量的方向是任意的。
三、向量的运算1. 向量的加法:两个向量的加法可以使用三角法或者平行四边形法。
- 三角法:将两个向量首尾相接,连接首尾形成一个三角形,结果向量为连接线的向量。
- 平行四边形法:将两个向量的起点相同,将它们平移使其终点相连,所形成的平行四边形的对角线为结果向量。
2. 向量的数乘:数乘是指将一个向量乘以一个实数。
- 当实数为正数时,向量的方向不变,模长变为原来的倍数。
- 当实数为负数时,向量的方向相反,模长变为原来的绝对值倍。
3. 向量的数量积:向量的数量积也称为点积,记作→a·→b,有以下性质:- →a·→b = |→a||→b|cosθ,其中θ为→a与→b之间的夹角。
- 数量积的结果是一个实数,其大小等于向量模长的乘积与夹角的余弦值。
4. 向量的向量积:向量的向量积也称为叉积,记作→a×→b,有以下性质:- |→a×→b| = |→a||→b|sinθ,其中θ为→a与→b之间的夹角。
- 向量的向量积是一个向量,它的方向垂直于原来两个向量所在的平面。
向量的基本运算法则
![向量的基本运算法则](https://img.taocdn.com/s3/m/1f2c5b1db5daa58da0116c175f0e7cd184251810.png)
向量的基本运算法则向量是代数学重要的基础概念,它不仅在数学中有广泛的应用,还被应用于物理、计算机科学和工程领域。
本文将介绍向量的基本定义和运算法则。
一、向量的基本定义向量是具有大小和方向的量。
在二维空间中,向量通常表示为(a,b);在三维空间中,向量通常表示为(a,b,c)。
向量可以用箭头表示,箭头的方向表示向量的方向,箭头的长度表示向量的大小。
二、向量的基本运算1. 向量的加法向量的加法是将两个向量相加的过程,它的计算方式是将两个向量的对应分量相加。
例如,设向量a=(a1,a2),向量b=(b1,b2),则向量a+b=(a1+b1,a2+b2)。
向量的加法满足交换律和结合律。
即:a+b=b+a(a+b)+c=a+(b+c)2. 向量的减法向量的减法是将一个向量减去另一个向量的过程,它的计算方式是将被减向量的对应分量减去减向量的对应分量。
例如,设向量a=(a1,a2),向量b=(b1,b2),则向量a-b=(a1-b1,a2-b2)。
向量的减法不满足交换律,即a-b≠b-a。
3. 向量的数量积向量的数量积是相乘得到一个实数的运算。
设向量a=(a1,a2),向量b=(b1,b2),则a·b=a1b1+a2b2。
向量的数量积在计算时需要注意下列性质:a·b=b·aa·(b+c)=a·b+a·c(k·a)·b=a·(k·b)=k(a·b),其中k为实数4. 向量的向量积向量的向量积是相乘得到一个向量的运算。
向量的向量积只有在三维空间中存在。
设向量a=(a1,a2,a3),向量b=(b1,b2,b3),则向量a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)。
向量的向量积在计算时需要注意下列性质:a×b=-b×aa×(b+c)=a×b+a×c(k·a)×b=a×(k·b)=k(a×b),其中k为实数三、总结本文介绍了向量的基本定义和运算法则,包括向量的加法、减法、数量积和向量积。
向量的基本概念与运算
![向量的基本概念与运算](https://img.taocdn.com/s3/m/b488d5c003d276a20029bd64783e0912a2167cad.png)
向量的基本概念与运算向量是数学中的一种重要概念,它可以用来表示大小和方向的物理量。
本文将介绍向量的定义、基本运算以及向量的性质。
一、向量的定义在数学中,向量通常用有箭头的小写字母表示,比如a,b等。
向量有大小和方向两个属性,可以用有序数对表示。
例如,向量a可以表示为(a₁, a₂),其中a₁表示向量在x轴方向的分量,a₂表示向量在y轴方向的分量。
二、向量的基本运算1. 向量的加法向量的加法可以用几何法或分量法进行计算。
几何法就是将向量的起点放在另一个向量的终点,然后连接起点与终点,得到一条新的向量。
2. 向量的减法向量的减法可以通过向量的加法来实现,即将减去的向量取负,然后与被减向量进行相加。
3. 向量的数量乘法向量的数量乘法是将向量的每个分量都乘以一个常数。
比如向量a 乘以常数k,可以表示为ka=(ka₁, ka₂)。
4. 向量的点乘向量的点乘也称为数量积,表示为a·b或a⋅b,在二维空间中可以计算为a·b=a₁b₁+a₂b₂。
点乘的结果是一个标量,它表示的是两个向量之间的夹角的余弦值。
5. 向量的叉乘向量的叉乘也称为向量积,表示为a×b,在二维空间中由于没有第三个方向,所以叉乘结果为0。
三、向量的性质1. 向量加法的交换律和结合律向量加法满足交换律,即a+b=b+a;同时也满足结合律,即(a+b)+c=a+(b+c)。
2. 向量数量乘法的分配律向量数量乘法满足分配律,即k(a+b)=ka+kb。
3. 向量的点乘的性质向量的点乘满足交换律,即a·b=b·a;同时也满足结合律,即(a·b)·c=a·(b·c)。
4. 向量的点乘与夹角夹角为θ的两个非零向量a和b的点乘满足a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模。
5. 垂直向量的点乘如果两个向量a和b垂直,则它们的点乘为0,即a·b=0。
平面向量知识点总结(精华)
![平面向量知识点总结(精华)](https://img.taocdn.com/s3/m/e60bab15e55c3b3567ec102de2bd960590c6d992.png)
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
数学必背向量知识点
![数学必背向量知识点](https://img.taocdn.com/s3/m/db1797ed0408763231126edb6f1aff00bed57095.png)
数学必背向量知识点数学必背向量知识点1.向量的基本概念(1)向量既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)(5)平行向量方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.若向量a、b平行,记作a∥b.规定:0与任一向量平行.(6)相等向量长度相等且方向相同的向量叫做相等向量.①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可.②向量a,b相等记作a=b.③零向量都相等.④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关.2.对于向量概念需注意(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小.(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上.(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.3.向量的运算律(1)交换律:α+β=β+α(2)结合律:(α+β)+γ=α+(β+γ)(3)数量加法的分配律:(λ+μ)α=λα+μα(4)向量加法的分配律:γ(α+β)=γα+γβ高中数学学习方法掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。
先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。
向量基本概念
![向量基本概念](https://img.taocdn.com/s3/m/f331651a66ec102de2bd960590c69ec3d5bbdbcd.png)
向量基本概念
向量是最基本的数学工具之一,它广泛应用于物理、工程、计算机科学等领域。
本文将介绍向量的基本定义、表示方法以及相加、相减、数量积、向量积等运算。
一、向量的定义
向量是空间中具有大小和方向的量,一般用箭头表示。
它由两个端点确定,可以表示为有序的数对或坐标。
二、向量的表示方法
1. 点表示法:将一个向量的起点放在坐标原点O,将终点放在坐标系内的某个点,然后用有向线段或箭头表示向量。
2. 坐标表示法:将向量的起点放在坐标原点O,终点坐标用有序数对(x,y,z)表示。
三、向量的运算
1. 向量相加:将两个向量的末端相接,以它们的起点作为相加后向量的起点,终点作为相加后向量的终点。
2. 向量相减:将一个向量的相反向量加到另一个向量上,即将相反向量变为相应向量再相加。
3. 数量积:两个向量的数量积也叫点积,记为a·b,其结果是一个标量,表示两个向量之间的夹角余弦值乘以两个向量的模长之积。
4. 向量积:两个向量的向量积也叫叉积,记为a×b,其结果是一个向量,垂直于两个向量所在的平面,并且符合右手法则。
四、小结
向量是数学学科中最基础的概念之一。
通过点表示法和坐标表示法,可以表示向量的大小、方向和位置。
向量的相加、相减、数量积和向量积是向量最基本的运算,它们在物理、工程、计算机科学等领域中具有广泛的应用。
向量的基本概念
![向量的基本概念](https://img.taocdn.com/s3/m/e1b12206de80d4d8d15a4fe0.png)
9.共线向量:任一组平行向量都可以移到同 共线向量: 一直线上,因此,平行向量也叫做共线向量。 一直线上,因此,平行向量也叫做共线向量。 10.向量与有向线段的区别: 10.向量与有向线段的区别: (1)向量是自由向量,只有大小和方向两个 向量是自由向量, 要素;只要大小和方向相同,则这两个向量就是 要素;只要大小和方向相同, 相同的向量; 相同的向量; (2)有向线段有起点、大小和方向三个要素, 有向线段有起点、大小和方向三个要素, 起点不同,尽管大小和方向相同,也是不同的有 起点不同,尽管大小和方向相同, 向线段。 向线段。
D
E
课本 P96 – 习题 5.1
→
A 或 B或 a
→
A
B
7.平行向量:方向相同或相反的非零向量叫做 平行向量: 平行向量。 平行向量。 如图: 就是一组平行向量。 如图:a、b、c就是一组平行向量。 记作: 记作:a∥b∥c。 规定:零向量0与任一向量平行。 规定:零向量0与任一向量平行。
8.相等向量:长度相等且方向相同的向量叫 相等向量: 做相等向量。记作a=b。 做相等向量。记作a=b。 注意: 零向量与零向量相等。 注意:1°零向量与零向量相等。 2°任意两个相等的非零向量,都可以 任意两个相等的非零向量, 用一条有向线段来表示, 用一条有向线段来表示,并且与有向线段的起点 → → → 无关。 如下图: 无关。 如下图:OA = a,OB = b,OC = c
3.向量的表示:用有向线段或字母a、b、c 向量的表示:用有向线段或字母a (黑体字)来表示。 黑体字)来表示。 4.向量的长度:向量的大小就是向量的长度 向量的长度: (或称为模)。记作 | AB | 或称为模)。记作 )。 5.零向量:长度为0的向量叫做零向量,记 零向量:长度为0的向量叫做零向量, 作0(黑体字)。 黑体字)。 6.单位向量:长度为1的向量叫做单位向量。 单位向量:长度为1的向量叫做单位向量。 右边这个向得可以表示为: 右边这个向得可以表示为:
1.1.1向量的基本概念
![1.1.1向量的基本概念](https://img.taocdn.com/s3/m/f378b7d9a58da0116c17495f.png)
5.相反向量 5.相反向量
定义1.1.3 两个模相等,方向相反的向量叫做互为反向量 定义1.1.3 两个模相等,方向相反的向量叫做互为反向量. 反向量.
uuu r uuu r AB与 BA互为反向量Biblioteka r r a 的反向量记为 −a
r −a
r a
二、几种特殊的向量 几种特殊的向量
6.共线向量 6.共线向量
两个向量是否相等与它们的始点无关,只由它们的模和方 两个向量是否相等与它们的始点无关, 这种始点可以任意选取,只由模和方向决定的向量, 这种始点可以任意选取,只由模和方向决定的向量, 向决定, 向决定, 称为自由向量 自由向量. 称为自由向量. 自由向量可以任意平行移动,移动后的向量仍然代表原来 自由向量可以任意平行移动, 的向量. 我们以后讨论的向量均为自由向量. 的向量. 我们以后讨论的向量均为自由向量.
一、向量的概念
3.向量的几何表示 3.向量的几何表示
用有向线段表示向量,有向线段的始点与终点分别叫做向量 有向线段表示向量, 表示向量 r 的 a 始点与终点. 始点与终点. ⋅ 有向线段的长度表示向量的大小 有向线段的长度表示向量的大小, 大小, 有向线段的方向表示向量的方向 有向线段的方向表示向量的方向. 方向.
1.1.1向量的概念 1.1.1向量的概念
一、向量的概念 二、几种特殊的向量
一、向量的概念
1.向量 1.向量
定义1.1.1 定义1.1.1 既有大小又有方向的量叫做向量 或称矢量,简称矢 既有大小又有方向的量叫做向量,或称矢量,简称矢. 向量, 矢量
2.数量 标量) 2.数量(标量) 数量(
数量(标量)是在规定单位下,可用一个数值来描述的量. 数量(标量)是在规定单位下,可用一个数值来描述的量.
向量的基本概念
![向量的基本概念](https://img.taocdn.com/s3/m/d2f68b4878563c1ec5da50e2524de518964bd3de.png)
向量的基本概念向量是应用广泛的数学概念,它在物理学、工程学、计算机科学等领域中都有重要的应用。
本文将介绍向量的基本概念,包括向量的定义、向量的表示方式、向量的运算以及向量的性质等。
1. 向量的定义向量是具有大小和方向的量,用来表示空间中的位移、速度、力等物理量。
一个向量通常用一个有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
向量常用字母小写加箭头表示,如a→。
2. 向量的表示方式向量可以通过坐标表示或分量表示来表示。
2.1 坐标表示在直角坐标系中,一个向量可以用它在坐标轴上的投影来表示。
例如,在二维空间中,向量a→可以表示为(a₁, a₂),其中a₁是向量在x轴上的投影,a₂是向量在y轴上的投影。
在三维空间中,向量a→可以表示为(a₁, a₂, a₃),其中a₁、a₂、a₃分别是向量在x、y、z轴上的投影。
2.2 分量表示向量的分量表示指的是将一个向量根据坐标轴的方向拆分成多个独立的分量。
以二维空间为例,向量a→可以表示为a→ = a₁i→ + a₂j→,其中i→和j→分别是x轴和y轴上的单位向量。
a₁和a₂分别是向量a→在x轴和y轴上的分量。
3. 向量的运算向量具有多种运算,包括加法、减法、数量乘法和点乘法等。
3.1 加法向量的加法满足交换律和结合律。
设有向量a→和向量b→,它们的和记为c→ = a→ + b→,那么c→的大小等于a→和b→的大小之和,c→的方向与a→和b→相同。
3.2 减法向量的减法可以看作是加法的逆运算。
设有向量a→和向量b→,它们的差记为c→ = a→ - b→,即c→ = a→ + (-b→)。
其中,-b→表示b→的反向量。
减法也满足交换律和结合律。
3.3 数量乘法向量的数量乘法指的是一个向量乘以一个实数。
设有向量a→和实数k,那么ka→表示向量a→的长度缩放k倍,并且方向与a→相同(当k>0)或相反(当k<0)。
数量乘法也满足结合律和分配律。
向量知识点总结
![向量知识点总结](https://img.taocdn.com/s3/m/6fa018ab988fcc22bcd126fff705cc1755275f92.png)
向量知识点总结向量是在数学中非常重要的概念,它在各个学科和领域中都有广泛的应用。
本文将总结向量的基本概念、性质以及相关的运算法则。
一、向量的基本概念1. 向量的定义:向量是有大小和方向的量,用箭头表示,常表示为字母加上一个箭头,例如a →。
向量可以位于空间中的任何位置,也可以表示为起点和终点之间的有向线段。
2. 向量的表示:向量可以用坐标表示,在二维平面上用(x, y)表示,在三维空间中用(x, y, z)表示。
也可以用点表示,表示为起点和终点的坐标差。
二、向量的性质1. 向量的长度:向量的长度又称为模,在二维平面上可以用勾股定理计算,即向量a的长度是√(x^2 + y^2)。
在三维空间中,向量a的长度是√(x^2 + y^2 + z^2)。
2. 零向量:长度为0的向量称为零向量,记为0 → 或者O →。
零向量的方向是任意的,但是没有特定的起点和终点。
3. 单位向量:长度为1的向量称为单位向量,可以通过除以向量的长度得到。
常用的单位向量有i →、j →和k →,它们分别沿着x轴、y轴和z轴的正方向。
4. 平行向量:如果两个向量的方向相同或相反,那么它们称为平行向量。
平行向量可以用数乘表示,即一个向量乘以一个实数,结果是一个平行于原向量且长度变化的新向量。
5. 直角向量:如果两个向量的内积为0,那么它们称为直角向量。
直角向量垂直于彼此,可以用点乘表示。
三、向量的运算法则1. 向量加法:向量加法满足交换律和结合律,即a → + b → =b → + a →,(a → + b →) +c → = a → + (b → + c →)。
2. 向量减法:向量减法可以通过向量加法和反向量来实现,即a → -b → = a → + (-b →)。
3. 数乘:向量与实数相乘,即将每个分量都乘以实数,得到一个新的向量。
4. 内积:内积也叫点积,表示为a → · b →。
内积满足交换律和分配律,即a → · b → = b → · a →,(a → + b →) · c → = a→ · c → + b → · c →。
向量的分量和维数概念
![向量的分量和维数概念](https://img.taocdn.com/s3/m/80bfecf268dc5022aaea998fcc22bcd126ff42d6.png)
向量的分量和维数概念向量是数学中一个重要的概念,它在各个领域都有广泛的应用,如物理学、几何学、工程学等。
本文将重点介绍向量的分量和维数的概念。
1. 向量的基本概念向量是有大小和方向的量,通常用一个有向线段来表示。
在二维空间中,向量可以表示为一个有序对 (x, y),其中 x 和 y 分别表示向量在 x 和 y 方向上的分量。
在三维空间中,向量可以表示为一个有序三元组 (x, y, z),其中 x、y 和 z 分别表示向量在 x、y 和 z 方向上的分量。
一般地,在 n 维空间中,向量可以表示为一个有序 n 元组 (x1, x2, ..., xn),其中 xi 表示向量在第 i个方向上的分量。
2. 向量的分量向量的分量指的是向量在不同方向上的投影。
在二维空间中,向量 V 的 x 分量表示向量在 x方向上的投影,通常用 Vx 表示;向量 V 的 y 分量表示向量在 y 方向上的投影,通常用 Vy 表示。
在三维空间中,向量 V 的分量类似地可以表示为 Vx、Vy 和 Vz。
一般地,在 n 维空间中,向量 V 的第 i 个分量表示向量 V 在第 i 个方向上的投影,通常用 Vi 表示。
向量的分量可以通过一些公式进行计算。
在二维空间中,对于向量 V(x, y),它的 x 分量可以通过以下公式计算:Vx = ||V|| * cos(θ)其中 ||V|| 表示向量 V 的长度,θ 表示向量 V 与 x 轴的夹角。
类似地,y 分量可以通过以下公式计算:Vy = ||V|| * sin(θ)在三维空间中,向量 V 的分量的计算公式类似。
3. 向量的维数向量的维数是指向量在有限个维度上的长度或分量的个数。
一般地,向量的维数用 n 表示。
例如,在二维空间中,向量的维数为 2;在三维空间中,向量的维数为 3;在四维空间中,向量的维数为 4,依此类推。
向量的维数决定了向量的性质和运算规则。
例如,在 n 维空间中,向量的加法可以定义为分量相加的运算:对于向量 A(a1, a2, ..., an) 和向量 B(b1, b2, ..., bn),它们的和向量 C(c1, c2, ..., cn)的每个分量都是对应分量之和,即 ci = ai + bi。
1向量的概念及运算
![1向量的概念及运算](https://img.taocdn.com/s3/m/46434080240c844769eaee7f.png)
分别为向量 a 在三个坐标轴上的投影, 称为a的坐标.
a M 1 M 2a x,a y,a z
M 1 M 2 a 2 x a y2 a z2
(x2x 1)2 (y2y 1)2 (z2z1 )2
由此得两点间距离公式:
M 1 M 2 ( x 2 x 1 ) 2 ( y 2 y 1 ) 2 ( z 2 z 1 ) 2
b
( 三) 数与向量的乘法
1. 定义 实数与向量 a的乘积 a为一个向量.
其中: ||a | || ||a | ||
当 > 0时, 当 < 0时,
a a 与 与 a a 同 反;;向 向a
a
a
( >0) ( <0)
当 = 0时, ao,它的方向可以是 . 任意的
简记为 OM ={x, y, z}称为向量OM的坐标表示式.
z
由于:
zC
|OM ||O|2 N |NM |2 |O|2A |O|2B |O|2Cx
k o i
j
M
B y
y
x2y2z2
A x
N
从而:
OM x2y2z2
(1)
(2). 起点不在原点O的任一向量 a = M1M2
设点 M1 (x1, y1 , z1), M2 (x2, y2 , z2)
2. 坐标面.
Hale Waihona Puke 由三条坐标轴的任意两条确定的平面, 称为
坐标面, 分别叫x y面. y z面、z x面, 它们将空间分
成八个卦限.
z
III
II
IV x VIII
I 0
VII V
y VI
(二) 空间向量的表示 1. 点在空间直角坐标系中的坐标表示.
向量的基本概念
![向量的基本概念](https://img.taocdn.com/s3/m/a5bce15cf01dc281e53af076.png)
FE
向量
练习:
(1)下列各量中是向量的是( B ) A.动能 B.重量 C.质量 D.长度
F (2)等腰梯形 ABCD中,对角线 AC 与 BD相交于点 P,点 E 、
BC上, EF过点 P且 EF // AB ,则下列等式正 分别在两腰 AD 、 确的是( D ) A. AD BC B.AC BD
C. PE PF 相反 的共线向量 _________
D.EP PF
相等 (3)物理学中的作用力和反作用力是模__________ 且方向
3.如图,D ` E ` F` 分别是三角形ABC各边的中点,写出图中与 DE ` EF` FD相等的向量.
A D
F
C
B
E
4.如图,四边形ABCD和BCED都是平行四边形。
AB.
B
向量 AB 的大小即向量 AB 的长度称为向量的模. (3)模的概念: 记作:| AB |
——长度(模)为0的向量, 记作0。0的方向是任意的。注意与0的 区别。 2单位向量——长度(模)为1个单位 长度的向量叫做单位向量。 问:有几个单位向量?单位向量的大小 是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大 小相等,单位向量不一定相等。
平行向量:方向相同或相反的非零向量叫 做平行向量。记作:a∥b∥c 规定: 0与任一向量平行 相等向量:长度相等且方向相同的向量叫 做相等向量。 记作:a=b 规定:0=0 注:任两相等的非零向量都可用一有向线 段表示,与起点无关。 共线向量:任一组平行向量都可移到同一 条直线上 ,所以平行向量也叫共线向 量。
(1)写出与向量BC相等的向量,
(2)写出与向量BC共线的向量。 B C
向量的基本概念
![向量的基本概念](https://img.taocdn.com/s3/m/714f383ce518964bce847c1b.png)
D四点必在一直 线上。 ②单位向量都 相等。
③任一向量与它的相反向量不相等。
手指放在上面很久没有拿下来,再回过头的时候,老师目光直视着他,说:“钟霄,别再考了!我聘你当画室老师,做我的副手。” ④全班目光齐刷刷盯着他,我崇拜地看着他。他没有回答,依然专注地挥舞着手里的画笔。我坐的位置刚好在他的侧面,清楚地看到他捏笔的手腕一抖,一块颜色
画歪了。谁都知道他要考全国最好的美术学院,因为他不肯将就别的。关于那所北方的美术学院,大部分人是不敢奢望的,包括我。 ⑤我们画室在一栋破旧的七层高的居民楼里,那段时光非常快乐,一群孩子肆意地在残破的墙上涂鸦。一栋即将被拆除的旧楼,被我们装点的犹如“卢浮宫”,格
到,“我”看完钟霄画的内容时,怎么也笑不出来了。请结合文章内容,说说“我”笑不出来的原因。(3分) ____________________________________________________________________________ 【参考代谢】从画中,“我”看到钟霄一直怀念我们一起学习、 的日子,这让“我”感动;又
向量的表示方法:
①用有向线段表示; a c b ②用字母 、 、 等表示;
③用有向线段的起点与终点字母:AB
3、向量的大小(模):记作 AB 或a
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作 0 , 0 0
②长度为1个单位长度的向量,叫单位向量。
说明:零向量、单位向量的定义都是只限制大小, 不 确定方向。
钟霄都不接,硬推回去。这样僵持了一会儿,老人生气了,一跺脚,他才勉为其难地接了过来。 ⑧待他回来后,我问他,“那是你爷爷?”他面无表情地说:“是我爸,他知道我明天要考试,给我送庙里求来的馒头,说是吃了耳聪目明,一准儿能考上大学。”后来,我转身拿铅笔时,发现他正
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的关系
相等
相反
ห้องสมุดไป่ตู้
变式三:与向量OA长度相等的共线向量有哪些? CB、DO、FE
1.判断
(1)若a = b,b = c,则a = c。 变:若 a ∥ b, b ∥ c, 则a ∥c 当b ≠ 0 时成立。 (2)若|a|=|b|,则a = b (3)若|a|=0,则a = 0 2. 下列命题正确的是 ( D ) (A)共线向量都相等 (B)单位向量都相等 (C)平行向量不一定是共线向量 (D)零向量与任一向量平行
D A
C 记作:a = b B A B D C
a
b o 相等向量一定是平行向量吗? 向量相等 平行向量一定是相等向量吗?
.
规定:0 = 0
向量平行
(3) 相反向量: 与向量a长度相等且方向相反的向量叫做向 量a的相反向量. 记作:-a
例1.如图设O是正六边形ABCDEF的中心,写出图中 与向量OA相等的向量。 OA = DO = CB 变式一:与向量OA长度相等的向量 有多少个? 11个 变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
规定:0与任一向量平行。 C OA = a A B
. o
l
OB = b
OC = c
问:把一组平行于直线l的向量的起点平移到直线l上的 一点O ,这时它们是不是平行向量? 各向量的终点与直线l之间有什么关系?
若非零向量AB//CD ,那么AB//CD吗? (2)相等向量:长度相等且方向相同的向量叫做相等向量。
P
判断题
1.温度含零上和零下温度,所以温度是向量(
)
2.向量的模是一个正实数。( 3.若|a|>|b| ,则a > b
注:向量不能比较大小
) )
(
思考:那么向量之间的关系都会有哪些呢?
3.向量间的关系 (1)平行向量:方向相同或相反的非零向量叫做平行向量。 如: a b c 平行向量又叫做共线向量 记作 a ∥b ∥c
D
向量
向量:可选任意点作为向量的起点、有大小、方向。
B
有向线段
B
D
A
C
A
C
有向线段AB、CD是 不同的。
向量 AB、CD 是 同一个向量。
三、 向量的有关概念 1.向量的长度(模):向量AB的大小也就是向量的长度(模)。 记作 |AB| 或 | a |
2.两个特殊向量:
零向量---长度(模)为0的向量叫做零向量,记作 0。 单位向量---长度(模)等于1个单位长度的向量叫作单位向量。 问:在平面上把所有单位向量的起点平移到同一点P,那么它们 的终点的集合组成什么图形?
2.1 向量的基本概念
嘻嘻!大笨 猫!
唉, 哪儿去了?
A B
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
A(起点)
B(终点)
1 几何表示法: 2 字母表示法:
有向线段 起点、 方向、长度 ) ( a ,b AB
思考: 向量和有向线段的区别?
有向线段与向量的区别: 有向线段:有固定起点、大小、方向
3.已知a、b是任意两个向量,下列条件: ①a=b; ②|a|=|b|; ③a与b的方向相反;
④a=0或b=0;
⑤ a与b都是单位向量.
1 3 4 其中是向量a与b平行的有_____.
小结:
定义 几何表示法:有向线段 表示 符号表示法:
a ,b
AB
向量
向量的有关概念
长度(模)
零向量
特殊向量 单位向量 向量间 平行(共线)