第2章数字图像基础
数字图像处理(第二版)章 (2)
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)
第2章 数字图像基础2——常用图像格式
(4) TIFF文件的标记——TAG
• 公共标记(public tag) 在TIFF V5.0的说明中定义了45个标记 Compression 259 SHORT 1 所有TIFF图像必须支持以下标记: NewSubfileType、lmageWidth、 ImageLength、RowsPerStrip、StripOffsets StripByteCounts、Xresolution、Yresolution ResolutionUnit • 私有标记(private tag) 由Aldus和Microsoft来分配 取值范围:32,768 - 65,535
数字图像处理
6. Windows系统的图像显示
• 消息(message) • 设备上下文(device context) • 设备句柄(handle)
数字图像处理
八、 图像颜色与文件格式与转换 —— photoshop示例
1. 图像的色彩模式及转换
• 色彩模式
– – – – – 单色 灰度 RGB色彩模式 CMYK色彩模式 Lab色彩模式
数字图像处理
1. BMP格式
Windows操作系统的标准文件格式。
大部分BMP文件是不压缩的形式,但支持图像压缩, 如RLE格式和LZW压缩格式等。
数字图像处理
(1) BMP文件结构
位图文件头 BITMAPFILEHEADER
图像信息头 BITMAPINFOHEADER 调色板 Palette 位图图像数据 Image Data
数字图像处理
(3) JPEG文件的组织(8个部分)
① 图像开始SOI(Start of Image)标记 ② APP0标记(Marker)
数字图像处理
数字图像处理基础知识
国际照明委员会(CIE)规定以 规定以700nm(红)、 国际照明委员会 规定以 红 、 546.1nm (绿)、435.8nm (蓝)三个色光为三基色。 三个色光为三基色。 绿 、 蓝 三个色光为三基色 又称为物理三基色。 又称为物理三基色。自然界的所有颜色都可以通 过选用这三基色按不同比例混合而成。 过选用这三基色按不同比例混合而成。 这三基色按不同比例混合而成 C = R(R) + G(G) + B(B)
反映了将图像信息进行离散化的程度, 反映了将图像信息进行离散化的程度,常用 灰度级来衡量
主观亮度
适应范围 夜视 昼视
-6
夜间阈值
-4
-2
0
2
4
光强的对数
人眼亮度感觉范围
总范围很宽( ① 总范围很宽( C = 108) 人眼适应某一环境亮度后, ② 人眼适应某一环境亮度后,范围限制 适当平均亮度下: 适当平均亮度下:C = 103 很低亮度下: 很低亮度下:C = 10
图象“ 图象“黑”/“白”(“亮”/“暗”)对比参 白 暗 数
眼睛中图像的形成
视网膜将图像反射在中央凹区域上, 视网膜将图像反射在中央凹区域上,由光接 收器的相应刺激作用产生感觉, 收器的相应刺激作用产生感觉,感觉把辐射 能转变为电脉冲, 能转变为电脉冲,最后由大脑进行解码
电信号 光信号 视觉细胞 视神经 视神经中枢 解码 图像
人眼视觉模型
每个图像由若干个像素点组成, 每个图像由若干个像素点组成,每个点均可看作一个 点光源,每个点光源就是一个冲激函数δ 点光源,每个点光源就是一个冲激函数δ(x,y)
任意一幅图像可以表示为: 任意一幅图像可以表示为:
人眼亮度感觉
闪光极限
人的视觉系统感觉到的亮度 (主观亮度 :是进入人眼的 主观亮度): 主观亮度 光强对数函数 人眼亮度感觉范围: 人眼亮度感觉范围:通过光 强对数衡量,一般为3-10 强对数衡量,一般为 人眼的亮度适应级: 人眼的亮度适应级:视觉系 统当前对光强的灵敏度级别
第2章 数字图象处基础(1-27)
Digital Image Processing
2.2 人的视觉特性
人的视觉模型
▓ ▓
点光源的表示函数
点源可以用 δ 函数表示,表示平面图像的二维 δ 函数 +∞ +∞ 为: ⎧ 1 y, ) x ∫ ∫−∞ δ (dxdy = −∞ ⎪ ⎪ ⎨ = = ⎧ ∞ y , x 0 0, ⎪δ ( y , ) = ⎨ x , 其他 ⎪ ⎩ 0 ⎩ 则任意一幅图像可表示为:
Digital Image Processing
2.2 人的视觉特性
人眼的构造与机理要点(续)
( 3)视细胞: 视网膜上集中了大量视细胞,分为两类: 锥状细胞 :明视细胞,在强光下检测亮度和颜色; 杆 (柱 )状细胞 :暗视细胞,在弱光下检测亮度,无色彩感觉。 其中,每个锥状视细胞连接着一个视神经末梢,故分辨率高, 分辨细节、颜色;多个杆状视细胞连接着一个视神经末梢,故分辨 率低,仅分辨图的轮廓。 (4 ) 人眼成象过程:
2.4 数字图像表示形式和特点
▓ ▓
数字图像的矩阵表示 数字图像的矩阵 矩阵表示
O n
f (0,1) ⎡ f (0,0) ⎢ f (1,1) ⎢ f (1,0) , f (mn) = ⎢ ⋮ ⋮ ⎢ ⎣ f (M−1,0) f (M−1,1)
⋯ f (0, N−1) ⎤ ⎥ ⋯ f (1, N−1) ⎥ ⎥ ⋮ ⋮ ⎥ ⋯ f (M−1, N−1)⎦
Digital Image Processing
2.1 色度学基础
RGB模型:
在三维直角坐标系中,用相互垂直的三个坐标轴代表R、 G、B三个分量,并将R、G、B分别限定在[0,1],则该单位正 方体就代表颜色空间,其中的一个点就代表一种颜色。如下图 方体就代表颜色空间,其中的一个点就代表一种颜色。 所示。 其中,r、g、b、c、m和y分别代表红色(red)、绿色 (green)、蓝色(blue)、青色(cyan)、品红(magenta) 和黄色(yellow)。
第二章 数字图像处理基础
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”
医学影像实用技术 第2章 数字图像技术基础
《医学影像实用技术教程》
1)坐标单序击列结此构处:即由编图辑中线母段版某一标端题头(样非封式闭线)
或任意像素点(封闭线)的坐标开始,连续记录与之连 通的像素点坐标,这种方法实际上仅记录了图像上有黑 色(值为1)的像素点所在的X,Y坐标值,而隐含表示 其它没有被记录的坐标点为白色,其值均为0。
《医学影像实用技术教程》
3. 模拟单图击像转此化处为数编字图辑像母的过版程标题样式
(1)抽样;(2)量化
列(N)
白 255
行(M)
灰 阶
模拟图像
抽样
量化
黑0
2.1 2.2 2.3 2.4 52.5
《医学影像实用技术教程》
单击此处编辑母版标题样式
4. 分辨率与颜色数
像素表达位数与对应的颜色数
分辨率表示图像垂直与水平 方向的像素点的数量。 颜色数是指一幅图像最多能 表达的颜色数目。
位数 1 2 4 8 12 16 24
颜色数 2 4 16 256
4096 65536 16777216
2.1 2.2 2.3 2.4 62.5
《医学影像实用技术教程》
单击2此.1.2处数编字图辑像母的分版类标及表题示样式
1.数字图像的分类 数字图像的分类主要有黑白图像、灰度图像、
彩色图像、三维图像等。 (1)黑白图像
255 255 255
2.1 2.2 2.3 2.4 92.5
《医学影像实用技术教程》
2.数字单图击像在此计算处机编内部辑的母表示版方标法 题样式
(1)单波段数字图像; (2)多波段彩色数字图像; (3)二值图形;
2.1 2.2 2.3 2.4102.5
《医学影像实用技术教程》
第2章 数字图像的基本知识
0.59 0.11 R Y 0.30 U 0.30 0.59 0.89 G V 0.70 0.59 0.11 B
亮度分量代表像素的明暗程度,对于图像的清晰度起决定性作用。 由于U、V分量是三基色分量中扣除色度信号的结果,因此不包括 亮度成分。
U、V分量代表像素的颜色,根据“大面积着色原理”,对图像的
清 晰度影响不大。
(3) 用 YSC 分量描述像素 Y—— 亮度分量 ,S ——色饱和度分量,C—— 色调分量 已知YUV ,可求出YSC:
S U V
2
2
V
V C actg U
色饱和度 S 代表颜色的深浅, 色调 C 代表颜色的种类。 S和C统称为色度。 建立直角坐标系U-V,则: S为色度的大小,C为色度的辐角 0
2.4 灰度直方图
2.4.1 概念
灰度直方图是一种表达图像的灰度分布概率的图示方法,它描述了各种 灰度值在图像中所占的比例。
设图像有总共 n 个像素点,灰度值为 i 的像素点有 ni 个。则灰度值为 i 的像素点在图像中出现的概率(频度)p( i )为: p( i )= ni / n i=0 , 1 , … , L-1 L为灰度级。对于24位位图,L=256。 以灰度 i 为横坐标, p( i )为纵坐标,绘制 p( i ) 曲线,就得到灰度直方图
(3)从位图点阵中提取各像素的RGB分量,存放到C3数组中,进而计算 YSC分量: double u,v,c; for(y=InfoHead.biHeight-1;y>=0;y--){ //逐行转换 memcpy(C3[y],lpImage+(InfoHead.biHeight-1-y)*z*3,z*3); //存储到C3数组 for(x=0;x<InfoHead.biWidth;x++){ YSC[y][x].Y=C3[y][x].R*0.3+C3[y][x].G*0.59+C3[y][x].B*0.11; //计算灰度 u=(C3[y][x].B-YSC[y][x].Y)/(double)YSC[y][x].Y; //计算归一化蓝差分量 v=(C3[y][x].R-YSC[y][x].Y)/(double)YSC[y][x].Y; //计算归一化红差分量 c=atan2(v,u)*180/3.14; //计算色调,弧度转换为度 if(c<0) c=c+360.0; //将角度由-180~180转换为0~360 c=c*255.0/360.0; //将角度由0~36 0转换为0~255,使能用字节变量存储 YSC[y][x].C=(BYTE)c; //存储到YSC数组 YSC[y][x].S=(BYTE)(sqrt(u*u+v *v)*100); //将色饱和度由0~1转换为0~100 } }
数字图像处理基础2
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
数字图像处理第2章课后题答案
第二章数字图像处理基础1.将一幅光学模拟图像转换为数字图像的过程叫做图像的数字化,包括扫描、采样、量化三个过程。
采样点数越多、量化级数越高,图像质量越好。
2.图像数字化过程中造成失真的原因有两个方面:第一个方面,在采样过程中,如果采样点数满足取样定理(即采样频率不小于最高截止频率的2倍)的情况下,重建图像就不会产生失真,否则就会因为取样点数不够而产生所谓混淆失真;第二个方面,在量化过程中,若图像不产生失真,则需要量化级数无穷大,而实际量化级数往往无法满足这样的取值而造成图像的失真。
3.人的眼睛是人类视觉系统的重要组成部分,当外界景象通过眼球的光学系统在视网膜上成像后,视网膜产生相应的胜利电图像并经视神经传入大脑;人眼的视网膜由感光细胞覆盖,感光细胞吸收来自于光学图像的光线,并通过晶体透镜和角膜聚集在视网膜上。
晶状体相当于普通光学镜头,对光线有屈光作用。
4.发光强度简称光强,指单色光源在给定方向上的单位立体角内发出的发光强度。
亮度是指发光体(反光体)表面发光(反光)强弱的物理量。
照度指物体被被照面单位时间内所接受的光通量。
主观亮度是指由观察者判断出的亮度称为主观亮度。
5.常用的颜色模型有RGB模型、CMYK模型、HSI模型等。
RGB模型是色光的彩色模型,因为是由红、绿、蓝相叠加形成其它颜色,因此该模型也叫加色合成法。
所有的显示器、投影设备,以及电视等许多设备都是依赖于这种加色模型的;CMYK模型也称减色合成法,主要应用于印刷行业中;RGB和CMYK颜色模型都是面向硬件的,但从人眼视觉特性来看,HSI模型用色调、饱和度和亮度来描述彩色空间能更好地与人的视觉特性相匹配。
6.由于彩色图像为RGB图像,利用三元组(R,G,B)来表示每个像素的值。
根据题意,三基色灰度等级为8,而23=8,则存储一个颜色分量所需的比特数为3,存储一个三元组所需的比特数为3⨯3=9,该图像大小为1024*768,则存储整幅图像所需的比特数为9⨯1024⨯768=7077888bit=864KB。
第二章 数字图像处理基础
BMP图像文件格式
文件说明
属性 bfType bfSize bf1 bf2 bfOffBits biSize biWidth 所占字节数 2 4 2 2 4 4 4 起始字节 1 3 7 9 11 15 19 说明 文件类型(“BM”) 文件大小 保留 保留 第一个位图数数的偏移量 文件信息头的长度 位图的宽度(单位是象素)
位图的有关术语
像素(Pixel)
(可大可小)
采样点 (Sample)
位图的有关术语
图像分辨率: 每英寸图像含有的点或像素个数(dpi)
分辨率越高,图像细节越清晰,但文件尺寸大, 处理的时间长,对设备的要求高。
位图的有关术语
打印机分辨率: 打印图像时每英寸的点数(dpi)
激光打印机的分辨率可达600~1200dpi。
0, , 80 200 B 0, , 0 110 255, , 255 255
2.1 图像数字化
2.1.3 采样与量化参数的选择
采样间隔:影响着图像细节的再现程度,反映数字化 后的图像呈现何种的细微程度。采样间隔越大,图像的像素 数越少,空间分辨率低,质量差。严重出现像素块状的棋盘
2. 图像数字化器的性能
(1)分辨率:单位尺寸能够采样的像素数,由采样 孔的大小和像素间距的大小决定;
(2)灰度级:量化为多少等级;
(3)图像大小:允许输入图像的大小;
(4)扫描速度:采样数据的传输速度;
(5)噪声:数字化器的噪声水平。
(6)线性度:线性度是指对光强进行数字化时,灰 度正比于图像亮度的实际精确程度。
数字图像根据灰度级数的差异,可分为:
二值图像、灰度图像和彩色图像 二值图像:
数字图像处理第2章采样量化图像格式
又称输出分辨率,是指打印机输出图像时每英寸的点数(dp i)。打印机分辨率也决定了输出图像的质量,打印机分辨率越高, 可以减少打印的锯齿边缘,在灰度的半色调表现上也会较为平滑。 打印机的分辨率可达300-1200 dpi。
4) 扫描仪分辨率
单位长度上采样的像素个数。台式扫描仪的分辨率可以分
• 曲线3:
质量
细节较多的球赛观众图像 k
5
4 32 64 128 256 N
总结
一般,当限定数字图像的大小时, 为了得到质量较好的图像 可采用如下原则:
(1)对缓变的图像,应该细量化,粗采样,以避免假轮廓。
(2)对细节丰富的图像,应细采样,粗量化,以避免模糊。 对于彩色图像,是按照颜色成分——红、绿、蓝分别采样和量
2.3.3 用传感器阵列获取图像
传感器阵列
2.4 图像数字化技术
图像的数字化包括采样和量化两个过程。 设连续图像f(x, y) 经数字化后,可以用 一个离散量组成的矩阵g(i, j)(即二维数组) 来表示。
f (0,0) f (0,1) f (0, n 1)
g(i,
j)
g(1,0)
z 蓝 (Blu e) 品 红 (Magenta )
青 (Cyan ) O 红 (Red) x
绿 (Gre en) 黄 (Yello w) y
(2) 数字化采样一般是按正方形点阵取样的, 除此之外还 有三角形点阵、正六角形点阵取样。
(3)以上是用g (i, j)的数值来表示(i, j)位置点上灰度级值的
大小,即只反映了黑白灰度的关系, 如果是一幅彩色图像, 各点
的数值还应当反映色彩的变化,可用g (i, j, λ)表示,其中λ是波 长。如果图像是运动的,还应是时间t的函数,即可表示为g (i, j, λ, t)。
精品课件-《数字图像处理(第三版)》第2章 数字图像
其它
i 1,2,n
2.3 数字图像类型
矢量(Vector)图和位图(Bitmap),位图也称为栅格图像。 矢量图是用数学(准确地说是几何学)公式描述一幅图像。(计 算机图形学)
➢ 优点:一是它的文件数据量很小,因为存储的是其数学公式; 其二是图像质量与分辨率无关,这意味着无论将图像放大或 缩小了多少次,图像总是以显示设备允许的最大清晰度显示。
2.2.3 颜色变换
对彩色图像进行颜色变换,可实现对彩色图像的增强处理,改 善其视觉效果,为进一步处理奠定基础。 基本变换
➢ 颜色变换模型为:g(x,y)=T[ f ( x,y )] 式中:f ( x , y )是彩色输入图像,其值为一般为向量; g ( x , y )是变换或处理后的彩色图像,与 f(x,y)同维; T是在空间域上对f的操作。T对图像颜色的操作 有多种方式;
2.4 图像文件格式 数字图像有多种存储格式,每种格式一般由不同的软件公司开 发所支持。 文件一般包含文件头和图像数据。就像每本书都有封面,目录, 它们的作用类似于文件头,通过文件头我们可读取图像数据。 文件头的内容由该图像文件的公司决定,一般包括文件类型 、 文件制作者、制作时间、版本号、文件大小等内容,还有压缩方 式。
2.2.2 颜色模型
HSI 颜色模型 ➢ 色调H (Hue): 与光波的波长有关,它表示人的感官对不同 颜色的感受,如红色、绿色、蓝色等, ➢ 饱和度(Saturation): 表示颜色的纯度,纯光谱色是完合饱 和的,加入白光会稀释饱和度。饱和度越大,颜色看起来就 会鲜艳,反之亦然。 ➢ 强度I (Intensity):对应成像亮度和图像灰度,是颜色的 明亮程度。 ➢ HSI模型建立基于两个重要的事实: (1) I分量与图像的彩色 信息无关; (2) H和S分量与人感受颜色的方式是紧密相联 的。这些特点使得HSI模型非常适合彩色特性检测与分析。
第2章 数字图像的基础知识和基本概念
第2章数字图像的基础知识和基本概念一、数字图像数字图像是以二进制数字组形式表示的二维图像。
利用计算机图形图像技术以数字的方式来记录、处理和保存图像信息。
在完成图像信息数字化以后,整个数字图像的输入、处理与输出的过程都可以在计算机中完成,它们具有电子数据文件的所有特性。
通常把计算机图形主要分为两大类:位图(bitmap)图像和矢量(vector)图形(如图2-1所示)。
图2-1 计算机图形的主要分类1.关于位图图像(1)概念位图图像(在技术上称作栅格图像)使用图片元素的矩形网格(像素)表现图像。
每个像素都分配有特定的位置和颜色值。
在处理位图图像时,人们所编辑的是像素。
位图图像是连续色调图像(如照片或数字绘画)最常用的电子媒介,因为它们可以更有效地表现阴影和颜色的细微层次。
(2)分辨率位图图像与分辨率有关,也就是说它们包含固定数量的像素。
因此,如果在屏幕上以高缩放比率对它们进行缩放或以低于创建时的分辨率来打印它们,则将丢失其中的细节,并会呈现出锯齿,如图2-2所示。
图2-2 不同放大级别的位图图像示例(3)特点①位图图像有时需要占用大量的存储空间。
对于高分辨率的彩色图像,由于像素之间独立,所以占用的硬盘空间、内存和显存比矢量图都大。
②位图放大到一定倍数后会产生锯齿。
位图的清晰度与像素点的多少有关。
③位图图像在表现色彩、色调方面的效果比矢量图更加优越,尤其在表现图像的阴影和色彩的细微变化方面效果更佳。
④位图的格式有bmp、jpg、gif、psd、tif、png等。
⑤处理软件:Photoshop、ACDSee、画图等。
2.关于矢量图形(1)概念矢量图形(又称矢量形状或矢量对象)是由称作矢量的数学对象定义的直线和曲线构成的。
矢量根据图像的几何特征对图像进行描述。
(2)分辨率矢量图形是与分辨率无关的,即当调整矢量图形的大小、将矢量图形打印到PostScript 打印机、在PDF文件中保存矢量图形或将矢量图形导入到基于矢量的图形应用程序中时,矢量图形都将保持清晰的边缘(如图2-3所示)。
数字图像处理大纲
一、理论课程主要内容及学时安排(32学时)第一章绪论(2学时)1、数字图像处理的发展2、数字图像处理的主要研究内容3、数字图像处理的基本步骤4、图像处理系统的组成第二章数字图像基础(4学时)1、视觉感知要素2、图像的取样和量化3、像素间的基本关系4、数字图像处理中的基本数学运算第三章灰度变换和空间滤波(8学时)1、基本灰度变换函数2、直方图处理3、空间滤波基础4、平滑空间滤波器5、锐化空间滤波器第四章频域滤波(8学时)1、二维傅立叶变换及其性质2、频域滤波基础3、频域平滑滤波器4、频域锐化滤波器5、选择性滤波器第五章图像复原与重建(4学时)1、图像退化复原模型2、噪声模型3、空间滤波去噪4、频域滤波消除周期噪声5、逆滤波第六章彩色图像处理(6学时)1、彩色基础和模型2、伪彩色处理3、彩色变换4、平滑和锐化二、实验课程主要内容及学时安排(16学时)1、图像信号的数字化(2学时)实验目的通过本实验了解图像的数字化参数取样频率(象素个数)、量化层数与图像质量的关系。
实验内容编写并调试图像数字化程序,要求参数k,n 可调。
其中k为亚抽样比例;n为量化比特数;选择任意图像进行处理,在显示器上观察各种数字化参数组合下的图像效果。
2、图像灰度级修正(2学时)实验目的掌握常用的图像灰度级修正方法,即图象的灰度变换法和直方图均衡化法,加深对灰度直方图的理解。
观察图象的增强效果,对灰度级修正前后的图像加以比较。
实验内容编程实现图像的灰度变换。
改变图像输入、输出映射的灰度参数范围(拉伸和反比),观看图像处理结果。
对图像直方图均衡化处理,显示均衡前后的直方图和图像。
3、图像的平滑滤波(2学时)实验目的学习如何对已被噪声污染的图像进行“净化”。
通过平滑处理,对结果图像加以比较,得出自己的实验结论。
实验内容编写并调试窗口尺寸为m×m的平滑滤波函数。
编写并调试窗口尺寸为m×m的中值滤波函数。
4、图像的锐化处理(2学时)实验目的学习如何用锐化处理技术来加强图像的目标边界和图像细节,对图像进行梯度算子、拉普拉斯算子、Sobel算子设计,使图像的某些特征(如边缘、轮廓等)得以进一步的增强及突出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 为了产生一幅数字图像,需要把连续的感知 数据转换为数字形式。这包括两种处理:
– 取样处理 – 量化处理
2.4.1 取样和量化的基本概念(1)
Basic Concepts in Sampling and Quantization
应用实例:可见光及红外线波段成像
用光显微镜方法获取 图像的例子
应用实例:微波波段成像
Imaging in the Microwave Band
微波波段成像的典型应用是雷达。成像雷达的独特之处是在 任何范围、任何时间内不考虑气候、光照条件的收集数据能力 。雷达波可以穿透云层,在一定条件下还可以通过植被、冰层 和极干燥的沙漠。 成像雷达的工作原理像一个闪光照相机,它自己提供照明( 微波脉冲)去照亮地面的一个地区,并快速拍摄图像。
1 I ( R G B) 3 3 SI [min(R, G , B )] ( R G B) [( R G ) ( R B )] / 2 H arccos 2 1/ 2 [( R G ) ( R B )(G B )]
HIS色彩模型The HIS Color Model
•主观亮度(人的视觉系统感觉到的亮度)是进入人眼的光强度的对数函数。 •人的视觉不能同时在这么大范围工作,存在亮度适应现象。 •人眼能同时鉴别的光强度级的范围是很小的。 •在低照明级别,亮度辨别较差,在高照明级别,亮度辨别较好。
亮度适应级范围
2.1.3 亮度适应和鉴别(2) Brightness Adaptation and Discrimination
c
2.2光和电磁波谱(2) Light and the Electromagnetic Spectrum 电磁波谱的可见光波段约为:0.43μm(紫 色)~ 0.79μm(红色)
应用实例:γ射线成像
Gamma-Ray Imaging
γ射线成像主要用于核医学 和天文观察.在核医学中 ,这种处理是将放射性同 位素注射到病人体内,当 这种物质衰变时放射出γ射 线,然后用γ射线检测器产 生图像.源自绿 红 蓝 1 20 ° I
HSI 模型的三个属性定义了一个三维
柱形空间, 如图所示。灰度阴影沿着轴
线从底部的黑变到顶部的白,具有最高亮
度。最大饱和度的颜色位于圆柱上顶面的 圆周上。
0° 2 40 °
柱形彩色空间
1) RGB转换到HSI
对任何3个[0, 1]范围内的R、G、B值,其对应HSI模型 中的I、S、H分量的计算公式为
第2章 数字图像基础
Digital Image Fundamentals
主要内容
• • • • •
视觉感知要素 光和电磁波谱 颜色基础 图像取样和量化 像素间的一些基本关系
2.1 视觉感知要素 Elements of Visual Perception
本节简单地综述了人类视觉系统的构造、人 眼中图像的形成及对亮度的适应和鉴别。
3. CMYK表色系统 CMYK表色系统也是一种常用的表示颜色的方式。计算机屏
幕显示通常用 RGB 表色系统,它是通过相加来产生其他颜色,
这种做法通常称为加色合成法(Additive Color Synthesis)。而在 印刷工业上则通常用CMYK表色系统,它是通过颜色相减来产生
其他颜色的,所以称这种方式为减色合成法 (Subtractive Color
2.3.2 颜色模型 为了科学地定量描述和使用颜色,人们提出了各种颜色模 型。目前常用的颜色模型按用途可分为两类,一类面向诸如视 频监视器、 彩色摄像机或打印机之类的硬件设备。另一类面向
以彩色处理为目的的应用,如动画中的彩色图形。面向硬件设
备的最常用彩色模型是 RGB 模型,而面向彩色处理的最常用模 型是HSI模型。另外,在印刷工业上和电视信号传输中,经常使 用CMYK和YUV色彩系统。
分量与图像的彩色信息无关;② H和S分量与人感受颜色的方
式是紧密相联的。这些特点使得HSI模型非常适合借助人的视觉 系统来感知彩色特性的图像处理算法。
色相环描述了色相和饱和度两个参数。
色相由角度表示,它反映了该彩色最接 近什么样的光谱波长。一般假定 0 °表 示的颜色为红色, 120 °的为绿色, 240°的为蓝色。
体中有三个角对应于三基色——红、绿、蓝。剩下的三个角对应于
三基色的三个补色——黄色、 青色(蓝绿色)、品红(紫色)。
RGB彩色模型 (The RGB Color Model) 24bit的RGB图像中颜色总数是 (28 )3 16,777,216
z 蓝(Blu e) 品红 (Mag en ta)
•每只眼睛有7500万~15000万个杆状 体,用于给出总体图像,它们没有色 彩感觉,在低照明度下对图像较敏感 (如:夜视觉)。
2.1.2 人眼中图像的形成 Image Formation in the Eye •眼睛的晶状体与普通光学透镜之间的主要差别在于眼睛的适 应性强。
•晶状体的聚焦中心与视网膜间的距离在14~17mm之间。
感觉亮度不是简单的强度函数的例2: 视觉系统的同时对比现象,即感觉的亮度区域不是简单地取 决于强度。
2.1.3 亮度适应和鉴别(5) Brightness Adaptation and Discrimination
在错觉中,眼睛填上了不存在的信息或错误地感 知物体地几何特点。
2.1.3 亮度适应和鉴别(6) Brightness Adaptation and Discrimination
Synthesis)。 CMYK 模式的原色为青色 (Cyan)、品红色 (Magenta)、黄色 (Yellow)和黑色(Black)。在处理图像时,一般不用CMYK模式, 主要是因为这种模式的文件大, 占用的磁盘空间和内存大。这
种模式一般在印刷时使用。
2.4 图像取样和量化 Image Sampling and Quantization
应用实例:无线电波成像Imaging in the Radio Band
无线电波用于磁共振成像(MRI)。该技术把病人放在强磁场中 并使无线电短波脉冲通过病人的身体,每个脉冲将导致一个 病人组织发射的无线电响应脉冲,这些信号发生的位置和强 度由计算机确定,从而产生一个病人的横截面。
2.3 颜色基础(6) Color Fundamentals 2.3.1 颜色基础 颜色是外界光刺激作用于人的视觉器官而产生的主观感觉。 颜色分两大类:非彩色和彩色。非彩色是指黑色、白色和介于这 两者之间深浅不同的灰色, 也称为无色系列。彩色是指除了非彩
色以外的各种颜色。
根据人眼的结构,所有颜色都可看作是三种基本颜色 —— 红
绿和蓝按照不同的比例组合而成。国际照度委员会(CIE)早在1931
年就规定三种基本色的波长分别为 R:700 nm,G:546.1 nm,B:
435.8 nm。
颜色有三个基本特征量:色调、 饱和度和亮度。 亮度是色彩明亮的概念,色调是光波混合中与主波长有关的属性,
2) HSI转换到RGB
H o H H - 120 H 240o B I (1 S )
0o B 120 o 120 B 240
o o
240o B 360o
S cos H R I 1 o cos( 6 0 H ) G 1 ( R B)
应用实例:紫外波段成像
Imaging in the Ultraviolet Band
紫外线被用于荧光显微镜方 法,这是显微镜方法中发展 最快的领域。荧光是在19世 纪中叶发现的.当紫外辐射 光子与荧光材料内原子中的 电子碰撞时,它把电子提高 到较高的能级,随后受激电 子释放到较低的能级并以可 见光范围内的低能光子放光 。
1. RGB模型 RGB模型用三维空间中的一个点来表示一种颜色,每个点有 三个分量,分别代表该点颜色的红、绿、蓝亮度值, 亮度值限定
在[0, 1]。
在RGB模型立方体中,原点所对应的颜色为黑色,它的三个 分量值都为零。距离原点最远的顶点对应的颜色为白色,它的三 个分量值都为 1 。从黑到白的灰度值分布在这两个点的连线上, 该线称为灰色线。立方体内其余各点对应不同的颜色。彩色立方
绿 ° 0 2 1
S H 0° 红
饱和度是指一个颜色的鲜明程度,
饱和度越高,颜色越深, 如深红,深
240 绿。饱和度参数是色环的原点到彩色点 ° 蓝
的半径的长度。环的边界上其饱和度值
色相环
为1。在中心是中性(灰色)阴影, 饱
和度为0。
亮度是指光波作用于感受器所发生的 效应,其大小由物体反射系数来决定,反 射系数越大,物体的亮度愈大,反之愈小。
•视网膜图像主要反射在中央凹域上,然后由光接收器的相应 刺激作用产生感觉,感觉把辐射能转变为电脉冲,最后由大 脑解码。
h=2.55mm
2.1.3 亮度适应和鉴别(1) Brightness Adaptation and Discrimination
•人的视觉系统能适应的光强度级别范围约 1010 量级。
2.1.3 亮度适应和鉴别(7) Brightness Adaptation and Discrimination
2.2光和电磁波谱(1)Light and the Electromagnetic Spectrum
E h 为波长 为频率
E为电磁波能量 光速c 2.998108 m/s 普朗克常数h=6.626068 ×10-34 m 2 kg / s
应用实例:X射线成像
X-ray Imaging
X射线是最早用于成像的电磁辐 射源之一。X射线管是带有阴极 和阳极的真空管.阴极加热释放 自由电子,这些电子以很高的速 度向阳极流动,当电子撞击一个 原子核时,能量被释放并形成X 射线辐射。X射线的能量由另一 边的阳极电压控制,而X射线的 数量由施加于阴极灯丝的电源控 制。