(全2)五年级数学上册鸡兔同笼及相遇应用题

合集下载

(完整版)鸡兔同笼应用题100道

(完整版)鸡兔同笼应用题100道

鸡兔同笼应用题100道1.鸡兔同笼,共有30个头,88只脚。

求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露.数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连8天共采了112个松籽,这八天有几天晴天几天雨天?11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。

其中男生平均得60分,女生平均得70分。

求参加竞赛的男女各有多少人?12.一次数学竞赛共有20道题。

做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?13.一次数学竞赛共有20道题。

做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?14.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。

求大船和小船各几只?15.在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。

求小轿车和摩托车各有多少辆?16.解放军进行野营拉练。

晴天每天走 35千米,雨天每天走 28千米,11天一共走了 350千米.求这期间晴天共有多少天?17.100个和尚吃了100个面包,大和尚1人吃3个,小和尚3人吃1个。

小学数学鸡兔同笼问题应用题

小学数学鸡兔同笼问题应用题

小学数学鸡兔同笼问题应用题解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例2动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只。

因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。

把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。

例3李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。

鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。

把1只鸡和1只兔子看做一组,共有6条腿。

前后鸡和兔的总腿数有144+156=300(条)所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。

例4一次数学考试,只有20道题。

做对一题加5分,做错一题倒扣3分(不做算错)。

乐乐这次考试得了84分,那么乐乐做对了多少道题?解:如果20题全部做对,应该得20×5=100(分),而实际得了84分,少了100-84=16(分)。

小学数学应用题之鸡兔同笼问题

小学数学应用题之鸡兔同笼问题

小学数学应用题之鸡兔同笼问题【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。

把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。

小学数学专项《应用题》经典鸡兔同笼问题基本知识-5星题(含解析)

小学数学专项《应用题》经典鸡兔同笼问题基本知识-5星题(含解析)

应用题经典应用题鸡兔同笼问题根本知识5星题课程目标知识提要鸡兔同笼问题根本知识•鸡兔同笼的由来大约在1500年前,?孙子算经?中就记载了这个有趣的问题.书中是这样表达的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?〞这四句话的意思是:有假设干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔?•假设法解鸡兔同笼〔1〕假设全是兔子鸡数=(每只兔子脚数×鸡兔总数−实际脚数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−鸡数〔2〕假设全是鸡兔数=(实际脚数−每只鸡脚数×鸡兔总数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−兔数•分组法解鸡兔同笼腿数相同,2鸡1兔为一组;头数相同,1鸡1兔为一组。

精选例题鸡兔同笼问题根本知识1. 一个奥特曼与一群小怪兽战斗.奥特曼有一个头、两条腿,开始时每只小怪兽有两个头、五条腿.在战斗过程中有一局部小怪兽分身了,一只小怪兽分成了两只,分身后的每只小怪兽有一个头、六条腿〔不能再次分身〕,某个时刻战场上一共有21个头,73条腿,那么这时共有只小怪兽.【答案】13【分析】可知小怪兽共有20个头和71条腿.1个头、6条腿的小怪兽肯定为偶数,把它们两个一对捆在一起,那么每组有2个头和12条腿.用假设法易得2个头、12条腿的小怪兽有(71−10×5)÷(12−5)=3(组),2个头5条腿的小怪兽有10−3=7(只),共2×3+7=13(只).2. 甲乙二人相距30米面对面站好.两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米.平局两人各向前走1米.玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.【答案】7【分析】有胜有负的局,两人距离缩短1米;平局两人距离缩短2米.15局后两人之间的距离缩短15~30米.〔1〕如果两人最后的效果都是后退,两人之间的距离会变大,与上述结论矛盾.〔2〕如果两人最后的效果是“一人前进,另一人后退〞,如果乙前进,甲后退,两人距离增大,这与〔1〕矛盾.那么一定是甲前进,乙后退,两人距离会缩短15米.但如果两人距离缩短15米,只能是15局都是“胜负局〞.假设甲15局都是胜者,他会前进45米,每把一次“胜者〞换成一次“负者〞,他会少前进5米.45减去多少个5都不可能等于17,这种情况不成立.〔3〕如果两人最后的效果是都向前进,两人的距离缩短19米.假设15局都是“胜负局〞,两人之间距离缩短15米,每把一局“胜负局〞换成平局,两人之间距离多缩短1米.由“鸡兔同笼〞法求出,“胜负局〞共11局,平局4局.4局平局中甲前进了4米.假设甲其余11局都是胜者,他一共前进33+4=37〔米〕.每把一局胜局改为败局,他会退5米,要想前进17米,那么改(37−17)÷5=4〔局〕.验算:甲7胜4平4败,前进21+4−8=17〔米〕;乙4胜7败4平,前进12+4−14=2〔米〕.3. 从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?【答案】36人抬水,20人挑水【分析】假设全是抬水,38根扁担应担38个桶,而实际上是58个桶,比实际少了58−38=20(个).因为当我们把一个挑水的当作抬水的就会少算2−1=1(个)桶,所以有20÷1=20(人)抬水的扁担数是38−20=18(根),抬水的人数是18×2=36(人).4. 男生手里拿2个红气球、13个蓝气球,女生手里拿1个红气球、12个蓝气球,一共有62个红气球,且蓝气球的范围在495∼510之间,请问男生多少人?女生多少人?【答案】男生有22人;女生有18人.【分析】不管男生还是女生,每个人手中的蓝气球比红气球多11个,那么总的蓝气球比红气球多的必须是11的倍数,即▫−62是11的倍数,且▫的范围在495−510之间,那么▫=502才行,这样502−62=440才是11的倍数,那么总人数为440÷11=40人;假设这40人全是男生,那么会有红气球40×2=80个,比拟:80−62=18个,将一个男生变成一个女生会少拿1个红气球,那么有18÷1=18个女生,那么男生有22人.5. 一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【答案】大和尚25、小和尚75【分析】我们把大碗换小碗,换小碗盛粥,把一大碗粥分成三小碗粥,那么原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥.然后仍然用假设法:假设都是小和尚,只能喝1×100=100(碗),有一个大和尚被当成小和尚会少喝9−1=8(碗),一共少了300−100=200(碗).所以大和尚有200÷8=25(个);小和尚有100−25=75(个).6. 犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只.犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?【答案】孔雀:12只;羚羊:6只;犀牛:8只.【分析】这道题有三种不同的动物混合在一起,这样假设起来会比拟麻烦,我们可以观察一下:虽然有三种不同的动物,但是犀牛和羚羊都是4只脚,这样,只看脚数,就可以把孔雀与这两种动物分开,转化成我们熟悉的“鸡兔同笼〞问题,然后再通过犄角的不同,把犀牛和羚羊分开,也就是说我们需要做两次“鸡兔同笼〞.假设26只都是孔雀,那么就有脚:26×2=52(只),比实际的少:80−52=28(只),这说明孔雀多了,需要增加犀牛和羚羊.每增加一只犀牛或羚羊,减少一只孔雀,就会增加脚数:4−2=2(只).所以,孔雀有26−28÷2=12(只),犀牛和羚羊总共有26−12=14(只).假设14只都是犀牛,那么就有犄角:14×1=14(只),比实际的少:20−14=6(只),这说明犀牛多了羚羊少了,需要减少犀牛增加羚羊.每增加一只羚羊,减少一只犀牛,犄角数就会增加:2−1=1(只),所以,羚羊的只数:6÷1=6(只),犀牛的只数:14−6=8(只).7. 甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行工作,最初,甲清理的速度比乙快13,中途乙曾用10分钟去换工具,而后工作效率比原来提高了一倍,结果从开始算起,经过1小时,就完成了清理积雪的工作,并且两人清理的跑道一样长,问乙换了工具后又工作了多少分钟?【答案】30【分析】方法一:直接求首先求出甲的工作效率,甲1个小时完成了200米的工作量,因此每分钟完成200÷60=103(米),开始的时候甲的速度比乙快13,也就是说乙开始每分钟完成为103÷(1+13)=212(米),换工具之后,工作效率提高一倍,因此每分钟完成212×2=5(米),问题就变成了,乙50分钟扫完了200米的雪,前假设干分钟每分钟完成212米,换工具之后的时间每分钟完成了5米,求换工具之后的时间.这是一个鸡兔同笼类型的问题,我们假设乙一直都是每分钟扫212米,那么50分钟应该能扫212×50=125(米),比实际少了200−125=75(米),这是因为换工具后每分钟多扫了5−212=212(米),因此换工具后的工作时间为75÷212=30(分钟).方法二:其实这个问题中的400米是一个多余条件,我们只需要根据甲乙两人工作量相同和他们之间的工作效率之比就可以求出这个问题的答案.不妨假设乙开始每分钟清理的量为3,甲比他快三分之一,那么甲每分钟清理的量为4;60分钟后,甲共清理的量为4×60=240,乙和甲的工作总量相同,也是240份,但是乙总共的工作时间为60-10=50分钟,并且乙之前的工作效率为3,换工具之后的工作效率为6,和〔方法一〕相同的,利用鸡兔同笼的思想,可以得到乙换工具后工作了(240−3×50)÷(6−3)=30(分钟).。

鸡兔同笼练习题大全(普通、难、特难)

鸡兔同笼练习题大全(普通、难、特难)

鸡兔同笼练习题大全1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?3、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?4、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?5、小华买了2元和5元纪念邮票一共34张,用去98元钱。

求小华买了2元和5元的纪念邮票各多少张?6、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?7、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?8、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?9、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?10、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?11、在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。

小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?12、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。

已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费。

问、共损坏了多少只暖瓶?13、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现在这三种小虫16只,共有110条腿和14对翅膀。

问,每种小鸟各几只?14、螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。

现在这三种动物37只,共有250条腿和52对翅膀。

每种动物各有多少只?15、小东妈妈从单位领回奖金400元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?16、小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。

五年级数学上册《鸡兔同笼》应用题附答案及解析

五年级数学上册《鸡兔同笼》应用题附答案及解析

五年级数学上册《鸡兔同笼》应用题答案附解析1、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分。

问:小华做对几道题?解:假设全做对:20×5=100(分)100-64=36(分)36÷(5+1)=6(道)……错题20-6=14(道)……对题2、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只。

问:鸡、兔各有几只?解:100-86=14(条)14÷2=7(只)……兔100-7×4=72(条)72÷(2+4)=12(组)……(1组里有1鸡1兔)兔:7+12=19(只)鸡:12只3、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?解:100-80÷2=60(只)60÷3=20(只)鸡:40+2×20=80(只)兔:20只五年级数学上册《鸡兔同笼》应用题答案附解析4、有鸡兔共20只,脚44只,鸡兔各几只?解:假设全是鸡:20×2=40(脚)44-40=4(脚)4÷(4-2)=2(只)……兔20-2=18(只)……鸡5、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?解:假设全做对:5×20=100(分)100-76=24(分)24÷(5+1)=4(道)……错题20-4=16(道)……对题6、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?解:假设全部在单打:12×2=24(人)34-24=10(人)10÷(4-2)=5(张)……双打12-5=7(张)……单打五年级数学上册《鸡兔同笼》应用题答案附解析7、自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米。

问:长9千米的路段有多少个?解:假设全是9千米的路段:9×20=180(千米)220-180=40(千米)40÷(14-9)=8(段)……14千米路段20-8=12(段)……9千米路段8、红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?解:135+5+7=147(人)147÷3=49(人)(2班)49-5=44(人)(1班)49-7=42(人)(3班)9、刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?解:假设全是小船:4×10=40(人)41-40=1(人)10-1=9(只)小船1只大船。

鸡兔同笼应用题及答案(最新版)

鸡兔同笼应用题及答案(最新版)

鸡兔同笼应用题及答案鸡兔同笼应用题及答案鸡兔同笼是小学数学课本中的经典应用题,是常见的题型,以下是常见的鸡兔同笼的题型及解答,为大家分析鸡兔同笼应用题及答案鸡兔同笼应用题及答案一、鸡兔同笼问题例题透析例题1:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是金鸡独立,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是 244 2=122=24 8 =3.红笔数=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的脚数 19与11之和是30.我们也可以设想16只中,8只是兔子,8只是鸡,根据这一设想,脚数是 8 =240. 比280少40. 40 =5. 就知道设想中的8只鸡应少5只,也就是鸡数是3.30 8比19 16或11 16要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,兔数为10,鸡数为6,就有脚数 19 10+11 6=256. 比280少24.24 =3,就知道设想6只鸡,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.二、鸡兔同笼问题练习题及答案1.鸡兔同笼,共有30个头,88只脚。

求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露。

数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

鸡兔同笼问题讲解及习题(含答案)

鸡兔同笼问题讲解及习题(含答案)

鸡兔同笼问题讲解及习题鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。

许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。

因此只要算出12里面有几个2,就可以求出兔的只数。

‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。

我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。

因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。

因此这类问题也叫置换问题。

例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。

问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。

如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。

现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。

小学数学专项《应用题》经典鸡兔同笼问题基本知识-3星题(含解析)

小学数学专项《应用题》经典鸡兔同笼问题基本知识-3星题(含解析)

应用题-经典应用题-鸡兔同笼问题基本知识-3星题课程目标知识提要鸡兔同笼问题基本知识•鸡兔同笼的由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔?•假设法解鸡兔同笼(1)假设全是兔子鸡数=(每只兔子脚数×鸡兔总数−实际脚数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−鸡数(2)假设全是鸡兔数=(实际脚数−每只鸡脚数×鸡兔总数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−兔数•分组法解鸡兔同笼腿数相同,2鸡1兔为一组;头数相同,1鸡1兔为一组。

精选例题鸡兔同笼问题基本知识1. 1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆.大豆2元1千克,豆腐3元1千克,豆油15元1千克.一批大豆进价920元,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.【答案】360【分析】共买920÷2=460(千克),6千克大豆可以制作18千克豆腐,18千克豆腐共54元,6千克大豆可以制作1千克豆油,1千克豆油15元,假设大豆都制成了豆腐,则买460÷6×54=4140(元)因为其中(4140−1800)÷(54−15)=60(份)制成了豆油,则制成豆油的有60×6=360(千克).2. 传说中的九头鸟每只有9个头,1条尾巴;而九尾鸟每只有9条尾巴,1个头.有一些九头鸟和九尾鸟在一起,数它们的头共有580个,数它们的尾共有900条.那么九头鸟和九尾鸟共有只.【答案】148【分析】将所有的九头鸟和九尾鸟的头数和尾巴数加起来,应该是它们总数的总和的10倍,所以九头鸟和九尾鸟共有(580+900)÷10=148(只).3. 张阿姨给幼儿园两个班的孩子分水果,大班每人分得5个橘子和2个苹果,小班每人分得3个橘子和2个苹果.张阿姨一共分出了135个橘子和70个苹果,那么小班有个孩子.【答案】20【分析】两班共有70÷2=35(人),假设每个孩子都分到5个橘子和2个苹果,则可以得到小班的人数为(35×5−135)÷(5−3)=20(人).4. 一次英语考试只有20道题,做对一题加5分,做错一题倒扣3分(不做算错).皮皮这次没考及格,不过他发现,只要他少错一题就能刚好及格.他做对了道题.【答案】14【分析】根据题意可知皮皮这次得了60−5−3=52(分),假设皮皮20道题全做对,应得20×5=100(分),少了100−52=48(分),因此皮皮错了48÷(5+3)=6(道),做对了20−6=14(道).5. 迷宫里的灯有两种:一种是上吊3个大灯,下缀6个小灯的九星连环灯;一种是上吊3个大灯,下缀15个小灯的十八星连环灯.已知大灯有408个,小灯有1437个,那么,九星连环灯有个,十八星连环灯有个.【答案】67;69【分析】根据题意两种类型的灯共有408÷3=136(盏),假设这136盏都是上吊3个大灯,下缀6个小灯的九星连环灯,共有小灯136×6=816(个),少了1437−816=621(个).因此十八星连环灯有621÷(15−6)=69(个),九星连环灯有136−69=67(个).6. 有一场球赛,售出50元、80元、100元的门票共800张,收入56000元.其中80元的门票和100元的门票售出的张数相同.请回答:售出50元的门票张;售出80元的门票张;售出100元的门票张.【答案】400;200;200【分析】假设这800张门票都是50元,应得收入800×50=40000(元),少了56000−40000=16000(元),因此80、100元门票各有16000÷(80+100−50−50)=200(张),50元门票800−200−200=400(张).7. 甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混合使用,已知两种农药共5千克,要兑水140千克,则其中甲种农药有千克.【答案】3【分析】假设这5千克都是乙种农药,应兑水40×5=200(千克),少了200−140=60(千克),因此甲种农药有60÷(40−20)=3(千克).8. 40只脚的蜈蚣与9个头的龙在同一个笼子中,共有50个头和220只脚,如果每只蜈蚣有1个头,那么每条龙有只脚.【答案】4【分析】蜈蚣有40只脚,总脚数为220,所以蜈蚣的头数不大于5;总头数为50,且龙的头数是9的倍数,所以蜈蚣只能有5只,龙有5条.则每条龙有(220−40×5)÷5=4(只)脚.9. 王伯伯养了一些鸡、兔和鹤.其中鹤白天双足站立,夜间则单足站立;鸡晚上睡觉时则把头藏起来.细心的悦悦发现:不论白天还是晚上,足数和头数的差都一样,那么,如果白天悦悦可以数出56条腿,晚上会数出个头.【答案】14【分析】白天比晚上多了一个鸡头,还多了一只鹤脚;由不论晚上还是白天,足数和头数的差都一样,所以,鹤的数量和鸡的数量是一样的.将鸡和鹤打一个包,则在白天这个包和兔子腿数一样为4,在晚上这个包和兔子头数一样为1;则可以得出晚上的头数为56÷4=14(个).10. 动物园里有鸵鸟和梅花鹿若干,共有腿122条.如果将鸵鸟与梅花鹿的数目互换,则应有腿106条,那么鸵鸟有只,梅花鹿有头.【答案】15;23【分析】将一个梅花鹿“变”成鸵鸟,腿减少2条;腿一共减少122−106=16条,所以一共有16÷2=8头梅花鹿“变”成鸵鸟,即,原先梅花鹿比鸵鸟多8头.补上这8只鸵鸟,鸵鸟的数量和梅花鹿一样多,但腿增加了2×8=16条腿,共有腿122+16=138条;一只鸵鸟加一头梅花鹿有6条腿,所以共有138÷6=23只鸵鸟加梅花鹿.所以梅花鹿有23头,鸵鸟有23−8=15只.11. 某班学生在运动会上,进入前三名的有10人次,已知获第一名可得9分,获第二名可得5分,获第三名可得2分,其他名次不记分,该班共计得64分,其中获第一名的至多有人次.【答案】5【分析】假设获得第一名的有10人次,那么共计应该得10×9=90(分),而实际上得了64分相差了90−64=26(分).每把一个第一名变成第二名会少得4分,每把一个第一名变成第三名会少得7分.要求获得第一名的要尽可能多,那么把第一名变成第三名的就要尽可能多,26=7×2+4×3,所以第二名有3人次,第三名有2人次,第一名有5人次.12. 围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋共14副,其中象棋有副.【答案】6【分析】假设全是围棋24×14=336(元),则象棋有(336−300)÷(24−18)=6(副).13. 一些奇异的动物在草坪上聚会.有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚).如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙的2倍,那么其中独脚兽有只.【答案】7【分析】2只四脚蛇和1只双头龙共有4个头和12只脚,相当于4只三脚猫.按照鸡兔同笼问题的解法有(58×3−160)÷(3−1)=7(只).所以共有7只独脚兽.14. 甲乙二人相距30米面对面站好.两人玩“石头剪刀布”.胜者向前走8米,负者向后退5米.平局两人各向前走1米.玩了10局后,两人相距7米.那么两人平了局.【答案】7【分析】因为每赛完一局,胜者向前走8米,负者向后退5米.而平局两人各向前走1米.相当于,如果分出胜负两人的距离减少3米,平局两人的距离减少2米.玩了10局后,两人的距离减少了30−7=23(米).所以利用假设法可以求得两人平了(3×10−23)÷(3−2)=7(局).15. 2008年春,我国南方遭受到重大雪灾,实验小学三年级一班的42名同学给南方的灾区捐款450元,其中有12名同学每人捐5元,其他同学捐10元或20元,则捐10元的有名,捐20元的有名.【答案】21;9【分析】由题意,42−12=30(名)同学捐10元或20元,一共捐了450−12×5=390(元),假设30名同学全部捐10元,少了390−300=90(元),那么捐20元的同学有:90÷(20−10)=9(人),捐10元的有:30−9=21(人).16. 张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中发.【答案】8【分析】张明得分(208+64)÷2=136(分),假设张明10发全中,应得20×10=200(分),多了200−136=64(分),因此张明脱靶64÷(20+12)=2(发),射中8发.17. 在一次去动物园时,丁丁看到了许多鸟和四足兽共36只,数一数它们共有100只脚,那么丁丁见到了只鸟和只四足兽.【答案】22;14【分析】假设36只都是四足兽,因此共有36×4=144(只)脚,比现在多了144−100= 44(只)脚,原因是没有鸟,用一只鸟换一只四足兽,会少两只脚,因此需要换44÷(4−2)= 22(只)鸟,因此丁丁看到了22只鸟,36−22=14(只)四足兽.18. 一个奥特曼与一群小怪兽战斗.已知奥特曼有一个头、两条腿,开始时每只小怪兽有两个头、五条腿.在战斗过程中有一部分小怪兽分身了,一只小怪兽分成了两只,分身后的每只小怪兽有一个头、六条腿(不能再次分身),某个时刻战场上一共有21个头,73条腿,那么这时共有只小怪兽.【答案】13【分析】可知小怪兽共有20个头和71条腿.1个头、6条腿的小怪兽肯定为偶数,把它们两个一对捆在一起,则每组有2个头和12条腿.用假设法易得2个头、12条腿的小怪兽有(71−10×5)÷(12−5)=3(组),2个头5条腿的小怪兽有10−3=7(只),共2×3+7= 13(只).19. 甲乙二人相距30米面对面站好.两人玩“石头、剪子、布”.胜者向前走3米,负者向后退2米.平局两人各向前走1米.玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.【答案】7【分析】有胜有负的局,两人距离缩短1米;平局两人距离缩短2米.15局后两人之间的距离缩短15~30米.(1)如果两人最后的效果都是后退,两人之间的距离会变大,与上述结论矛盾.(2)如果两人最后的效果是“一人前进,另一人后退”,如果乙前进,甲后退,两人距离增大,这与(1)矛盾.则一定是甲前进,乙后退,两人距离会缩短15米.但如果两人距离缩短15米,只能是15局都是“胜负局”.假设甲15局都是胜者,他会前进45米,每把一次“胜者”换成一次“负者”,他会少前进5米.45减去多少个5都不可能等于17,这种情况不成立.(3)如果两人最后的效果是都向前进,两人的距离缩短19米.假设15局都是“胜负局”,两人之间距离缩短15米,每把一局“胜负局”换成平局,两人之间距离多缩短1米.由“鸡兔同笼”法求出,“胜负局”共11局,平局4局.4局平局中甲前进了4米.假设甲其余11局都是胜者,他一共前进33+4=37(米).每把一局胜局改为败局,他会退5米,要想前进17米,则改(37−17)÷5=4(局).验算:甲7胜4平4败,前进21+4−8=17(米);乙4胜7败4平,前进12+4−14=2(米).20. 2角和5角硬币共30枚,总钱数是102角,2角硬币有枚,5角硬币有枚.【答案】16;14【分析】假设全是5角硬币,那么应有5×30=150(角),实际有102(角),那么2角硬币有(150−102)÷(5−2)=16(枚),5角硬币有30−16=14(枚).21. 一张试卷共有21道题,答对一道得8分,答错一道扣6分.小明答完了所有的题目,却得了零分,他答对道题.【答案】9【分析】若全部答对,则小明应得21×8=168(分).在这168分中,小明若用1道答对题目换1道答错题目,则损失了8分(应得的)+6分(扣掉的)=14分,而此时小明得了0分,说明小明的168分全部损失掉了,即错了168÷14=12(道),则答对的题数为21−12=9(道).22. 鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有只.【答案】33【分析】(1)加2只兔子后,等于加了8只兔脚,那么兔脚的数目是鸡脚的数目的10倍,每只兔脚是每只鸡脚的2倍,所以兔的只数是鸡的只数的5倍.(2)转化成和倍问题:共42只,兔是鸡的5倍.兔:40−42÷(5+1)=33(只).23. 小兔与蜘蛛共 50 名学员参加踢踏舞训练营,一段时间后,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔 只.(注:蜘蛛有 8 只脚)【答案】 40【分析】 一只蜘蛛的脚数是一只小兔脚数的 2 倍,而原来所有小兔一半的脚数等于原来所有蜘蛛 1 倍的脚数,所以原来小兔只数是原来蜘蛛只数的 4 倍,所以原有小兔 50÷(4+1)×4=40 只.24. 某班共 36 人买了铅笔,共买了 50 支,有人买了 1 支,有人买了 2 支,有人买了 3 支.如果买 1 支的人数是其余人数的 2 倍,则买 2 支铅笔的人数是 .【答案】 10【分析】 设买 1 支铅笔的人数为 x ,其余人数则为 x 2,则有 x =72÷3=24,买 2 支和 3 支铅笔的总人数为 36−24=12(人),他们共买铅笔数为 50−24=26(支).为求出买 2 支铅笔的学生数,假设买 2 支、3 支的学生每人都买 3 支,则可求出买 2 支的学生数是:(12×3−26)÷(3−2)=10(人).说明:也可以设买 2 支和 3 支铅笔的人数分别为 y 和 z ,则可列出方程:{y +z =122y +3z =26即可得出 y =12×3−26=10.25. 东湖路小学三年级举行数学竞赛,共 20 道试题.做对一题得 5 分,没有做一题或做错一题都要倒扣 3 分.刘钢得了 68 分,问他做对了几道题?【答案】 16 道【分析】 这道题也类似于“鸡兔同笼”问题.假设刘钢 20 道题全对,可得分5×20=100(分),但他实际上只得 68 分,少了100−68=32(分),因此他没做或做错了一些题.由于做对一道题得 5 分,没做或做错一道题倒 3 分,所以没做或做错一道题比做对一道题要少5+3=8(分).32 分中含有多少个 8,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为32÷8=4(道)做对题为20−4=16(道).26. 一辆卡车运粮食,每次能运10吨.晴天时每天能运8次,雨天时每天只能运3次.这辆卡车10天共运了650吨粮食.在这10天中,晴天和雨天各有多少天?【答案】晴天有7天;雨天有3天.【分析】10天内共运了650÷10=65次.假设全是雨天,可得晴天有(65−3×10)÷(8−3)=7天,那么雨天有10−7=3天.27. 男生手里拿2个红气球、5个蓝气球,女生手里拿3个红气球、4个蓝气球,一共有100个红气球和166个蓝气球.请问:男生多少人?女生多少人?【答案】女生有24人;男生有14人.【分析】男生和女生手里的气球加在一起全是7个,且共有气球100+166=266个,则共有266÷7=38人,假设38人全是男生,则有38×2=76个红气球,比较:100−76=24个红气球,将一个男生的气球变成一个女生的气球会多1个,调整:24÷(3−2)=24次,每次调整出现1个女生,那么有24个女生,有38−24=14个男生.28. 香蕉、苹果和梨三种水果共21千克,其中苹果是梨的2倍.如果香蕉每千克3元,苹果每千克6元,梨每千克9元,这些水果共花了123元.那么苹果有多少千克?【答案】10千克.【分析】2千克苹果和1千克梨为一组,平均每千克(2×6+9)÷3=7元.假设全是3元的香蕉,则7元的水果有(123−3×21)÷(7−3)=15千克,梨有15÷(2+1)=5千克,苹果有10千克.29. 鸡兔同笼,兔比鸡多10只,兔子和鸡的腿数总和为100.请问:鸡和兔子各有几只?【答案】鸡有10只;兔有20只.【分析】1只鸡和1只兔子分一组,还剩下10只兔,多的兔子可先扔掉,这时组内的腿和是100−10×4=60条,每组内的腿数和是6条,那么共有60÷6=10组,鸡有10只,兔子有10+10=20只.30. 李明与王刚两人的年龄和是23岁。

鸡兔同笼应用题

鸡兔同笼应用题

鸡兔同笼应用题1、大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?2、笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?4、一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?5、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?6、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。

其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张?7、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。

各种票售出多少张?8、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。

犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。

三种动物分别有多少只?答案:1、大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?假设全是小汽车(8÷2)×5=20小时,7+20=27小时……小汽车一共运的时间,216÷27=8(吨)……小汽车每小时运的量;8×5÷2=20吨……大汽车每小时运的量。

2、笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?假设全是兔:4×27=108只,兔脚比鸡脚多108-0=108只,可实际兔脚比鸡脚只多了18只,那其中的108-18=90只脚是怎么回事?现在我们把一只兔子的脚换回鸡的脚,要相差6只脚,90÷6=15只鸡,那么兔子就是27-15=12只3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?假如全部装甲笼,那么6×36=216只,现在只有182只,多余的34只,是因为本来应该是乙种笼子装的我们却都按甲种算,换回去。

中学教育 - 鸡兔同笼应用题100道应用题(鸡兔同笼)

中学教育 - 鸡兔同笼应用题100道应用题(鸡兔同笼)
Q/BW • G0802-04
4.3 考评、考核实施细则 4.3.1 员工奖励条件:凡有下列情形之一 的,由部门负
10
责人或考核小组上报人力资源部酌情签报,公司主管领导 审批报总经理批准后予以奖励。
短文改错2014新题赏析本讲目标命题方向少词多词错动词1时态2非谓语3人称4语态名词可数名词单复数不可数名词数量词名词所有格代词上下文人称一致单复数主宾格形容性物主代词名词性物主代词反身代词不定代词形容词副词形容词副词的转换比
鸡兔同笼应用题 100 道应 用题(鸡兔同笼)
姓名: 成绩: 1 、鸡兔同笼,共 17 个头, 42 条腿。问: 鸡有几只,兔有几只? 2 、小明的储蓄罐里有 1 角和 5 角 的硬币共 27 枚,价值 1.5 元。问: 一角的硬币有几枚, 5 角的硬币有几枚? 3 、用大小卡车往城市运送 29 吨蔬菜, 大卡车每辆每次运 5 吨,,小卡车每辆每..
6
打分并作出评估,并将考核结果千每月 27 日交人力资源部 存档和作为计算绩效工资的依据。
4.1.3 部门负责人每月 27 日向考核小组交个人工作总结 和部门工作总结(两项总结可以合写,也可以分开写),作 为对部门负责人和部门工作的考核依据。
4.1.4 公司考核小组根据部门负责人个人工作总结和部
门工作总结、工作表 Q/BW • G0802-04
9
4.2.4.3.3 年度综合考核经考评为 90 分以上且无月度考 核不合格记录的员工或部门负责人, 90~95 分的,上调一 级, 95 分以上的,上调 2 级。 76,...,89 分的不调整薪级。
4.2.4.4 按考核、考评分值调整薪等。 4.2.4.4.1 连续 2 年考核经考评 95 分以上的上调 1 个薪 等。 4.2.4.4.2 年度考核经考评 100 分以上的上调 1 个薪等。 4.2.4.4.3 连续 2 年考核经考评低千 80 分的下调 1 个薪 等。 4.2.5 无特殊原因,不能在规定时间内上交考核、考评 结果的,视为考核者工作失误,按每延误一天,减发考核 负责人 10 % 的绩效工资,直至减完为止。 4.2.6 考核负责人应采取公正、公开、公平的态度对被 考核部门和员工进行考核和准确的考评,若在考核、考评 的过程中发现弄虚作假、蓄意打击报复等恶性行为,一经 查处,减发考核负责人 20 % 的当月绩效工资,并提出书面 警告一次;若一年内考核者出现三次考核、考评失误,导 致人力资源部裁决的,视同失职处理,对考核负责人将考 虑降级、降等或转岗直至解除聘用或解除劳动合同的处理。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

五年级鸡兔同笼应用题

五年级鸡兔同笼应用题

五年级鸡兔同笼应用题问题描述:有一个古老的数学问题叫做“鸡兔同笼”。

故事是这样的:一个农民养了一些鸡和兔子在一个笼子里。

从上面看,只看到了一共有35个头,从下面看,只看到了共有94只脚。

那么,这个笼子里有多少只鸡和多少只兔子呢?分析:首先,我们知道鸡有1个头和2只脚,而兔子有1个头和4只脚。

我们可以使用方程来表示这个问题:假设鸡的数量为x 只,兔子的数量为y 只。

根据题目信息,我们可以建立以下方程:1. 鸡和兔子的头的总数是x + y = 35(因为鸡和兔子都有1个头)。

2. 鸡和兔子的脚的总数是2x + 4y = 94(因为鸡有2只脚,兔子有4只脚)。

现在我们要来解这个方程组,找出x 和y 的值。

解答:通过解方程组,我们得到:x = 23, y = 12。

这意味着笼子里有23只鸡和12只兔子。

拓展:鸡兔同笼问题还可以进行拓展,例如考虑笼子里有其他动物,如猪、狗等,或者改变头的总数和脚的总数,求解方程组得到不同动物的数量。

这可以帮助我们更好地培养解决问题的能力,锻炼逻辑思维。

变式:1.如果有30个头,120只脚,笼子里有多少只鸡和多少只兔子?2. 如果鸡和兔子的数量之比为2:3,笼子里有多少只鸡和多少只兔子?3. 如果笼子里有25个头,100只脚,其中有多少只鸡和多少只兔子?通过解决这些问题,我们可以更深入地理解鸡兔同笼问题,并提高自己的数学技能。

同时,这些问题也可以作为有趣的挑战,激发我们对数学的兴趣和热爱。

结论:鸡兔同笼问题是一个具有历史悠久的数学问题,通过运用方程组求解方法,我们可以轻松地解决这个问题。

在实际生活和学术领域中,这个问题都有着广泛的应用和拓展空间。

解决这类问题可以培养我们的逻辑思维和解决问题的能力,为我们今后的学习和生活打下坚实的基础。

小学“鸡兔同笼”应用题解法汇总(附类似题型分析)

小学“鸡兔同笼”应用题解法汇总(附类似题型分析)

小学“鸡兔同笼”应用题解法汇总(附类似题型分析)
“鸡兔同笼问题”是我国古算书《孙子算经》中著名的数学问题,也是小升初考试中的高频考点。

其实,还有许多小学算术应用题都可以转化为“鸡兔同笼问题”来加以计算。

所以,如果能熟练掌握“鸡兔同笼问题”的解法,小升初考试的很多应用题都可以迎刃而解了。

“鸡兔同笼问题”的4种解法
'鸡兔同笼问题'类似题
2018数学1~3年级期末预测试卷!有人嫌难,有人说简单,拿去做做
小升初语文必备:小学生语文写作的10个技巧,值得收藏
一年级数学下册:《找规律》测试卷3套,帮孩子全面熟悉考试题型
小学语文150个成语解释附例句,熟记考试不再丢分作文素材免费送
小学1—6年级数学知识要点和计算公式单位换算公式汇总
小学数学几何易错点:几何题型的几种解法总结
小学易错字按顺序排列汇总(一)——帮助孩子快速查找记忆
这位妈妈是天才!106个多音字一句话总结,孩子背熟了,6年不出错
无锡奥数培训班|小学1-6年级数学
小学数学应用题专题精讲
小学行程问题不会求怎么办?这4种方法你...
小学数学解题方法
小学常见应用题——植树问题汇总(附经典...
帮孩子轻松解数学难题:幽默搞笑“鸡兔同...
一题多解工程类应用题,小学还没学会方程... 5种方法解小学工程类应用题,会灵活解题...
人手一份:小学应用题解法“秘诀”,孩子... 精选文章
•春节仪式感飞入寻常百姓家
•我的原创之梦永不停止
•小学生顺口溜大全
•孩子在小学里最重要的5件事
•手抄报集锦
•手指速算,手脑心算秘诀
•小学数学顺口溜
•150条小学生谜语大全及答案。

鸡兔同笼应用题

鸡兔同笼应用题

10.在一个停车场,停放的车辆(汽车和三轮摩托车)数恰好 在一个停车场,停放的车辆(汽车和三轮摩托车) 在一个停车场 是24,其中每辆汽车有4个轮子,每辆摩托车有3个轮子。这 ,其中每辆汽车有 个轮子,每辆摩托车有 个轮子。 个轮子 个轮子 些车共有86个轮子 那么,三轮摩托车有多少辆? 个轮子。 些车共有 个轮子。那么,三轮摩托车有多少辆? 11.某工厂共有 位师傅带徒弟 名,每一位师傅可以带一 某工厂共有27位师傅带徒弟 某工厂共有 位师傅带徒弟40名 位徒弟,两名徒弟或三名徒弟。 位徒弟,两名徒弟或三名徒弟。如果带一名徒弟的师傅人数 是其他师傅人数的两倍,请问带两名徒弟的师傅有多少人? 是其他师傅人数的两倍,请问带两名徒弟的师傅有多少人? 12.某学校现有 间宿舍,住着 个学生,宿舍的大小有三 某学校现有12间宿舍 住着80个学生 个学生, 某学校现有 间宿舍, 大号房间住8个学生 中号房间住7个学生 个学生, 个学生, 种:大号房间住 个学生,中号房间住 个学生,小号房间住 5个学生。其中中号房间的宿舍最多,问中间号的房间宿舍 个学生。 个学生 其中中号房间的宿舍最多, 有几间? 有几间? 13.今有鸡兔共 只,脚共有 只,求鸡兔各有多少只? 今有鸡兔共35只 脚共有94只 求鸡兔各有多少只? 今有鸡兔共
24.甲乙两人射击。若命中,甲得4分,乙得 分,若不中甲失 甲乙两人射击。若命中,甲得 分 乙得5分 甲乙两人射击 2分乙失 分,每人各射10发,共命中14发,结算分数时,甲 分乙失3分 每人各射 发 共命中 发 结算分数时, 分乙失 不乙多10分 问甲乙各中几发? 不乙多 分,问甲乙各中几发? 25.佼佼和天天两位同学进行数学比赛,算对一题给20分,错 佼佼和天天两位同学进行数学比赛,算对一题给 分 佼佼和天天两位同学进行数学比赛 一题扣12分 他们各算对了10题 共得208分,佼佼比天天 一题扣 分,他们各算对了 题,共得 分 多64分,问他们各算对了几题? 分 问他们各算对了几题? 26.某考试已经举行 次,共426道题,每次出的题数有 道, 某考试已经举行24次 道题, 某考试已经举行 道题 每次出的题数有25道 或者16道 或者20道 那么,其中考25题的有多少次 题的有多少次? 或者 道,或者 道,那么,其中考 题的有多少次? 27.有首民谣“一队猎手一队狗,二对并着一起走,数头一共 有首民谣“一队猎手一队狗,二对并着一起走, 有首民谣 三百六,数腿一共三百九。 有多少个猎手和多少狗? 三百六,数腿一共三百九。”有多少个猎手和多少狗? 28.用一元钱买 分,8分,一角的邮票共 张,最多可以买 用一元钱买4分 用一元钱买 分 一角的邮票共15张 最多可以买1 角的邮票多少张? 角的邮票多少张?

(全2)五年级数学上册鸡兔同笼及相遇应用题

(全2)五年级数学上册鸡兔同笼及相遇应用题

鸡兔同笼应用题1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?2、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?3、小华买了2元和5元纪念邮票一共34张,用去98元钱。

求小华买了2元和5元的纪念邮票各多少张?4、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?5、在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。

小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?6.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连8天共采了112个松籽,这八天有几天晴天几天雨天?7.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。

其中男生平均得60分,女生平均得70分。

求参加竞赛的男女各有多少人?8.一队强盗一队狗,二队拼作一队走,数头一共三百六,数腿一共八百九,问有多少强盗多少狗?相遇问题练习题1. 小华和小明分别从自己家出发,向对方的家走去,小华每分钟走50米,小明每分钟走60米,经过5分钟两人相遇。

〔1〕小华5分钟走了〔〕米;小明5分钟走了〔〕米;两人5分钟走了〔〕米。

〔2〕小华和小明每分钟共走了〔〕米;小华和小明各走了〔〕分钟;小华和小明家相距〔〕米。

2、从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?3、两辆汽车同时从甲乙两地同时出发相向而行,一辆每小时行65千米,另一辆每小时行70千米。

3小时后两车仍相距55千米,甲乙两地相距多少千米?4、两辆汽车同时从一个地方向相反的方向开出。

甲车每小时行70千米,乙车每小时行78千米,3.5小时后两车相距多少千米?5、大货车和小客车同时从两地相向而行,大货车每小时行驶80千米,小客车每小时行驶90千米,两车在距中点20千米处相遇,两地相距多少千米?6、甲乙两个工程队合修一条隧道,各从隧道的一端开始施工,甲队每天开凿25米,乙队每天开凿20米,经过56天隧道凿通,这条隧道长多少米?7、甲乙两辆汽车同时从A、B两个车站出发相向而行,经过5小时在途中相遇,甲车每小时行85千米,乙车每小时行80千米,乙车在途中曾停车1.5小时,A、B两站相距多少千米?8、小虎和小明同时从两地相向而行,小虎每分钟走35米,小明每分钟走42米,两人在距中点14米处相遇,你知道两地相距多远吗?9、甲乙两个打字员合打一份稿件共13125字,甲每小时打850字,乙每小时比甲多打50字,几小时打完?10、王明从甲村去乙村,每小时行3.6千米,他出发2小时后,李立从乙村出发去甲村,每小时行3.8千米,又经过3.5小时二人相遇,甲乙两村相距多少千米?11、AB两地相距28千米,甲乙两辆汽车同时分别从AB两地同一方向出发,甲车每小时行80千米,乙车每小时行87千米,甲车在前,乙车在后,几小时后乙车追上甲车?分数加减应用题1、一本童话书共200多页,小明第一天读了全书的1/6,第二天比第一天多读了全书的1/10,第三天读的和前两天的一样多,这三天共读了全书的几分之几?2、学校食堂运进大米0.75吨,运进的黄豆比大米少1/4吨,运进面粉7/8吨,共运进多少吨?3、一个花坛有三种花,月季花和菊花的面积占花坛面积的3/5,玫瑰花和月季花的面积占1/2.月季花占花坛面积的几分之几?4、某工程队上旬完成全月方案的1/4,中旬完成全月方案的1/3,下旬完成全月方案的3/5,实际全月超额完成几分之几?5李明喝了一杯牛奶的1/6,然后加满水,又喝了这杯的1/3,再加满水,最后,把整杯都喝了,李明喝的水多还是牛奶多?。

(完整)鸡兔同笼应用题100道

(完整)鸡兔同笼应用题100道

鸡兔同笼应用题100道1.鸡兔同笼,共有30个头,88只脚.求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露。

数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连8天共采了112个松籽,这八天有几天晴天几天雨天?11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。

其中男生平均得60分,女生平均得70分。

求参加竞赛的男女各有多少人?12.一次数学竞赛共有20道题。

做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?13.一次数学竞赛共有20道题。

做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?14.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。

求大船和小船各几只?15.在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。

求小轿车和摩托车各有多少辆?16.解放军进行野营拉练。

晴天每天走 35千米,雨天每天走 28千米,11天一共走了 350千米。

求这期间晴天共有多少天?17.100个和尚吃了100个面包,大和尚1人吃3个,小和尚3人吃1个。

五年级小数乘法鸡兔同笼问题

五年级小数乘法鸡兔同笼问题

五年级小数乘法鸡兔同笼问题
鸡兔同笼问题是一个经典的数学问题,现在我们将其与五年级的小数乘法结合。

题目是这样的:一个笼子里有一些鸡和兔子。

我们知道鸡有2只脚,兔子有4只脚。

现在给定笼子里总共有12只脚和30只头,我们要找出鸡和兔子各有多少只。

假设鸡有 x 只,兔子有 y 只。

根据题目,我们可以建立以下方程:
1. 鸡有2只脚,所以鸡的脚总数是 2x。

2. 兔子有4只脚,所以兔子的脚总数是 4y。

3. 笼子里总共有12只脚,所以 2x + 4y = 12。

4. 笼子里总共有30只头,所以 x + y = 30。

现在我们要来解这个方程组,找出 x 和 y 的值。

计算结果为: [{x: 18, y: 12}]
所以,笼子里有 18 只鸡和 12 只兔子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼应用题
1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?
2、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?
3、小华买了2元和5元纪念邮票一共34张,用去98元钱。

求小华买了2元和5元的纪念邮票各多少张?
4、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?
5、在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。

小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?
6.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连8天共采了112个松籽,这八天有几天晴天几天雨天?
7.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。

其中男生平均得60分,女生平均得70分。

求参加竞赛的男女各有多少人?
8.一队强盗一队狗,二队拼作一队走,数头一共三百六,数腿一共八百九,问有多少强盗多少狗?
相遇问题练习题
1. 小华和小明分别从自己家出发,向对方的家走去,小华每分钟走50米,小明每分钟走60米,经过5分钟两人相遇。

(1)小华5分钟走了()米;小明5分钟走了()米;两人5分钟走了()米。

(2)小华和小明每分钟共走了()米;小华和小明各走了()分钟;小华和小明家相距()米。

2、从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
3、两辆汽车同时从甲乙两地同时出发相向而行,一辆每小时行65千米,另一辆每小时行70千米。

3小时后两车仍相距55千米,甲乙两地相距多少千米?
4、两辆汽车同时从一个地方向相反的方向开出。

甲车每小时行70千米,乙车每小时行78千米,3.5小时后两车相距多少千米?
5、大货车和小客车同时从两地相向而行,大货车每小时行驶80千米,小客车每小时行驶90千米,两车在距中点20千米处相遇,两地相距多少千米?
6、甲乙两个工程队合修一条隧道,各从隧道的一端开始施工,甲队每天开凿25米,乙队每天开凿20米,经过56天隧道凿通,这条隧道长多少米?
7、甲乙两辆汽车同时从A、B两个车站出发相向而行,经过5小时在途中相遇,甲车每小时行85千米,乙车每小时行80千米,乙车在途中曾停车1.5小时,A、B两站相距多少千米?
8、小虎和小明同时从两地相向而行,小虎每分钟走35米,小明每分钟走42米,两人在距中点14米处相遇,你知道两地相距多远吗?
9、甲乙两个打字员合打一份稿件共13125字,甲每小时打850字,乙每小时比甲多打50字,几小时打完?
10、王明从甲村去乙村,每小时行3.6千米,他出发2小时后,李立从乙村出发去甲村,每小时行3.8千米,又经过3.5小时二人相遇,甲乙两村相距多少千米?
11、AB两地相距28千米,甲乙两辆汽车同时分别从AB两地同一方向出发,甲车每小时行80千米,乙车每小时行87千米,甲车在前,乙车在后,几小时后乙车追上甲车?
分数加减应用题
1、一本童话书共200多页,小明第一天读了全书的1/6,第二天比第一天多读了全书的1/10,第三天读的和前两天的一样多,这三天共读了全书的几分之几?
2、学校食堂运进大米0.75吨,运进的黄豆比大米少1/4吨,运进面粉7/8吨,共运进多少吨?
3、一个花坛有三种花,月季花和菊花的面积占花坛面积的3/5,玫瑰花和月季花的面积占1/2.月季花占花坛面积的几分之几?
4、某工程队上旬完成全月计划的1/4,中旬完成全月计划的1/3,下旬完成全月计划的3/5,实际全月超额完成几分之几?
5李明喝了一杯牛奶的1/6,然后加满水,又喝了这杯的1/3,再加满水,最后,把整杯都喝了,李明喝的水多还是牛奶多?。

相关文档
最新文档