随机过程习题及复习资料
随机过程复习资料.doc
丄20 25 1. 设{2V(r)J>0}是一更新过程,已知P {X. =1} = 1/3, P {X i =2} = 2/3,则 P {N(3) = 2}=§ 2.若Markov 链只存在一个类,则称它是不可约的,若状态同属一类,则d ① 与d(j)的大小关系d ⑴=d(j) (<,>,=)丄 423.设Markov 链的状态空间S = (1,2,3),转移矩阵P=-4..设{B(f),宀 0}是标准 Brown 运动,则 P(B(2)<0) = |.题目:X(/) = sin",U ~U[0,2刃.试判断X(/)为宽平稳还是严平稳过程.解:EX (t) = E(sin Ut) - ~ sin utdu = 01 ® 1= E(sinUtsinUs) = 一 I ——[cos+ 51) - cos u(t - s)]du2龙力 21 —,t = s =<2 0,心s故{X(t)}为宽平稳过程。
又sinU 与sin2U 的分布函数不同,故{X (t)}不是严平稳的 题目:MaMov 链的状态空间S = {1,2,3,4},—步转移概率矩阵‘%0 o '1 0 0 0 0 % % 0%0 丿试对其状态进行分类,确定哪些是常返态,并确定其周期解:1.由转移概率矩阵知:10 2,并且有3 ^2,2^3; 4 T 2,2/4; 4宀3,3“4;故状态空间可以分为:S = {1,2}U ⑶U{4}.2.由转移概率矩阵知:几〉0(心1,2),所以状态1和2都是非周期的,又10 2故状态2也是非周期的.从状态4出发不可能返回到状态4,即集合{zz:z/>l,/^>0}为空集,故状态4的周期无穷大./11=z/H ,,=/H n +/r+/1<13,+-+/r+-n=l=i + 1 +0+---+0+•••2 2=1所以状态1为常返态,又1^-2,故2是常返态. ......... 4分+8f— f(")= f ⑴ + f ⑵f ⑶+ …丿33 厶丿33 丿33 丁丿33 丁丿33 丁n-12=—+ 0 + 0 +•••3 厶13所以状态3为非常返态.+00f— N' f(")—f ⑴ + f ⑵+ …J 44 丿44 J 44 ' J 44 ~n=l= 0 + 0 —=0<1故状态3也是非常返态.题目:将两个红球4个白球分别放入甲乙两个盒子中.每次从两个盒子中各取一球交换,以X(“)记第n次交换后甲盒中的红球数.1.说明{X(n),n> 0}是一Markov链并求转移矩阵P ;2.试证(X(n), n = 0,1,2, •••}是遍历的;3.求它的极限分布.解:1.设X(“)为"次交换后甲盒中的红球数,则易见{X(“)}是马尔可夫链,状态空间为S ={0,1,2};n 1 02 2转移矩阵为p = 3 4 18 8 80 1 0丿2.山于5 = {0,1,2}有限,且S中状态互通,即不可约的,故{X(")}是正常返的,又状态1为非周期的,故1是遍历的,所以{X®)}是遍历链.题目:> 0}为标准Brow”运动,验证{X(/) = (1 -^―)}, 0 V / V1}是Brow”桥.1-t解:因为E[X(t)] = (l-t)E B(—) -01 — t皿⑴]n咕)")吩所以{X(/)}是Gauss过程,均值为零,协方差为5(1-0 ,即为Brown。
随机过程习题答案及知识点
协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。
2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。
N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。
(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。
随机过程例题和知识点总结
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。
下面我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。
二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。
例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。
例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。
求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。
解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。
10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。
P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。
2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。
例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。
解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。
(完整)随机过程复习试题及答案,推荐文档
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
证明:当12n 0t t t t <<<<<L 时,1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x ,X(t )-X(0)=x )≤L =n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n P(X(t)x X(t )=x )≤3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p pl l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
证明:{}(n)ij k IP P X(n)=j X(0)=i P X(n)=j,X(l)=k X(0)=i ∈⎧⎫==⎨⎬⎩⎭U ={}k I P X(n)=j,X(l)=k X(0)=i ∈∑ ={}{}k IP X(l)=k X(0)=i P X(n)=j X(l)=k,X(0)=i ∈∑g =(l)(n-l)ik kjPP ∑,其意义为n 步转移概率可以用较低步数的转移概率来表示。
4.设{}N(t),t 0≥是强度为λ的泊松过程,{}k Y ,k=1,2,L 是一列独立同分布随机变量,且与{}N(t),t 0≥独立,令N(t)k k=1X(t)=Y ,t 0≥∑,证明:若21E(Y <)∞,则[]{}1E X(t)tE Y λ=。
应用随机过程期末复习题
1、设在底层乘电梯的人数服从均值5λ=的泊松分布,又设此楼共有N+1层。
每一个乘客在每一层楼要求停下来离开是等可能的,而且与其余乘客是否在这层停下是相互独立的。
求在所有乘客都走出电梯之前,该电梯停止次数的期望值。
2、设齐次马氏链{(),0,1,2,}X n n = 的状态空间{1,2,3}E =,状态转移矩阵1102211124412033P=(1)画出状态转移图;(2)讨论其遍历性;(3)求平稳分布;(4)计算下列概率: i ){(4)3|(1)1,(2)1};P X X X === ii ){(2)1,(3)2|(1)1}P X X X ===.3、设顾客以泊松分布抵达银行,其到达率为λ,若已知在第一小时内有两个顾客抵达银行,问:(1)此两个顾客均在最初20分钟内抵达银行的概率是多少? (2)至少有一个顾客在最初20分钟抵达银行的概率又是多少?4、设2()X t At Bt C ++,其中A , B , C 是相互独立的标准正态随机变量,讨论随机过程{(),}X t t −∞<<+∞的均方连续、均方可积和均方可导性.5、设有实随机过程{(),}X t t −∞<<+∞,加上到一短时间的时间平均器上作它的输入,如下图所示,它的输出为1(),()()d tt TY t Y t X u u T −=∫,其中t 为输出信号的观测时刻,T 为平均器采用的积分时间间隔。
若()cos X t A t =,A 是(0, 1)内均匀分布的随机变量。
(1)求输入过程的均值和相关函数,问输入过程是否平稳? (2)证明输出过程()Y t 的表示式为sin 2()cos()22T T Y t A t T=⋅−.(3)证明输出的均值为sin 12[()]cos()222T T E Y t t T =−,输出相关函数为12(,)R t t = 2sin 1232T T12cos()cos()22T Tt t −−,问输出是否为平稳过程?6、甲、乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为R ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分。
随机过程试题及答案
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
最新-期末随机过程试题及答案资料
《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程复习题二及其答案
随机过程复习题二及其答案一、选择题1. 随机过程的定义是什么?A. 一系列随机变量的集合B. 一系列确定变量的集合C. 一个随机变量D. 一个确定变量2. 什么是马尔可夫链?A. 一个具有时间序列的随机过程B. 一个具有空间序列的随机过程C. 一个具有独立同分布的随机过程D. 一个具有时间依赖性的随机过程3. 随机过程的期望值定义为:A. \( E[X(t)] \)B. \( E[X] \)C. \( \int_{-\infty}^{\infty} x f(x,t) \, dx \)D. \( \sum_{i=1}^{\infty} x_i p_i \)4. 以下哪个不是随机过程的属性?A. 期望B. 方差C. 协方差D. 导数5. 什么是平稳随机过程?A. 随机过程的期望随时间变化B. 随机过程的方差随时间变化C. 随机过程的统计特性不随时间变化D. 随机过程的协方差随时间变化答案:1. A2. A3. A4. D5. C二、简答题1. 解释什么是遍历定理,并给出其在随机过程分析中的应用。
2. 描述什么是泊松过程,并解释其主要特点。
3. 简述什么是布朗运动,并解释其在金融领域中的应用。
三、计算题1. 给定一个随机过程 \( X(t) \),其期望 \( E[X(t)] = t \),方差 \( Var[X(t)] = t^2 \),计算 \( E[X^2(t)] \)。
2. 假设一个马尔可夫链 \( \{X_n\} \) 有状态空间 \( S = \{1, 2, 3\} \),转移概率矩阵 \( P \) 为:\[P = \begin{bmatrix}0.1 & 0.8 & 0.1 \\0.5 & 0.3 & 0.2 \\0.2 & 0.6 & 0.2\end{bmatrix}\]计算状态 1 在第 3 步的概率。
四、论述题1. 论述随机过程在信号处理中的应用,并举例说明。
随机过程复习题(含答案)
随机过程复习题一、填空题:1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有______}|{|lim =<-∞>-εa X P n n ,则称}{n X 依概率收敛于a 。
2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则1592}6)5(,4)3(,2)1({-⨯⨯====e X X X P ,618}4)3(|6)5({-===e X X P1532623292!23!2)23(!23}2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({}6)5(,4)3(,2)1({----⨯⨯=⨯⨯⨯==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P66218!26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(412141,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=43410313131043411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=4831481348436133616367164167165)1()2(2P P 167)2(12=P161314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{}2,2,1{12010102010210=⨯⨯=================X X P X X P X P X X X P X X P X P X X X P4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R ,)]()([)(πϖδπϖδπω-++=X S6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。
(完整版)随机过程习题
随机过程复习一、回答: 1、 什么是宽平稳随机过程?2、 平稳随机过程自相关函数与功率谱的关系?3、 窄带随机过程的相位服从什么分布?包络服从什么分布?4、什么是白噪声?性质?二、计算:1、随机过程t A t X ωcos )(=+t B ωsin ,其中ω是常数,A 、B 是相互独立统计的高斯变量,并且E[A]=E[B]=0,E[2A ]=E[2B ]=2σ。
求:)(t X 的数学期望和自相关函数?2、判断随机过程)cos()(φω+=t A t X 是否平稳?其中ω是常数,A 、φ分别为均匀分布和瑞利分布的随机变量,且相互独立。
πϕφ21)(=f πϕ20 ; 222)(σσa A eaa f -=0 a3、求随机相位正弦函数)cos()(0φω+=t A t X 的功率谱密度,其中A 、0ω是常数,φ为[0,2π]内均匀分布的随机变量。
4、求用)(t X 自相关函数及功率谱表示的)cos()()(0φω+=t t X t Y 的自相关函数及谱密度。
其中,φ为[0,2π]内均匀分布的随机变量,)(t X 是与φ相互独立的随机过程。
5、设随机过程}),cos()({0+∞<<-∞+=t Y t A t X ω,其中0ω是常数,A 与Y 是相互独立的随机变量,Y 服从区间)2,0(π上的均匀分布,A 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-000)(2222x x ex x f x A σσ试证明)(t X 为宽平稳过程。
解:(1))}{cos()()}cos({)(00Y t E A E Y t A E t m X +=+=ωω⎰⎰=+=∞+-πσωσ20002220)cos(22dy y t dx exx 与t 无关(2) )()}({cos )()}cos({)}({)(20222022A E Y t E A E Y t A E t X E t X≤+=+==ωωψ dt e tdx e xA E t x ⎰⎰∞+-∞+-==0222223222221)(σσσσσ,20222022|2|222σσσσσ=-=+-=∞+-∞+-∞+-⎰t t tedt ete所以+∞<=)}({)(22t X E t Xψ (3))]}cos()][cos({[),(201021Y t A Y t A E t t R X ++=ωω )}cos(){cos(][20102Y t Y t E A E ++=ωω dy t t y t t πωωωσπ21)](cos )[cos(2121202010202--++=⎰)(cos 1202t t -=ωσ 只与时间间隔有关,所以)(t X 为宽平稳过程。
随机过程试题及答案
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
随机过程复习题
随机过程复习题一、随机过程的数字特征及平稳性1、设随机过程Z (t ) =X sin t +Y cos t ,其中X 和Y 是相互独立的随机变量,它们都分别以2/3和1/3的概率取值-1和2,讨论Z(t)的平稳性。
2、设随机过程()Xt e t -=ξ (t >0),其中随机变量X 具有在区间(0,T )中的均匀分布。
试求随机过程ξ(t )的数学期望和自相关函数。
3、有随机过程{ξ(t ),-∞<t <∞}和{η(t ),-∞<t <∞},设ξ(t )=A sin(ω t +Θ),η(t )=B sin(ω t +Θ+φ), 其中A ,B ,ω,φ为实常数,Θ均匀分布于[0,2π],试求R ξη(s ,t )4、设有随机过程{ξ(t ),-∞<t <∞},ξ(t )=η cos t , 其中η为均匀分布于(0,1)间的随机变量,即()()112311212(a)=cos cos (b)C =cos cos 1212R t ,t t t t ,t t t ξξξξ试证:5、随机过程ξ(t )=sin(Ut ),其中U 是在[0,2π]上均匀分布的随机变量。
若t ∈T , 而T =[0,∞), 试分析ξ(t )的平稳性。
6、随机过程()()0=cos +t A t ξωθ;式中:A 、ω0是实常数;θ是具有均匀分布的随机变量:()2(0=20(f πθθπ⎧≤≤⎪⎨⎪⎩其他) 分析ξ(t )的平稳性。
7、随机过程ξ(t )=A cos(ωt +Φ ),-∞<t <+∞,其中A, ω,Φ 是相互统计独立的随机变量,E A =2, D A =4, ω 是在[-5, 5]上均匀分布的随机变量,Φ 是在[-π,π]上均匀分布的随机变量。
试分析ξ(t)的平稳性和各态历经性。
8、设(){}+∞<<∞-t t X ,的均值函数为m X (t ),协方差函数为C X (t ),而ϕ(t )是一个普通函数,令()()()t t X t Y ϕ+=,+∞<<∞-t ,试求(){}+∞<<∞-t t Y ,的均值函数和协方差函数。
随机过程复习题
随机过程复习题随机过程复习题随机过程是概率论中的一个重要概念,它描述了随机现象随时间的演化规律。
在学习随机过程的过程中,复习题是一个很好的方式来检验自己的理解和掌握程度。
本文将给出一些随机过程的复习题,帮助读者巩固所学知识。
一、马尔可夫链1. 什么是马尔可夫链?它具有什么样的性质?2. 什么是平稳分布?如何判断一个马尔可夫链是否存在平稳分布?3. 请解释马尔可夫链的转移概率矩阵和状态转移图的概念,并给出一个具体的例子。
4. 马尔可夫链的状态转移概率矩阵是否一定存在?为什么?二、泊松过程1. 什么是泊松过程?它有哪些重要性质?2. 泊松过程的定义中,参数λ表示什么意思?如何计算泊松过程的期望和方差?3. 请解释泊松过程的独立增量和无记忆性的概念,并给出一个具体的例子。
4. 泊松过程的超过某个固定值的等待时间服从什么分布?请给出证明。
三、布朗运动1. 什么是布朗运动?它有哪些重要性质?2. 布朗运动的定义中,参数μ和σ表示什么意思?如何计算布朗运动的期望和方差?3. 请解释布朗运动的连续性和无界性的概念,并给出一个具体的例子。
4. 布朗运动的极限定理是什么?请给出证明。
四、马尔可夫过程1. 什么是马尔可夫过程?它有哪些重要性质?2. 马尔可夫过程的定义中,状态空间和状态转移概率矩阵分别表示什么意思?3. 请解释马尔可夫过程的平稳分布和细致平衡条件的概念,并给出一个具体的例子。
4. 马尔可夫过程的极限定理是什么?请给出证明。
通过以上的复习题,读者可以回顾和巩固自己对随机过程的理解和掌握程度。
同时,这些问题也涵盖了随机过程的一些重要概念和性质,有助于读者深入理解随机过程的本质。
希望读者能够通过这些复习题,进一步提升自己在随机过程方面的知识水平。
随机过程第一章复习题及其解答预备知识
第一章 一、 填空1.设{t X ,t T ∈}是一族独立的随机变量,则对于任意2n ≥和12,,...,t t ,n t T ∈12,,...,,n x x x R ∈有1212(,,...,)n t t t n P X x X x X x ≤≤≤=( )。
答案:1()int i i P X x =≤∏2.若2EX <∞,2EY <∞,则2()EXY ≤( )。
答案:22EX EY (Schwarz 不等式)3.设随机变量X 的特征函数为()X g t ,Y aX b =+,其中a ,b 为任意实数,则Y 的特征函数()Y g t =( ()itb X e g at )。
解:()()()()[][][]()it aX b i at X ibt ibt i at X ibt Y X g t E e E e e e E e e g at +====。
4.若12,,...X X 是相互独立且同分布的非负整数值随机变量,N 是与12,,...X X 独立的非负整数值随机变量,并且1,N X 的母函数分别为()G s 和()P s 。
则1Nk k Y X ==∑的母函数()H s =((())G P s )。
解:0()()kk H s P Y k s ∞===∑=0(,())kk l P Y k N l s ∞∞====∑=00()()k k l P N l P Y k s ∞∞====∑∑=00()()k l k P N l P Y k s ∞∞====∑∑=01()()lkj l k j P N l P X k s∞∞=====∑∑∑0()[()][()]ll P N l P s G P s ∞===∑。
5.设12,,...X X 为一列独立同分布的随机变量,随机变量N 只取正整数值,且N 与{}n X 独立,则1()Ni i E X ==∑(1()()E X E N )。
解:1111()[(|)](|)()N N Ni i i i i n i E X E E X N E X N n P N n +∞========∑∑∑∑1111111()()()()()()n n i n n E X P N n nE X P N n E X np N n +∞+∞+∞==========∑∑∑∑1()()E X E N =6.若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 二、解答与证明题1.设P(S)是X 的母函数,试证: (1)若E(X)存在,则()1EX P '=(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为()0kkk P s p s∞==∑,则()11k k k P s kp s∞-='=∑,令1s →,得()11kk EX P kp ∞='==∑ 。
随机过程试题及答案
随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。
答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。
答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。
这种性质称为_________。
答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。
答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。
答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。
答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。
随机过程第二章复习题及其解答基本概念
第二章1、随机过程若按状态空间与参数集分类可分为离散参数链,连续参数链,随机序列,随机过程四类.2、若{X(t), teT}是零均值的二阶矩过程,若对任意的tKtWtKs 则X(t)为正交增量过程的充分条件是E[X⑷-x fi][x(t4)-x(t3)J = 03、设随机过程X(t)=Y+Zt, t>0,其中Y, Z是相互独立的N (0,1) 随机变量,求{ X(t), t>0}的一维和二维概率密度族.解:由于X与Z是相互独立的正态随机变量,故其线性组合仍为正态随机变量,要计算{X(t), t〉0}的一、二维随机概率密度,只要计算数字特征叫(/)、D x (?)和Px (s, t)即可.iDx(t)=E (Y+Zt)=EY+tEZ=0, Dx (t)=D(Y+Zt)二DY+t'DZ 二1+F,B x(s, t)=EX(s)X(t)- m x(s) m3£(t)=E(Y+Zs) (Y+Zt)=l+st,t) _ 1 十st(PxG丿’瓦⑤叵貢血十旳(屮2),故随机过程{X(t), t>0}的一、二维概率密度分别为I Y2ft(x)=7^?W xp{-绪d'X* 2兀如旳二片讦 -eXP(令 [ 昙—2p j(】+:;;;+t2)+悬]},s,t>0,其中p = Px(s,t)4、设{X(t), tMO}是实正交增量过程,X(0)=0, V是标准正态随机变量,若对任意的tMO, X(t)与V相互独立,令Y(t)=X(t)+V,求随机过程(Y(t), tMO}的协方差函数.解:依题意知EX(t)=O, EV=O, DV=1,所以EY (t) =E [X (t)+V] =EX (t) +EV=O,12)=E(X(ti)+V) (X(t2)+V)=E [X (tD X (t2)) ]+EV2= O \(min (t b t2)) +1.5、试证明维纳过程是正态过程。
最终版随机过程总复习汇总.ppt
分析 先求 X (t) 的概率分布
整理
解 对每一个确定的时刻 t, X (t) 的概率分布为
t
X (t) 3
t
e
2
1
P
3
3
所以
F(t1;x1 ) P( X(t1) x1)
0,
2, 3 1,
t x1 3
t 3
x1
et
x1 et
整理
随机过程的数字特征
1.均值函数 X (t) E[X (t)]
计算协方差时通常用下列关系式:
C ov( X ,Y ) E(XY ) E(X )E(Y )
整理
三、矩母函数
1.定义 称 e tX的数学期望 (t) E[etX ]
为X的矩母函数
2.原点矩 利用矩母函数可求得X的各阶矩,即对
的求法
(t)逐次求导并计算在 t 0 点的值:
(t) E[XetX ] (n)(t) E[X netX ]
Y X1 X2 Xr 的特征函数为
Y (t) 1(t ) 2 (t ) … r (t )
两个相互独立的随机变量之和的特征函数等于它 们的特征函数之积.
整理
练习:设随机变量X的概率密度函数为
p(
x)
1 2
x
0 x2
0 其 它
试求X的矩母函数。
解: (t ) E[etX ] 2 etx 1 xdx
Y (t) E[Ut2] t 2E[U] 所以 X (t) 和Y (t) 的互协方差函数
XY (t1 , t2 ) E{[X(t1) t1E(U)][Y(t2 ) t22E(U)]}
t1t22E[(U E(U))2] t1t22D(U ) 3t1t22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。
解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。
1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。
1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==----12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。
令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。
则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。
212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。
故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。
将乘客乘坐公共汽车1代表试验成功,那么有:121111111211212(1=()()N N N N k N k k N P C λλλλλλ+----=++∑路汽车比2路汽车先出发)(2)当1N =2N 、1λ=2λ时2121111111111(1=()()2222N N N k N k k k k N k N P CC -------====∑∑路汽车比2路汽车先出发)3.3设{(),0}i N t t ≥,(1,2,,)i n =是n 个相互独立的Poisson 过程,参数分别为i λ(1,2,,)i n =。
记T 为全部n 个过程中,第一个事件发生的时刻。
(1)求T 的分布; (2)证明1{()(),0}n i i N t N t t ==≥∑是Poisson 过程,参数为1ni i λλ==∑;(3)求当n 个过程中,只有一个事件发生时,它是属于1{(),0}N t t ≥的概率。
解:(1)记第i 个过程中第一次事件发生的时刻为1i t ,1,2,...,i n =。
则1min{,1,2,...,}i T t i n ==。
由1i t 服从指数分布,有111111{}1{}1{min{,1,2,...,}}1{,1,2,...,}1{}1{1(1)}1exp{}i i ni i i nnti i i P T t P T t P t i n t P t t i n P t t et λλ=-==≤=->=-=>=->==->=---=--∏∑∏(2)方法一:由{(),1,2,...,}i N t i n =为相互独立的poisson 过程,对于,0s t ∀≥。
11111{()()}{[()()]}{()(),,1,2...,}(exp(()))!()exp(())!n ni in ni ni i i iiiinnn ni i i i i n ni ni i i P N t s N t n P N t s N t n P N t s N t n nn i n ss n s s n λλλλ=∑=∑=====+-==+-==+-====-=-∑∑∑∑∑∏∑∑这里利用了公式11(...)!!in ni nnni n i i n n λλλ=∑=++=∑∏所以1{()(),0}n i i N t N t t ==≥∑是参数为1ni i λλ==∑的poisson 过程。
方法二: ○1当0h →时,11111{()()1}{[()()]1}{(())(1())}[()]()ni i i nn i j i j j inni i i i P N t h N t P N t s N t h o h h o h h o h h o h λλλλ===≠==+-==+-==+-+=+=+∑∑∏∑∑○2当0h →时, 111111{()()2}{[()()]2}1{[()()]2}1(1())()1(1())()()ni i i ni i i n nj i i j n ni i i i P N t h N t P N t s N t P N t s N t h o h h o h h o h h o h o h λλλλ======+-≥=+-≥=-+-<=--+-+=--+-+=∑∑∑∏∑∑得证。
(3)11{()1|()1}{()1,()0,2,...,}/{()1}i P N t N t P N t N t i n P N t ======= 1111121/...ni i i nnttti i i nteeet λλλλλλλλ=---==∑==++∑∏3.4 证明poisson 过程分解定理:对于参数为λ的poisson 过程{(),0}N t t ≥,01i p <<,11ri i p ==∑,1,2,,i r =,可分解为r 个相互独立的poisson 过程,参数分别为i p λ,1,2,,i r =。
解:对过程{(),0}N t t ≥,设每次事件发生时,有r 个人对此以概率12,,...,r p p p 进行记录,且11ri i p ==∑,同时事件的发生与被记录之间相互独立,r 个人的行为也相互独立,以()i N t 表示为到t 时刻第i 个人所记录的数目。
现在来证明{(),0}i N t t ≥是参数为i p λ的poisson 过程。
00{()}{()|()}{()}()(1)()!()!i i i n m n m mntm ni i n mp ti P N t m P N t m N t m n P N t m n t Cp p em n p t em λλλλ∞=+∞-+=-====+=+=-+=∑∑独立性证明:考虑两种情况的情形,即只存在两个人记录, 一个以概率p ,一个以概率1p -记录,则1{(),0}N t t ≥是参数为p λ的poisson 过程,2{(),0}N t t ≥是参数为(1)p λ-的poisson过程。
121121212121212112211121211121212121212{(),()}{(),()}{()}{()|()}()(1)()!()!()(1)()!!!()(1)!!(k k k k k t k k k k k k t k k k k t P N t k N t k P N t k N t k k P N t k k P N t k N t k k t e C p p k k k k t e p p k k k k t e p p k k pt λλλλλλλ+-++-+-=====+==+==+=-++=-+=-=12(1)121122)((1))!!{()}{()}k k t p t p t e ek k P N t k P N t k λλλ----===得证。
3.5 设{(),0}N t t ≥是参数为3的poisson 过程,试求 (1){(1)3}P N ≤; (2){(1)1,(3)2}P N N ==; (3){(1)2|(1)1}P N N ≥≥解:(1)33303{(1)3}13!kk P N e e k --=≤==∑ (2){(1)1,(3)2}{(1)1,(3)(1)1}P N N P N N N ====-=369{(1)1}{(3)(1)1}3618P N P N N e e e ---==-===(3)33{(1)2}14{(1)2|(1)1}{(1)1}1P N e P N N P N e--≥-≥≥==≥- 3.6 对于poisson 过程{(),0}N t t ≥,证明s t <时,{()|()}P N s k N t n ===(1)()n k k n s sk t t -⎛⎫- ⎪⎝⎭解:(){(),()}{()|()}{()}{(),()()}{()}{()()}{()}{()}(())()()!!()!()!()!!()n k kt s s nt n k k nn k k P N s k N t n P N s k N t n P N t n P N s k N t N s n k P N t n P N t N s n k P N s k P N t n t s s e en k k t en t s s n n k k t n t s s k λλλλλλ-------=======-=-==-=-===--=-=-⎛⎫-= ⎪⎝⎭(1)()n k k n k kt t n s s k t t --⎛⎫=- ⎪⎝⎭3.7 设1{(),0}N t t ≥和2{(),0}N t t ≥分别是参数为1λ,2λ的Poisson 过程,另12()()()X t N t N t =-,问{()}X t 是否为Poisson 过程,为什么?解:不是12()()()X t N t N t =-,()X t 的一维特征函数为:121212121122(()())()()()()120012001212()()()()()()!!()()!!exp{(iuiu iu N t N t iuN t iuN t iuX t X t k k t tiukiuk k k iu k iu ktt k k t et t e tiu iu f u E e E e E e e t t ee e e k k e t e t ee k k e e e ee t e t λλλλλλλλλλλλλλλλ--∞∞--==∞∞--==---=====⋅==+-+∑∑∑∑)}t参数为λ的Poisson 过程的特征函数的形式为exp{1}iu e t λ-,所以()X t 不是poisson 过程。