上海中考数学第18题专题练习
上海中考数学第18题分析(旋转类)
上海中考数学第18题分析(二)——旋转类前言:初三数学第18题对平移、翻折、旋转三大图形变换考查非常频繁,而旋转以其“变幻莫测”成为学生学习的较难知识点只要,作为一线的数学教师常常困惑于如何找到探究此类问题的一般解法,进而引导学生从旋转的“变化”中理出一条“不变”的分析规律,成为学生解题的重要经验;今天我们就来探究有关旋转类的解题策略及总结归纳。
一、对称思想和旋转思想数学思想是解数学题的精髓和重要的指导方法,在平移和旋转中的应用也相当的广泛,一般可以归结为两种思想——对称的思想和旋转的思想,具体的分析如下:1. 对称的思想:在平移、旋转、对称这些概念中,对称这一概念非常重要.它包括轴对称、旋转对称、中心对称.对称是一种种要的思想方法,在解题的应用非常广泛.2. 旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。
二、旋转的概念1. 旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.2. 旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
三、图形旋转常见题型级解题策略(1)图形旋转之“旋转边长”题型解题方法与策略:1.寻找点,即旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论。
;3.寻找旋转相等的线段或角度;4.利用旋转并结合题目中的特殊条件解题;5.部分题目注意分类讨论;6.准确画出旋转后的图形是解题的关键。
(2)图形旋转之“旋转角度”题型解题方法与策略:1.寻找点,即旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论。
;3.寻找旋转旋转角、相等的线段、相等的角度;4.利用旋转并结合题目中的特殊条件解题;5.部分题目注意分类讨论;6.准确画出旋转后的图形是解题的关键。
上海中考数学第18题专项训练
上海中考数学第18题专项训练(含答案)1.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .2.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图所示)把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两 点的距离为_ __1,5_____.△ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =___80,120______.4.如图所示,Rt ABC V 中,90C ∠=︒,1BC =,30A ∠=︒, 点D 为边AC 上的一动点,将ABD V 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE图C B D5.如图4,⊙A 、⊙B 的圆心A 、B 都在直线L 上,⊙A 的半径为1cm ,⊙B 的半径为2cm ,圆心距AB=6cm. 现⊙A 沿直线L 以每秒1cm 的速度 向右移动,设运动时间为t秒,写出两圆相交时,t 的取值范围: 3<t<5或7<t<9 .6.在Rt △ABC 中,∠C=90º ,BC =4 ,AC=3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么A A '7. 已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取2BF AF =,EF 交BD 于点G ,则GBGD= 2/5或2、3 .8.如图,在ABC ∆中,∠ACB=︒90,AC=4,BC=3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 4、5 .B9.如图2,在△ABC 中,AD 是BC 上的中线,BC=4,∠ADC=30°,把△ADC 沿AD 所在直线翻折后点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 1 .10.如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图中阴影部分的周长为 7π/3 .11.如图,在△ABC 中,AB = AC ,BD 、CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,那么tan ∠ABC =_____3______.12.已知在△AOB 中,∠B =90°,AB=OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标为 ()6,2- .13.在△ABC 中,AB=AC ,∠A=80°,将△ABC 绕着点B 旋转,使点A 落在直线BC 上,点C 落在点'C ,则∠'BCC = 65,25 .C /BDCA图2ABCDEABC14.如图,已知在直角三角形ABC中,∠C=90°,AB=5,BC=3,将ABC∆绕着点B顺时针旋转,使点C落在边AB上的点C′处,点A落在点A′处,则AA′的长为15.如图,将矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上点P处,已知︒MPN,PM=3,PN=4,,那么矩形纸片ABCD的面积为 144/5 .∠90=16.在Rt△ABC中,∠C=90°,AB=2,将这个三角形绕点C旋转60°后,AB的中点D落在点D′处,那么DD′的长为 1 .17.在△ABC中,AB=AC=5,若将△ABC沿直线BD翻折,使点C落在直线AC上的点C′处,AC′=3,则BC18. 在Rt △ABC 中,∠A<∠B,CM 是斜边AB 上的中线,将△ACM 沿直线CM 翻折,点A 落在D 处,若CD 恰好与AB 垂直,则∠A = 30 度。
2019-2021年上海各区数学中考一模压轴题分类汇编18题-定义新图形及其他题型含详解
专题定义新图形及其他题型【知识梳理】根据题目中给的知识点,结合所学函数及图形知识解答【历年真题】1.(2021秋•浦东新区期末)如图,a ∥b ∥c ,直线a 与直线b c与直线b 之间的距离为,等边△ABC 的三个顶点分别在直线a 、直线b 、直线c 上,则等边三角形的边长是.2.(2021秋•宝山区期末)如果一条抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“特征三角形”.已知y =x 2+bx (b >0)的“特征三角形”是等腰直角三角形,那么b 的值为.3.(2021秋•青浦区期末)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.4.(2021秋•青浦区期末)若抛物线y 1=ax 2+b 1x+c 1的顶点为A ,抛物线y 2=ax 2+b 1x+c 1的顶点为B ,且满足顶点A 在抛物线y 2上,顶点B 在抛物线y 1上,则称抛物线y 1与抛物线y 2互为“关联抛物线”已知顶点为M 的抛物线y=(x-2)2+3与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan MDO=4∠,那么顶点为N 的抛物线的表达式为5.(2020秋•长宁区期末)如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=AC AD=CD=32,点E、点F分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于.6.(2020秋•青浦区期末)如果四边形边上的点,它与对边两个端点的连线将这个四边形分成的三个三角形都相似,我们就把这个点叫做该四边形的“强相似点”.如图①,在四边形ABCD中,点Q在边AD上,如果△QAB、△QBC和△QDC都相似,那么点Q就是四边形ABCD的“强相似点”;如图②,在四边形ABCD中,AD∥BC,AB=DC=2,BC=8,∠B=60°,如果点Q是边AD上的“强相似点”,那么AQ=.7.(2020秋•浦东新区期末)如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为.8.(2020秋•徐汇区期末)如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=45,ED=5,如果△ECD的面积是6,那么BC的长是.9.(2020秋•金山区期末)已知在Rt△ABC中,∠C=90°,BC=1,AC=2,以点C为直角顶点的Rt△DCE的顶点D在BA的延长线上,DE交CA的延长线于点G,若tan∠CED=12,CE=GE,那么BD的长等于.10.(2020秋•黄浦区期末)已知一个矩形的两邻边长之比为1:2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为.11.(2019秋•黄浦区期末)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且AD3=AE2,那么DEBC的值是.12.(2019秋•宝山区期末)如图,点A在直线34y x上,如果把抛物线y=x²沿OA方向平移5个单位,那么平移后的抛物线的表达式为__.专题定义新图形及其他题型【历年真题】1.(2021秋•浦东新区期末)如图,a ∥b ∥c ,直线a 与直线b c与直线b 之间的距离为,等边△ABC 的三个顶点分别在直线a 、直线b 、直线c 上,则等边三角形的边长是【考点】相似三角形的判定与性质;等边三角形的性质.【专题】图形的相似;模型思想.【分析】过点A 作AD ⊥直线b 于D ,将△ABD 绕点A 逆时针旋转60°得到△ACE ,作EG ⊥直线c 于G 交直线a 于F .想办法求出AE ,EC 即可解决问题.【解答】解:如图,过点A 作AD ⊥直线b 于D ,将△ABD 绕点A 逆时针旋转60°得到△ACE ,作EG ⊥直线c 于G 交直线a 于F .则有∠AEC =∠ADB =∠AFE =∠EGC =90°,AE =AD ,∠EAF =∠CEG =30°,∴EF =12AE =2,∴EG =2,CG =3EG =52,CE =2CG =5,∴AC =.∴等边△ABC 的边长为.故答案为:.【点评】本题考查了相似三角形的性质与判定,勾股定理的运用,直角三角形的性质的运用,相似三角形的性质的运用,解答时构造相似三角形是关键.2.(2021秋•宝山区期末)如果一条抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“特征三角形”.已知y =x 2+bx (b >0)的“特征三角形”是等腰直角三角形,那么b 的值为2.【考点】抛物线与x 轴的交点;等腰直角三角形;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;应用意识.【分析】根据抛物线的“特征三角形”是等腰直角三角形建立方程求解即可.【解答】解:设抛物线y =x 2+bx 与x 轴的交点坐标为A ,B ,顶点为D ,∴A (0,0),B (﹣b ,0),D (﹣2b ,﹣24b ),∵抛物线y =x 2+bx 对应的“特征三角形”是等腰直角三角形,∴AB 2=AD 2+BD 2=2AD 2,∴b 2=2(24b +416b ),解得:b =±2,∵b >0,∴b =2,故答案为:2.【点评】本题考查抛物线与x 轴的交点和抛物线的“特征三角形”的特点,关键是利用“特征三角形”是等腰直角三角形建立等量关系.3.(2021秋•青浦区期末)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为y =﹣3x +3.【考点】抛物线与x 轴的交点;坐标与图形变化﹣旋转;一次函数的性质;一次函数图象上点的坐标特征;待定系数法求一次函数解析式;待定系数法求二次函数解析式.【专题】一次函数及其应用;二次函数图象及其性质;平移、旋转与对称;推理能力.【分析】先由直线y =﹣kx +k 求得点A 和点B 的坐标,然后求得点C 的坐标,最后将点A 、B 、C 的坐标分别代入函数y =mx 2+2mx +c 中求得m 、k 、c 的值,即可得到一次函数的解析式.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,22020m m c c k mk mk c ⎧++=⎪=⎨⎪++=⎩,解得:000m k c =⎧⎪=⎨⎪=⎩或133m k c =-⎧⎪=⎨⎪=⎩或1311m k c ⎧=⎪⎪=-⎨⎪=-⎪⎩,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.【点评】本题考查了一次函数图象上点的坐标特征、二次函数的解析式、旋转的特征,解题的关键是会求点B 经过逆时针旋转90°后的点的坐标.4.(2021秋•青浦区期末)若抛物线y 1=ax 2+b 1x+c 1的顶点为A ,抛物线y 2=ax 2+b 2x+c 2的顶点为B ,且满足顶点A 在抛物线y 2上,顶点B 在抛物线y 1上,则称抛物线y 1与抛物线y 2互为“关联抛物线”已知顶点为M 的抛物线y=(x-2)2+3与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan MDO=4∠,那么顶点为N 的抛物线的表达式为2557(416y x =--+.【考点】待定系数法求二次函数解析式.【专题】二次函数图象及其性质;;推理能力.【分析】设顶点为N 的抛物线顶点坐标N 为(a ,b ),由题意可知34M M N y x x =-,即可求得D 点坐标为(6,0),则有直线MD 解析式为3(6)4y x =--,因为N 点过直线MD ,N 点也过抛物线y=(x-2)2+3,故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716),可设顶点为N 的抛物线的表达式为2557(416y a x =-+,又因为M 点过2557()416y a x =-+,即可解得a=-1,故顶点为N 的抛物线的表达式为2557()416y x =--+.【解答】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线y=(x-2)2+3的顶点坐标M 为(2,3)∵3tan 4MDO ∠=∴34M M N y x x =-即3324D x =-解得24D x =±∵直线MN 与x 轴正半轴交于点D ∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线y=(x-2)2+3故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+化简得2135042a a -+=解得a=54或a=2(舍)将a=54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557(416y a x =-+有25573(2)416a =-+化简得95731616a =+解得a=-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557(416y x =--+.【点评】本题考察了二次函数的图象及其性质,三角函数的应用.理解题意所述“关联抛物线”的特点,即若抛物线y 1=ax 2+b 1x+c 1的顶点为A ,抛物线y 2=ax 2+b 2x+c 2的顶点为B ,且满足顶点A 在抛物线y 2上,顶点B 在抛物线y 1上是解题的关键.5.(2020秋•长宁区期末)如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD 中,AB =ACAD=CD =32,点E 、点F 分别是边AD ,边BC 上的中点.如果AC 是凸四边形ABCD 的相似对角线,那么EF 的长等于414.【考点】相似图形;三角形中位线定理.【专题】图形的相似;推理能力.【分析】利用相似三角形的性质求出BC 长,再利用等腰三角形的性质和勾股定理计算出EF 的长即可.【解答】解:如图所示:∵AB=AC,AD=CD,△ABC∽△DAC,∴AC2=BC•AD,∵AC AD=32,∴CB=2,∵△ABC∽△DAC,∴∠ACB=∠CAD,∴CB∥AD,∵AB=AC,F为BC中点,∴AF⊥CB,BF=CF=1,∴∠AFC=90°,∵CB∥AD,∴∠FAE=∠AFC=90°,∵AC Rt△AFC中AF==,∵AD=32,E为AD中点,∴AE=34,∴EF414 =.故答案为:41 4.【点评】此题主要考查了相似三角形的性质,以及等腰三角形的性质和勾股定理,关键是掌握相似三角形对应边成比例、对应角相等.6.(2020秋•青浦区期末)如果四边形边上的点,它与对边两个端点的连线将这个四边形分成的三个三角形都相似,我们就把这个点叫做该四边形的“强相似点”.如图①,在四边形ABCD中,点Q在边AD上,如果△QAB、△QBC和△QDC都相似,那么点Q就是四边形ABCD的“强相似点”;如图②,在四边形ABCD中,AD∥BC,AB=DC=2,BC=8,∠B=60°,如果点Q是边AD上的“强相似点”,那么AQ=或.【考点】相似图形.【专题】图形的相似;推理能力.【分析】如图,当∠1=∠2=∠3时,△BAQ∽△QDC∽△CQB,设AQ=x.利用相似三角形的性质,构建方程求解即可.【解答】解:如图,当∠1=∠2=∠3时,△BAQ∽△QDC∽△CQB,设AQ=x.过点A作AE⊥BC于E,过点D作DF⊥BC于F,则四边形AEFD是矩形,∴AD=EF,∵AB=CD=2,AD∥BC,∴四边形ABCD是等腰梯形,∴∠ABE=∠DCF=60°,BE=AB•cos60°=1,CF=CD•cos60°=1,∴EF=BC﹣BE﹣CF=6,∴AD=EF=6,DQ=6﹣x,∵△BAQ∽△QDC,∴AB AQ=QD CD,∴x(6﹣x)=4,解得x=3±5,∴AQ=3±5故答案为:5或3-5【点评】本题考查相似三角形的判定和性质,等腰梯形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.(2020秋•浦东新区期末)如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为2.【考点】相似三角形的判定与性质.【专题】图形的相似;推理能力.【分析】先求出BD=8,CD=4,再求出MH=4,DH=2,设BE=x,得出CE=12﹣x,CF=3+x,EH=10﹣x,再判断出△EHM∽△ECF,得出比例式,建立方程求解,即可得出结论.【解答】解:如图,∵点D是BC上一点,BC=12,∴BD:CD=2:1,∴BD=8,CD=4,过点M作MH∥AC交CD于H,∴△DHM∽△DCA,∴MH DH=ACDMCD AD=,∴点M是AD的中点,∴AD=2DM,∵AC=8,∴MH DH1=842=,∴MH=4,DH=2,过点M 作MG ∥AB 交BD 于G ,同理得,BG =DG =4,∵AB =10,BC =12,AC =8,∴△ABC 的周长为10+12+8=30,∵过AD 中点M 的直线将△ABC 分成周长相等的两部分,∴CE +CF =15,设BE =x ,则CE =12﹣x ,∴CF =15﹣(12﹣x )=3+x ,EH =CE ﹣CH =CE ﹣(CD ﹣DH )=12﹣x ﹣2=10﹣x ,∵MH ∥AC ,∴△EHM ∽△ECF ,∴MH EH =CF CE ,∴410-=3+12x x x,∴x =2或x =9,当x =9时,CF =12>AC ,点F 不在边AC 上,此种情况不符合题意,即BE =x =2,故答案为:2.【点评】此题主要考查了相似三角形的判定和性质,构造出相似三角形是解本题的关键.8.(2020秋•徐汇区期末)如图,在△ABC 中,∠ABC =120°,AB =12,点D 在边AC 上,点E 在边BC 上,sin ∠ADE =45,ED =5,如果△ECD 的面积是6,那么BC 的长是﹣6.【考点】解直角三角形;三角形的面积.【专题】解直角三角形及其应用;推理能力.【分析】如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H .解直角三角形求出BH ,CH 即可解决问题.【解答】解:如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H .∵∠ABC =120°,∴∠ABH =180°﹣∠ABC =60°,∵AB =12,∠H =90°,∴BH =AB •cos60°=6,AH =AB •sin60°=,∵EF ⊥DF ,DE =5,∴sin ∠ADE =EF DE =45,∴EF =4,∴DF 3==,∵S △CDE =6,∴12•CD •EF =6,∴CD =3,∴CF =CD +DF =6,∵tan C =EF AH CF CH =,∴4636CH=,∴CH =,∴BC =CH ﹣BH =6.故答案为:﹣6.【点评】本题考查解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.(2020秋•金山区期末)已知在Rt △ABC 中,∠C =90°,BC =1,AC =2,以点C 为直角顶点的Rt △DCE 的顶点D 在BA 的延长线上,DE 交CA 的延长线于点G ,若tan ∠CED=12,CE =GE ,那么BD 的长等于2+【考点】解直角三角形;勾股定理.【专题】解直角三角形及其应用;推理能力.【分析】如图,过点A 作AH ⊥CE 于H .想办法证明AK =AC ,推出HK =CH ,推出AK =AD =2,即可解决问题.【解答】解:如图,过点A 作AH ⊥CE 于H .∵tan ∠CED =12=tan ∠BAC ,∴∠E =∠BAC ,∵CE =EG ,∴∠CGE =∠ECG ,∵∠BAC +∠GAK =180°,∴∠E +∠GAK =180°,∴∠AGE +∠AKE =180°,∵∠AKE +∠AKC =180°,∴∠AKC =∠CGE ,∴∠AKC =∠ACK ,∴AC =AK =2,∵AH ⊥CK ,∴KH =CH ,∵∠AHE =∠DCK =90°,∴AH ∥CD ,∴KA =AD ,∴DK =2AK =4,AD =AK =2,∵∠ACB =90°,BC =1,AC =2,∴AB =∴BD =AB +AD =,故答案为:【点评】本题考查解直角三角形,勾股定理,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题.10.(2020秋·黄浦区期末)已知一个矩形的两邻边长之比为1:2.5.一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为2:1或1:2或1:1.【考点】相似多边形的性质;矩形的性质,四手拉手模型【专题】图形的相似;推理能力.【分析】如图,设AB=a,AD=2.5a,AE=x,则DE=2.5a-x,利用相似多边形的性质,构建方程求解,另外两个矩形全等也符合题意.【解答】解:如图,设AB=a,AD=2.5a,,AE=x,则DE=2.5a-x.∵矩形ABFE∽矩形EDCF∴AE EF=EF DE∴=2.5x aa a x整理得,x2-2.5xa+a2=0,解得x=2a或0.5a,∴矩形ABFE与矩形EDCF相似,相似比为2:1或1:2.当E,F分别是AD,BC的中点时,两个矩形全等,也符合题意,相似比为:1:1故答案为:2:1或1:2或1:1.【点评】本题考查相似多边形的性质,解题的关键是学会利用参数构建方程求解,属干电考常考题型11.(2019秋•黄浦区期末)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且AD3=AE2,那么DEBC的值是13318﹣1.【考点】等腰三角形的性质;相似三角形的判定与性质.【专题】等腰三角形与直角三角形;图形的相似;推理能力.【分析】证明△ADE∽△BAE,得出AE2=DE×BE,同理△ADE∽△CDA,得出AD2=DE×CD,得出2294AD CD AE BE ==,设CD =9x ,则BE =4x ,求出AB =AD AE×BE =6x ,作AM ⊥BC 于M ,由等腰三角形的性质得出BM =CM =12BC ,由直角三角形的性质得出AM =12AB =3x ,BM AM =x ,得出BC =2BM =,求出DE =BE +CD ﹣BC =13x ﹣x ,即可得出答案.【解答】解:∵AB =AC ,∴∠C =∠B =30°,∵∠DAE =∠B =30°,∴∠DAE =∠B =∠C ,∵∠AED =∠BEA ,∴△ADE ∽△BAE ,∴AD AE DE ==AB BE AE,∴AE 2=DE ×BE ,同理:△ADE ∽△CDA ,∴AD DE =CD AD ,∴AD 2=DE ×CD ,∴22239()24AD CD AE BE ===,设CD =9x ,则BE =4x ,∵AD AE AB BE =,∴AB =AD AE ×BE =32×4x =6x ,作AM ⊥BC 于M ,如图所示:∵AB =AC ,∴BM =CM =12BC ,∵∠B =30°,∴AM =12AB =3x ,BM AM =,∴BC =2BM =,∴DE =BE +CD ﹣BC =13x ﹣x ,∴13318DE EC ==﹣1;故答案为:13318﹣1.【点评】本题考查了等腰三角形的性质、相似三角形的判定与性质、直角三角形的性质等知识;证明三角形相似是解题的关键.12.(2019秋•宝山区期末)如图,点A 在直线34y x =上,如果把抛物线y=x ²沿OA 方向平移5个单位,那么平移后的抛物线的表达式为_y=(x-4)2+3_.【考点】二次函数图象与几何变换;一次函数图象上点的坐标特征,四二次函数的平移【专题】二次函数图象及其性质;运算能力;推理能力.【分析】过点A作AB丄x轴于B,求出OB、AB,然后写出点A的坐标,再利用顶点式解析式写出即可.【解答】解:如图,过点A作AB丄x轴于B,∵点A在直线34y x上,OA=5,∴OB=4,AB=3,∵点A的坐标为(4,3),∴平移后的抛物线解析式是y=(x-4)2+3故答案为y=(x-4)2+3.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.。
上海市2019年中考数学真题与模拟题分类 专题18 图形的变化之解答题(2)(39道题)(解析版)(1)
专题18 图形的变化之解答题(2)参考答案与试题解析一.解答题(共39小题)1.(2019•宝山区一模)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF•CE=AB2.【答案】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.【点睛】此题考查了相似三角形的判定与性质.注意证得△ABF∽△ECA是解此题的关键.2.(2019•青浦区二模)如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan∠B,求∠CAD的正弦值.【答案】解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B,∴BC=2由勾股定理得,AB∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE∴DE∴由勾股定理得AD∴cos∠CAD∴sin∠CAD则∠CAD的正弦值为【点睛】本题主要是应用三角函数定义来解直角三角形,关键要运用锐角三角函数的概念及比正弦和余弦的基本关系进行解题.3.(2019•青浦区二模)如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)【参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42】【答案】解:∵AH⊥直线l,∴∠AHD=90°,在Rt△ADH中,tan∠ADH,∴DH,在Rt△BDH中,tan∠BDH,∴DH,∴,解得:AB≈5.3m,答:该古塔塔刹AB的高为5.3m.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,正确的解直角三角形是解题的关键.4.(2019•浦东新区二模)如图1,一辆吊车工作时的吊臂AB最长为20米,吊臂与水平线的夹角∠ABC最大为70°,旋转中心点B离地面的距离BD为2米.(1)如图2,求这辆吊车工作时点A离地面的最大距离AH(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75);(2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到40千米远的某工地,因此王师傅以每小时比平时快20千米的速度匀速行驶,结果提前20分钟到达,求这次王师傅所开的吊车速度.【答案】解:(1)根据题意,得AB=20,∠ABC=70°,CH=BD=2,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin70°=20×0.94=18.8,∴AH=20.8.答:这辆吊车工作时点A离地面的最大距离AH为20.8米;(2)设这次王师傅所开的吊车的速度为每小时x千米,由题意,得,解得,x1=60,x2=﹣40,经检验:x1=60,x2=﹣40都是原方程的解,但x2=﹣40符合题意,舍去,答:这次王师傅所开的吊车的速度为每小时60千米.【点睛】本题是解直角三角形与分式方程应用的综合题,主要考查了解直角三角形,列分式方程解应用题,(1)题的关键是解直角三角形求出AC,(2)小题的关键是找出等量关系列出分式方程.5.(2019•长宁区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是边AC的中点,CF ⊥BD,垂足为点F,延长CF与边AB交于点E.求:(1)∠ACE的正切值;(2)线段AE的长.【答案】解:(1)∵∠ACB=90°,∴∠ACE+∠BCE=90°,又∵CF⊥BD,∴∠CFB=90°,∴∠BCE+∠CBD=90°,∴∠ACE=∠CBD,∵AC=4且D是AC的中点,∴CD=2,又∵BC=3,在Rt△BCD中,∠BCD=90°.∴tan∠BCD,∴tan∠ACE=tan∠CBD;(2)过点E作EH⊥AC,垂足为点H,在Rt△EHA中,∠EHA=90°,∴tan A,∵BC=3,AC=4,在Rt△ABC中,∠ACB=90°,∴tan A,∴,设EH=3k,AH=4k,∵AE2=EH2+AH2,∴AE=5k,在Rt△CEH中,∠CHE=90°,∴tan∠ECA,∴CH k,∴AC=AH+CH k=4,解得:k,∴AE.【点睛】此题考查了解直角三角形,涉及的知识有:勾股定理,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.6.(2019•闵行区二模)如图,在△ABC中,AB=AC,BC=10,cos∠,点D是边BC的中点,点E在边AC上,且,AD与BE相交于点F.求:(1)边AB的长;(2)的值.【答案】解:(1)∵AB=AC,点D是边BC的中点,∴AD⊥BC,BD=DC BC=5,在Rt△ABD中,cos∠ABC,∴AB=13;(2)过点E作EH∥BC,交AD与点H,∵EH∥BC,,∴,∵BD=CD,∴,∵EH∥BC,∴.【点睛】本题考查的是等腰三角形的性质、解直角三角形、平行线分线段成比例定理,掌握等腰三角形的三线合一、余弦的定义是解题的关键.7.(2019•金山区二模)已知:如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,CE=CB,CD=5,sin∠.求:(1)BC的长.(2)tan E的值.【答案】解:(1)∵在Rt△ABC中,∠ACB=90,D是边AB的中点;∴CD AB,∵CD=5,∴AB=10,∵sin∠ABC,∴AC=6∴;(2)作EH⊥BC,垂足为H,∴∠EHC=∠EHB=90°∵D是边AB的中点,∴BD=CD AB,∠DCB=∠ABC,∵∠ACB=90°,∴∠EHC=∠ACB,∴△EHC∽△ACB,∴由BC=8,CE=CB得CE=8,∠CBE=∠CEB,∴解得EH,CH,BH=8∴tan∠CBE3,即tan E=3.【点睛】本题考查了解直角三角形,熟练运用直角三角函以及三角形相似是解题的关键.8.(2019•徐汇区二模)如图,已知⊙O的弦AB长为8,延长AB至C,且BC AB,tan C.求:(1)⊙O的半径;(2)点C到直线AO的距离.【答案】解:(1)过O作OD⊥AB于D,则∠ODC=90°,∵OD过O,∴AD=BD,∵AB=8,∴AD=BD=4,∵BC AB,∴BC=4,∴DC=4+4=8,∵tan C,∴OD=4,在Rt△ODA中,由勾股定理得:OA4,即⊙O的半径是4;(2)过C作CE⊥AO于E,则S△AOC,即,解得:CE=6,即点C到直线AO的距离是6.【点睛】本题考查了垂径定理,三角形的面积公式,勾股定理,解直角三角形等知识点,能求出AD、OD的长度是解此题的关键.9.(2019•包头模拟)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.【答案】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴,即,解得CF;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH,∴AH,EH=AE﹣AH,∴tan D=tan∠ECH.【点睛】本题主要考查解直角三角形与相似三角形的判定和性质,解题的关键是添加辅助线构造与∠D 相等的角,并熟练掌握相似三角形的判定与性质、勾股定理等知识点.10.(2019•黄浦区一模)如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向(本题参考数据sin53°≈0.80,cos53°的50海里处,船B位于船A的正西方向且与灯塔P相距海里.≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)【答案】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.11.(2019•东阳市模拟)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF 所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°,tan32°,tan40°)【答案】解::(1)∵∠OAC=32°,OB⊥AD,∴tan∠OAB tan32°,∵AB=2m,∴,∴OB=1.24m,∵⊙O的半径为0.2m,∴BF=1.04m;(2)∵∠AOD=40°,OD⊥AD,∴∠OAD=50°,∵∠OAC=32°∴∠CAD=18°,∴AB的坡度为tan18°,【点睛】本题主要考查了解直角三角形的应用,解答本题的关键是求出角的度数,利用三角函数的知识即可求解,难度一般.12.(2019•松江区一模)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.【答案】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE BP;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴,∴,∴,设CP=k,则P A=3k,∵PD⊥AB,D是边AB的中点,∴P A=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.13.(2019•松江区一模)如图,已知△ABC中,AB=AC=5,cos A.求底边BC的长.【答案】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos A,∵cos A,AB=5,∴AD=AB•cos A=53,∴BD4,∵AC=AB=5,∴DC=2,∴BC2.【点睛】本题考查了解直角三角形,勾股定理,等腰三角形的性质,正确的作出辅助线是解题的关键.14.(2019•靖江市一模)2018年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)【答案】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB1395 米;(2)∵AB=1395,∴该车的速度55.8km/h<60千米/时,故没有超速.【点睛】此题主要考查了解直角三角形的应用,关键是掌握三角函数定义.15.(2019•松江区一模)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【答案】解:在Rt△APN中,∠NAP=45°,∴P A=PN,在Rt△APM中,tan∠MAP,设P A=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP,∵∠MBP=31°,AB=5,∴0.6,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点睛】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.16.(2019•濉溪县二模)如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.【点睛】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.17.(2019•随县模拟)如图是某品牌自行车的最新车型实物图和简化图,它在轻量化设计、刹车、车篮和座位上都做了升级.A为后胎中心,经测量车轮半径AD为30cm,中轴轴心C到地面的距离CF为30cm,座位高度最低刻度为155cm,此时车架中立管BC长为54cm,且∠BCA=71°.(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.88)(1)求车座B到地面的高度(结果精确到1cm);(2)根据经验,当车座B'到地面的距离B'E'为90cm时,身高175cm的人骑车比较舒适,此时车架中立管BC拉长的长度BB'应是多少?(结果精确到1cm)【答案】解:(1)设AC于BE交于H,∵AD⊥l,CF⊥l,HE⊥l,∴AD∥CF∥HE,∵AD=30cm,CF=30cm,∴AD=CF,∴四边形ADFC是平行四边形,∵∠ADF=90°,∴四边形ADFC是矩形,∴HE=AD=30cm,∵BC长为54cm,且∠BCA=71°,∴BH=BC•sin71°=51.3cm,∴BE=BH+EH=BH+AD=51.3+30≈81cm;答:车座B到地面的高度是81cm;(2)如图所示,B'E'=96.8cm,设B'E'与AC交于点H',则有B'H'∥BH,∴△B'H'C∽△BHC,得.即,∴B'C=63cm.故BB'=B'C﹣BC=63﹣54=9(cm).∴车架中立管BC拉长的长度BB'应是9cm.【点睛】本题考查了相似三角形的应用、切线的性质解解直角三角形的应用,解题的难点在于从实际问题中抽象出数学问题,难度较大.18.(2019•徐汇区校级一模)如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM.已知CD=44.5m.(1)求楼间距MN;(2)若B号楼共30层,每层高均为3m,则点C位于第几层?(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)【答案】解:(1)过点P作PE∥MN,交B栋楼与点E,则四边形PEMN为矩形.∴EP=MN由题意知:∠EPD=55.7°∠EPC=30°.在Rt△ECP中,EC=tan∠EPC×EP=tan30°×EP EP≈0.58EP,在Rt△EDP中,ED=tan∠EPD×EP=tan55.7°×EP≈1.47EP,∵CD=ED﹣EC,∴1.47EP﹣0.58EP=44.5∴EP=MN=50(m)答:楼间距MN为50m.(2)∵EC=0.58EP=0.58×50=29(m)∴CM=90﹣29=61(m)∵61÷3≈20.3≈21(层)答:点C位于第21层.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.(2019•浦东新区一模)“雪龙”号考察船在某海域进行科考活动,在点A处测得小岛C在它的东北方向上,它沿南偏东37°方向航行2海里到达点B处,又测得小岛C在它的北偏东23°方向上(如图所示),求“雪龙”号考察船在点B处与小岛C之间的距离.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40, 1.4, 1.7)【答案】解:过点A作AM⊥BC,垂足为M.由题意知:AB=2海里,∠NAC=∠CAE=45°,∠SAB=37°,∠DBC=23°,∵∠SAB=37°,DB∥AS,∴∠DBA=37°,∠EAB=90°﹣∠SAB=53°.∴∠ABC=∠ABD+∠DBC=37°+23°=60°,∠CAB=∠EAB+∠CAE=53°+45°=98°.∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣98°﹣60°=22°.在Rt△AMB中,∵AB=2海里,∠ABC=60°,∴BM=1海里,AM海里.在Rt△AMC中,tan C,∴CM 4.25(海里)∴CB=CM+BM=4.25+1=5.25(海里)答:“雪龙”号考察船在点B处与小岛C之间的距离为5.25海里.【点睛】本题主要考查了解直角三角形的应用﹣方向角问题.解决本题的关键是作垂线构造直角三角形,利用直角三角形的边角间关系求解.20.(2019•宝山区一模)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.【答案】解:作BC⊥P A交P A的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD,∴tan14°,即0.25,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB.19.5,即电梯AB的坡度是5:12,长度是19.5米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.21.(2019•青浦区一模)如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°,cos67°,tan67°)【答案】解:过点A作AH⊥BC,垂足为点H.由题意,得∠ACH=67°,∠B=37°,AB=20.在Rt△ABH中,∵sin B,∴AH=AB•sin∠B=20×sin37°≈12,∵cos B,∴BH=AB•cos∠B=20×cos37°≈16,在Rt△ACH中,∵tan∠ACH∠,∴CH5,∵BC=BH+CH,∴BC≈16+5=21.∵21÷25<1,所以,巡逻艇能在1小时内到达渔船C处.【点睛】本题考查了解直角三角形的应用,解答本题的关键是将一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(2019•寿光市模拟)某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.【答案】解:由题意可得,∠AEC=30°,∠ADC=60°,∠BDC=45°,CH=DG=EF=1.5米,FG=ED=15米,∵∠ADC=∠AED+∠EAD,∴∠EAD=30°,∴∠EAD=∠AED,∴ED=AD,∴AD=15米,∵∠ADC=60°,∠ACD=90°,∴∠DAC=30°,∴DC米,AC米,∴AH=AC+CH米,∵∠BDC=45°,∠BCD=90°,∴∠DBC=45°,∴∠BDC=∠DBC,∴BC=CD米,∴AB=AC﹣BC米,即AH米,AB米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用特殊角的三角函数和数形结合的思想解答.23.(2019•静安区一模)计算:【答案】解:原式=3﹣2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.(2019•射阳县一模)“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据: 1.41, 1.73,2.45, 2.65)【答案】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG AC=10,CG AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴,∴,∴DH23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS10,∴A′B=1010,∵BG10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.【点睛】本题考查解直角三角形,勾股定理、相似三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题.25.(2019•闵行区一模)如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249, 1.4142.【答案】解:过点D作DH⊥AB,垂足为点H,由题意,得HB=CD=3,EC=15,HD=BC,∠ABC=∠AHD=90°,∠ADH=32°,设AB=x,则AH=x﹣3,在Rt△ABE中,由∠AEB=45°,得tan∠AEB=tan45°.∴EB=AB=x.∴HD=BC=BE+EC=x+15,在Rt△AHD中,由∠AHD=90°,得tan∠ADH,即得tan32°,解得:x32.99∴塔高AB约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.(2019•嘉定区一模)计算:2|1﹣sin60°|.【答案】解:2|1﹣sin60°|=2(1)=2=2=2.【点睛】本题考查了特殊角三角函数值、实数的混合运算;熟记特殊角三角函数值是解题关键.27.(2019•无锡一模)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)【答案】解:(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.【点睛】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.28.(2019•虹口区一模)计算:【答案】解:原式=3+2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.29.(2019•金山区一模)计算:cos245°tan260°﹣cot45°•sin30°.【答案】解:原式=()2()2﹣11+3=2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.30.(2019•长宁区一模)计算:60°.【答案】解:原式()2().【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.31.(2019•崇明区一模)计算:cos245°cot30°•sin60°.【答案】解:原式=()2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.32.(2019•普陀区一模)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)【答案】解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1,∴EH=5,DH=12,∵EB∥DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tan F=tan31°0.6,∴AB=13米,答:铁塔AB的高度是13米.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,解直角三角形的应用﹣坡度坡角问题,矩形的性质,掌握的作出辅助线是解题的关键.33.(2019•长宁区一模)如图,小明站在江边某瞭望台DE的顶端D处,测得江面上的渔船A的俯角为40°.若瞭望台DE垂直于江面,它的高度为3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE的顶端D到江面AB的距离;(2)求渔船A到迎水坡BC的底端B的距离.(结果保留一位小数)【答案】解:(1)延长DE交AB于点F,过点C作CG⊥AB,垂足为点G,由题意可知CE=GF=2,CG=EF在Rt△BCG中,∠BGC=90°,∴i,设CG=4k,BG=3k,则BC5k=10,∴k=2,∴BG=6,∴CG=EF=8,∵DE=3,∴DF=DE+EF=3+8=11(米),答:瞭望台DE的顶端D到江面AB的距离为11米;(2)由题意得∠A=40°,在Rt△ADF中,∠DF A=90°,∴cot A,∴ 1.19,∴AF≈11×1.19=13.09(m),∴AB=AF﹣BG﹣GF=5.09≈5.1(米),答:渔船A到迎水坡BC的底端B的距离为5.1米.【点睛】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.34.(2019•黄浦区一模)计算:2cos245°tan45°.【答案】解:原式=2×()21=21=11=46.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.35.(2019•宝山区一模)计算:sin30°tan30°+cos60°cot30°.【答案】解:原式.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.36.(2019•金山区一模)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2.求(1)背水坡AB的长度.(2)坝底BC的长度.【答案】解:(1)分别过点A、D作AM⊥BC,DN⊥BC,垂足分别为点M、N,根据题意,可知AM=DN=24(米),MN=AD=6(米),在Rt△ABM中,∵,∴BM=72(米),∵AB2=AM2+BM2,∴AB24(米),答:背水坡AB的长度为24米;(2)在Rt△DNC中,,∴CN=48(米),∴BC=72+6+48=126(米),答:坝底BC的长度为126米.【点睛】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.37.(2019•普陀区一模)计算:4sin45°+cos230°.【答案】解:原式=4()2=22().【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.38.(2019•杨浦区一模)如图,AD是△ABC的中线,tan B,cos C,AC.求:(1)BC的长;(2)∠ADC的正弦值.【答案】解:(1)如图,作AH⊥BC于H.在Rt△ACH中,∵cos C,AC,∴CH=1,AH1,在Rt△ABH中,∵tan B,∴BH=5,∴BC=BH+CH=6.(2)∵BD=CD,∴CD=3,DH=2,AD在Rt△ADH中,sin∠ADH.∴∠ADC的正弦值为.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考中考常考题型.39.(2019•杨浦区三模)如图,已知某船向正东方向航行,在点A处测得某岛C在其北偏东60°方向上,前进8海里处到达点B处,测得岛C在其北偏东30°方向上.已知岛C周围6海里内有一暗礁,问:如果该船继续向东航行,有无触礁危险?请说明你的理由.【答案】解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴∵AB=CB=8∴BD=4,AD=12.。
上海中考数学一模各区18、24、25整理试题及答案
18.已知梯形ABCD 中,AD ∥BC ,AB =15,CD=13,AD =8,∠B 是锐角,∠B 的正弦值为45,那么BC 的长为___________24.如图,抛物线22y ax ax b =-+经过点C (0,32-), 且与x 轴交于点A、点B ,若t an ∠ACO =23. (1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P是线段OB 上一动点 (不与点B 重合),∠MPQ=45°,射线PQ 与线段BM 交于点Q ,当△MPQ 为等腰三角形时,求点P 的坐标.25.(本题满分14分,其中第(1)小题5分,第(2)小题7分,第(3)小题2分) 如图,在正方形A BCD 中,AB =2,点P 是边B C上的任 意一点,E是BC 延长线上一点,联结AP 作PF ⊥AP 交∠DC E的平分线CF 上一点F ,联结AF 交直线C D于点G. (1) 求证:AP=PF ;(2) 设点P 到点B的距离为x,线段D G的长为y , 试求y 与x 的函数关系式,并写出自变量x 的取值范围; (3) 当点P是线段BC 延长线上一动点,那么(2)式中y 与x 的函数关系式保持不变吗?如改变,试直接写出函数关系式.(第24题)ABCDFGP(第25题)E18.在Rt△ABC中,∠C=90°,3cos5B=,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B DCD'=.24.(本题满分12分,每小题各4分)已知,二次函数2y=ax+bx的图像经过点(5,0)A-和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.(1)求点B的坐标;(2)求二次函数的解析式;(3)过点B作直线BC平行于x轴,直线BC与二次函数图像的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.第18题图25.(本题满分14分,其中第(1)小题8分,第(2)小题6分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,P A为半径的⊙P与射线AC的另一个交点为D,射线PD交射线BC于点E.(1)如图1,若点E在线段BC的延长线上,设AP=x,CE=y,①求y关于x的函数关系式,并写出x的取值范围;②当以BE为直径的圆和⊙P外切时,求AP的长;(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.C B2014闵行等六区联考18.如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△A BC 中,AB =6,B C=7,A C=5,△A 1B1C是△ABC 以点C 为转似中心的其中一个转似三角形,那么以点C为转似中心的另一个转似三角形△A 2B2C(点A 2、B 2分别与A 、B 对应)的边A2B 2的长为 ▲ .24.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分)已知在平面直角坐标系xOy 中,二次函数c bx x y ++-=22的图像经过点A (-3,0)和点B(0,6).(1)求此二次函数的解析式;(2)将这个二次函数图像向右平移5个单位后的顶点设为C ,直线BC 与x轴相交于点D ,求∠AB D的正弦值;(3)在第(2)小题的条件下,联结OC ,试探究直线AB与OC 的位置关系,并说明理由.25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,已知在Rt △ABC 中,∠A CB =90°,AB=10,34tan =A ,点D 是斜边AB 上的动点,联结CD ,作DE ⊥CD ,交射线C B于点E,设AD =x.(1)当点D 是边AB 的中点时,求线段DE 的长; (2)当△BED 是等腰三角形时,求x 的值; (3)如果y =DBDE ,求y 关于x 的函数解析式,并写出它的定义域.A (B 1)B C A 1(第18题图) ACBDE (第25题图)2014长宁18.如图,△AB C是面积为3的等边三角形,△ADE ∽△ABC ,AB =2AD ,∠B AD =45°,AC 与DE 相交于点F ,则△AE F的面积是 .24.(本题满分12分)如图,在直角坐标平面上,点A 、B 在x轴上(A 点在B 点左侧),点C 在y 轴正半轴上,若A (-1,0),OB =3O A,且tan ∠CAO =2. (1)求点B 、C 的坐标;(2)求经过点A 、B 、C 三点的抛物线解析式;(3)P 是(2)中所求抛物线的顶点,设Q是此抛物线上一点,若△ABQ 与△ABP 的面积相等,求Q点的坐标.第18题图FEDCBA25.(本题满分14分)在△AB C中,∠B AC =90°,AB<AC ,M 是BC 边的中点,M N⊥BC 交AC 于点N .动点P 从点B 出发,沿射线BA 以每秒3个长度单位运动,联结MP ,同时Q从点N 出发,沿射线NC 以一定的速度运动,且始终保持MQ ⊥MP ,设运动时间为x秒(x >0). (1)求证:△BMP ∽△NMQ ;(2)若∠B =60°,A B=34,设△A PQ 的面积为y ,求y与x的函数关系式; (3)判断B P、PQ 、CQ之间的数量关系,并说明理由.第25题 图①NQP MCBA第25题 图②NMCB A2014虹口18.如图,Rt △ABC 中,∠C =90°,AB =5, AC=3,在边A B上取一点D ,作DE ⊥AB 交B C于点E.现将△BDE 沿D E折叠,使点B落在线段DA 上(不与点A 重合),对应点记为B 1;BD 的中点F 的对应点记为F 1.若△EFB ∽△A F1E ,则B1D = ▲ .24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知抛物线214y x bx c =++经过点B (-4,0)与点C (8,0),且交y 轴于点A . (1)求该抛物线的表达式,并写出其顶点坐标;(2)将该抛物线向上平移4个单位,再向右平移m个单位,得到新抛物线.若新抛物线的顶点为P ,联结BP ,直线B P将△AB C分割成面积相等的两个三角形,求m 的值.ABF 1第18题图CD EFB 1第24题图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:正方形ABC D的边长为4,点E 为BC 边的中点,点P为AB 边上一动点,沿PE 翻折△BPE 得到△FPE ,直线PF 交CD边于点Q ,交直线AD 于点G ,联结EQ .(1)如图,当BP =1.5时,求C Q的长;(2)如图,当点G 在射线A D上时,设BP=x ,DG =y,求y 关于x 的函数关系式,并写出x的取值范围;(3)延长EF 交直线AD 于点H ,若△CQ E∽△FHG ,求BP 的长.A BCD G 第25题图P E FQ备用图2014徐汇 18. 如图,矩形A BCD 中,A B=8,BC =9,点P 在BC 边上,CP =3,点Q 为线段A P上的动点,射线BQ 与矩形A BCD 的一边交于点R ,且AP=BR ,则QRBQ= .24. (本题满分12分,每小题各6分)如图,直线y =x +3与x 轴、y 轴分别交于点A 、C ,经过A、C 两点的抛物线y =ax2+b x+c与x 轴的负半轴上另一交点为B ,且t an∠CBO=3.(1)求该抛物线的解析式及抛物线的顶点D 的坐标;(2)若点P 是射线BD 上一点,且以点P、A 、B 为顶点的三角形与△AB C相似,求P 点坐标.第18题P25. (本题满分14分,其中第(1)小题3分,第(2)小题6分,第(3)小题5分)如图,△AB C中,AB =5,BC =11,co sB =35,点P 是BC 边上的一个动点,联结A P, 取AP 的中点M ,将线段MP 绕点P 顺时针旋转90°得线段PN ,联结AN 、NC .设BP=x (1)当点N 恰好落在BC 边上时,求N C的长;(2)若点N 在△ABC 内部(不含边界),设BP=x , C N=y ,求y 关于x 的函数关系式,并求出函数的定义域;(3)若△PNC 是等腰三角形,求BP 的长.2014闸北18.如图6,已知等腰△ABC ,AD 是底边BC 上的高, AD :DC =1:3,将△A DC绕着点D旋转,得△D EF , 点A 、C 分别与点E、F 对应,且E F与直线AB 重合, 设AC 与DF 相交于点O ,则:AOF DOC S S ∆∆= .B C图6DCBA24.(本题满分12分,第(1)小题满分6分,6分)已知:如图12,抛物线2445y x mx =-++与y 轴交于点C, 与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足O C=4OA . 设抛物线的对称轴与x 轴交于点M : (1)求抛物线的解析式及点M 的坐标; (2)联接CM ,点Q 是射线CM 上的一个动点,当 △QMB 与△COM 相似时,求直线AQ 的解析式.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分) 已知:如图13,在等腰直角△ABC 中, AC = BC ,斜边AB 的长为4,过点C作射线CP //AB ,D 为射线CP 上一点,E 在边BC 上(不与B 、C 重合),且∠DAE =45°,AC 与DE交于点O .(1)求证:△A DE∽△ACB ;(2)设CD =x ,tan ∠BAE = y ,求y关于x 的函数 解析式,并写出它的定义域;(3)如果△C OD与△BEA 相似,求CD 的值.2014宝山BAC图12Oxy图13PD OEC BABAC E DF 18、如图,在平面直角坐标系中,R t△OAB 的顶点A 的坐标为(9,0).t an ∠BOA=33,点C 的坐标为(2,0),点P 为斜边OB 上的一个动 点,则PA+PC 的最小值为_________..25、如图,已知抛物线y=﹣x 2+bx+4与x 轴相交于A 、B 两点,与y轴相交于点C ,若已知B 点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC 、BC,试判断△AOC 与△COB 是否相似?并说明理由;(3)M 为抛物线上BC之间的一点,N 为 线段B C上的一点,若MN ∥y轴,求M N的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.(本题满分4+3+2+3=12分)26、如图△A BC中,∠C=90°,∠A=30°,BC=5cm ;△DEF 中,∠D=90°,∠E=45°,DE =3c m.现将△DEF 的直角边DF 与△ABC 的斜边AB 重合在一起,并将△D EF沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合, 一直移动至点F 与点B 重合为止).(1)在△DE F沿AB方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化, 现设A D=x ,BE=y,请你写出y 与x 之间的函数关系式及其定义域. (2) 请你进一步研究如下问题:问题①:当△DE F移动至什么位置,即AD 的长为多少时,E 、B 的连线与A C平行?问题②:在△DEF 的移动过程中,是否存在某个位置,使得∠E BD=22.5°?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD、EB 、BC 的长度为三边长的三角形是直角三角形?(本题满分6+8=14分)2014崇明18.如图,在AOB ∆中,已知90AOB ∠=︒,3AO =,6BO =,将AOB ∆绕顶点O 逆时针旋转到A OB ''∆处,此时线段A B ''与B O的交点E 为BO 的中点,那么线段B E '的长度为 .24、(本题满分12分,其中每小题各4分)在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于,A B 两点(点A在点B 的左侧),点B 的坐标为(3,0),与y 轴交于点(0,3)C ,顶点为D .(1)求抛物线的解析式及顶点D 的坐标; (2)联结AC ,BC ,求ACB ∠的正切值;(3)点P是抛物线的对称轴上一点,当PBD ∆与CAB ∆相似时,求点P 的坐标.ﻬ25、(本题满分14分,其中第(1)、(2)小题各5分,第(3)小题4分)如图,在ABC ∆中,8AB =,10BC =,3cos 4C =,D ,点E 是BC 边上的一个动点(不与B 、C E与B D相交于点G. (1)求证:AB BGCE CF=; (2)设BE x =,CF y =,求y 与x (3)当AEF ∆是以AE 为腰的等腰三角形时,求BE ﻬ2014黄浦18.如图7,在Rt △ABC 中,∠C =90°,AC =的点,且∠E DC=∠A ,将△AB C沿DE 对折,若点24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)如图11,在平面直角坐标系xOy 中,顶点为M 的抛物线是由抛物线23y x =-向右平移一个单位后得到的,它与y轴负半轴交于点A ,点B 在该抛物线上,且横坐标为3. (1)求点M 、A、B 坐标;(2)联结AB 、AM 、BM ,求ABM ∠的正切值;(第18题图)AA ′B O B ′ED A图7(3)点P 是顶点为M 的抛物线上一点,且位于对称轴的右侧,当ABM α=∠时,求P点坐标.25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 如图12,在△AB C中,∠A CB =90°,AC =8,sin 45B =,D 为边AC 中点,P 为边A B上一点 (点P 不与点A 、B 重合) ,直线PD 交B C延长线于点E ,设线段BP 长为x ,线段CE 长为y . (1)求y 关于x 的函数解析式并写出定义域;(2)过点D作BC 平行线交AB 于点F,在D F延长线上取一点ﻩQ,使得QF=D F, 联结PQ 、Q E,QE 交边A C于点G , ①当△E DQ 与△EGD 相似时,求x 的值;②求证:PD DEPQQE=.图11 B图122014嘉定18. 如图4,在矩形ABCD 中,已知12AB =,8AD =,如果将矩形 沿直线l 翻折后,点A 落在边CD 的中点E 处,直线l 与分别边AB 、AD 交于点M 、N ,那么MN 的长为 ▲ .24.(本题满分12分,每小题满分4分)在平面直角坐标系xOy (如图9)中,已知A(1-,3)、B(2,n )两点在二次函数4312++-=bx x y 的图像上. (1)求b 与n 的值;(2)联结OA 、OB 、AB ,求△AOB 的面积;(3)若点P (不与点A 重合)在题目中已经求出的二次函数的图像上,且︒=∠45POB ,求点P 的坐标. ﻩ25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:⊙O 的半径长为5,点A 、B 、C 在⊙O 上,6==BC AB ,点E 在射线BO 上. (1)如图10,联结AE 、CE ,求证:CE AE =;(2)如图11,以点C 为圆心,CO 为半径画弧交半径OB 于D ,求BD 的长; (3)当511=OE 时,求线段AE 的长.图4图10图11备用图图92014奉贤18.我们把三角形三边上的高产生的三个垂足组成的三角形称为该三角形的垂三角形。
2025中考数学二次函数压轴题专题练习18 二次函数与几何交点问题(学生版+解析版)
专题18二次函数与几何交点间题1.(2023·黑龙江大庆中考真题)如图,二次函数y = a:x.2+bx+c的图象与X轴交千A,B两点,且自变量X 的部分取值与对应函数值Y如下表:XL -]。
I2 34L yL。
-3-4-3。
5Ly y备用图备用图(I)求二次函数y=ax 2+bx+c的表达式;(3)若将线段A B 先向上平移3个单位长度,再向右平移l 个单位长度,得到的线段与二次函数y =一(釭2+bx+c)的图象只有一个交点,其中(为常数,请直接写出t的取值范围2.(2023四川德阳中考真题)已知:在平面直角坐标系中,抛物线与x轴交于点A(-4,0)'B (2,0),与y 轴交千点C (O,-4).1付l(I)求抛物线的解析式;E -阳2(2)如图1,如果把抛物线x 轴下方的部分沿x 轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=妇+6与新图象有三个公共点时,求k的值;3.(2023山东济南中考真题)在平面直角坐标系xOy 中,正方形ABCD 的顶点A,B 在X轴上,C(2,3),D(-1,3) 抛物线y =成-2少+c(a«))与X 轴交于点E(-2,0)和点Fy y(1)如图l ,若抛物线过点C,求抛物线的表达式和点F 的坐标;(2)如图2,在(I)的条件下,连接CF,作直线CE,平移线段CF,使点C 的对应点P落在直线CE 上,点F 的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax 2-2ax+c(a<0)与正方形ABCD 恰有两个交点,求(1的取值范围,4.(2023山东日照中考真题)在平面百角坐标系xOy 内,抛物线y =动X江女仄+2(a>0)交y轴于点C ,过点C作x轴的平行线交该抛物线千点D.l `一-x(1)求点C,D的坐标;(3)坐标平面内有两点£(�.a +1} F (5,a + I ),以线段EF 为边向上作正方形EFGH.@若a=l,求正方形EFGH 的边与抛物线的所有交点坐标;@当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为-5时,求a的值5.(2022吉林长春中考真题)在平面直角坐标系中,抛物线y = x 1-bx (b是常数)经过点(2,0)点A在抛物线上,且点A的横坐标为m(m;1:0)以点A为中心,构造正方形PQMN, P Q=2|『111,且PQ.lx轴.(l)求该抛物线对应的函数表达式:(2若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线千另一点C,连按BC.当BC=4时,求点B的坐标:(3若m>O,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围:3(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为一时,且接写出m4的值6.(2022湖南永州中考真题)已知关于X的函数y= ax2 +bx+c(1)若a.=l,函数的图象经过点(1,-4)和点(2,I),求该函数的表达式和最小值;(2)若a=l,b=-2, c=m十l时,函数的图象与X轴有交点,求m的取值范围.(3)阅读下面材料:设a>0,函数图象与X轴有两个不同的交点A,B,若A,8两点均在原点左侧,探究系数a, b, c应满足的条件,根据函数图像,思考以下三个方面:@因为函数的图象与X轴有两个不同的交点,所以6.=b2 -4ac> 0:@因为A,8两点在原点左侧,所以x=O对应图象上的点在X轴上方,即c>O:@上述两个条件还不能确保A,8两点均在原点左侧,我们可以通过抛物线的对称轴位置来b进一步限制抛物线的位置:即需-一又0.2a综上所述,系数a,b, c应满足的条件可归纳为:请根据上面阅谅材料,类比解决下而问题:a>O tJ.=li-4ac>0c>Ob -—<02a若函数y= ax2 -2x+3的图象在直线x=1的右侧与人轴有且只有一个交点,求U的取值范围.7.(2022湖南衡阳中考真题)如图,已知抛物线y=x'-x-2交X轴千A、B两点,将该抛物线位千X轴下方的部分沿X轴翻折,其余部分不变,得到的新图象记为“图象W",图象W交Y轴千点c.` ` \ `x, I I、一,,(])写出图象W位于线段AB上方部分对应的函数关系式:(2)若直线y=-x+b与图象W有三个交点,请结合图象,直按写出b的值:(3)p为X轴正半轴上一动点,过点P作PM ff y轴交直线BC千点M,交图象W于点N,是否存在这样的点P,使..CMN与60BC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.专题18二次函数与几何交点间题1.(2023·黑龙江大庆中考真题)如图,二次函数y = a:x .2+bx+c的图象与X轴交千A,B两点,且自变量X 的部分取值与对应函数值Y如下表:X L -]。
中考数学三轮复习 第18题填空题(难题-涉及作图)专项强化练习(含答案详解)
中考数学三轮复习第18题填空题(难题-涉及作图)专项强化练习1.如图,网格中每个小正方形的边长为1,点A,B均在格点上.(1)线段AB的长为;(2)请借助网格,仅用无刻度的直尺在AB上作出点P,使AP=354,并简要说明作图方法(不要求证明):.2.如图,在每个小正方形边长为1的网格中,△ABC的顶点A、B、C均在格点上.(1)∠ACB的大小为;(度)(2)在如图所示的网格中,以A为中心,取旋转角等于∠BAC,把△ABC逆时针旋转,得到△AB/C/(点B/为点B的对应点,点C/为点C的对应点).请用无刻度的直尺,画出△AB/C/,并简要说明点B/,点C/的位置是如何找到的(不要求证明).3.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.(1)CD的长等于;(2)F是线段DE上一点,且3EF=5FD,在线段BF上有一点P,满足4PF=5BP,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明):.4.如图,在每个小正方形的边长为1的网格中,A,B,C均在格点上.(1)△ABC的面积为;(2)若有一个边长为6的正方形,且满足点A为该正方形的一个顶点,且点B,C 分别在该正方形的两边上,请在如图所示的网格中,用无刻度的直尺,画出这个正方形,并简要说明其他顶点的位置是如何找到的(不要求证明):.(1)△ABC的面积为;(2)点P是△ABC内切圆与AB的切点,请在如图所示的网格中,用无刻度的直尺画出点P,并简要说明点P的位置是如何找到的(不要求证明):.6.如图,在由边长为1的小正方形组成的网格中,点A,B,C均为格点,∠ACB=90°,BC=3,AC=4,D为BC中点,P为AC上的一个动点.(1)当点P为线段AC中点时,DP的长度等于;(2)将P绕点D逆时针旋转90°得到点P/,连接BP/,当线段BP/+DP/取得最小值时,请借助无刻度直尺在给定的网格中画出点P,点P/,并简要说明你是怎么画出点P,点P/的:.(1)AC的长等于;(2)点P落在格点上,M是边BC上任意一点,点B关于直线AM的对称点为B/,当PB/最短时,请在如图所示的网格中,用无刻度的直尺,画出点B/,并简要说明点B/是如何找到的(不要求证明):.8.如图,将四边形ABCD放在每个小正方形的边长为1的网格中,点A、B、C、D均落在格点上.(1)计算AD2+DC2+CB2的值等于;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AD2+DC2+CB2,并简要说明画图方法(不要求证明):.(1)BC的长等于;(2)在如图所示的网格中,将△ABC绕点A旋转,使得点B的对应点B/落在边BC上,得到△AB/C/,请用无刻度的直尺,画出△AB/C/,并简要说明这个三角形的各个顶点是如何找到的(不要求证明):.10.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)边AC的长等于;(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A/B/C/,使点B的对应点B/恰好落在边AC 上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明画图的方法(不要求证明):.中点.(1)AD 的长为;(2)请在如图所示的网格中,用无刻度的直尺,画出一个点P,使其满足S △PAD =S 四边形ABCD ,并简要说明点P 的位置是如何找到的(不要求证明):.12.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A、B、C 均在格点上.(1)△ABC 的面积等于;(2)请用无刻度的直尺,在如图所示的网格中画出△ABC 的角平分线BD,并在AB 边上画出点P,使得PB=PD,并简要说明△ABC 的角平分线BD 及点P 的位置是如何找到的(不要求证明):.中点.(1)AC的长等于;(2)点P、Q分别为线段BC,AC上的动点,当PD+PQ取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的(不要求证明):.14.如图,在每个小正方形的边长为1的网格中,A,M,N均在格点上.在线段MN上有一动点B,以AB为直角边在AB的右侧作等腰直角△ABC,使AB=BC,∠ABC=90°,G是一个正方形边的中点.(1)当点B的位置满足AB⊥MN时,求此时CG的长为;(2)请用无刻度的直尺,在如图所示的网格中,画出一个点C,使其满足线段GC最短,并简要说明点C的位置是如何找到的(不要求证明):.15.如图,在每个小正方形的边长为1的网格中,A,B,D,E为格点,C为AD,BE的延长线的交点.(1)sin∠CAB的结果为;(2)若点R在线段AB上,点S在线段BC上,点T在线段AC上,且满足四边形ARST为菱形,请在如图所示的网格中,用无刻度的直尺,画出菱形ARST,并简要说明点R,S,T的位置是如何找到的(不要求证明):.16.如图1,在每个小正方形的边长为1的网格中,点A、B、C、D均在格点上,点E为直线CD 上的动点,连接BE,作AF⊥BE于点F.点P为BC边上的动点,连接DP.(1)当点E为CD边的中点时,△ABF的面积为;(2)当DP+PF最短时,请在图2所示的网格中,用无刻度的直尺画出点P,并简要说明点P的位置是如何找到的(不要求证明):.17.如图,在每个小正方形的边长为1的网格中,点A,点B均落在格点上,AB为⊙O的直径.(1)AB的长等于;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为斜边,面积为5的Rt△PAB,并简要说明点P的位置是如何找到的(不要求证明):.18.如图,在每个小正方形的边长为1的网格中,点A,P分别为小正方形的中点,B为格点.(1)线段AB的长等于;(2)在线段AB上存在一个点Q,使得点Q满足∠PQA=45°,请你借助给定的网格,并利用无刻度的直尺作出∠PQA,并简要说明你是怎么找到点Q的(不要求证明):.19.如图,在每个小正方形的边长为1的网格中,点A,B,C在格点上,以点A为圆心,AC为半径的半圆交AB于点E.(1)BE的长为;(2)试用无刻度的直尺,在如图所示的网格中,找一点P(点P,C在AB两侧),使PA=5,PE与半圆相切.简要说明点P的位置是如何找到的(不要求证明):.20.如图,在每个小正方形的边长为1的网格中,点B,M均为格点,点A为小正方形边的中点.(1)线段AB的长为;(2)在线段AB上存在一点N,使得点N满足∠MNB=45°,请你借助给定的网格,用无刻度的直尺作出∠MNB,并简要说明你是怎么得到点N的(不要求证明):.21.如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A,B,C 均在格点上.(1)AB 的长等于;(2)请用无刻度的直尺,在如图所示的网格中,画出点E,F,点E 在BC 上,且BE:CE=1:3,点F 在AB 上,使其满足∠CEA=∠BEF,并简要说明E,F 的位置是如何找到的(不要求证明):.22.如图,在每个小正方形的边长为1的网格中,点A,B,C,D 均在格点上,AC,BD 交于点P.(1)tan∠ABD 的值为;(2)若点M 在线段AB 上,当PM+22BM 取得最小值时,请在如图所示的网格中用无刻度的直尺,画出点M,并简要说明点M 的位置是如何找到的(不要求证明):.答案解析1.答案为:2;(1)5(2)如图,取格点M,N,连接MN交AB于点P,则点P即为所求.2.答案为:(1)90;(2)如图,取格点B/,连接B/C;取格点D,F,E,G,连接DE,GF交于点H;取格点I,J,K,L,连接IK,JL交于点M,AH的延长线与B/M的延长线交于点C/,则AB/C/即为所求.3.答案为:(1)73;(2)如图,取格点G,H,连接GH,与CD相交于点F,连接BF.取格点I,J,K,连接BI,JK 相交于点L,取格点M,连接ML,与BF相交于点P,点P即为所求.(1)15;(2)如图,取格点O,L,M,N,连接OL,MN,交于点D;同样地,取格点K,P,Q,连接OK,PQ,交于点F;作射线DB和FC,交于点E,连接AD,AF,四边形ADEF即为所求.5.答案为:(1)12;(2)方法一:如图,取格点E、F、G、H,分别连接EF、GH交于点D,取格点O,连接OD交AB 于P,点P即为所求.方法二:如图,取格点M,N,连接MN交AB于点P,点P即为所求.6.答案为:(1)2.5;(2)取格点E,F,G,H,连接EF,GH,它们分别与网格线相交于I,J,取格点K,连接IJ,KD,它们相交于点P/,则点P/即为所求,取格点M,N,连接MN,与网格线相交于点L,连接DL,与网格线相交于点P,则点P即为所求.(1)29;(2)如图,连接PA;取格点I,J,连接IJ交PA于点B/,则点B/即为所求.8.答案为:(1)22;(2)如图,以AB为边作正方形ABGH,再作平行四边形HMNG,直线MN交AH于点Q,交GB于点P,矩形ABPQ即为所求.9.答案为:2;(1)5(2)如图,取格点D,E,F,G,连接AD交边BC于点B/,连接AF和EG相交于点C/,则△AB/C/即为所求.(1)5;(2)如图,取格点E,F,M,N,作直线EF,直线MN,MN 与EF 交于点A /,EF 与AC 交于点B /,连接C /A,A /B /C 即为所求.11.答案为:(1)2109;(2)如图,取格点E,连接BE 与DC 延长线交于点P,点P 即为所求.12.参考答案(1)6;(2)如图,取格点M,N,连接MN,MN 与网格线交于点D,连接BD 即为所求;BD 与网格线交于点E,取格点G,H,GH 与网格线交于点F,过点E,F 画直线,直线EF 交AB 于点P 即为所求.(1)5;(2)如图,BC 与网格线相交,得点P;取格点E,F,连接EF,与网格线相交,得点G,取格点M,N,连接MN,与网格线相交,得点H,连接GH,与AC 相交,得点Q,连接PD,PQ,线段PD,PQ 即为所求.14.答案为:(1)253;(2)如图,取格点H,D,E,F,连接DH,连接EF 与格线交于T 点,连接GT 并延长GT 与HD 交于点C,点C 即为所有.15.答案为:(1)0.8;(2)如图,取格点F,G,H,连接GH,连接AF 分别交GH,BC 于点O,S;取AC 与网格线的交点为T,连接TO 并延长交AB 于点R.连接RS,ST 得到四边形ARST 即为所求.(1)4;(2)如图,取格点G,M,N,分别连接DG,MN 交于点D /,取格点H,连接HD /交BC 于P 点,点P 即为所求.17.答案为:(1)26;(2)如图,取格点C,连接AC,取格点D,E,连接DE 与AC 交于点M.取格点F,G,连接FG 并延长,交网格线与点H,连接BH;取格点I,连接GI 与BH 交于点N.连接MN 与⊙O 相交,得点P,连接AP,BP,则△PAB 即为所求.18.答案为:(1)285;(2)如图,取格点E,F,连接EF,交格线于点D.连接DP,交线段AB 于点Q,则∠PQA 即为所求.(1)2;(2)如图,取格点M,N 和F,连接MN,FE 并延长,相交于点P,连接PA,点P 即为所求.20.答案为:(1)297;(2)如图,取格点E,F,G,H,连接EF,GH 交于点C,连接MC,交线段AB 于点N,则∠MNB 即为所求.21.答案为:(1)13;(2)取格点M,N,连接MN 与BC 的交点即为点E,取格点A /,连接A /E 并延长与AB 的交点即为F 点,连接AE,则点E,F 满足∠CEA=∠BEF.(1)1/3;(2)取格点A/,B/,C/,D/,连接A/C/,B/D/,A/C/与B/D/相交于点P/,连接PP/,与AB相交于点M,点M即为所求.。
中考数学专题18 概率-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)
专题18 概率一、单选题1.(2021·广西玉林市·中考真题)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个白球B .至少有2个白球C .至少有1个黑球D .至少有2个黑球2.(2021·湖北宜昌市·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0机抽取一张,卡片上的数为无理数的概率是( )A .23B .12C .13D .163.(2021·浙江衢州市·中考真题)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是( )A .13B .23C .15D .254.(2021·北京中考真题)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A .14B .13C .12D .235.(2021·湖北随州市·中考真题)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .356.(2021·湖南中考真题)下列说法正确的是( )A .“明天下雨的概率为80%”,意味着明天有80%的时间下雨B .经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C .“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D .小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上7.(2021·江苏扬州市·中考真题)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽8.(2021·湖南长沙市·中考真题)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9 B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4 D.甲同学手里拿的两张卡片上的数字是2和9.9.(2021·湖南长沙市·中考真题)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是()A.19B.16C.14D.1310.(2021·安徽中考真题)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.4911.(2020·辽宁铁岭市·中考真题)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.16B.13C.12D.2312.(2020·辽宁盘锦市·中考真题)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.8713.(2020·四川绵阳市·中考真题)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.23B.12C.13D.1614.(2020·广西中考真题)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.1215.(2020·辽宁营口市·中考真题)某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.8416.(2020·云南中考真题)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360︒是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为2S甲、2乙S.若= x x 甲乙,2=0.4S甲,2=2S乙,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖17.(2020·山西中考真题)如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A.13B.14C.16D.1818.(2020·湖南邵阳市·中考真题)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m19.(2020·湖北武汉市·中考真题)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于620.(2020·湖南长沙市·中考真题)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是绿球C.第一次摸出的球是红球,第二次摸出的球不一定是红球D.第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是1921.(2019·贵州贵阳市·中考真题)如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.19B.16C.29D.1322.(2019·江苏泰州市·中考真题)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.80023.(2019·辽宁阜新市·中考真题)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( )A.12B.10C.8D.624.(2019·台湾中考真题)箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以每次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A.12B.13C.253D.255二、填空题目25.(2021·湖北宜昌市·中考真题)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).26.(2021·湖南岳阳市·中考真题)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.27.(2021·上海中考真题)有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为______.28.(2021·江苏苏州市·中考真题)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.29.(2021·浙江台州市·中考真题)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机模出一个小球,该小球是红色的概率为_____.30.(2021·浙江宁波市·中考真题)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为________.31.(2021·浙江金华市·中考真题)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是____________.32.(2021·浙江温州市·中考真题)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为______.33.(2021·四川南充市·中考真题)在2-,1-,1,2这四个数中随机取出一个数,其倒数等于本身的概率是________.34.(2021·四川资阳市·中考真题)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为__________.35.(2021·重庆中考真题)在桌面上放有四张背面完全一样的卡片.卡片的正面分别标有数字﹣1,0,1,3.把四张卡片背面朝上,随机抽取一张,记下数字且放回洗匀,再从中随机抽取一张.则两次抽取卡片上的数字之积为负数的概率是_______.36.(2021·浙江嘉兴市·中考真题)看了《田忌赛马》故事后,小杨用数学模型来分析齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6则田忌能赢得比赛的概率为__________________.37.(2021·四川泸州市·中考真题)不透明袋子重病装有3个红球,5个黑球,4个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是_________.38.(2021·重庆中考真题)不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是__________.39.(2021·浙江中考真题)某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.40.(2021·天津中考真题)不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.41.(2020·辽宁锦州市·中考真题)在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a ______.42.(2020·湖南益阳市·中考真题)时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。
备战2021年中考数学全真模拟卷(上海专用) (18)
备战2021中考数学上海市中考数学全真模拟卷重(难)点06:22题热点2解直角三角形的实际应用一、解答题1.如图,在距某输电铁塔GH(GH垂直地面)的底部点H左侧水平距离60米的点B处有一个山坡,山坡AB的坡度i=山坡坡底点B到坡顶A的距离AB等于40米,在坡顶A处测得铁塔顶点G的仰角为30(铁塔GH与山坡AB在同一平面内).(1)求山坡的高度;(2)求铁塔的高度GH.(结果保留根号)2.为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某高架路有一段限速每小时60千米的道路AB(如图所示),当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37︒,无人机继续向右水平飞行220米到达D处,此时又测得起点A的俯角是30,同时测得限速道路终点B的俯角是45︒(注:即四边形ABDC是梯形).(1)求限速道路AB的长(精确到1米);︒≈,(2)如果李师傅在道路AB上行驶的时间是1分20秒,请判断他是否超速?并说明理由.(参考数据:sin370.60︒≈ 1.73︒≈,tan370.75cos370.80≈)3.某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75 1.73≈.)4.如图,为了测量河宽,在河的一边沿岸选取B 、C 两点,对岸岸边有一块石头A ,在ABC 中,测得64B ∠=︒,45C ∠=︒,50BC =米,求河宽(即点A 到边BC 的距离)(结果精确到0.1米).1.41≈,sin 640.90︒=,cos 640.44︒=,tan 642.05︒=)5.如图,是一个手机的支架,由底座、连杆AB BC CD 、、和托架组成(连杆AB BC CD 、、始终在同一平面内),连杆AB 垂直于底座且长度为8.8厘米,连杆BC 的长度为10厘米,连杆CD 的长度可以进行伸缩调整.(1)如图,当连杆AB BC 、在一条直线上,且连杆CD 的长度为9.2厘米,143BCD ∠=时,求点D 到底座的高度(计算结果保留一位小数)(2)如图,如果143BCD∠=︒保持不变,转动连杆BC ,使得150ABC ∠=︒,假如//AD BC 时为最佳视线状态,求最佳视线状态时连杆CD 的长度(计算结果保留一位小数)(参考数据:sin530.80,cos530.60,cot 530.75︒≈︒≈︒≈)6.为了维护国家主权和海洋权益,海监部门对我领海实施常态化巡航管理.如图,一艘正在执行巡航任务的海监船接到固定监测点P 处的值守人员报告:在P 处南偏东30方向上,距离P 处14海里的Q 处有一可疑船只滞留,海监船以每小时28海里的速度向正东方向航行,在A 处测得监测点P 在其北偏东60︒方向上,继续航行半小时到达了B 处,此时测得监测点P 在其北偏东30方向上.(1)B 、P 两处间的距离为_________海里;如果联结图中的B 、Q 两点,那么BPQ 是________三角形;如果海监船保持原航向继续航行,那么它__________(填“能”或“不能”)到达Q 处;(2)如果监测点P 处周围12海里内有暗礁,那么海监船继续向正东方向航行是否安全? 7.如图,是小明家房屋的纵截面图,其中线段AB 为屋内地面,线段AE 、BC 为房屋两侧的墙,线段CD 、DE 为屋顶的斜坡.已知6AB =米, 3.2AE BC ==米,斜坡CD 、DE 的坡比均为1∶2.(1)求屋顶点D 到地面AB 的距离:(2)已知在墙AE 距离地面1.1米处装有窗ST ,如果阳光与地面的夹角53MNP β︒∠==,为了防止阳光通过窗ST照射到屋内,所以小明请门窗公司在墙AE 端点E 处安装一个旋转式遮阳棚(如图中线段EF ),公司设计的遮阳棚可作90°旋转,即090FET α<∠=≤︒︒,长度为1.4米,即 1.4EF =米.试问:公司设计的遮阳棚是否能达到小明的要求?说说你的理由. 1.41≈ 1.73≈ 2.24≈ 3.16≈,sin 530.8︒=,cos530.6︒=,4tan 533︒=.) 8.如图,燕尾槽的横断面是等腰梯形ABCD ,现将一根木棒MN 放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N 与点C 重合,且经过点A .已知燕尾角∶B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∶MAE=26.5°,求燕尾槽的里口宽BC (精确到1毫米).(参考数据:sin 54.50.81︒≈,cos54.50.58︒≈,tan 54.5 1.40︒≈,sin 26.50.45︒≈,cos 26.50.89︒≈,tan 26.50.50︒≈)9.某校数学活动课上,开展测量学校教学大楼()AB 高度的实践活动,三个小组设计了不同方案,测量数据如下表:(1)根据测量方案和所得数据,第______小组的数据无法算出大楼高度? (2)请选择其中一个可行方案及其测量数据,求出教学大楼的高度. (参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)10.为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速,如图,电子眼位于点P 处,离地面的铅锤高度PQ 为9米,区间测速的起点为下引桥坡面点A 处,此时电子眼的俯角为30°;区间测速的中点为下引桥坡脚点B 处,此时电子眼的俯角为60°(A 、B 、P 、Q 四点在同一平面).(1)求路段BQ 的长(结果保留根号);(2)当下引桥坡度1:i =AB 的长(结果保留根号). 11.如图,垂直于水平面的5G 信号塔AB 建在垂直于水平面的悬崖边B 点处(点A 、B 、C 在同一直线上),某测量员从悬崖底C 点出发沿水平方向前行60米到D 点,再沿斜坡DE 方向前行65米到E 点(点A 、B 、C 、D 、E 在同一平面内),在点E 处测得5G 信号塔顶端A 的仰角为37°,悬崖BC 的高为92米,斜坡DE 的坡度1:2.4i=.(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)(1)求斜坡DE 的高EH 的长; (2)求信号塔AB 的高度.12.已知:如图,楼顶有一根天线,为了测量楼的高度,在地面上取成一条直线的三点E 、D 、C ,在点C 处测得天线顶端A 的仰角为60°,从点C 走到点D ,CD =6米,从点D 处测得天线下端B 的仰角为45°.又知A 、B 、E 在一条线上,AB =25米,求楼高BE .13.如图,某数学兴趣小组要测量某购物广场大楼上安装的显示屏的高度,在点A 处测得大楼上显示屏的顶端C 点的仰角BAC ∠为45︒,底端D 点的仰角BAD ∠为30,沿水平地面向前走20米到达E 处,测得顶端C 的仰角BEC ∠为716︒.,点C ,D ,B 在同一条竖直线上,求显示屏的高度CD 约为多少米?(结果精确到1米)(参考数据:sin 71.60.95︒≈,cos71.60.36︒≈,tan 71.6 3.00︒≈ 1.41≈ 1.73≈)14.某数学课外兴趣小组为了测量建在山丘DE 上的宝塔CD 的高度,在山脚下的广场A 处测得建筑物点D (即山顶)的仰角为20︒,沿水平方向前进20米到达B 点,测得建筑物顶部C 点的仰角为45︒,已知山丘DE 高37.69米,求塔的高度CD .(结果精确到1米,参考数据:sin 200.34,cos 200.94,tan 200.36︒≈︒︒≈≈)15.如图,一艘船由A港沿北偏东65°方向航行34km到B港,然后再沿北偏西42°方向航行至C港,已知C港在A港北偏东20°方向.(1)直接写出∶C的度数;(2)求A、C两港之间的距离.(结果用含非特殊角的三角函数及根式表示即可)16.如图,小甬的家在某住宅楼AB的最顶层,他家对面有一建筑物CD,他很想知道建筑物的高度,他首先量出A到地AB CD 面的距离(AB)为20m,又测得从A处看建筑物底部C的俯角α为30,看建筑物顶部D的仰角β为53︒,且,都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).︒≈︒≈︒≈≈)(参考数据:sin530.8,cos530.6,tan53 1.717.为进一步加强疫情防控工作,免在测温过程中出现人员集现象,某学校决定安装红外线体温检测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.根据以上内容,解决问题:(1)学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:︒≈︒≈︒≈︒≈︒≈sin73.140.957,cos73.140.290,tan73.14 3.300,sin30.970.515,cos30.970.857,(2)经实践调查,一个红外线体温检测仪的平均检测体温速度是一个人工额温枪平均监测体温速度的2倍,该校九年级共240名学生通过一个红外线体温检测仪检测口比通过一个人工额温枪检测口可节约3分钟,求一个红外线体温检测仪平均每分钟检测体温的人数.18.脱贫攻坚工作让老百姓过上了幸福的生活.如图∶是政府给贫困户新建的房屋,如图∶是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C 点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走6m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∶CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).19.某数学兴趣小组为测量某建筑物AB 的高度,他们在地面C 处测得另一栋大厦DE 的顶部E 处的仰角32ECD ∠=︒.登上大厦DE 的顶部E 处后,测得该建筑物AB 的顶部A 处的仰角为60°,如图所示,已知C ,D ,B 三点在同一水平直线上,且40CD =米,20DB =米.(1)求大厦DE 的高度; (2)求该建筑物AB 的高度.(参考数据:sin 320.53︒≈,cos320.85︒≈,tan 320.62︒≈ 1.41≈ 1.73≈)20.在数学综合实践活动上,某小组要测量学校升旗台旗杆的高度.如图所示,测得//BC AD ,斜坡AB 的长为6m ,坡度i=BF 与水平宽度AF的比,在点B 处测得旗杆顶端的仰角为70°,点B 到旗杆底部C 的距离为4m .(1)求斜坡AB 的坡角α的度数;(2)求旗杆顶端离地面的高度ED .(参考数据:sin 700.94︒≈,cos 700.34︒≈,tan 70 2.75︒≈,结果精确到1m )21.如图1所示,上海中心大厦是上海市的一座超高层地标式摩天大楼,是我国最高的建筑,建筑主体共计119层.某数学小组欲测量上海中心大厦的楼高,设计出如图2所示的测量方案.具体方案如下:小组成员在地面A 处通过激光测距,测得仰角a =37°,光路AB 长10003m ,光路AB 被写字楼BN 楼顶的一面玻璃(视为点B )反射,反射的激光束沿光路BC 恰好可以到达上海中心大厦CM 楼顶(视为点C ).已知写字楼与上海中心大厦的直线距离MN 为576m (写字楼与上海中心大厦位于同一平面),图2中的虚线为法线.求上海中心大厦的楼高CM (结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).22.将笔记本电脑放置在水平桌面上,显示屏OB 与底板OA 夹角为120︒,如图1,侧面示意图为图2;使用时为了散热,在底板下面垫入散热架'O AC 后,电脑转到''AO B 的位置,如图3,侧面示意图为图4,已知20cm OA OB ==,''B O OA ⊥,垂足为C .(1)求点'O 的高度'O C ;(2)显示屏的顶部'B 比原来升高了多少?(3)如图4,要使显示屏''O B 与原来的位置OB 平行,显示屏''O B 应绕点'O 按顺时针方向旋转______度.23.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响. (1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈34,cos42°≈2940,tan42°≈910)24.如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB ,在观测点C 处测得大桥主架顶端A 的仰角为30°,测得大桥主架与水面交汇点B 的俯角为14°,观测点与大桥主架的水平距离CM 为60米,且AB 垂直于桥面.(点,,,A B C M 在同一平面内)(1)求大桥主架在桥面以上的高度AM ;(结果保留根号) (2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)25.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离AC =26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∶AED =48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为多少米?(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)26.为了更好地检测复学后学生进校时的体温情况,某小学购买了如下左图所示的带支架的红外热成像仪,该仪器能探测从仪器旁经过学生的体温,若超过37.3℃就会发出警报.该仪器由三根等长的斜拉支架和一根竖直支架共同支撑上边的红外测温仪已知四根支架总长为5.5米,一根斜拉支架与竖直支架的长度比为3:2.(1)如图1,当斜拉支架与地面的夹角为64︒时,请计算红外测温仪距离地面的高度AD(连接处均忽略不计);(2)在使用期间发现,将顶端测温仪AE倾斜与水平线夹角为37︒,斜拉支架与铅垂线AD的夹角也是37︒时,学生(按C米的点N处时,测温仪AE与学生的额头M恰好在一条直线上,这样调整能使测量的温度比平均身高)走到距离点 1.7︒≈,较准确(如图2所示),请结合题中所给数据计算学生的平均身高.(结果精确到0.1米,参考数据:sin640.90︒≈,tan370.75︒≈)︒≈,cos370.80︒≈,tan64 2.05cos640.44︒≈,sin370.60。
专题18 圆压轴题 -备战2023年中考数学一轮复习考点帮(上海专用)(解析版)
专题18 圆压轴题以圆为背景的综合问题是中考压轴题的命题趋势之一,按往年命题趋势猜测,很大概率会和平行线段分线段成比例(2020年),梯形,特殊平行四边形(最新热点)等知识点结合,主要考查学生挖掘信息的能力,难题分解能力,数学综合能力考点一定圆结合直角三角形,考察函数关系,圆心距,存在性问题;考点二定圆结合直角三角形;三角形相似,线段与周长的函数关系;考点三定圆结合直角三角形;考察函数关系,三角形面积比值问题;考点四定圆结合平行线,弧中点,考察函数关系,与圆相切问题;考点五动圆结合三角形,考察三角形相似,考察三角形相似,函数关系;考点六动圆结合内切直角三角形,三角形相似,线段比,圆位置关系;考点七动圆结合定圆,考察函数关系,与圆有关的位置关系;考点八动圆结合定圆,函数关系,四边形,正多边形结合的问题。
一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.AB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G \аDGA=90由(1)知AD=CD\垂直平分ACDG\AC AG=2QAE DE=\ÐÐ=ADF DACDAC+∠DAB=90°Q∠\∠ADF+∠DAB=90°\ÐаDFA AGD==90又=QAD DA()\△≌△ADF DAG AASDF AG\=\AC DF=2(3)2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O 的半径为3,OC ^弦AB ,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y与x之间的函数解析式,并写出函数定义域;(2)当OEFD为直角三角形时,求AB的长;(3)如果1BF=,求EF的长.∴AB =OB =3(3)①当CF =OF =OB –BF =2时,可得:△CFO ∽△COE ,CE =292OC CF =,∴EF =CE –CF =95222-=.②当CF =OF =OB +BF =4时,可得:△CFO ∽△COE ,CE =294OC CF =,∴EF =CF–CE =97444-=.【点睛】本题考查了有关圆的知识的综合题,分类讨论是解决问题的关键.3.(2023春·上海·九年级专题练习)如图,等边△ABC 内接于⊙O ,P 是»AB上任一点(点P 与点A 、B 重合),连接AP 、BP ,过点C 作CM ∥BP 交P A 的延长线于点M .(1)求∠APC 和∠BPC 的度数;(2)求证:△ACM ≌△BCP ;(3)若P A =1,PB =2,求四边形PBCM 的面积;(4)在(3)的条件下,求»AB的长度.【答案】(1)∠APC =60°,∠BPC =60°(2)见解析(3)15344.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A =12∠O .已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DE 交射线AO 于点E ,联结OD ,⊙O 的半径为5,tan ∠OAC =34.(1)求弦AC 的长.(2)当点E 在线段OA 上时,若△DOE 与△AEC 相似,求∠DCA 的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=在Rt△OAH中,tanÐ∴设OH=3x,AH=∵OH2+AH2=OA2,由(1)可得OH=3,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,又∵∠M =∠C , 同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.6.(2021·上海青浦·统考二模)已知:在半径为2的扇形AOB 中,0180AOB m m Ð=°£(<),点C 是»AB上的一个动点,直线AC 与直线OB 相交于点D .(1)如图1,当090m BCD V <<,是等腰三角形时,求D Ð的大小(用含m 的代数式表示);(2)如图2,当90m =,点C 是»AB 的中点时,连接AB ,求ABD ABCS S V V 的值;(3)将»AC沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=时,求线段AD的长.1(3)图2如下:【点睛】本题考查圆的综合菱形的判定和性质、勾股定理等是解题关键.7.(2022春·上海·九年级专题练习)已知⊙O的直径AB=4,点P为弧AB上一点,联结P A、PO,点C为劣弧AP上一点(点C不与点A、P重合),联结BC交P A、PO于点D、E.(1)如图,当cos∠CBO=7时,求BC的长;8(2)当点C为劣弧AP的中点,且△EDP与△AOP相似时,求∠ABC的度数;(3)当AD=2DP,且△BEO为直角三角形时,求四边形AOED的面积.8.(2021·上海·九年级专题练习)如图,已知在四边形ABCD 中,//AD BC ,90ABC Ð=°,以AB 为直径的O e 交边DC 于E 、F 两点,1AD =,5BC =,设O e 的半径长为r .(1)联结OF ,当//OF BC 时,求O e 的半径长;(2)过点O 作OH EF ^,垂足为点H ,设OH y =,试用r 的代数式表示y ;(3)设点G为DC的中点,联结OG、OD,ODGV是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.Ð=Ð,GOD GDO∵//OG AD,∴ADO GODÐ=Ð,∴ADO GDOÐ=Ð,∴DO是ADGÐ的平分线,由题意知:OA AD^,,又OH CD^∴OA OH=,则此时圆O和CD相切,不合题意;综上所述,ODGV能成为等腰三角形,22r=.【点睛】本题考查了垂径定理、梯形中位线定理、勾股定理、角平分线的性质、等腰三角形的性质等知识;熟练掌握垂径定理和梯形中位线定理是解题的关键.9.(2022·上海·九年级专题练习)如图,已知AB是半圆O的直径,AB=6,点C在半圆⊥,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点O上.过点A作AD OCF(点F不与点B重合).的中点时,求弦BC的长;(1)当点F为¶BC(2)设OD=x,DE=y,求y与x的函数关系式;AE(3)当△AOD与△CDE相似时,求线段OD的长.10.(2021·上海·九年级专题练习)如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.(3)取BC中点H,连接OH、OD,则BH=CH=1BC=3,OH⊥BC,证2Rt△OED≌Rt△BHO,推出OE=BH=3,OD=OA=5,则在Rt△OED中,求出DE的长,在Rt△AED中,可求出AD的长.(1)证明:如图:连接BD、CDAB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G\а=90DGA由(1)知AD=CD\垂直平分ACDG\AC AG=2Q=AE DE\ÐÐ=ADF DAC2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O的半径为3,OC^弦AB,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y 与x 之间的函数解析式,并写出函数定义域;(2)当OEF D 为直角三角形时,求AB 的长;(3)如果1BF =,求EF 的长.3.(2023春·上海·九年级专题练习)如图,等边△ABC内接于⊙O,P是»上任一点AB(点P与点A、B重合),连接AP、BP,过点C作CM∥BP交P A的延长线于点M.(1)求∠APC和∠BPC的度数;(2)求证:△ACM≌△BCP;(3)若P A=1,PB=2,求四边形PBCM的面积;(4)在(3)的条件下,求»的长度.AB4.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=12∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=34.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=∵∠DEO =∠AEC ,∴当△DOE 与△AEC »»AD AD=Q \12ACD DOE Ð=Ð,∴△AEG∽△AOH,∴AE EG AGAO OH AH==,∴4013345EG AG==,∴2413EG=,由(1)可得 OH =3,∵OE =1,∴AE =4,ME =6,∵EG ∥OH ,∴△AEG ∽△AOH ,∴45AE AG EG AO AH OH ===AG 16EG 12又∵∠M =∠C ,同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC 又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.。
上海中考数学第18题分析(翻折类)
上海中考数学第18题分析(一)——翻折类前言,函数图像的变换和几何图像的变换,我们一般归类为这几类:平移、对称、翻折、旋转、伸缩;而恰恰在初三中考试卷的18题位置,对旋转和翻折的考察更是重中之重,通过旋转和翻折的深入研究,充分的展现学生对几何知识的熟练驾驭能力和对平面图形的变换规律把握能力;一、平移、旋转、翻折知识储备1、运动的性质:运动前、后的图形全等(1)平移的性质:①对应点之间的距离等于平移的距离;②对应点之间的距离相等,对应角大小相等,对应线段的长度相等;③平移前、后的图形全等.(2)旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.(3)翻折的性质:①对应线段的长度相等,对应角的大小相等,对应点到对称轴的距离相等;②翻折前、后的图形全等二、翻折类题型总结及归纳1. 翻折定义:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化。
2. 翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。
3. 翻折总结:解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。
4. 翻折归纳:翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。
三、翻折类题型解题策略⑴图形翻折之“翻折边长”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题;5.部分题目注意分类讨论。
⑵图形翻折之“翻折角度”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题;5.利用好三角形的内角和外角性质。
上海中考数学压轴题各题型解题方法总结18题
上海中考数学压轴题各题型解题方法总结18题题型一:翻折问题;性质:翻折前后两个图形全等:边相等,角相等折痕垂直平分对应点的连线学会找等腰画图:已知折痕:过对应点做折痕的垂线并延长已知对应点:做对应点连线的垂直平分线【解题策略分析】解决动态问题需要我们运用运动与变化的观点去观察与研究图形,把握图形运动与变化的全过程,在运动中找出不变的因素,利用不变的因素来解决变化的问题。
(1)通过翻折后与原图形全等找出等量关系;(2)联结原点和翻折后的点,必定关于折痕对称(或者用折痕是对称点的垂直平分线);(3)跟其他线段中点结合构造中位线;(4)做垂线运用“双勾股”。
图形翻折之“翻折边长”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件找到隐含条件;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类讨论。
图形翻折之“翻折角度”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题(比如平行、垂直等);5.利用好三角形的内角和、外角性质。
图形翻折之“翻折面积”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段和角度;4.利用翻折并结合题目中的特殊条件(比如平行、垂直)解题;5.利用好勾股定理、相似、等高三角形面积关系等转化成线段关系。
题型二:旋转问题;旋转三要素旋转中心旋转方向:顺时针;逆时针旋转角度性质:旋转前后两个图形全等:边相等,角相等会找新的相似:以旋转角为顶角的两个等腰三角形相似,相似后对应角相等旋转后点落在边上、直线上、射线上画图:点的旋转图形的旋转:可以把图形的旋转转化为点的旋转,从而画圆1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.挖掘题目中的特殊条件:题目中有哪些角相等?哪些边相等?4.准确画出旋转后的图形是解题的关键.图形旋转之“旋转边长”题型解题方法与策略:1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻找旋转前后相等的线段或角度,根据题意准确画图;4.利用旋转并结合题目中的特殊条件解题;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类讨论;图形旋转之“旋转面积”题型解题方法与策略:1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻找旋转前后相等的线段或角度,根据题意准确画图;4.观察所求图形面积形状,结合面积公式、相似、等高模型求解;5.部分题目注意分类讨论;图形旋转之“旋转角度”题型解题方法与策略:1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻找旋转旋转角、旋转前后相等的线段、相等的角度,根据题意准确画图;4.利用内角和、外角性质并结合题目中的特殊条件解题;5.部分题目注意分类讨论;题型三:平移问题平移图形的特征1.平移前后的图形全等2.图形上每一个点平移的距离和方向都是相同的平移之“函数中的图象平移”题型解题方法与策略:1.寻找平移方法和距离;2.化简原函数解析式,并在坐标系中画出原函数大致图象;3.根据要求画出平移后函数的图象;4.结合平移前后对应点坐标以及二次函数对称轴和进行相关计算和求解;5.部分题目注意分类讨论。
2016年上海市各区县中考数学一模压轴题图文解析18题
答案
10 2 或 .思路如下: 10 2
1 ,可得BE=2,AE =4. 2
如图2,在 Rt△ABE 中,由AB= 2 5 ,cotB=
在Rt△ACE中,由AE=4, CE=BC-BE=6 -2=4,可得AC= 4 2 ,∠ACE=45°. ①如图 3,当点 B′在 BC 边上时,B′E =BE=2. 在等腰直角三角形 B′CH 中,B′C= 2,所以 B′H=CH = 2 . 在 Rt△ AB′H,B′H= 2 ,AH=AC- CH= 3 2 ,所以 AB′= 2 5 . 此时 sin∠CAB′=
5 7
DM △MBD的周长 AB BD . ND △DCN的周长 AC DC
如图3, 设等边三角形 ABC的边长为4 , 当BD∶DC=1∶3 时,
AM DM 4 1 5 . AN ND 4 3 7源自图2图32例
2016 年上海市奉贤区中考一模第 18 题
如图 1,已知平行四边形 ABCD 中,AB= 2 5 ,AD=6,cotB=
B'H 2 10 . AB ' 2 5 10
②如图 4,当点 B′在 AD 边上时,∠ CAB′=45°.此时 sin∠ CAB′=
2 . 2
图2
图3
图4
3
本讲义由《挑战中考数学压轴题》的作者马学斌老师制作
例
2016 年上海市虹口区中考一模第 18 题
如图 1,在矩形 ABCD 中,AB=6,AD=10,点 E 是 BC 的中点,联结 AE,若将△ABE
答案
2 .思路如下: 2 2 . 2 2 . 2
在Rt△AEM中,AE=1,∠EAM=45°,所以EM=AM=
由△EMD≌△DNC,得MD= NC=2EM= 2 .所以AD=
2024年上海中考数学模拟练习卷十八及参考答案
上海市2024年中考数学模拟练习卷18(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:(本大题共6题,每题4分,共24分.下列各题四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上.)1是同类二次根式的是()A B CD2.下列方程中,二元一次方程的是()A .1xy =B .210x -=C .1x y -=D .11x y+=3.已知三条线段长分别为2cm 、4cm 、a cm ,若这三条线段首尾顺次相接能围成一个三角形,那么a 的取值可以是()A .7B .4C .2D .14.把抛物线22y x =-向上平移1个单位,再向右平移1个单位,得到的抛物线是()A .()2211y x =-++B .()2211y x =-+-C .()2211y x =---D .()2211y x =--+5.如图,小宁连续两周居家记录的体温情况折线统计图,下列从图中获得的信息正确的是()A .这两周体温的众数为36.6℃B .第一周体温的中位数为37.1℃C .第二周平均体温高于第一周平均体温D .第一周的体温比第二周的体温更加平稳6.点P 把线段AB 分割成AP 和PB 两段,如果AP 是PB 种AB 的比例中项.那么下列式正确的个数有()①512PB AP -=②512AP PB +=③512PB AB -=④512AP AB -=A .1B .2C .3D .4二、填空题:(本大题共12题,每题4分,共48分.)7.若代数式13x -有意义,则实数x 的取值范围是.8.已知:353x y x y +=-,则xy=.9.若22203a b ⎛⎫-+-= ⎪⎝⎭,则a b -=.10.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.已知点()11,A x y 、点()22,B x y 在双曲线3y x=上,如果120x x <<,那么12______y y .12.在实数范围内分解因式:2232x xy y --=.13.如果从方程①10x +=,②2210x x --=,③11x x+=10x +,⑤410x -=13x x +=中任意选取一个方程,那么取到的方程是无理方程的概率是.14.如果乘坐出租车所付款金额y (元)与乘坐距离x (千米)之间的函数图像由线段AB 、线段BC 和射线CD 组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为元.15.如图,已知D 、E 分别是ABC 的边AB 、AC 上的点,且DE BC ∥,联结BE ,如果AC a = ,BC b=,当23AD AB =时,那么BE = .(用含a 、b的式子表示)16.如图,在半径为2的⊙O 中,弦AB 与弦CD 相交于点M ,如果AB =CD =AMC =120°,那么OM 的长为.17.如果三角形一条边上的中线恰好等于这条边的长,那么我们称这个三角形为“匀称三角形”.在Rt ABC中,90,C AC BC ∠=︒>,若Rt ABC 是“匀称三角形”,那么::BC AC AB =.18.如图,已知正方形ABCD 的边长为1,点M 是边CD 的中点,将BCM 沿直线BM 翻折,使得点C 落在同一平面内的点E 处,联结AE 并延长交射线BM 于点F ,那么EF 的长为.三、解答题:(本大题共7题,第19-22每题10分,第23-24每题12分,第25题14分,共78分.解答应写出文字说明,证明过程或演算步骤.)19.计算:202321(1)|1()2--+-.20.解方程组:2228560x y x xy y +=⎧⎨--=⎩①②.21.如图,已知ABC 中,10AB AC ==,12BC =,D 是AC 的中点,DE BC ⊥于点E ,ED 与BA 的延长线交于点F .(1)求ABC ∠的正切值;(2)求DFDE的值.22.某文具店有一种练习簿出售,每本的成本价为2元,在销售的过程中价格有些调整,按原来的价格每本8.25元,卖出36本;经过两次涨价,按第二次涨价后的价格卖出了25本.发现按原价格和第二次涨价后的价格销售,分别获得的销售利润恰好相等.(1)求第二次涨价后每本练习簿的价格;(2)在两次涨价过程中,假设每本练习簿平均获得利润的增长率完全相同,求这个增长率.(注:利润增长率=()-后一次的利润前一次的利润前一次利润×100%)23.已知:如图,AB 、AC 是O 的两条弦,AB AC =,点M 、N 分别在弦AB 、AC 上,且AM CN =,AM AN <,联结OM 、ON .(1)求证:OM ON =;(2)当BAC ∠为锐角时,如果2AO AM AC =⋅,求证:四边形AMON 为等腰梯形.24.如图,在平面直角坐标系中,二次函数223y mx mx =-+的图像与x 轴交于A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且AB =4.(1)求这个函数的解析式,并直接写出顶点D 的坐标;(2)点E 是二次函数图像上一个动点,作直线EF x ∥轴交抛物线于点F (点E 在点F 的左侧),点D 关于直线EF 的对称点为G ,如果四边形DEGF 是正方形,求点E 的坐标;(3)若射线AC 与射线BD 相交于点H ,求∠AHB 的大小.25.已知:如图,在菱形ABCD 中,2AC =,=60B ∠︒.点E 为边BC 上的一个动点(与点B 、C 不重合),60EAF ∠=︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE x =,EG y =.(1)求证:AEF △是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG EO =时,求x 的值.参考答案一、选择题:(本大题共6题,每题4分,共24分.下列各题四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上.)123456BCBDAC二、填空题:(本大题共12题,每题4分,共48分.)7.3x ≠8.79.49-10.611.>12.3322x y x y ⎛⎫⎛⎫---⎪⎪⎝⎭⎝⎭13.1314.2615.13b a-16172:18.5三、解答题:(本大题共7题,第19-22每题10分,第23-24每题12分,第25题14分,共78分.解答应写出文字说明,证明过程或演算步骤.)19.解:202321(1)|1()2--+---=)1114---+-=1114--=7-20.2228560x y x xy y +=⎧⎨--=⎩①②由①可得,82x y =-③将③代入②得,()()228258260y y y y --⨯--=整理得,2980y y -+=()()180y y --=10y -=或80y -=解得11y =,28y =将11y =代入③得,1826x y =-=;将28y =代入③得,2828x y =-=-.∴方程组的解为1161x y =⎧⎨=⎩或2288x y =-⎧⎨=⎩.21.(1)解:过点A 作AH BC ⊥于点H, 10AB AC ==,∴ABC 是等腰三角形,又 AH BC ⊥,∴162BH CH BC ===.在Rt ABH △中,8AH =,∴84tan 63AH ABC BH ∠===.(2)解: AH BC ⊥,FE BC ⊥,∴AH FE ∥,∴AD HECD EC=,又 D 是AC 的中点,∴AD CD =,∴HE CE =,∴DE 是ACH 的中位线,∴142DE AH ==,132CE HE CH ===.∴9BE BH HE =+=.B B ∠=∠,90BHA BEF ∠=∠=︒,∴BHA BEF ∽.∴BH AH BE FE =,即689FE=,解得12FE =.∴8DF FE DE =-=.∴824DF DE ==.22.解:(1)设第二次涨价后每本练习簿的价格为x 元,根据题意得:(8.25﹣2)×36=(x ﹣2)×25,解得:x =11.答:第二次涨价后每本练习簿的价格为11元.(2)设每本练习簿平均获得利润的增长率为y ,根据题意得:(8.25﹣2)(1+y )2=11﹣2,解得:y 1=0.2=20%,y 2=﹣2.2(舍去).答:每本练习簿平均获得利润的增长率为20%.23.(1)证明:过点O 作OE AB ⊥于点E ,OF AC ⊥于点F ,如图,∵AB AC =,OE AB ⊥,OF AC ⊥,∴OE OF =,AE CF AB ==.∵AM CN =,∴AE AM FC CN -=-,即:EM FN =,在OEM △和OFN △中90EM FN MEO NFO OE OF =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS OEM OFN ≅V V ,∴OM ON =;(2)∵2AO AM AC =⋅,∴AO ACAM AO=,∵OAB OAC ∠=∠,∴AOM ACO ,∴AOM ACO ∠=∠,∵OAB OAC OCA ∠=∠=∠,∴=OAB OAC OCA AOM ∠=∠=∠∠,∴AM MO =,∥OM AC ,∴=AM MO ON =,∴四边形AMON 为等腰梯形.24.(1)∵抛物线为223y mx mx =-+的对称轴为直线212mx m-=-=,AB =4,∴A (-1,0),B (3,0),∴把B (3,0)代入223y mx mx =-+得,9m -6m +3=0,解得:m =-1,∴抛物线的解析式为y =-x 2+2x +3;∵抛物线为2223(1)4y x x x =-++=--+,∴顶点D (1,4);(2)如图1,连接DG 交EF 于点Q ,∵D (1,4),D 与G 关于EF 对称,∴EF 垂直平分DG ,∴DE =EC ,DF =FG ,∵EF //c 轴,DG ⊥x 轴,点E 、F 关于直线DG 对称,∴DE =DF ,线段DG 在抛物线的对称轴上,∴DE =DF =FG =EG ,∴四边形DEGF 是菱形;设E (n ,-n 2+2n +3),∴EQ =1-n ,DQ =4-(-n 2+2n +3)=n 2-2n +1,又∵四边形DEGF 是正方形,∴EQ =DQ ,即2121n n n -=-+,解得n =0或n =1(舍去),∴.E (0,3);(3)如图2,连接AC ,过点H 作HM ⊥x 轴于M ,∵抛物线为y =-x 2+2x +3,∴C (0,3),∵A (-1,0),B (3,0),∴AO =1,AB =4,OC =3,OB =3,∴22221310AC AO OC =+=+=∴OB =OC ,∴∠ABC =45°,设直线AC 的解析式为y =rx +3(r ≠0),则0=-r +3,∴r =3,∴直线AC 的解析式为y =3x +3,设直线BD 的解析式为y =ka +b (k ≠0),则304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BD 的解析式为y =-2x +6,解方程组2633y x y x =-+⎧⎨=+⎩,解得35245x y ⎧=⎪⎪⎨⎪=⎪⎩,∴324,55H ⎛⎫⎪⎝⎭,∴324,55OM MH ==,∴38155AM AO OM =+=+=,∴5AH ===,∴54AH AB ==,∵AB AC =,∴AHABAB AC =,又∵BAC HAB ∠=∠,∴~BAC HAB ,∴AHB ABC ∠=∠,∴45AHB ︒∠=.25.(1)证明:∵四边形ABCD 是菱形,∴AB=BC=CD=AD ,∠B=∠D=60°,∴△ABC ,△ACD 都是等边三角形,∴AB=AC ,∠B=∠ACF=60°,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF ,∴△BAE ≌△CAF (ASA ),∴AE=AF ,又∠EAF=60°,∴△AEF 为等边三角形.(2)解:过点E 作EH ⊥AC 于点H ,过点F 作FM ⊥AC 于点M ,∵∠ECH=60°,∴CH=2x ,EH=2x ,∵∠FCM=60°,由(1)知,CF=BE=2-x ,∴CM=12(2-x ),FM=2(2-x ),∴HM=CH-CM=2x -12(2-x )=x-1.∵∠EHG=∠FMG=90°,∠EGH=∠FGM ,∴△EGH ∽△FGM ,∴2GM FM x HG EH x -==,∴2HM HG xHG x --=,∴12x HGxHG x ---=,∴HG=(1)2x x -.在Rt △EHG 中,EG 2=EH 2+HG 2,∴y 2=)2+[(1)2x x -]2,∴y 2=432244x x x -+,∴y=2(舍去负值),故y 关于x 的解析式为(0<x <2).(3)解:如图,∵O 为AC 的中点,∴CO=12AC=1.∵EO=EG ,EH ⊥OC ,∴OH=GH ,∠EOG=∠EGO ,∴∠CGF=∠EOG .∵∠ECG=60°,EC=x ,∴CH=2x,∴OH=GH=OC-CH=1-2x,∴OG=2OH=2-x ,∴CG=OC-OG=x-1.∵∠CGF=∠EOC ,∠ECO=∠GCF=60°,∴△COE ∽△CGF ,∴COCECG CF =,∴112xx x =--,整理得x 2=2,∴(舍去负值),经检验x 是原方程的解.故x .。
2018-2019学年上海中考数学各区一模汇编提升题(18、23、24、25题
目录Ⅰ第18题(填空小压轴) (3)【2019届一模徐汇】 (3)【2019届一模浦东】 (3)【2019届一模杨浦】 (3)【2019届一模普陀】 (4)【2019届一模奉贤】 (4)【2019届一模松江】 (4)【2019届一模嘉定】 (5)【2019届一模青浦】 (5)【2019届一模青浦】 (5)【2019届一模静安】 (6)【2019届一模宝山】 (6)【2019届一模长宁】 (6)【2019届一模金山】 (7)【2019届一模闵行】 (7)【2019届一模虹口】 (7)Ⅱ第23题(几何证明题) (8)【2019届一模徐汇】 (8)【2019届一模浦东】 (8)【2019届一模杨浦】 (9)【2019届一模普陀】 (9)【2019届一模奉贤】 (10)【2019届一模松江】 (10)【2019届一模嘉定】 (11)【2019届一模青浦】 (11)【2019届一模静安】 (12)【2019届一模宝山】 (12)【2019届一模长宁】 (13)【2019届一模金山】 (13)【2019届一模闵行】 (14)【2019届一模虹口】 (14)Ⅲ第24题(二次函数综合) (15)【2019届一模徐汇】 (15)【2019届一模浦东】 (16)【2019届一模普陀】 (18)【2019届一模奉贤】 (19)【2019届一模松江】 (20)【2019届一模嘉定】 (21)【2019届一模青浦】 (22)【2019届一模静安】 (23)【2019届一模宝山】 (24)【2019届一模长宁】 (25)【2019届一模金山】 (26)【2019届一模闵行】 (27)【2019届一模虹口】 (28)Ⅳ第25题(压轴题) (29)【2019届一模徐汇】 (29)【2019届一模浦东】 (30)【2019届一模杨浦】 (31)【2019届一模普陀】 (32)【2019届一模奉贤】 (33)【2019届一模松江】 (34)【2019届一模嘉定】 (35)【2019届一模青浦】 (36)【2019届一模静安】 (37)【2019届一模宝山】 (38)【2019届一模长宁】 (39)【2019届一模金山】 (40)【2019届一模闵行】 (41)【2019届一模虹口】 (42)Ⅰ第18题(填空小压轴)【2019届一模徐汇】18.在梯形ABCD 中,AB ∥DC ,∠B =90°,BC=6,CD =2,3tan 4A =.点E 为BC 上一点,过点E 作EF ∥AD 交边AB 于点F .将△BEF 沿直线EF 翻折得到△GEF ,当EG 过点D 时,BE 的长为 ▲ .【2019届一模浦东】18. 将矩形纸片ABCD 沿直线AP 折叠,使点D 落在原矩形ABCD 的边BC 上的点E 处,如果∠AED 的余弦值为35,那么ABBC =__________.【2019届一模杨浦】18.Rt △ABC 中,∠C =90°,AC =3,BC =2,将此三角形绕点A 旋转,当点B 落在直线BC 上的点D 处时,点C 落在点E 处,此时点E 到直线BC 的距离为 ▲ .GEABC DF (第18题图)ACB(第18题图)18.如图5,△ABC 中,8AB AC ==,3cos 4B =,点D 在边BC 上,将△ABD 沿直线AD 翻折得到△AED ,点B 的对应点为点E ,AE 与边BC 相交于点F ,如果2BD =,那么EF = ▲ .【2019届一模奉贤】18.如图5,在△ABC 中,AB =AC =5,3sin =5C ,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 、C 分别与点D 、E 对应,AD 与边BC 交于点F .如果AE //BC ,那么BF 的长是 ▲ .【2019届一模松江】18.如图,在直角坐标平面xoy 中,点A 坐标为(3,2),∠AOB =90°,∠OAB =30°,AB 与x 轴交于点C ,那么AC :BC 的值为______.图5ABCD图5AB C(第18题图)xyC BOA18.在△ABC 中,︒=∠90ACB ,点D 、E 分别在边BC 、AC 上,AE AC 3=,︒=∠45CDE (如图3),△DCE 沿直线DE 翻折,翻折后的点C 落在△ABC 内部的点F ,直线AF 与边BC 相交于点G ,如果AE BG =,那么=B tan ▲ .【2019届一模青浦】17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D ,点C 落在点E ,DE 与直线BC 相交于点F ,那么CF= ▲ .【2019届一模青浦】18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的 点S 称为“亮点”. 如图,对于封闭图形ABCDE ,S 1是 “亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC , AB=2,AE=1,∠B=∠C= 60°,那么该图形中所有“亮点” 组成的图形的面积为 ▲ .EDCBAS 2S 1(第18题图)18.如图6,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,联结AE .如果2tan 3DFC ∠=,那么BDAE的值是 ▲ .【2019届一模宝山】18.如图4,Rt △ABC 中,∠ACB =90°,AC =4,BC =5,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C落在C ’处,连接AC ’,若AC ’∥BC ,则CP 的长为 ▲ .【2019届一模长宁】18.如图,点P 在平行四边形ABCD 的边BC 上,将ABP ∆沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果5=AB ,8=AD ,34tan =B ,那么BP 的长为 ▲ .AC(图4)B图6F BACDEBACD第18题图18.如图,在ABC Rt ∆中,o90=∠C ,8=AC ,6=BC .在边AB 上取一点O ,使BC BO =,以点O 为旋转中心,把ABC ∆逆时针旋转90,得到C B A '''∆(点A 、B 、C 的对应点分别是点A '、B '、C '),那么ABC ∆与C B A '''∆的重叠部分的面积是 ▲ .【2019届一模闵行】18.如图,在Rt △ABC 中,∠ACB = 90°,BC = 3,AC = 4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE // CD ,那么BE = ▲ .【2019届一模虹口】18.如图,正方形ABCD 的边长为4,点O 为对角线AC 、BD 的交点,点E 为边AB 的中点,△BED 绕着点B 旋转至△BD 1E 1,如果点D 、E 、D 1在同一直线上,那么EE 1的长为 ▲ .ABC第18题OABC (第18题图)C第18题图A BDE OⅡ第23题(几何证明题)【2019届一模徐汇】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知菱形ABCD ,点E 是AB 的中点,AF BC ⊥于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且2AE EG ED =⋅.(1) 求证:DE EF ⊥; (2) 求证:22BC DF BF =⋅.【2019届一模浦东】23. (本题满分12分,其中每小题各6分)已知:如图8,在平行四边形ABCD 中,M 是边BC 的中点,E 是边BA 延长线上的一点,联结EM ,分别交线段AD 于点F 、AC 于点G .(1)求证:GF EFGM EM=; (2)当22BC BA BE =⋅时,求证:∠EMB =∠ACD .G DEF BCA(第23题图)(图8)DCM BAF GE23.(本题满分12分,每小题各6分)已知:如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD DEBC AC=; (2)当点E 为CD 中点时,求证:22AE ABCE AD=.【2019届一模普陀】23.(本题满分12分)已知:如图9,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F ,AE AF AB =⋅2,DAF EAC ∠=∠.(1)求证:△ADE ∽△ACB ;(2)求证:DF CE DE CB=.(第23题图)EABCDF图9ABCDE23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图9,在△ABC 中,点D 在边AC 上,BD 的垂直平分线交CA 的延长线于点E , 交BD 于点F ,联结BE ,EC EA ED •=2. (1)求证:∠EBA =∠C ;(2)如果BD =CD ,求证:AC AD AB •=2.【2019届一模松江】23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC ·CE=AD ·BC . (1)求证:∠DCA=∠EBC ;(2)延长BE 交AD 于F ,求证:AB 2=AF ·AD .ABCDEF图9(第23题图)EDCBAF(第23题图)EDCBA23.(本题满分12分,每小题6分)如图6,已知点D 在△ABC 的外部,AD //BC ,点E 在边AB 上,AE BC AD AB ⋅=⋅. (1)求证:AED BAC ∠=∠;(2)在边AC 取一点F ,如果D AFE ∠=∠, 求证:ACAFBC AD =.【2019届一模青浦】23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .图6BCDAE FABCDEF(第23题图)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图9,在ABC ∆中,点D 、E 分别在边BC 和AB 上,且AD AC =,EB ED =,分别延长ED 、AC 交于点F .(1)求证:ABD ∆∽FDC ∆; (2)求证:2AE BE EF =⋅.【2019届一模宝山】23.(本题满分12分)地铁10号线某站点出口横截面平面图如图8所示,电梯AB 的两端分别距顶部9.9米和2.4米,在距电梯起点A 端6米的P 处,用1.5米的测角仪测得电梯终端B 处的仰角为14°,求电梯AB 的坡度与长度. 参考数据:24.014sin ≈︒,25.014tan ≈︒,97.014cos ≈︒.Q 9.9米B出口顶部1.5米(图8)AP6米2.4米︒14图9 AC BDEF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,点D 、E 分别在ABC ∆的边AC 、AB 上,延长DE 、CB 交 于点F ,且AC AD AB AE ⋅=⋅. (1)求证:C FEB ∠=∠;(2)联结AF ,若FD CD AB FB =,求证:FB AC AB EF ⋅=⋅.【2019届一模金山】23.如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:MH MF AM ⋅=2.(2)若DM BD BC ⋅=2,求证:ADC AMB ∠=∠.第23题图CEDABF ABCD HF M第23题23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,点D 为边BC 上一点,且AD = AB ,AE ⊥BC ,垂足为点E .过点D 作DF // AB ,交边AC 于点F ,联结EF ,212EF BD EC =⋅.(1)求证:△EDF ∽△EFC ; (2)如果14EDF ADC S S =V V ,求证:AB = BD .【2019届一模虹口】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,AB=AC ,D 是边BC 的中点,DE ⊥AC ,垂足为点E . (1)求证:DE CD AD CE ⋅=⋅;(2)设F 为DE 的中点,联结AF 、BE ,求证:=AF BC AD BE ⋅⋅.ABCDE F(第23题图)D 第23题图AECBⅢ第24题(二次函数综合)【2019届一模徐汇】24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xoy 中,顶点为M 的抛物线C 1:2(0)y ax bx a =+<经过点A 和x 轴上的点B ,AO =OB =2,120AOB ∠=o . (1)求该抛物线的表达式; (2)联结AM ,求AOM S V ;(3)将抛物线C 1向上平移得到抛物线C 2,抛物线C 2与x 轴分别交于点E 、F (点E 在点F 的左侧),如果△MBF 与△AOM 相似,求所有符合条件的抛物线C 2的表达式.(第24题图)【2019届一模浦东】24.(本题满分12分,其中每小题各4分)已知:如图9,在平面直角坐标系xOy中,直线12y x b=-+与x轴相交于点A,与y轴相交于点B. 抛物线244y ax ax=-+经过点A和点B,并与x轴相交于另一点C,对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)求证: △BOD∽△AOB;(3)如果点P在线段AB上,且∠BCP=∠DBO,求点P的坐标.(图9)xBO Ay【2019届一模杨浦】24.(本题满分12分,每小题各4分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++?与y 轴交于点C (0,2),它的顶点为D (1,m ),且1tan 3COD ?. (1)求m 的值及抛物线的表达式;(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA =OB .若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;(3)在(2)的条件下,点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB =45°.求P 点的坐标.O xy 1 2 3 4 1 2 3 45-1-2 -3 -1 -2 -3 (第24题图)24.(本题满分12分)如图10,在平面直角坐标系xOy 中,抛物线23y ax bx =+-(0)a ≠与x 轴交于点A ()1,0-和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .(1)求抛物线的表达式及点D 的坐标;(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标; (3)如果点F 是抛物线上的一点,且135FBD ∠=,求点F 的坐标.图10C BAOyx24.(本题满分12分,每小题满分6分)如图10,在平面直角坐标系xOy 中,直线AB 与抛物线2y ax bx =+交于点A (6,0)和点B (1,-5). (1)求这条抛物线的表达式和直线AB 的表达式; (2)如果点C 在直线AB 上,且∠BOC 的正切值是32, 求点C 的坐标.图10 ABxyo24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线c bx x y ++-=221经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.(第24题图)y xOBA24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,抛物线22++=bx ax y 经过点)0,4(A 、)2,2(B , 与y 轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M ,求△AMC 的面积; (3)如果这个抛物线的对称轴与直线BC 交于点D ,点E 在线段AB 上,且︒=∠45DOE ,求点E 的坐标.图7O 11 xy--24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CD =2,求∠CAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.CB A xyOCB A xyO(第24题图)(备用图)24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)在平面直角坐标系xOy 中(如图10),已知抛物线2(0)y ax bx c a =++≠的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD ∆的面积是3. (1)求该抛物线的表达式; (2)求ADB ∠的正切值;(3)若抛物线与y 轴交于点C ,直线CD 交x 轴于点E ,点P 在射线AD 上,当APE ∆与 ABD ∆相似时,求点P 的坐标.BD O图10xy﹒﹒24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图9,已知:二次函数2y x bx =+的图像交x 轴正半轴于点A ,顶点为P ,一次函数132y x =-的图像交x 轴于点B ,交y 轴于点C , ∠OCA 的正切值为23. (1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ’,若,求m 的值.A B C O yx(图9)24.(本题满分12分,每小题4分)如图,在直角坐标平面内,抛物线经过原点O 、点)3,1(B ,又与x 轴正半轴相交于点A ,︒=∠45BAO ,点P 是线段AB 上的一点,过点P 作OB PM //,与抛物线交于点M ,且点M 在第一象限内.(1)求抛物线的表达式;(2)若AOB BMP ∠=∠,求点P 的坐标;(3)过点M 作x MC ⊥轴,分别交直线AB 、x 轴于点N 、C ,若ANC ∆的面积等于PMN ∆的面积的2倍,求NC MN 的值.第24题图 xO A By备用图xO A By24.已知抛物线c bx x y ++=2经过点()6,0A ,点()3,1B ,直线1l :()0≠=k kx y ,直线2l :2--=x y ,直线1l 经过抛物线c bx x y ++=2的顶点P ,且1l 与2l 相交于点C ,直线2l 与x 轴、y 轴分别交于点D 、E .若把抛物线上下平移,使抛物线的顶点在直线2l 上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线1l 上(此时抛物线的顶点记为N ). (1)求抛物线c bx x y ++=2的解析式.(2)判断以点N 为圆心,半径长为4的圆与直线2l 的位置关系,并说明理由.(3)设点F 、H 在直线1l 上(点H 在点F 的下方),当MHF ∆与OAB ∆相似时,求点F 、H 的坐标(直接写出结果).第24题yxO24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,抛物线2y a x b x =+经过点A (5,0)、B (-3,4),抛物线的对称轴与x 轴相交于点D .(1)求抛物线的表达式;(2)联结OB 、BD .求∠BDO 的余切值;(3)如果点P 在线段BO 的延长线上,且∠P AO =∠BAO ,求点P 的坐标.xy O (第24题图)24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴; (2)求tan ∠OAB 的值;(3)点D 在抛物线的对称轴上,如果∠BAD =45°,求点D 的坐标.OAy 第24题图xBF EA CB DF E A CB DⅣ第25题(压轴题)【2019届一模徐汇】25. (本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD 中,AD //BC ,AC =BC =10,54cos =∠ACB ,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x . (1)如图1,当DF BC ⊥时,求AD 的长; (2)设EC 的长为y ,求y 关于x 的函数解析式,并直接写出定义域; (3)当△DFC 是等腰三角形时,求AD 的长.(第25题图1) (第25题图)【2019届一模浦东】25. (本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将大小两把含30°角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C 重合,小三角尺的顶点D 、E 分别在大三角尺的直角边AC 、BC 上, 此时小三角尺的斜边DE 恰好经过大三角尺的重心G . 已知∠A =∠CDE =30°,AB =12. (1)求小三角尺的直角边CD 的长;(2)将小三角尺绕点C 逆时针旋转,当点D 第一次落在大三角尺的边AB 上时(如图10-2),求点B 、E 之间的距离;(3)在小三角尺绕点C 旋转的过程中,当直线DE 经过点A 时,求∠BAE 的正弦值.G(图10-1)(图10-2)E DCABDCBAE25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知:梯形ABCD 中,AD //BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 分别交射线AB 、射线CB 于点E 、F .(1)当点E 为边AB 的中点时(如图1),求BC 的长; (2)当点E 在边AB 上时(如图2),联结CE ,试问:∠DCE 的大小是否确定?若确定,请求出∠DCE 的正切值;若不确定,则设AE =x ,∠DCE 的正切值为y ,请求出y 关于x 的函数解析式,并写出定义域; (3)当△AEF 的面积为3时,求△DCE 的面积.A BC D EF (图1) (第25题图) A B C D E F (图2)25.(本题满分14分)如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=︒,点C 是射线OP 上的一个动点. (1)如图11①,当90ACB ∠=︒,2OC =,求a 的值;(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.A BCPOABCPO图11①图11②25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =4,26AB CD ==,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G . (1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求△DFG 的面积;(用含m 的代数式表示) (3)当AFD ∆∽ADG ∆时,求∠DAG 的余弦值.图11ABC D F E G 备用图ABC D25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E . (1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD ,且CE =2,ED =3,求线段PD 的长.(备用图2)ABCD(备用图1)ABCD(第25题图)ABPC D E25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项. (1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长; (3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.A备用图BD CA 图8B M E DC N A 备用图 BD C ME N A 图9 B D C25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.NHGFEDC AB (第25题图)图11ABCPQM25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图11,在ABC ∆中,6AB =,9AC =,tan 22ABC ∠=.过点B 作BM //AC ,动点P 在射线BM 上(点P 不与点B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠. (1)求ABC ∆的面积;(2)设BP x =,AQ y =,求y 关于x 的函数解析式,并写出x 的取值范围; (3)联结PC ,如果PQC ∆是直角三角形,求BP 的长.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图10,已知:梯形ABCD 中,∠ABC =90°,∠A =45°,AB ∥DC ,DC =3,AB =5,点 P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若13AP ,求DE 的长; (2)联结CP ,若CP=EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值;若不相似,请说明理由.备用图A BCD PEABCDF(图10)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部, 且︒=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠. (1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.第25题图图2 BFE C N DA MB FC E N AD M图1备用图BC NAM25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r . (1)求证:四边形ACDF 是矩形.(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).(3)设()900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).A B C D EF G O HM第25题图第25题备用图 ABCD E FO25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD // BC ,AB = CD ,AD = 5,BC = 15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF // BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE = x ,AG y DG=. (1)求AB 的长; (2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果23ABEFABCDS S =四边形四边形,求线段CE 的长.AB CDEFG (第25题图)A B C D (备用图)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =10,点E 为边AD 上一点,将△ABE 沿BE 翻折,点A 落在对角线BD 上的点G 处,联结EG 并延长交射线BC 于点F .(1)如果cos ∠DBC =23,求EF 的长; (2)当点F 在边BC 上时,联结AG ,设AD=x ,ABG BEFS y S ∆∆= ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CG ,如果△FCG 是等腰三角形,求AD 的长.第25题备用图 A B C 第25题图 E A B C F D G。
上海中考数学第18题专项训练(含答案解析)
上海中考数学第18题专项训练(含答案)1.在Rt ABC△中,903BAC AB M∠==°,,为边BC上的点,联结AM(如图3所示).如果将ABM△沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是2 .2.已知正方形ABCD中,点E在边DC上,DE = 2,EC = 1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_ __1,5_____.3.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=___80,120______.DABE图4.如图所示,Rt ABC 中,90C ∠=︒,1BC =,30A ∠=︒, 点D 为边AC 上的一动点,将ABD 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE5.如图4,⊙A 、⊙B 的圆心A 、B 都在直线L 上,⊙A 的半径为1cm ,⊙B 的半径为2cm ,圆心距AB=6cm. 现⊙A 沿直线L 以每秒1cm 的速度 向右移动,设运动时间为t 秒,写出两圆相交时,t 的取值范围: 3<t<5或7<t<9 .6.在Rt △ABC 中,∠C=90º ,BC =4 ,AC=3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么A A 'D7. 已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取2BF AF =,EF 交BD 于点G ,则GBGD= 2/5或2、3 .8.如图,在ABC ∆中,∠ACB=︒90,AC=4,BC=3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 4、5 .9.如图2,在△ABC 中,AD 是BC 上的中线,BC=4,∠ADC=30°,把△ADC 沿AD 所在直线翻折后点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 1 .A 1NM CBA B 1C /D CA图210.如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图中阴影部分的周长为 7π/3 .11.如图,在△ABC 中,AB = AC ,BD 、CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,那么tan ∠ABC =_____3______.12.已知在△AOB 中,∠B =90°,AB=OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标为()6,2-.ABCDE13.在△ABC中,AB=AC ,∠A=80°,将△ABC 绕着点B 旋转,使点A 落在直线BC 上,点C 落在点'C ,则∠'BCC = 65,25 .14.如图,已知在直角三角形ABC 中,∠C=90°,AB=5,BC=3,将ABC ∆绕着点B 顺时针旋转,使点C 落在边AB 上的点C ′处,点A 落在点A ′处,则AA ′的长为 52 .15.如图,将矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上点P 处,已知︒=∠90MPN ,PM=3,PN=4,,那么矩形纸片ABCD 的面积为 144/5 .ABC16.在Rt △ABC 中,∠C=90°,AB=2,将这个三角形绕点C 旋转60°后,AB 的中点D 落在点D ′处,那么DD ′的长为 1 .17.在△ABC 中,AB =AC =5,若将△ABC 沿直线BD 翻折,使点C 落在直线AC 上的点C ′处,AC ′=3,则BC18. 在Rt △ABC 中,∠A<∠B,CM 是斜边AB 上的中线,将△ACM 沿直线CM 翻折,点A 落在D 处,若CD 恰好与AB 垂直,则∠A = 30 度。
中考数学 易错压轴选择题精选:一次函数选择题专题练习(含答案)(18)
中考数学 易错压轴选择题精选:一次函数选择题专题练习(含答案)(18)一、易错压轴选择题精选:一次函数选择题1.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是( ) A .y x =- B .1y x =+ C .21y x =-+ D .1y x =-2.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2km C .小明吃早餐用了30min ,读报用了17min D .小明从图书馆回家的平均速度为0.08km/min3.直线1:l y kx a =+如图所示,则下列关于直线2:2l y ax a =+的说法错误的是( )A .直线2l 一定经过点(2,0)-B .直线2l 经过第一、二、三象限C .直线2l 与坐标轴围成的三角形的面积为2D .直线2l 与直线3:2l y ax a =-+关于y 轴对称4.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b <+的解集为( )A .0x >B .0x <C .1x >-D .1x <- 5.若点(2,1)P -在直线y x b =-+上,则b 的值为( ) A .1 B .-1 C .3D .-3 6.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,每min 的进水量和出水量是两个常数.容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象提供的信息,则下列结论错误的是( )A .第4min 时,容器内的水量为20LB .每min 进水量为5LC .每min 出水量为1.25LD .第8min 时,容器内的水量为25L7.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③8.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .9.如图1,在矩形ABCD 中,动点E 从点B 出发,沿BADC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形ABCD 的周长为( )A .20B .21C .14D .710.如图1,点P 从△ABC 的顶点A 出发,沿A ﹣B ﹣C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是( )A .10B .12C .20D .2411.一次函数y =ax +b 的图象如图所示,则不等式ax +b ≥0的解集是( )A .2x ≥B .2x ≤C .4x ≥D .4x ≤12.已知一次函数y kx b =+,当31x -≤≤时,对应y 的取值范围是19y ≤≤,则k b ⋅的值为( )A .14B .6-C .6-或21D .6-或1413.在平面直角坐标系中,解析式为31y x =+的直线a ,解析式为33y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .404014.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .15.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)16.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( ) A . B .C .D .17.如图,已知直线3:3l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,418.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)19.如图,直线y=-x+2分别交x 轴、y 轴于点A ,B ,点D 在BA 的延长线上,OD 的垂直平分线交线段AB 于点C .若△OBC 和△OAD 的周长相等,则OD 的长是( )A .2B .22C .522D .4 20.如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .21.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)22.如图,直线3y kx =+经过点(2,0),则关于x 的不等式30kx +≥的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤23.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .24.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D .25.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154 其中正确的结论有( )A .1个B .2个C .3个D .4个26.如图,点A 坐标为()1,0,点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为( )A .11,22⎛⎫- ⎪⎝⎭B .11,22⎛⎫ ⎪⎝⎭C .112,222⎛⎫- ⎪⎝⎭D .112,222⎛⎫ ⎪⎝⎭27.已知:一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)且1x <2x ,则它的图像大致是( ).A .B .C .D .28.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小29.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<- D .122k -≤≤- 30.关于直线1y x =-+的说法正确的是() A .图像经过第二、三、四象限B .与x 轴交于()1,0C .与y 轴交于()1,0-D .y 随x 增大而增大【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:一次函数选择题1.A【分析】分别分析各个一次函数图象的位置.【详解】A. y x =- ,图象经过第二、四象限,且y 随x 的增大而减小;B. 1y x =+, 图象经过第一、二、三象限;C. 21y x =-+,图象经过第一、二、四象限;D. 1y x =-,图象经过第一、三、四象限;所以,只有选项A 符合要求.故选A【点睛】本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.2.C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min ,故A 选项说法正确;B. 小明家离食堂0.6km ,食堂离图书馆0.8-0.6=0.2(km ),故B 选项说法正确;C. 小明吃早餐用了25-8=17(min ),读报用了58-28=30(min ),故C 选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min ),故D 选项正确. 故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 3.C【分析】取2x =-,代入计算2y ax a =+求得y 值,可判断A ;由直线1l 可得到0a >,推出直线2l 所经过的象限,即可判断B ;求得直线2l 与坐标轴围成的面积,可判断C ;分别求得直线2l 和直线3l 与与坐标轴的交点坐标,即可判断D .【详解】A 、当2x =-时,220y a a =-+=,所以直线2l 一定经过点(-2,0),选项A 正确;B 、由直线1l 的图象知:0a >,则直线2l 经过第一、二、三象限,选项B 正确;C 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),则直线2l 与坐标轴围成的三角形的面积为12222a a ⨯⨯=,选项C 错误,符合题意; D 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),直线3l 与x 轴相交于点(2,0),与y 轴相交于点(0,2a ),而点(-2,0)与点(2,0)关于y 轴对称,则直线2l 与直线3l 关于y 轴对称,选项D 正确;故选:C .【点睛】本题主要考查了一次函数的图象和性质,一次函数的图象与坐标轴围成的三角形的面积,一次函数图象与几何变换,熟练掌握一次函数图象与性质是解题的关键.4.C【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k 2x <k 1x+b 解集.【详解】两条直线的交点坐标为(-1,2),且当x >-1时,直线l 2在直线l 1的下方,故不等式k 2x <k 1x+b 的解集为x >-1.故选:C .【点睛】此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.5.B【分析】将点P (-2,1)的坐标代入直线y=-x+b 即可解得b 的值;【详解】解:∵直线y=-x+b 经过点P (-2,1),∴1=-(-2)+b ,∴b= -1.故选:B .【点睛】本题考查待定系数法求一次函数解析式,解题关键是根据点的坐标利用待定系数法求出b6.C【分析】根据选项依次求解,由图可知,第4min 时,对应的容器内的水量为20L ,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,可确定两段函数的关系式,即可求出每min 进水量为5L ,第8min 时容器内的水量为25L ,最后根据图像每分钟出水的量为3.75L .【详解】A 项,由图可知,第4min 时,对应的容器内的水量y 为20L ,A 不符合题意;B 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx (k ≠0),通过图像过(4,20),解得k =5,所以每min 进水量为5L ,B 不符合题意;C 项,由B 项可知:每min 进水量为5L ,每分钟出水量=[(12-4)×5-(30-20)]÷(12-4)=3.75L ,C 符合题意;D 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx+b (k ≠0,k 、b 为常数),通过图像过(4,20),(12,30),解得k =54,b =15,所以第8min 时,容器内的水量为25L ,D 不符合题意;故选C .【点睛】此题考查了一次函数的实际应用和识图能力,解题时首先应正确理解题意,然后根据图像的坐标,利用待定系数法确定函数解析式,接着利用函数的性质即可解决问题. 7.B【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A ①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.9.C【分析】分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.【详解】解:当点E在AB段运动时,y=12BC×BE=12BC•x,为一次函数,由图2知,AB=3,当点E在AD上运动时,y=12×AB×BC,为常数,由图2知,AD=4,故矩形的周长为7×2=14,故选C.【点睛】本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴,∴BC=2BM=6,∴S△ABC=1BC?AM2=12,【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.11.B【分析】利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.【详解】解:不等式ax+b≥0的解集为x≤2.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.D【分析】一次函数可能是增函数也可能是减函数,应分两种情况进行讨论,根据待定系数法求出解析式即可.【详解】解:由一次函数性质知,当k>0时,y随x的增大而增大,所以得319k bk b-+=⎧⎨+=⎩,解得27 kb=⎧⎨=⎩,即kb=14;当k<0时,y随x的增大而减小,所以得391k bk b-+=⎧⎨+=⎩,解得23kb=-⎧⎨=⎩,即kb=-6.∴k b⋅的值为6-或14.故选D.【点睛】此题考查一次函数的性质,要注意根据一次函数图象的性质解答.13.A【分析】延长A1B交x轴于D,A2B1交x轴于E,根据等边三角形的性质得OA=OD,A1B=BB1,A2B1=B2B1,直线OB的解析式为33y x=,得出∠BOD=30°,由直线a:31y x=+得出第一个等边三角形边长为1,由30°角的性质得BD=12,由勾股定理得OD=32,把x=32代入y=3x+1求得A1的纵坐标,即可求得第二个等边三角形的边长,…,按照此规律得到第三个、第四个等边三角形的边长,从而求得第2020个等边三角形的边长.【详解】解:延长A1B交x轴于D,A2B1交x轴于E,如图,∵△OAB、△BA1B1、△B1A2B2均为等边三角形,∴OA=OD,A1B=BB1,A2B1=B2B1,∵直线OB的解析式为3,∴∠BOD=30°,由直线a:3可知OA=1,∴OB=1,∴BD=12,∴22112⎛⎫- ⎪⎝⎭3把x=32代入3x+1得y=52,∴A1D=52,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴B 1E=32,∴,把x=2代入得y=112, ∴A 2E=112, ∴A 2B 1=4, 同理得到A 3B 2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故选A .【点睛】本题考查了图形类规律探究、一次函数图象上点的坐标特征、等边三角形的性质,含30°角的直角三角形的性质,以及勾股定理等知识,找出第n 个等边三角形的边长为2n-1是解题的关键.14.B【分析】先用x 表示出y ,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x ,y)在第一象限内,且x+y=6,∴y=6-x (0<x <6,0<y <6).∵点A 的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x <6), ∴B 符合.故选:B .【点睛】本题考查的是一次函数的图象,在解答此题时要注意x ,y 的取值范围.15.D【详解】试题分析:方法一:∵△ABO 和△A′B′O 关于原点位似,∴△ ABO ∽△A′B′O 且OA'OA =13 .∴A E AD '=0E 0D =13.∴A′E =13AD =2,OE =13OD =1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A (―3,6)且相似比为13,∴点A 的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O 对称,∴A′′(1,―2).故答案选D.考点:位似变换.16.C【分析】根据函数图象判断a 、b 的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A 、若a>0,b<0,1y 符合,2y 不符合,故不符合题意;B 、若a>0,b>0,1y 符合,2y 不符合,故不符合题意;C 、若a>0,b<0,1y 符合,2y 符合,故符合题意;D 、若a<0,b>0,1y 符合,2y 不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b 中k 、b 的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y 轴正半轴相交,b<0时与y 轴负半轴相交.17.D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为3y x =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A .故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键.18.B【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.19.B【分析】根据直线解析式可得OA 和OB 长度,利用勾股定理可得AB 长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB .【详解】当x=0时,y=2∴点B (0,2)当y=0时,-x+2=0解之:x=2∴点A (2,0)∴OA=OB=2∵点C 在线段OD 的垂直平分线上∴OC=CD∵△OBC 和△OAD 的周长相等,∴OB+OC+BC=OA+OD+AD∴OB+BC+CD=OA+OD+ADOB+BD=OA+OD+AD 即OB+AB+AD=OB+OD+AD∴AB=OD在Rt △AOB 中=故选B【点睛】本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理. 20.A【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】解:由题意知,函数关系为一次函数y=-3x-6,由k=-3<0可知,y 随x 的增大而减小,且当x=0时,y=-6,当y=0时,x=-2.故选:A .【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-3x-6,然后根据一次函数的图象的性质求解.21.B【分析】先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标.【详解】∵1(1,0)A∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B∴()11,2B∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B∴()12,4B∵点3A 与点O 关于直线22A B 对称∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .【点睛】 本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键. 22.D【分析】写出函数图象在x 轴上方及x 轴上所对应的自变量的范围即可.【详解】解:当x ≤2时,y ≥0.所以关于x 的不等式kx +3≥0的解集是x ≤2.故选:D .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.23.A【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s 与t 的函数关系式为s=600-200t ,其中0≤t≤3,所以函数图象是A .故选A .【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.24.D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升, 故选D .25.C【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.26.A【分析】当AB 与直线y=-x 垂直时,AB 最短,则△OAB 是等腰直角三角形,作B 如图,点A 坐标为()1,0,点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为BC ⊥x 轴即可求得OD ,BD 的长,从而求得B 的坐标.【详解】解析:过A 点作垂直于直线y x =-的垂线AB ,点B 在直线y x =-上运动,45AOB ∴∠=︒,AOB ∴∆为等腰直角三角形,过B 作BC 垂直x 轴垂足为C ,则点C 为OA 的中点, 则12OC BC ==, 作图可知B 在x 轴下方,y 轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB 最短时,点B 的坐标为11,22⎛⎫-⎪⎝⎭. 故选A .【点睛】本题考查了正比例函数的性质,等腰三角形的性质的综合应用,正确根据垂线段最短确定:当AB 与直线y=-x 垂直时,AB 最短是关键.27.B【分析】 结合题意,得12x k =,22x k-=;结合1x <2x ,根据不等式的性质,得k 0<;再结合1y kx =-与y 轴的交点,即可得到答案.【详解】∵一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)∴111kx =-,231kx -=- ∴12x k =,22x k-= ∵1x <2x ∴22k k-< ∴k 0< ∴选项A 和C 错误当0x =时,1y =-∴选项D 错误故选:B .【点睛】本题考查了一次函数、不等式的知识;解题的关键是熟练掌握一次函数图像和不等式的性质,从而完成求解.28.D【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断.【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确.故选:D .【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.29.B【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围.【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2把B (3,1)代入y=kx+3得1=3k+3,解得:k=23- 所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B .【点睛】 本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.30.B【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、∵k=-1<0,b=1>0,∴图象经过第一、二、四象限,故本选项错误;B、、∵当x=1时,y=0,∴图象经过点(1,0),故本选项正确;C、∵当x=-1时,y=2,∴图象不经过点(-1,0),故本选项错误;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误.故选B【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学第18题专项练习1.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M到AC 的距离是 .(2009年中考)2.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两 点的距离为_ _______.(2010年上海中考)3.Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =_________.(2011年上海中考)4.如图所示,Rt ABC 中,90C ∠=︒,1BC =,30A ∠=︒, 点D 为边AC 上的一动点,将ABD 沿直线BD 翻折,点A 落在点E 处,如果DE AD ⊥时,那么DE = .(2012年上海中考)5.如图4,⊙A 、⊙B 的圆心A 、B 都在直线l 上,⊙A 的半径为1cm , ⊙B 的半径为2cm ,圆心距AB =6cm. 现⊙A 沿直线l 以每秒1cm 的速度 向右移动,设运动时间为t 秒,写出两圆相交时,t 的取值范围: .(2010,宝山二模)l(图4) B A CDA BE 图 C BDA6.在Rt △ABC 中,∠C =90º ,BC =4 ,AC =3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么A A '的值为 ; (2010,奉贤二模)7. 已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取2BF AF =,EF 交BD 于点G ,则GBGD= .(2010,虹口区二模)8.如图,在ABC ∆中,∠ACB =︒90,AC =4,BC =3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB ,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 .(2010年,黄浦区二模)9.如图2,在△ABC 中,AD 是BC 上的中线,BC =4,∠ADC =30°,把△ADC 沿AD 所在直线翻折后点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的 距离是 .(2010年,金山区)10.如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图中阴影部分的周长为 .(2010年,静安区二模)11.如图,在△ABC 中,AB = AC ,BD 、CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,那么tan ∠ABC =___________.(2010年,闵行区二模)A 1N M CBA B 1 C /B DC A 图2 ABCD E12.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标为 .(2010年,浦东新区二模)13.在△ABC 中,AB=AC ,∠A=80°,将△ABC 绕着点B 旋转,使点A 落在直线BC 上,点C 落在点'C ,则∠'BCC = .(2010年,青浦区二模)13.如图,已知在直角三角形ABC 中,∠C =90°,AB =5,BC =3,将ABC ∆绕着点B 顺时针旋转,使点C 落在边AB 上的点C ′处,点A 落在点A ′处,则AA ′的长为 .(2010年,松江区二模)14.如图,将矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上 点P 处,已知︒=∠90MPN ,PM=3,PN=4,,那么矩形纸片ABCD 的面积为 __ ___.(2010年,徐汇区二模)15.在Rt △ABC 中,∠C =90°,AB =2,将这个三角形绕点C 旋转60°后,AB 的中点D 落在点D ′处,那么DD ′的长为 .(2010年,杨浦区二模)A BC16.在△ABC中,AB=AC=5,若将△ABC沿直线BD翻折,使点C落在直线AC上的点C′处,AC′=3,则BC=.(2010年,闸北区二模)17. 在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM翻折,点A落在D处,若CD恰好与AB垂直,则∠A = 度。
(2010年,长宁区二模)18.矩形ABCD中,4AD=,2CD=,边AD绕A旋转使得点D落在射线CB上P处,那么DPC∠的度数为.(2012年,奉贤区二模)19. 在Rt△ABC中,∠C=90º ,BC =4 ,AC=3,将△ABC绕着点B旋转后点A落在直线BC上的点A',点C落在点C'处,那么'tan AAC的值是 .(2012年,金山区二模)20.如图,把一个面积为1的正方形等分成两个面积为12的矩形,接着把其中一个面积为12的矩形等分成两个面积为14的矩形,再把其中一个面积为14的矩形等分成两个面积为18的矩形,如此进行下去,试利用图形所揭示的规律计算:111111111248163264128256++++++++=.(2012年,闵行区二模)121418116132(第18题图)21.如图,在直角坐标系中,⊙P 的圆心是P (a ,2)(a >0),半径为2;直线y=x 被⊙P 截得的弦长为23,则a 的值是 . (2012年,浦东新区二模)22.如果线段CD 是由线段AB 平移得到的,且点A (-1,3)的对应点为 C (2,5),那么点 B (-3,-1)的对应点 D 的坐标是 (2012年,青浦区二模)23.如图3,在菱形ABCD 中,3=AB ,︒=∠60A ,点E 在射线CB 上,1=BE ,如果AE 与射线DB 相交于点O ,那么=DO .(2012年,徐汇二模)24. 如图,在△ACB 中,∠CAB=90°,AC=AB =3,将△ABC 沿直线BC 平移,顶点A 、C 、B 平移后分别记为A 1、C 1、B 1,若△A CB 与△A 1C 1B 1重合部分的面积2,则CB 1= .25.已知正方形ABCD 的边长为3,点E 在边DC 上,且︒=∠30DAE ,若将ADE∆绕着点A 顺时针旋转︒60,点D 至'D 处,点E 至'E 处,那么''E AD ∆与四边形ABCE 重叠部分的面积等于_____________.(13 金山区二模)26.如图,在ABC ∆中,90C ∠= ,10AB =,3tan 4B =,点M 是AB 边的中点,将ABC∆绕着点M 旋转,使点C 与点A 重合,点A 与点D 重合,点B 与点E 重合,得到DEA ∆,且AE 交CB 于点P ,那么线段CP 的长是 ;(13 奉贤区二模)C BAM CBA•AB C D O 27.如图,在直角梯形纸片ABCD 中,AD∥BC,∠A=90°,∠C=30°,点F 是CD 边上一点,将纸片沿BF 折叠,点C 落在E 点,使直线BE 经过点D ,若BF=CF=8,则AD 的长为 . (13 虹口二模)28. 如图,圆心O 恰好为正方形ABCD 的中心,已知4AB =,⊙O 的直径为1.现将⊙O 沿某一方向平移,当它与正方形ABCD 的某条边相切时停止平移,记此时平移的距离为d ,则d 的取值范围是 . (13 黄埔区二模)29.如图,在△ABC 中, 70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ___________度.(13 杨埔区二模)30.如图3,在梯形A B C D 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F 点.如果点E 恰好落在射线AD 上,那么DF 的长为 cm .(13 嘉定区二模)A B CD ACB D E图3F2(09中考)1或5(10中考) 80或120(11中考 根号3-1(12中考)18、9753<<<<t t 或2010,宝山2 18.10或310;2010奉贤218.25或23.虹口区18、0.8. 黄浦区18.1。
2010年金山区18.37π.静安区18.设AB =2a,BC =b 则CO =b/√2。
DO =b/√8 ⊿COD 是直径三角形 a²=b²/2+b²/8=(5/8)b² a/b=√10/4 cos∠ABC=b/4a =1/√10. tan∠ABC =3闵行区18.(2-,6).2010年浦东新区 18. 65或 252010年青浦区 18、522010年松江区18.5144。
徐汇区18. 1杨浦区18.10或210.闸北 18. 302010年长宁区18.75°或15°.奉贤区201218.3或13 金山区201218.511256.闵行区2011 18.22-或22+.浦东新区2011 18.6. 普陀区201118、(0,1)2012 年 青 浦 区18.49或29.2011学年第二学期徐汇区。