平移,翻折,旋转复习
高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)

高中数学函数图象的简单变换知识点总结高中阶段,函数图象的简单变换有:平移变换、对称变换、翻折变换、伸缩变换。
一、函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位如:1y x =+的图象可由y x =的图象向右平移一个单位得到;1y x =-的图象可由y x =的图象向下平移一个单位得到。
②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位如:1y x =+的图象可由y x =的图象向上平移一个单位得到。
1y x =-的图象可由y x =的图象向下平移一个单位得到。
【注】变换的口诀为:“上加下减,左加右减”。
二、函数图象的对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象如:(i)()sin sin y x y x ϕ=→=+①0ϕ>时,把sin y x =的图象向左平移ϕ个单位得到;②0ϕ<时,把sin y x =的图象向右平移ϕ个单位得到;(ii)已知()2f x x x =-,则()()2g x f x x x =-=+的图象可由()2f x x x =-的图象做关于y 轴对称的图象得到;函数()h x ()2f x x x =-=-+的图象可由()2f x x x =-的图象作关于x 轴对称后的图象得到;函数()()u x f x =--=2x x --的图象可由()2f x x x =-的图象做关于坐标系原点对称的图象得到。
抛物线的平移复习

抛物线的平移、翻折、旋转复习一、抛物线平移思考题1. 把抛物线22x y =向左平移3个单位得到抛物线2. 把抛物线22x y =向上平移2个单位得到抛物线3. 把抛物线22x y =向左平移3个单位,再向上平移2个单位得到抛物线4. 抛物线2)1(22-+=x y 可由抛物线1)2(22+-=x y 作怎样的平移得到?5. 抛物线122+-=x x y 可由抛物线122-+=x x y 作怎样的平移得到?二、抛物线翻折思考题1. 把抛物线C :322--=x x y 沿x 轴对折后得到抛物线C 1,求抛物线C 1的解析式。
2. 把抛物线C :322--=x x y 沿y 轴对折后得到抛物线C 2,求抛物线C 2的解析式。
三、抛物线旋转思考题1.把抛物线C :22-+=x x y 绕原点旋转180°后得到抛物线C 1,求抛物线C 1的解析式。
2.把抛物线C :22-+=x x y 绕点(2,1)旋转180°后得到抛物线C 2,求抛物线C 2的解析式。
四、中考摘要训练题1. 作抛物线C 关于x 轴对称后得到抛物线C 1,再将C 1向左平移2个单位,向上平移1个单位得到的抛物线是1)1(22-+=x y ,则抛物线C 的解析式为 。
2.抛物线c bx x y ++=2的顶点为M ,当M 在直线47-=x y 上移动时,求c 最小时,点M 的坐标。
3.抛物线22-+=x x y 只把x 轴下方的部分沿x 轴对折到x 轴上方得到一个新图像,当直线y=x+b 与新图像只有两个公共点时,求b 的取值范围。
4.抛物线C: 22-+=x x y 与直线AB :y=x+2相交于A 、B 两点,把抛物线C 绕对称轴上一点P 旋转180°后得到抛物线C 1,抛物线C 1与线段AB 有公共点, 求点P 的纵坐标y p 的取值范围。
掌握简单的平移旋转和翻折变换

掌握简单的平移旋转和翻折变换在数学中,平移旋转和翻折变换是几个基本的二维几何变换。
它们在几何形状的位置和方向上起到了重要的作用。
在本文中,我们将介绍这些简单的变换,并给出一些实际应用案例。
一、平移变换平移变换是指将几何图形沿着给定的方向和距离移动。
在二维平面上,平移变换可以通过将每个点的坐标都增加一个常量向量来实现。
例如,将点(x, y)进行平移变换,使其移动到新的位置(x + a, y + b)。
平移变换的实际应用非常广泛。
例如,在计算机图形学中,我们经常需要将图像进行平移,以便在屏幕上获得所需的位置。
此外,在工程测量和建筑设计中,平移变换也用于计算物体的位置和方向。
二、旋转变换旋转变换是指将几何图形绕某个固定点按照一定角度进行旋转。
在二维平面上,旋转变换可以通过对每个点的坐标应用旋转矩阵来实现。
例如,将点(x, y)进行旋转变换,使其绕原点旋转θ角度后得到新的位置(x', y')。
旋转变换的应用也非常广泛。
在计算机图形学和动画制作中,我们经常需要对图像或物体进行旋转,以实现动态效果。
此外,在航空航天领域和机器人技术中,旋转变换用于计算飞行器或机器人的方向和航线。
三、翻折变换翻折变换是指将几何图形沿着一条直线进行对称翻折。
在二维平面上,翻折变换可以通过对每个点的坐标应用翻折矩阵来实现。
例如,将点(x, y)进行翻折变换,使其相对于直线L进行对称翻折后得到新的位置(x', y')。
翻折变换在日常生活中也有很多应用。
例如,我们常常对称折叠地图、书页或者纸张,以方便携带和阅读。
另外,在艺术设计和装饰领域,翻折变换也被用于创作各种有趣和独特的图案。
综上所述,掌握简单的平移旋转和翻折变换对于理解几何形状的位置和方向非常重要。
这些变换不仅在数学和几何学中有应用,而且在计算机图形学、工程测量、建筑设计和艺术创作等领域也发挥着重要的作用。
通过学习和应用这些变换,我们可以更好地理解和操作几何图形,丰富我们的知识和技能。
图形的旋转、翻折与平移-三年中考数学真题分项汇编(解析版)

图形的旋转、翻折与平移一、单选题1.(2022·浙江湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm【答案】C【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵∵ABC沿BC方向平移1cm得到△A′B′C′,∵BB′=CC′=1cm,∵B′C=2cm,∵BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.2.(2022·浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心'''',形成一个“方吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.2-1)cm D.21)cm【答案】D【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=22cm,由平移性质得BB'=1cm,∵点D,B′之间的距离为DB'=BD BB-′=(221-)cm,【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.3.(2021·浙江丽水)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A (−1,b) 关于y轴对称点为B (1,b),C (2,b)关于y轴对称点为(-2,b),需要将点D (3.5,b) 向左平移3.5+2=5.5个单位,故选:C.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.(2021·浙江绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【分析】根据平移和大菱形的位置得出菱形的个数进行判定即可【详解】如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.【点睛】本题考查了生活中的平移现象,菱形的判定,正确的识别图形是解题的关键.5.(2020·浙江台州)如图,把∵ABC 先向右平移3个单位,再向上平移2个单位得到∵DEF ,则顶点C (0,-1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1) 【答案】D 【分析】先找到顶点C 的对应点为F ,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C 的对应点为F ,由图可得F 的坐标为(3,1),故选D .【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的特点.6.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.7.(2020·浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .842+【答案】D 【分析】如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.【详解】解:如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .由题意∵EMN 是等腰直角三角形,EM=EN=2,MN=22∵四边形EMHK 是矩形,∵EK= A'K=MH=1,KH=EM=2,∵∵RMH 是等腰直角三角形,∵RH=MH=1,RM=2,同法可证NW=2,题意AR=R A'= A'W=WD=4,∵AD=AR+RM+MN+NW+DW=4+2+22+2+4=842+.故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.8.(2022·浙江衢州)下列图形是中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.【详解】解:A、不是中心对称图形,此项不符合题意;B、是中心对称图形,此项符合题意;C、不是中心对称图形,此项不符合题意;D、不是中心对称图形,此项不符合题意;故选:B.【点睛】本题考查了中心对称图形,熟记中心对称图形的定义是解题关键.9.(2020·浙江绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【答案】B【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【详解】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【点睛】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.二、填空题10.(2022·浙江台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′∵BC,则阴影部分的面积为______2cm.【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∵B ′C ′,∵四边形B ′C ′CB 为平行四边形,∵BB ′∵BC ,∵四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(2022·浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】823+【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∵AB =2BC =4,∵AC =2216423AB BC -=-=,∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∵1CC '=,=4+1=5AB ', =2B C BC ''=,∵四边形的周长为:23152823+++=+,故答案为:823+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键. 12.(2022·浙江嘉兴)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∵点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∵ME ∵OA ,MF ∵OB∵90MEO MFO ∠=∠=︒∵120AOB ∠=︒∵四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∵MEO MFO ≅(HL )∵1302EMO FMO FME ∠=∠=∠=︒ ∵643cos cos30ME OM EMO ===∠︒∵23MN =∵MO ∵DC∵222216(23)262DN DM MN CD =-=-== ∵46CD =故答案为:60°;46【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.13.(2020·浙江金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A与点B 重合),点O 是夹子转轴位置,O E ∵AC 于点E ,OF ∵BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm .(2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .【答案】1660 13【分析】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,可得CH AB⊥,AH=BH,利用已知先求出125CE cm=,在Rt△OEF中利用勾股定理求出CO的长,由sinOE AHECOCO AAC∠==,求出AH,从而求出AB=2AH的长.【详解】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,∵AB=CD=EF=2cm,∵以点A,B,C,D为顶点的四边形的周长为2+6+2+6=16cm.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,∵CH AB⊥,AH=BH,∵AC=BD=6cm,CE∵AE=2∵3,∵125CE cm=,在Rt△OEF中,2213 5CO OE CE=+=,∵sinOE AHECOCO AAC∠==,3013AH=,∴AB=2AH=60 13.故答案为16,60 13.【点睛】本题主要考查了勾股定理与旋转的结合,做题时准确理解题意利用已知的直角三角形进行求解是解题的关键.三、解答题14.(2022·浙江温州)如图,在26⨯的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180︒后的图形.【答案】(1)见解析(2)见解析【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.(1)画法不唯一,如图1或图2等.(2)画法不唯一,如图3或图4等.【点睛】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.15.(2022·浙江丽水)如图,在66的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与ABC相似的三角形,相似比不等于1.【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A,B平移后的对应点C,D,从而可得答案;(2)确定线段AB,AC关于直线BC对称的线段即可;(3)分别计算ABC的三边长度,再利用相似三角形的对应边成比例确定DEF的三边长度,再画出DEF 即可.(1)解:如图,线段CD即为所求作的线段,(2)如图,四边形ABDC是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,AB AC而2,BC = 同理:2226210,22,DFDE 而4,EF1,2AB AC BC DF DE EF.ABC DFE ∽【点睛】本题考查的是平移的作图,轴对称的作图,相似三角形的作图,掌握平移轴对称的性质,相似三角形的判定方法是解本题的关键.16.(2021·浙江温州)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (253中. 【答案】(1)见解析;(2)见解析【分析】(1)七巧板中有两个四边形,分别是正方形和平行四边形,根据题意可画出4种图形任意选一种即可,(2)七巧板中有五个等腰直角三角形,有直角边长2的两个,直角边长22的两个,直角边长2 的一个,根据题意利用数形结合的思想解决问题即可.【详解】解:(1)画法不唯一,当选四边形为正方形时可以是如图1或图2;当四边形式平行四边形时可以是图3或图4.(2)画法不唯一,当直角边长为2时,扩大5即直角边长为10利用勾股定理画出直角边长为10直角三角形可以是如图5或图6当直角边长为22时,扩大5即直角边长为210利用勾股定理画出直角边长为210直角三角形可以是如图7或图8等.【点睛】本题考查基本作图,平移,二次根式的乘法,以及勾股定理的应用,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.17.(2022·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【答案】(1)见解析(2)见解析【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一.(2)【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.18.(2020·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义画出图形构成一个大的等边三角形即可(答案不唯一).(2)根据中心对称图形的定义画出图形构成一个平行四边形即可(答案不唯一).【详解】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【点睛】本题考查利用中心对称设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(2020·浙江金华)如图,在∵ABC 中,AB =42∵B =45°,∵C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将∵AEF 折叠得到∵PEF . ∵如图2,当点P 落在BC 上时,求∵AEP 的度数. ∵如图3,连结AP ,当PF ∵AC 时,求AP 的长.【答案】(1)4;(2)∵90°;∵26【分析】(1)如图1中,过点A 作AD∵BC 于D .解直角三角形求出AD 即可. (2)∵证明BE=EP ,可得∵EPB=∵B=45°解决问题. ∵如图3中,由(1)可知:AC=83sin 603AD =︒,证明∵AEF∵∵ACB ,推出AF AE AB AC =,由此求出AF 即可解决问题.【详解】解:(1)如图1,过点A 作AD ∵BC 于点D , 在Rt∵ABD 中,sin 45AD AB =⋅︒=2422⨯=4.(2)∵如图2,∵∵AEF ∵∵PEF , ∵AE =EP . 又∵AE =BE , ∵BE =EP , ∵∵EPB =∵B =45°, ∵∵AEP =90°.∵如图3,由(1)可知:在Rt∵ADC 中,83sin 603AD AC ==︒. ∵PF ∵AC , ∵∵PF A =90°. ∵∵AEF ∵∵PEF ,∵∵AFE =∵PFE =45°,则∵AFE =∵B . 又∵∵EAF =∵CAB , ∵∵EAF ∵∵CAB ,∵AF AB=AE AC ,即42AF =22833, ∵AF =23,在Rt∵AFP 中,AF =PF ,则AP =2AF =26.【点睛】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.【答案】[探究1]152BC +=;[探究2]'D M DM =,证明见解析;[探究3]2MN PN DN =⋅,证明见解析 【分析】[探究1] 设BC x =,根据旋转和矩形的性质得出''//D C DA ,从而得出''D C B ADB ∆∆∽,得出比例式'''D C D BAD AB=,列出方程解方程即可; [探究2] 先利用SAS 得出''AC D DBA ∆∆≌,得出'DAC ADB ∠=∠,'ADB AD M ∠=∠,再结合已知条件得出''MDD MD D ∠=∠,即可得出'D M DM =;[探究3] 连结AM ,先利用SSS 得出ADM ADM ∆∆≌,从而证得MN AN =,再利用两角对应相等得出NPA NAD ∆∆∽,得出PN ANAN DN=即可得出结论. 【详解】[探究1]如图1,设BC x =.∵矩形ABCD 绕点A 顺时针旋转90︒得到矩形'''AB C D , ∵点A ,B ,'D 在同一直线上.∵'AD AD BC x ===,'1DC AB AB ===, ∵''1D B AD AB x =-=-. ∵'90BAD D ∠=∠=︒, ∵//D C DA ''.又∵点'C 在DB 延长线上, ∵''D C B ADB ∆∆∽, ∵'''D C D BAD AB =,∵111x x -=. 解得1152x +=,2152x -=(不合题意,舍去)∵152BC +=. [探究2] 'D M DM =. 证明:如图2,连结'DD .∵'//'D M AC , ∵'''AD M D AC ∠=∠.∵'AD AD =,''90AD C DAB ∠=∠=︒,''D C AB =,∵()''AC D DBA SAS ∆∆≌.∵'D AC ADB '∠=∠,'ADB AD M ∠=∠,∵AD AD =,''ADD AD D ∠=∠,∵''MDD MD D ∠=∠,∵'D M DM =.[探究3]关系式为2MN PN DN =⋅.证明:如图3,连结AM .∵'D M DM =,'AD AD =,AM AM =,∵()ADM AD M SSS '∆∆≌.∵'MAD MAD ∠=∠,∵AMN MAD NDA ∠=∠+∠,'NAM MAD NAP ∠=∠+∠,∵AMN NAM ∠=∠,∵MN AN =.在NAP ∆与NDA ∆中,ANP DNA ∠=∠,NAP NDA ∠=∠,∵NPA NAD ∆∆∽,∵PN AN AN DN=, ∵2AN PN DN =⋅.∵2MN PN DN =⋅.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.21.(2020·浙江绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt∵ABC中,∵ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG∵BC,OG=2,OC=4.将∵ABC绕点O逆时针旋转α(0°≤α<180°)得到∵A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.∵当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.∵当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.【答案】(1)点C′到直线OF的距离为23;(2)∵点C′到直线DE的距离为22±2;∵2≤d<4417或d=3.【分析】(1)过点C′作C′H∵OF于H.根据直角三角形的边角关系,解直角三角形求出CH即可.(2)∵分两种情形:当C′P∵OF时,过点C′作C′M∵OF于M;当C′P∵DG时,过点C′作C′N∵FG于N.通过解直角三角形,分别求出C′M,C′N即可.∵设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2;当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.【详解】解:(1)如图,过点C′作C′H∵OF于H.∵∵A′B′C′是由∵ABC绕点O逆时针旋转得到,∵C′O=CO=4,在Rt∵HC′中,∵∵HC′O=α=30°,∵C′H=C′O•cos30°=23,∵点C′到直线OF的距离为23.(2)∵如图,当C′P∵OF时,过点C′作C′M∵OF于M.∵∵A′B′C′为等腰直角三角形,P为A′B′的中点,∵∵A′C′P=45°,∵∵A′C′O=90°,∵∵OC′P=135°.∵C′P∵OF,∵∵O=180°﹣∵OC′P=45°,∵∵OC′M是等腰直角三角形,∵C′M =C′O•cos45°=4×22=22, ∵点C′到直线DE 的距离为222-.如图,当C′P∵DG 时,过点C′作C′N∵FG 于N .同法可证∵OC′N 是等腰直角三角形,∵C′N =22,∵GD=2,∵点C′到直线DE 的距离为222+.∵设d 为所求的距离.第一种情形:如图,当点A′落在DE 上时,连接OA′,延长ED 交OC 于M .∵OC=4,AC=2,∵ACO=90°,2216425OA CO AC =+∴+==∵OM =2,∵OMA′=90°,∵A′M =22A O OM '-=()22252-=4,∵DM=2,∵A′D=A′M-DM=4-2=2,即d=2,如图,当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.∵P为A′B′的中点,∵A′C′B′=90°,∵PQ∵A′C′,∵'12 B P C Q PQB A BC A C'''''''===∵B′C′=2∵PQ=1,C'Q=1,∵Q点为B′C′的中点,也是旋转前BC的中点,∵OQ=OC'+C'Q=5∵OP=2251+=26,∵PM=2226422OP OM-=-=,∵PD=222PM DM-=-,∵d=22﹣2,∵2≤d≤22﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.由上可知OP=26,OF=5,∵FP=22OP OF-=2625-=1,∵OF=OT,PF=PT,∵F=∵PTO=90°,∵Rt∵OPF∵Rt∵OPT(HL),∵∵FOP=∵TOP,∵PR∵OQ,∵∵OPR=∵POF,∵∵OPR=∵POR,∵OR=PR,∵PT2+TR2=PR2,22215PR PR∴+(﹣)=∵PR=2.6,RT=2.4,∵∵B′PR∵∵B′QO,∵B ROB''=PRQO,∵3.46=2.6OQ,∵OQ=78 17,∵QG=OQ﹣OG=4417,即d=4417∵25﹣2≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,2≤d<4417或d=3.【点睛】(1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.(2)∵本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.∵本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系. 22.(2020·浙江嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∵ACB=∵DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE (如图4).【探究】当EF平分∵AEO时,探究OF与BD的数量关系,并说明理由.【答案】【思考】是,理由见解析;【发现】94;【探究】BD =2OF ,理由见解析; 【分析】【思考】由全等三角形的性质得出AB =DE ,∵BAC =∵EDF ,则AB ∵DE ,可得出结论;【发现】连接BE 交AD 于点O ,设AF =x (cm ),则OA =OE =12(x +4),得出OF =OA ﹣AF =2﹣12x ,由勾股定理可得()2221123424x x ⎛⎫-+=+ ⎪⎝⎭,解方程求出x ,则AF 可求出; 【探究】如图2,延长OF 交AE 于点H ,证明∵EFO ∵∵EFH (ASA ),得出EO =EH ,FO =FH ,则∵EHO =∵EOH =∵OBD =∵ODB ,可证得∵EOH ∵∵OBD (AAS ),得出BD =OH ,则结论得证.【详解】解:【思考】四边形ABDE 是平行四边形.证明:如图,∵∵ABC ∵∵DEF ,∵AB =DE ,∵BAC =∵EDF ,∵AB ∵DE ,∵四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∵OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∵OF =OA ﹣AF =2﹣12x ,在Rt∵OFE 中,∵OF 2+EF 2=OE 2,∵()2221123424x x ⎛⎫-+=+ ⎪⎝⎭, 解得:x =94, ∵AF =94cm . 【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,∵四边形ABDE 为矩形,∵∵OAB =∵OBA =∵ODE =∵OED ,OA =OB =OE =OD ,∵∵OBD =∵ODB ,∵OAE =∵OEA ,∵∵ABD +∵BDE +∵DEA +∵EAB =360°,∵∵ABD +∵BAE =180°,∵AE ∵BD ,∵∵OHE =∵ODB ,∵EF 平分∵OEH ,∵∵OEF =∵HEF ,∵∵EFO =∵EFH =90°,EF =EF ,∵∵EFO ∵∵EFH (ASA ),∵EO =EH ,FO =FH ,∵∵EHO =∵EOH =∵OBD =∵ODB ,∵∵EOH ∵∵OBD (AAS ),∵BD =OH =2OF .【点睛】本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.。
初中数学知识归纳平移旋转和翻折的基本操作

初中数学知识归纳平移旋转和翻折的基本操作初中数学知识归纳——平移、旋转和翻折的基本操作初中数学中,平移、旋转和翻折是几个重要的几何变换操作。
这些操作不仅在几何题中常常出现,而且在解决实际问题时也起着重要作用。
本文将对平移、旋转和翻折的基本概念,操作规则以及实际应用进行归纳总结。
一、平移的基本概念及操作规则平移是指物体在平面上沿着某个方向移动一段距离,同时保持形状和大小不变。
在平移中,可以将物体的每个点都沿着相同的方向和距离进行移动。
具体操作规则如下:1. 平移的操作规则- 平移前后物体保持形状和大小不变。
- 平移前后物体上的所有点与平移向量保持平行。
2. 平移的表示方法平移可以使用向量表示。
假设平移向量为共点向量〈a,b〉,则平移的规则可以表示为:新位置的坐标 = 旧位置的坐标 + 平移向量。
二、旋转的基本概念及操作规则旋转是指物体在平面上围绕一个点旋转一定的角度,同时保持形状和大小不变。
在旋转中,可以将物体的每个点都绕着旋转中心点按照一定的角度进行旋转。
具体操作规则如下:1. 旋转的操作规则- 旋转前后物体保持形状和大小不变。
- 旋转前后物体上的所有点与旋转中心的距离保持不变。
2. 旋转的表示方法旋转可以使用旋转角度来表示。
设旋转中心为点O,顺时针旋转θ角度,则旋转的规则可以表示为:新位置的坐标 = 旋转中心点O的坐标 + 旋转后点O'的坐标。
三、翻折的基本概念及操作规则翻折是指物体在平面上沿着某一直线对称翻转,同时保持形状和大小不变。
在翻折中,可以将物体的每个点都绕着对称轴进行翻折。
具体操作规则如下:1. 翻折的操作规则- 翻折前后物体保持形状和大小不变。
- 翻折前后物体上的所有点关于对称轴对称。
2. 翻折的表示方法翻折可以通过对称轴进行表示。
设对称轴为线l,则翻折的规则可以表示为:新位置的坐标 = 原位置点关于对称轴的对称点。
四、平移、旋转和翻折的实际应用平移、旋转和翻折不仅是几何题中经常出现的概念,也在日常生活和实际问题中得到广泛应用。
初中数学知识归纳平移旋转和翻折的计算及应用

初中数学知识归纳平移旋转和翻折的计算及应用初中数学知识归纳:平移、旋转和翻折的计算及应用数学是一门综合性的科学学科,在初中阶段,学生们逐渐接触和学习各种数学知识,其中包括平移、旋转和翻折等几何变换的计算和应用。
本文将对初中数学中平移、旋转和翻折的相关知识进行归纳和探讨。
一、平移的计算和应用平移是指将图形按照指定的方向和距离在平面上等距移动的几何变换。
在计算平移时,首先需要确定平移的向量,然后将图形上的每个点沿着该向量进行移动,最终得到平移后的图形。
平移的计算中,常用的方法是矩阵表示法。
设平移的向量为(t, u),对于坐标为(x, y)的点,平移后的坐标可表示为(x+t, y+u)。
通过这个方法,我们可以方便地计算出平移后的图形。
平移的应用很广泛,常见的有地图标记、图像移动等。
例如,在地图上标记某个地点时,可以通过平移地图将该地点移至视野中心,使得标记更加清晰明了。
二、旋转的计算和应用旋转是指将图形绕着一个点进行转动的几何变换。
在计算旋转时,需要确定旋转的中心和旋转的角度,然后将图形上的每个点绕着中心按照指定的角度进行旋转,最终得到旋转后的图形。
旋转的计算可以通过矩阵表示法来进行。
设旋转的中心为(A, B),旋转的角度为θ,对于坐标为(x, y)的点,旋转后的坐标可表示为:x' = A + (x - A)cosθ - (y - B)sinθy' = B + (x - A)sinθ + (y - B)cosθ通过这个公式,我们可以方便地计算出旋转后的坐标。
旋转也有很多应用场景。
例如,在建筑设计中,可以通过旋转模型来展示不同角度的建筑效果,帮助人们更好地了解建筑物的外观和结构。
三、翻折的计算和应用翻折是指将图形按照一条直线进行折叠的几何变换。
在计算翻折时,需要确定折叠的直线,然后将图形上的每个点沿着该直线进行折叠,最终得到翻折后的图形。
翻折的计算相对简单,只需将每个点关于折叠线进行对称,即可得到翻折后的坐标。
小学数学知识归纳认识平移旋转和翻折的变换

小学数学知识归纳认识平移旋转和翻折的变换一、平移变换平移是指将一个图形在平面上沿着某个方向进行移动,新的图形与原来的图形相等,只是位置改变了。
平移变换可用向量来表示。
例如,我们有一个三角形ABC,要将它向右平移3个单位长度,我们可以使用向量加法的方式来进行表示。
假设向右为正方向,则平移向量为3i(i表示单位向量,指向x轴正方向),则新的三角形A'B'C'可表示为A'B'C'=ABC+3i。
平移变换有以下几个特点:1. 平移后的图形与原图形形状相同。
2. 平移后图形的顶点与原图形的对应顶点连线平行且长度相等。
3. 平移后的图形与原图形之间的距离保持不变。
4. 平移变换是可逆的,即可以通过相反方向移动同样的距离回到原来的位置。
二、旋转变换旋转是指将一个图形绕某一点进行旋转,旋转变换也是以向量为基础的。
例如,我们有一个矩形ABCD,要将它绕点O逆时针旋转90°,我们可以使用向量旋转公式进行计算。
设原矩形的四个顶点坐标分别为A(x1, y1), B(x2, y2), C(x3, y3), D(x4, y4),绕点O逆时针旋转90°后的新坐标分别为A'(x1', y1'), B'(x2', y2'), C'(x3', y3'), D'(x4', y4'),则有以下关系式:x1' = y1-y1' + x1y1' = x1'-x1 + y1x2' = y2-y1' + x1y2' = x2'-x1 + y1x3' = y3-y1' + x1y3' = x3'-x1 + y1x4' = y4-y1' + x1y4' = x4'-x1 + y1旋转变换有以下几个特点:1. 旋转后的图形与原图形形状相同。
小学六年级数学几何形的旋转平移翻折变换规律总结

小学六年级数学几何形的旋转平移翻折变换规律总结在小学六年级的数学课程中,学生将接触到几何形的旋转、平移和翻折变换。
这些变换是几何学中的基础概念,掌握它们的规律对于理解几何形的性质和解决几何问题至关重要。
本文将总结小学六年级数学中几何形的旋转平移翻折变换规律,并介绍其基本概念和操作方法。
一、旋转变换旋转变换是将一个几何形绕着一个固定点旋转一定角度的操作。
在小学六年级中,我们主要以正方形和三角形为例进行讲解。
1. 正方形的旋转变换:如果我们将一个正方形绕着中心顶点旋转90度,则原来的正方形将变成一个新的正方形。
这是因为正方形的所有边长相等,旋转90度后的正方形的边长和原正方形相等,边与边之间的角度也保持不变。
同样,对于其他角度的旋转,正方形的性质也会保持不变。
2. 三角形的旋转变换:三角形的旋转变换同样可以围绕其中心点进行。
旋转后,三角形的每条边与原来的边的长度和角度仍然相等。
需要注意的是,在旋转过程中,我们需要确保旋转的角度是一个整数,以保持几何形的整体性质。
二、平移变换平移变换是将一个几何形整体移动到另一个位置的操作。
平移变换不改变几何形的形状和大小,只改变了它的位置。
在小学六年级的数学课程中,通常通过将正方形或三角形沿着水平或垂直方向进行平移来进行教学。
1. 正方形的平移变换:以正方形的一个顶点为起点,将正方形沿着水平或垂直方向移动一段距离,整个正方形将移动到新的位置。
平移后,正方形的边长、角度和原来的正方形完全相同。
这种变换使得正方形在平面上移动,但形状保持不变。
2. 三角形的平移变换:与正方形类似,沿着水平或垂直方向进行三角形的平移变换。
平移变换后,三角形的边长和角度保持不变,只是移动到了一个新的位置。
三、翻折变换翻折变换是将一个几何形沿着某条线镜像翻转的操作。
这种变换可以改变几何形的朝向和位置,但不改变形状和大小。
在小学六年级的数学课程中,通常通过正方形和三角形的翻折变换来进行教学。
1. 正方形的翻折变换:以正方形的一条边作为折痕,将正方形沿着折痕翻折。
2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题

2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。
中考一轮复习 数学专题15 图形的旋转、翻折(对称)与平移(学生版)

专题15 图形的旋转、翻折(对称)与平移一、单选题1.(2022·广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .()1,1-2.(2022·广西)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3)3.(2020·山东菏泽)在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .()0,2-B .()0,2C .()6,2-D .()6,2--4.(2020·四川自贡)在平面直角坐标系中,将点()2,1向下平移3个单位长度,所得点的坐标是( ) A .(),-11 B .(),51 C .(),24 D .(),-225.(2021·四川雅安)如图,将ABC 沿BC 边向右平移得到DEF ,DE 交AC 于点G .若:3:1BC EC =.16ADG S =△.则CEG S △的值为( )A .2B .4C .6D .86.(2021·浙江丽水)四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位 D .将C 向左平移3.5个单位7.(2022·四川南充)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A .90︒B .60︒C .45︒D .308.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--9.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α 10.(2022·四川内江)如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,点C 的坐标为(0,1),AC =2,Rt△ODE 是Rt△ABC 经过某些变换得到的,则正确的变换是( )* 本号资料皆来源于微信:数学A .△ABC 绕点C 逆时针旋转90°,再向下平移1个单位B .△ABC 绕点C 顺时针旋转90°,再向下平移1个单位C .△ABC 绕点C 逆时针旋转90°,再向下平移3个单位D .△ABC 绕点C 顺时针旋转90°,再向下平移3个单位11.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-12.(2021·四川广安)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒13.(2020·湖北黄石)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--14.(2020·四川攀枝花)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π15.(2022·天津)如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥16.(2022·江苏扬州)如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:△AFE DFC △△;△DA 平分BDE ∠;△CDF BAD ∠=∠,其中所有正确结论的序号是( )A .△△B .△△C .△△D .△△△17.(2021·黑龙江牡丹江)如图,△AOB 中,OA =4,OB =6,AB =,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(﹣4,2)B .(4)或(﹣4) C .(﹣2)或(2) D .(2,﹣2,18.(2021·广东广州)如图,在Rt ABC 中,90C ∠=︒,6AC =,8BC =,将ABC 绕点A 逆时针旋转得到A B C ''',使点C '落在AB 边上,连结BB ',则sin BB C ''∠的值为( )A .35B .45CD 19.(2021·河南)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .0)B .C .1,0)D .1,0)20.(2020·海南)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .21.(2020·山东菏泽)如图,将ABC 绕点A 顺时针旋转角α,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠等于( )A .2α B .23α C .α D .180α︒-22.(2020·山东聊城)如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A .21⎫+⎪⎪⎝⎭B 1C 1D 123.(2020·山东枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB 绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .(1,2-+B .()C .(2+D .(- 二、填空题 24.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.25.(2021·辽宁鞍山)如图,△ABC 沿BC 所在直线向右平移得到△DEF ,若EC =2,BF =8,则BE =___.26.(2021·湖南湘潭)在平面直角坐标系中,把点()2,1A -向右平移5个单位得到点A ',则点A '的坐标为____. 27.(2021·吉林长春)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB 沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.28.(2021·湖南怀化)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC 先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.29.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.30.(2020·江苏镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于_____.31.(2020·广东广州)如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.32.(2020·湖南湘西)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO重叠部分的面积为CODE 向右平移的距离为___________.33.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后,端点A 的坐标变为______.34.(2021·湖北随州)如图,在Rt ABC 中,90C ∠=︒,30ABC ∠=︒,BC =ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)35.(2020·广西)以原点为中心,把()3,4M 逆时针旋转90°得到点N ,则点N 的坐标为______. 36.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.37.(2022·湖北随州)如图1,在矩形ABCD 中,8AB =,6AD =,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将△AEF 绕点A 逆时针旋转角()090θθ<<︒,使EF AD ⊥,连接BE 并延长交DF 于点H ,则△BHD 的度数为______,DH 的长为______. 本@号资料皆来源于微信*:数学38.(2021·四川巴中)如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.40.(2020·四川眉山)如图,在Rt ABC 中,90BAC ∠=︒,2AB =.将ABC 绕点A 按顺时针方向旋转至11AB C △的位置,点1B 恰好落在边BC 的中点处,则1CC 的长为________.41.(2020·山东烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.42.(2020·甘肃天水)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.三、解答题43.(2022·安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.44.(2022·黑龙江牡丹江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; (3)在网格中画出格点M ,使A 1M 平分△B 1A 1C 145.(2021·黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,ABC ∆的顶点和线段DE 的端点均在小正方形的顶点上.(1)在方格纸中将ABC ∆向上平移1个单位长度,再向右平移2个单位长度后得到MNP ∆;(点A 的对应点是点M ,点B 的对应点是点N ,点C 的对应点是点P ),请画出MNP ∆;(2)在方格纸中画出以DE 为斜边的等腰直角三角形DEF (点F 在小正方形的顶点上).连接FP ,请直接写出线段FP 的长.46.(2021·安徽)图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90︒得到221A B C △,画出221A B C △.47.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母); (2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母); (3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.48.(2022·黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标; (3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).49.(2020·四川巴中)如图所示,ABC 在边长为1cm 的小正方形组成的网格中.(1)将ABC 沿y 轴正方向向上平移5个单位长度后,得到111A B C △,请作出111A B C △,并求出11A B 的长度; (2)再将111A B C △绕坐标原点O 顺时针旋转180°,得到222A B C △,请作出222A B C △,并直接写出点2B 的坐标; (3)在(1)(2)的条件下,求线段AB 在变换过程中扫过图形的面积和.50.(2022·江苏常州)如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.51.(2021·黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O ,并写出点1A 的坐标;(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).52.(2021·青海西宁)如图,正比例函数12y x =与反比例函数(0)ky x x =>的图象交于点A ,AB x ⊥轴于点B ,延长AB 至点C ,连接OC .若2cos 3BOC ∠=,3OC =.(1)求OB的长和反比例函数的解析式;(2)将AOB绕点О旋转90°,请直接写出旋转后点A的对应点A'的坐标.53.(2021·江苏淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;*本号资料皆来源于微信:数学第*六感(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的15.54.(2021·辽宁阜新)下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于 y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .55.(2021·贵州毕节)如图1,在Rt ABC 中,90BAC ∠=︒,AB AC =,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转90°得到AE ,连接CE ,BD 的延长线与CE 交于点F . (1)求证:BD CE =,BD CE ⊥;(2)如图2.连接AF ,DC ,已知135BDC ∠=︒,判断AF 与DC 的位置关系,并说明理由.56.(2021·内蒙古通辽)已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON △绕点O 顺时针旋转.△如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;△当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.57.(2021·湖南衡阳)如图,点E 为正方形ABCD 外一点,90AEB =︒∠,将Rt ABE △绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由; (2)已知7,13BH BC ==,求DH 的长.58.(2021·北京)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.59.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.60.(2021·四川阿坝)如图,Rt ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,点D 落在线段AB 上,连接BE .(1)求证:DC 平分ADE ∠;(2)试判断BE 与AB 的位置关系,并说明理由:(3)若BE BD =,求tan ABC ∠的值.61.(2020·湖南邵阳)已知:如图△,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接,AF CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是__________.(2)如图△,把正方形ABCD 绕着点D 顺时针旋转α角(090a ︒<<︒).△AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN DM =,连接CN )△求证:AF DM ⊥;△若旋转角45α=︒,且2EDM MDC ∠=∠,求AD ED 的值.(可不写过程,直接写出结果)62.(2020·江苏常州)如图1,点B 在线段CE 上,Rt△ABC △Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. △请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;△如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.63.(2020·福建)如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC .△判断DF 和PF 的数量关系,并证明;△求证:=EP PC PF CF.64.(2020·甘肃金昌)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △△ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.。
《图形的平移与旋转》全章重点题型-提高

《图形的平移与旋转》全章复习与巩固(提高)知识讲解【学习目标】1.了解平移、旋转、中心对称,探索它们的基本性质;2.能够按要求作出简单平面图形经过平移、旋转后的图形,能作出简单平面图形经过一次或两次图形变换后的图形;3.利用平移、旋转、中心对称、轴对称及其组合进行图案设计;4.认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【要点梳理】要点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.要点诠释:(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的形状和大小.2.平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.要点诠释:(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行(或在一条直线上)且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.3. 平移与坐标变换:(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的变化引起的点相应的平移变换.(2)图形的平移平移是图形的整体运动.在平面直角坐标系内,一个图形进行了平移变化,则它上面的所有点的坐标都发生了同样的变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.要点诠释:(1)上述结论反之亦成立,即如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(2)一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.●要点二、旋转变换1.旋转概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.要点诠释:(1)旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定能通过旋转得到. (2)旋转的角度一般小于360°.(3)旋转的三个要素:旋转中心、旋转角度和旋转方向(即顺时针或逆时针方向)2.旋转变换的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3.旋转作图步骤:①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.●要点三、中心对称与图案设计1.中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心,这两个图形称为成中心对称的.要点诠释:中心对称的性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.2. 中心对称图形:把一个图形绕着某点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做它的对称中心.要点诠释:中心对称作图步骤:①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.3.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.4.平移、轴对称、旋转三种变换的关系:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的.【典型例题】➢类型一、平移变换1. 阅读理解题.(1)两条直线a,b相交于一点O,如图①,有两对不同的对顶角;(2)三条直线a,b,c相交于点O,如图②,则把直线平移成如图③所示的图形,可数出6对不同的对顶角;(3)四条直线a,b,c,d相交于一点O,如图④,用(2)的方法把直线c平移,可数出对不同的对顶角;(4)n条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角;(5)2013条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角.【思路点拨】(3)画出图形,根据图形得出即可;(4)根据以上能得出规律,有n(n-1)对不同的对顶角;(5)把n=2013代入求出即可.【答案与解析】解:(3)如图有12对不同的对顶角,故答案为:12.(4)有n(n-1)对不同的对顶角,故答案为:n(n-1);(5)把n=2013代入得:2013×(2013-1)=4050156,故答案为:4050156.【总结升华】本题考查了平移与对顶角的应用,关键是能根据题意得出规律.举一反三:【变式】(2017·莒县模拟)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为().A.6 B.8 C.10 D.12【答案】C2.(2015春•召陵区期中)如图①,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用阴影表示;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积(设长方形水平方向长均为a,竖直方向长均为b):S1= ,S2= ,S3= ;(3)如图④,在一块长方形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是2个单位),请你求出空白部分表示的草地面积是多少?(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的度都是1个单位),请你求出空白部分表示的草地的面积是多少?【思路点拨】(1)根据题意,直接画图即可,注意答案不唯一,只要画一条有两个折点的折线,得到一个封闭图形即可.(2)结合图形,根据平移的性质可知,①②③中阴影部分的面积都可看作是以a﹣1为长,b为宽的长方形的面积.(3)结合图形,通过平移,阴影部分可平移为以a﹣2米为长,b米为宽的长方形,根据长方形的面积可得小路部分所占的面积.(4)结合图形可知,小路部分所占的面积=a米为长,b米为宽的长方形的面积﹣a米为长,1米为宽的长方形的面积﹣2米为长,b米为宽的长方形的面积+2米为长,1米为宽的长方形的面积.【答案与解析】解:(1)画图如下:(2)S1=ab﹣b,S=ab﹣b,S2=ab﹣b,S3=ab﹣b猜想:依据前面的有关计算,可以猜想草地的面积仍然是ab﹣b方案:1、将“小路”沿着左右两个边界“剪去”;2、将左侧的草地向右平移一个单位;3、得到一个新的矩形理由:在新得到的矩形中,其纵向宽仍然是b.其水平方向的长变成了a﹣1,所以草地的面积就是:b(a﹣1)=ab﹣b.(3)∵小路任何地方的水平宽度都是2个单位,∴空白部分表示的草地面积是(a﹣2)b;(4)∵小路任何地方的宽度都是1个单位,∴空白部分表示的草地面积是ab﹣a﹣2b+2.【总结升华】本题主要考查了利用平移设计图案,用到的知识点是矩形的性质和平移的性质,能利用平移的性质把不规则的图形拆分或拼凑为简单图形来计算草地的面积是解题的关键.举一反三:【变式】如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移距离是边BC长的两倍,则图中四边形ACED的面积为().A.24cm2 B.36cm2 C.48cm2 D.无法确定【答案】B.四边形ABED是平行四边形且S四边形ABED=S四边形ACFD,而S四边形ACED=S四边形ABED-S△ABC.➢类型二、旋转变换3.正方形ABCD中对角线AC、BD相交于点O,E是AC上一点,F是OB上一点,且OE=OF,回答下列问题:(1)在图中1,可以通过平移、旋转、翻折中的哪一种方法,使△OAF变到△OBE的位置.请说出其变化过程.(2)指出图(1)中AF和BE之间的关系,并证明你的结论.(3)若点E、F分别运动到OB、OC的延长线上,且OE=OF(如图2),则(2)中的结论仍然成立吗?若成立,请证明你的结论;若不成立,请说明你的理由.【思路点拨】(1)根据图形特点即可得到答案;(2)延长AF交BE于M,根据正方形性质求出AB=BC,∠AOB=∠BOC,证△AOF≌△BOE,推出AF=BE,∠FAO=∠EBO,根据三角形内角和定理证出即可;(3)延长EB交AF于N,根据正方形性质推出∠ABD=∠ACB=45°,AB=BC,得到∠ABF=∠BCE,同法可证△ABF ≌△BCE,推出AF=BE,∠F=∠E,∠FAB=∠EBC,得到∠E+∠FAB+∠BAO=90°即可.【答案与解析】解:(1)旋转,以点O为旋转中心,逆时针旋转90度.(2)图(1)中AF和BE之间的关系:AF=BE;AF⊥BE.证明:延长AF交BE于M,∵正方形ABCD,∴AC⊥BD,OA=OB,∴∠AOB=∠BOC=90°,在△AOF和△BOE中∴△AOF≌△BOE(SAS),∴AF=BE,∠FAO=∠EBO,∵∠EBO+∠OEB=90°,∴∠FAO+∠OEB=90°,∴∠AME=90°,∴AF⊥BE,即AF=BE,AF⊥BE.(3)成立;证明:延长EB交AF于N,∵正方形ABCD,∴∠ABD=∠ACB=45°,AB=BC,∵∠ABF+∠ABD=180°,∠BCE+∠ACB=180°,∴∠ABF=∠BCE,∵AB=BC,BF=CE,∴△ABF≌△BCE,∴AF=BE,∠F=∠E,∠FAB=∠EBC,∵∠F+∠FAB=∠ABD=45°,∴∠E+∠FAB=45°,∴∠E+∠FAB+∠BAO=45°+45°=90°,∴∠ANE=180°-90°=90°,∴AF ⊥BE ,即AF=BE ,AF ⊥BE .【总结升华】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,旋转的性质等知识点的连接和掌握,综合运用这些性质进行推理是解此题的关键.4.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接 EF.将△EOF 绕点O 逆时针旋转角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明;(2)当=30°时,求证:△AOE 1为直角三角形.【思路点拨】(1)要证AE 1=BF 1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE 1为直角三角形,就要考虑证∠E 1AO =90°.【答案与解析】解:(1)AE 1=BF 1,证明如下:∵O 为正方形ABCD 的中心,∴OA=OB =OD.∴OE=OF .∵△E 1OF 1是△EOF 绕点O 逆时针旋转角得到,∴OE 1=OF 1.∵ ∠AOB=∠EOF=900, ∴ ∠E 1OA =900-∠F 1OA =∠F 1OB. 在△E 1OA 和△F 1OB 中,, ∴△E 1OA≌△F 1OB (SAS ).∴ AE 1=BF 1.(2)取OE 1中点G ,连接AG.∵∠AOD=900,=30° ,∴ ∠E 1OA =900-=60°. ααα1111OE OF E OA FOB O A OB⎧⎪∠∠⎨⎪⎩===αα∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】在等边三角形ABC中有一点P,已知PC=2, PA=4,PB=APB=.【答案】90°➢类型三、中心对称与图形设计5.如图,方格纸中四边形ABCD的四个顶点均在格点上,将四边形ABCD向右平移5格得到四边形A1B1C1D1.再将四边形A1B1C1D1,绕点A逆时针旋转180°,得到四边形A1B2C2D2.(1)在方格纸中画出四边形A1B1C1D1和四边形A1B2C2D2.(2)四边形ABCD与四边形A1B2C2D2.是否成中心对称?若成中心对称,请画出对称中心;若不成中心对称,请说明理由.【思路点拨】(1)首先把各个顶点平移,以及作出对称点,然后顺次连接各个对称点即可作出对称图形;(2)观察所作图形,对称点连线的交点就是对称中心.【答案与解析】解:(1)(2)两个图形关于点O对称中心.【总结升华】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.举一反三:【变式】(罗平县校级期末)每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,①写出A、B、C的坐标.②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.【答案】解:①A(1,﹣4),B(5,﹣4),C(4,﹣1);②A1(﹣1,4),B1(﹣5,4),C1(﹣4,1),如图所示:6.如图,这两幅图是怎样利用旋转、平移或轴对称进行设计的?你能依照其中的图案自己设计一个图案吗?【答案与解析】解:(1)答案不惟一,可以看作是一个小正方形图案连续平移48次,平移前后所有的图形共同组成的图案.(2)答案不唯一,可以看作是一组竖条线组成的等腰直角三角形,以直角顶点为中心、按同一个方向分别旋转,旋转前后的四个图形共同组成的图案.【总结升华】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,对于不同的基本图形需要作的几何变换也不同.举一反三:90180270、、(1)(2)【变式】下列图形中,能通过某个基本图形平移得到的是().A. B. C. D. 【答案】D.。
小学四年级数学重点知识总结形的旋转翻折和平移

小学四年级数学重点知识总结形的旋转翻折和平移四年级数学重点知识总结: 形的旋转、翻折和平移在小学四年级的数学学习中,形的旋转、翻折和平移是重要的概念。
它们帮助我们理解和掌握图形的变化与移动。
本文将详细介绍形的旋转、翻折和平移的概念、性质及其在解题中的应用。
一、形的旋转形的旋转是指将一个图形围绕某一点或某一直线进行旋转,使得图形保持形状不变,只在位置上发生变化。
1. 旋转角度和方向图形的旋转角度可以是正数、负数或零,正数表示顺时针旋转,负数表示逆时针旋转,而零表示不旋转。
2. 旋转中心点旋转中心点是指图形旋转时所围绕的固定点。
根据旋转中心点的位置不同,旋转可以分为内旋和外旋。
当旋转中心点在图形内部时,为内旋;而当旋转中心点在图形外部时,为外旋。
3. 旋转后的图形在旋转后的图形中,各点到旋转中心的距离保持不变,图形的大小和形状也保持不变。
只有位置发生了改变,可以是平移、翻转等。
形的旋转在解决问题中起到了重要的作用,例如在几何题中,我们可以通过旋转寻找隐藏的对称关系,进而解题。
二、形的翻折形的翻折是指将一个图形沿着某一直线对折,使得折叠后的两部分重合,两部分之间存在对称关系。
1. 翻折直线翻折直线是指图形翻折时所选择的折叠直线。
可以是水平直线、垂直直线或斜直线,只要翻折后两部分完全重合即可。
2. 对称性形的翻折利用了图形的对称性质。
对称性是指图形中存在一条直线,将图形分成两部分,使得两部分关于这条直线完全相同。
3. 翻折后的图形翻折后的图形与折叠前的图形通过折叠直线所形成的对称关系有关。
对称的部分将重合,而非对称的部分将互相翻折。
形的翻折在解决问题中也发挥了重要作用。
例如在做几何题时,经常用到形的翻折来寻找对称关系,简化解题过程。
三、形的平移形的平移是指将一个图形沿着平行的方向移动,使得图形保持形状不变,只在位置上发生相同的移动。
1. 平移向量平移向量是指平移的位移量,即图形在横向和纵向上的移动距离。
初中数学知识归纳平移旋转和翻折

初中数学知识归纳平移旋转和翻折初中数学知识归纳:平移、旋转和翻折在初中数学学习过程中,平移、旋转和翻折是我们经常接触到的几个概念。
它们是几何变换中的重要内容,不仅能帮助我们更深入地理解空间和图形,还可以应用于解决实际问题。
本文将对平移、旋转和翻折进行归纳总结,以便更好地掌握这些知识。
一、平移平移是将一个图形沿着某个方向移动一段距离,而形状、大小和方向保持不变。
常见的平移有水平平移和垂直平移两种。
水平平移是指固定图形的上下位置,只使图形在水平方向上移动。
具体操作方法是,对于平面坐标系中的点(x, y),进行水平平移时,只需将点的横坐标x加上一个固定的值h,y坐标保持不变。
公式表示为:(x+h, y)。
垂直平移则是将图形固定在水平位置上,只使图形在垂直方向上移动。
对于给定的点(x, y),只需将点的纵坐标y加上一个固定的值k,x坐标保持不变。
公式表示为:(x, y+k)。
在实际应用中,平移可以帮助我们解决很多问题,比如:将某物体从一个位置平移至另一个位置,或者确定两个几何图形是否有平移对称性等等。
二、旋转旋转是指围绕一个中心点将图形按照一定角度旋转。
旋转主要有顺时针旋转和逆时针旋转两种。
顺时针旋转是指图形按照顺时针方向旋转一定角度。
对于给定的点(x, y),按照顺时针方向旋转角度θ后的新坐标可由以下公式得出:(x' = x*cosθ - y*sinθ, y' = x*sinθ + y*cosθ)。
逆时针旋转则是指图形按照逆时针方向旋转一定角度。
对于给定的点(x, y),按照逆时针方向旋转角度θ后的新坐标可由以下公式得出:(x' = x*cosθ + y*sinθ, y' = -x*sinθ + y*cosθ)。
旋转是一个很有趣的几何变换,我们可以通过旋转来判断图形的相似性、寻找对称性等等。
三、翻折翻折是指将图形绕一条直线折叠,使得折叠前的一部分与折叠后的另一部分完全重合。
高三数学 抛物线平移旋转和翻折复习学案

江苏省苏州市第五中学高三数学 抛物线平移旋转和翻折复习学案一、课前准备:1. 已知坐标平面内点A (a ,b ),那么点A 关于x 轴的对称点坐标为__________, 关于y 轴的对称点坐标为__________,关于原点中心对称的对称点坐标为_________.2. 将点()14A -,向右移4个单位,再向上移6个单位得到点B ,则点B 的坐标为_______________.3. 将抛物线223y x x =--向右移4个单位,向上移6个单位,得到的新抛物线解析式为_______________. 二、典型例题:例1.(1)将抛物线223y x x =--按下列要求翻折变换,求变换后所得抛物线的解析式: ①沿x 轴翻折;②沿y 轴翻折;③沿x 轴翻折再沿y 轴翻折.(2)将抛物线223y x x =--按下列要求进行旋转变换,求变换后所得抛物线的解析式 ①绕顶点旋转1800;②绕原点旋转1800;③绕着点()20,旋转1800.例2.已知二次函数2441y ax ax a =++-的图像是C 1,(1) 求C 1关于点R (1,0)中心对称的图像C 2的函数解析式;(2) 在(1)的条件下,设抛物线C 1、C 2与y 轴的交点分别为A 、B ,当AB =18时,求a 的值三、挑战中考:如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.四、课堂小结:五、达标测试:1.把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是245y x x =-+,则a +b +c =_______________.2. 在平面直角坐标系中,将抛物线228y x x =+-关于x 轴作轴对称变换,那么变换后所得的新抛物线的析式为 __________________.3. 求抛物线2243y x x =-+绕原点旋转180°后的抛物线的解析式_____.六、拓展提高:将抛物线C 1:2y =x 轴翻折,得抛物线C 2(1) 请直接写出抛物线C 2的函数解析式;(2) 现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴交点为A 、B (A 左B 右),将抛物线C 2向右平移m 个单位长度,新抛物线顶点为N ,与x 轴交点为D 、E(D 左E 右)y =①当B、D是线段AE的三等分点时,求m值;②平移过程中是否存在以A、N、E、M为顶点的四边形是矩形的情形?若存在,写出m的值,不存在,说明理由.。
小学数学点知识归纳平移旋转与翻折

小学数学点知识归纳平移旋转与翻折小学数学点知识归纳:平移、旋转与翻折数学作为一门基础学科,既要注重学生对基本概念的掌握,又要培养学生的思维能力和解决问题的能力。
在小学数学中,平移、旋转和翻折是重要的几何变换概念,本文将对这些知识进行归纳总结,并探讨其在小学数学中的教学。
一、平移平移是指在平面上保持形状和大小不变的情况下,将图形沿着一定方向进行移动的几何变换。
在平移中,图形的每一个点都按照相同的方向和距离进行移动。
平移有以下几个重要的特点:1. 平移后的图形与原图形全等。
平移不改变图形的形状和大小,因此平移后的图形与原图形全等。
这也是平移与其他几何变换(如旋转和翻折)的区别之一。
2. 平移是由向量描述的。
平移是由一个向量来描述的,这个向量既包括平移的方向,也包括平移的距离。
在平移时,我们可以选取任意一点作为起点,通过向量来确定平移的方向和距离。
3. 平移的性质:保持向量平行关系、保持直线平行关系、保持角度大小关系等。
平移不仅可以保持向量平行关系,还可以保持直线平行关系以及角度大小关系。
这些性质使得平移在解决实际问题中有着广泛的应用。
二、旋转旋转是指在平面上围绕某一点或某一直线进行旋转的几何变换。
旋转有以下几个重要的特点:1. 旋转后的图形与原图形形状相同,大小可以相同也可以不同。
旋转过程中,图形的形状保持相同,但其大小可以相同也可以不同。
这取决于旋转的角度。
2. 旋转是由旋转中心和旋转角度来描述的。
旋转的中心可以是图形上的一个点,也可以是平面上的某一直线。
旋转角度可以为正也可以为负,表示顺时针或逆时针旋转。
3. 旋转的性质:保持向量的大小和相对位置不变、保持角度大小不变等。
旋转可以保持向量的大小和相对位置不变,还可以保持角度大小不变。
这些性质使得旋转在解决几何问题和构造图形等方面有着重要的应用。
三、翻折翻折是指在平面上绕一条直线将图形进行镜像的几何变换。
翻折有以下几个重要的特点:1. 翻折后的图形与原图形形状完全相同,只是位置关系发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:平移,翻折,旋转复习基本知识点:1.平移定义:是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移。
平移性质:1 平移前后图形的形状、大小不变,只是位置发生改变。
2 新图形与原图形的对应点所连的线段平行且相等(或在同一直线上)。
3 新图形与原图形的对应线段平行且相等,对应角相等。
2.轴对称定义:如果一个图形沿着一条直线折叠,直线两侧的图形能够互相完全重合,这个图形就叫做轴对称图形。
对称轴:折痕所在的这条直线叫做对称轴。
轴对称性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线(中垂线)。
(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线(中垂线)。
(3)轴对称图形的对应线段、对应角相等。
注:中心对称图形不一定是轴对称图形,而轴对称图形不一定是中心对称图形。
3旋转定义:在平面内,将一个图形绕着一个定点旋转一定的角度,这样的图形运动就叫做图形的旋转。
这个定点就叫旋转中心,旋转的角度就叫旋转角。
图形的旋转不改变图形大小与形状。
旋转性质:(1)旋转前,旋转后的两个图形全等;(2)对应点到旋转中心的距离相等;(3) 每一对对应点与旋转中心的连线所成的角彼此相等.【作图与计算】1.在如图的方格纸中有一个Rt△ABC(A、B、C三点均为格点),∠C=90后所得90.现将Rt△ABC绕点B顺时针旋转'.到的Rt△CBA'',其中A、C的对应点分别是'A、'C(1)画出Rt△CA'B(2)试求出AC所扫过的图形的面积(精确到0.1).2.如图,在66⨯的正方形网格中,每个小正方形的边长都是1,△ABC 的三个顶点都在格点(即小正方形的顶点)上.(1)画出线段AC 平移后的线段BD ,其平移方向为射线AB 的方向,平移的距离为线段AB 的长;(2)求sin ∠DBC 的值. 3. 如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,三个顶点的坐标分别为A (2,2),B (1,0),C (3,1).①将△ABC 关于x 轴作轴对称变换得△A 1B 1C 1,则点C 1的坐标为 . ②将△ABC 绕原点O 按逆时针方向旋转90°得△A 2B 2C 2,则点C 2的坐标为 .③△A 1B 1C 1与△A 2B 2C 2成中心对称吗?若成中心对称,则对称中心的坐标为 .4. 在由边长1个单位长的小正方形组成的10x10的网格中,平面直角坐标系和四边形ABCD 的位置如图所示。
(1)将四边形ABCD 平移,使点D 到原点O 的位置,得到四边形O C B A 111,请在网格中画出四边形O C B A 111;(2)把四边形O C B A 111绕点(1,1)逆时针旋转︒90得到四边形2222O C B A ,请直接写出点2A ,2B ,2C 的坐标、5.在平面直角坐标系中,△ABC A (-2,3),B (-4,-1), (2,0).点n)为△ABC 内一点,平移△ABC 到△A 1B 使点P (m ,n )移到点P 1(m+6,n+1(1)请直接写出点A 1,B 1,C 1的坐标;(2)将△ABC 绕坐标点C 逆时针旋转△A 2B 2C ,画出△A 2B 2C ; (3)直接写出△ABC 的面积。
【变换小综合计算】1.(平移)如图,抛物线1C :x x y 42-=的对称轴为直线a x =,将抛物线1C 向上平移5个单位长度得到抛物线2C ,则抛物线2C 的顶点坐标为 ;图中的两条抛物线、直线a x =与y 轴所围成的图形(图中阴影部分)的面积为 .2、(平移)如图,直线43y x =与双曲线k y x=(0x >)交于点A 直线43y x =向下平移个6单位后,与双曲线k y x=(0x >B,与x 轴交于点C ,则C 点的坐标为___________;若2A OB C=则k = .3.(折叠) 矩形纸片ABCD 的边长AB=4,AD=2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为_____________.4.(折叠)如图所示,在折纸活动中,小明制作了一张A B C △纸片,点D E 、分别是边AB 、AC 上,将A B C △沿着D E 折D 叠压平,A与'A重合,若=70A︒∠,则1+2∠∠=()A. 140︒B. 130︒C. 110︒D. 70︒5.(折叠)如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()A.144° B.126° C.108° D.72°6.(折叠)已知如图,矩形OABC的长OA=宽OC=1,将△AOC沿AC翻折得△APC。
则∠PCB=____度,P点坐标为(,);7.(旋转)如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为( )A.30° B.40° C.50° D.80°8.(旋转)如图,正方形ABCD的边长为3,E为CD边上一点,DE=1.△9.(旋转)已知:如图,等边ABC∆和正方形ACPQ的边长都为1,在图形所在的平面内,以点A为旋转中心将正方形ACPQ沿顺时针方向旋转α度,使AQ与AB重合,则(1)旋转角︒=_________α;(2)点P从开始到结束所经过路径的长为___________.【变换综合计算】例:在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点.(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图②,当 =30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.例:如图(1),将一个边长为1的正文方形纸片ABCD折叠,点B落在边AD上的B’处(不与A,D)重合,MN为折痕,折叠后B’C’与DN交于P。
(1)直接写出正方形纸片ABCD的周长;(2)如图(2),过点N作NR⊥AB,垂足为R,连结BB’交MN于点Q。
①求证:△ABB’≌△RMN;②设AB ’=x ,求四边形MNC ’B ’的面积S 与x 的函数关系式,并求S 的最小值。
练习:1.如图,已知Rt A B C △中,︒=∠90ACB ,6=AC cm ,将A B C △向右平移5cm 得到⊿C PC ',再将⊿C PC '绕着C '点顺时针旋转62°得到⊿C B A ''',其中点C 、B 、A '''为点A B C 、、为的对应点.(结果精确到0.01) (1)请直接写出C C '的长;(2)试求出点A 在运动过程中所经过的路径长;(3)求A '点到AC 的距离.例:在平面直角坐标系中,把矩形OABC 的边OA 、OC 分别放在x 轴和y 轴的正半轴上,已知OA 32=,OC 2=.(1)直接写出A 、B 、C 三点的坐标;(2)将矩形OABC 绕点O 逆时针旋转x °,得到矩形OA 1B 1C 1, 其中点A 的对应点为点A 1.①当900<<x 时,设AC 交OA 1于点K (如图1), 若△OAK 为等腰三角形,请直接写出x 的值;②当=x 90时(如图2),延长AC 交A 1C 1于点D , 求证:AD⊥A 1C 1;③当点B 1落在y 轴正半轴上时(如图3),设BC 与OA 1交于点P ,求过点P 的反比例函数的解析式;并探索:该反比例函数的图象是否经过矩形OABC 的对称中心?请说明理由.例:在下图中,直线l 所对应的函数关系式为51+-=x y ,l 与y 轴交于点C ,O为坐标原点.(1)请直接写出线段OC 的长;(2)已知图中A 点在x 轴的正半轴上,四边形OABC 为矩形,边AB 与直线l 相交于点D ,沿直线l 把△CBD 折叠,点B 恰好落在AC 上一点E 处,并且EA= 1. ①试求点D 的坐标;②若⊙P 的圆心在线段CD 上,且⊙P 既与直线AC 相切,又与直线DE 相交,设圆心P 的横坐标为m ,试求m 的取值范围.巩固练习:1.已知:如图,在平面直角坐标系xoy 中,一次函数343+=x y 的图象与x轴和y 轴交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°后得到△B O A ''. (1)分别求出点A '、B '的坐标;(2)若直线B A ''与直线AB 相交于点C ,求S 四边形OB ´CB 的值.2.如图,直线643+-=x y 与x 轴、y 轴分别相交于A 、C 两点;分别过A 、C 两点作x 轴、y 轴的垂线相交于B 点.P 为BC 边上一动点。
(1)求C 点的坐标;(2)点P 从点C 出发沿着CB 以每秒1个单位长度的速度向点B 匀速运动,过点P 作PE ∥AC 交AB 于B ,设运动时间为t 秒.用含t 的代数式表示△PBE 的面积S ;x(3)在(2)的条件下点P 的运动过程中,将△PBE 沿着PE 折叠(如图所示),点B 在平面内的落点为点D .当△PDE 与△ABC 重叠部分的面积等于23时,试求出P 点的坐标.3. 我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题:如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x 轴所在的直线绕着原点O 逆时针旋转α度角后的图形.若它与反比例函数xy 3=的图象分别交于第一、三象限的点B 、D ,已知点)0,(m A -、)0,(m C .(1)直接判断并填写:不论α取何值,四边形ABCD 的形状一定是 ; (2)①当点B 为)1,(p 时,四边形ABCD 是矩形,试求p 、α、和m 有值; ②观察猜想:对①中的m 值,能使四边形ABCD 为矩形的点B 共有几个?(不必说理)(3)试探究:四边形ABCD 能不能是菱形?若能, 直接写出B 点的坐标, 若不能, 说明理由.。