高三基础知识天天练1-3. 数学 数学doc人教版

合集下载

完整word版2014届高三数学天天练1教师版

完整word版2014届高三数学天天练1教师版

2021届高三数学每日练11、不等式x-11的解集是_____________________0,22、不等式1的解是_______________x0或x1x13、假定会合A xx2,B xx a,知足AB2,那么实数a______24、假定函数f(x)的反函数f1x log2x,那么f(x)_________f(x)2x xR5、假定正四棱柱ABCDA1B1C1D1的底面边长为2,高位4,那么异面直线BD1与AD所成角的大小是_________________〔结果用反三角函数值表示〕arctan56、假定球O1,O2表面积之比S14,那么它们的半径之比R1_______2 S2R27、函数y2sinxcosx的最大值为___________58、函数y2cos2xsin2x的最小值是_____________1-29、函数f(x)log3(x 3)的反函数的图像与y轴的交点坐标是__________0,-210、在相距2千米的A,B两点处丈量目标点C,假定CAB75,CBA60,那么A,C两点之间的距离为______________千米11、一个高为2的圆柱,底面周长为62 ,该圆柱的表面积为__________612、假定函数函数的分析式f(x) x abx 2a常数a,b R是偶函数,且它的值域为,4,那么该f(x) _________ f(x) 2x2 413、0x2,化简:lgcosxtanx12sin2x lg2cosx lg1sin2x24答案:014、函数f(x)log a 1mx是奇函数a0,a1 x1〔1〕求m值〔2〕解对于x的不等式f x0答案:〔1〕m1〔2〕当a1时,x1;当0a1时,x115、设函数f(x)2cos2x23sinxcosx mxR〔1〕化简函数f x的表达式,并求函数fx的最小正周期〔2〕假定,能否存在实数m,使函数17假定存在,恳求出mx0,fx的值域恰为,?222的值;假定不存在,请说明原因。

2022高三数学二轮复习天天练 数学天天练习31 新人教版

2022高三数学二轮复习天天练 数学天天练习31 新人教版

高三数学天天练311、设全集{}4,3,2,1,0=U ,{}4,3,0=A ,{}3,1=B ,则)(B A C U ⋃= 。

2的模是 。

3、若命题2:,210p x x ∀∈+>R ,则该命题的否定是 。

4、函数⎪⎩⎪⎨⎧≥<<-⋅=-0,01),cos()(1x e x x x f x π,若1)()1(=+a f f ,则的值为 。

5、已知等差数列满足:6,821-=-=a a 。

若将541,,a a a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为 。

6、设曲线2ax y =在点(1,)处的切线与直线062=--y x 平行,则 。

7、有一道解三角形的题目,因纸张破损有一个条件模糊不清,具体如下:“在△ABC中,已知4a B π==, ,求角A”经推断,破损处的条件为三角形一边的长度,且答案提示6A π=试在横线上将条件补充完整。

8、若函数2()min{2,log }f x x x =-+,其中min{,}p q 表示两者中的较小者,则不等式2)(-<x f 的解集为 。

9、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:第1个图中共有7块地面砖,则第个图案中共有地面砖块。

10、已知函数1)(2+++=bx xa x x f 在]1,1[-上为奇函数,则)21(f 的值为 。

学生姓名______ 得分:_____11数列25),2(122}{31=≥-+=-a n a a a n n n n 其中满足若存在一个实数使得}2{n n a λ+为等差数列,求第1个 第2个 第3个填空题答案纸:1、______________2、_____________3、______________4、______________5、_____________6、______________7、______________ 8、_____________ 9、______________10、_____________三十一参考答案1、;2、;3、012,2≤+∈∃x R x ;4、21-5、-16、 17、6=b (或写成2623+=c ) 8、),4()41,0(+∞⋃ 9、25+n 10、5211、–1。

高三基础知识天天练2-11.数学数学doc人教版

高三基础知识天天练2-11.数学数学doc人教版

⾼三基础知识天天练2-11.数学数学doc⼈教版第2模块第11节[知能演练]⼀、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所⽰,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增.故选A. 答案:A 3.若a >3,则⽅程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当04.设a ∈R ,若函数y =e ax +3x ,x ∈R 有⼤于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B ⼆、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最⼤值与最⼩值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1m ≥-1,2m +1≤1,2m +1>m ,∴-1答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最⼤值和最⼩值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32令f ′(x )<0,∴-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最⼩值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最⼤值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成⽴,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数.⼜F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成⽴.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[⾼考·模拟·预测]1.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.若函数f (x )=x 3-6bx +3b 在(0,1)内有极⼩值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴ f ′(0)<0,f ′(1)>0,即-6b <0,3-6b >0,得0答案:D3.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1x +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,⽽函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a内是增函数,在函数f (x )在x =-2a 处取得极⼤值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极⼩值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极⼤值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极⼩值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满⾜:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为⾃然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的⽅程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0),∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0e 时,F ′(x )>0,此时函数F (x )递增,∴当x =e 时,F (x )取极⼩值,其极⼩值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点,因此若存在h (x )和φ(x )的隔离直线,则该直线过这个公共点,设隔离直线的斜率为k ,则直线⽅程为y -e =k (x -e),即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成⽴.∴Δ=(k -2e)2,∴由Δ≤0,得k =2 e.下⾯证明φ(x )≤2e x -e ,当x >0时恒成⽴.令G (x )=φ(x )-2e x +e =2eln x -2e x +e ,则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当00,此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减,∴当x =e 时,G (x )取极⼤值,其极⼤值为0. 从⽽G (x )=2eln x -2e x +e ≤0,即φ(x )≤2e x -e(x >0)恒成⽴,∴函数h (x )和φ(x )存在唯⼀的隔离直线y =2e x -e.。

高三基础知识天天练2-3. 数学 数学doc人教版

高三基础知识天天练2-3. 数学 数学doc人教版

第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。

高三基础知识天天练3-3. 数学 数学doc人教版

高三基础知识天天练3-3. 数学 数学doc人教版

第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。

高三数学基础题每日一练

高三数学基础题每日一练

1.330cos =( ) A .23-B .21-C .21D .23 2.“p 或q 是假命题”是“非p 为真命题”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数2)21(2-==x xy y 与函数的图象关于( )A.直线x = 1对称B.直线x = 2对称C.点(1,0)对称D.点(2,0)对称4.已知向量x b b a x x b x a 则若其中,//)2(,1),1,(),21,8(+>==的值为( )A .0B .2C .4D .85.已知等比数列8050202991,01610,,0,}{a a a x x a a a a n n 则的两根为方程中=+->的值为A .32B .64C .128D .2566.若ααπααsin cos ,22)4sin(2cos +-=-则的值为( ) A.27- B.21- C.21D.277.函数x e x f x1)(-=的零点个数为 。

8.若βαβαβαtan tan ,53)cos(,51)cos(⋅=-=+则= 。

9.等差数列1815183,18,6,}{S S S S S n a n n 则若项和为的前=--== 。

10.如图,某地一天从6时到14时的温度变化曲线近似满足函数)20()sin(πϕϕω<≤++=B x A y ,则温度变化曲线的函数解析式为 。

11.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,.21,53cos -=⋅=BC AB B 且(I )求△ABC 的面积; (II )若a = 7,求角C.1.设集合{2,1,0,1,2},{|12},()S T x R x ST =--=∈+≤=S 则C ( )A .∅B .{2}C .{1,2}D .{0,1,2}2.已知向量(1)(12)n n ==--,,,a b ,若a 与b 共线,则n 等于( )A .1BC .2D .43.函数221y x x =++在x =1处的导数等于( )A .2B .3C .4D .54.设p :0m ≤,q :关于x 的方程20x x m +-=有实数根,则p ⌝是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.一个四边形的四个内角成等差数列,最小角为40,则最大角为( )A .140B .120C .100D .806已知函数f (x )在区间 [a ,b ]上单调,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有惟一实根 7.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定 8.函数3()31f x x x =-+的单调减区间是 ;9.定义在R 上的奇函数f (x )满足(1)()f x f x +=-,若(0.5)1,f =则(7.5)f =________; 10.已知0>a ,函数ax x x f -=3)(在[)∞+,1上是单调增函数,则a 的最大值是11.已知函数⎩⎨⎧<+≥-=10)]5([103)(n n f f n n n f ,其中*∈N n ,则)8(f 的值为12.已知,圆C :012822=+-+y y x ,直线l :02=++a y ax .(1) 当a 为何值时,直线l 与圆C 相切;(2) 当直线l 与圆C 相交于A 、B 两点,且22 AB 时,求直线l 的方程.高三数学基础训练31、已知集合{}12S x x=∈+≥R,{}21012T=--,,,,,则S T =()A.{}2B.{}12,C.{}012,,D.{}1012-,,,2.函数2log2-=xy的定义域是() A.),3(+∞ B.),3[+∞ C.),4(+∞ D.),4[+∞3.在等比数列}{na中,123401,9na a a a a>+=+=且,则54aa+的值为()A.16 B.27 C.36 D.814.若直线021)1(22=-+=+++xyxyxa与圆相切,则a的值为()A.1,-1 B.2,-2 C.1 D.-15a b=3ba-=7,则向量a与向量b的夹角是()A.6πB.4πC.3πD.2π6.1-=a是直线0331)12(=++=+-+ayxyaax和直线垂直的()A.充分而不必要的条件 B.必要而不充分的条件C.充要条件 D.既不充分又不必要的条件7、函数2()1logf x x=+与1()2xg x-+=在同一直角坐标系下的图象大致是()8.已知53)4cos(=+xπ,则x2sin的值为() A.2524- B.257- C.2524D.2579、已知函数()y f x=为奇函数,若(3)(2)1f f-=,则(2)(3)f f---=.10、已知236,-0,3x yx y z x yy+≤⎧⎪≥=-⎨⎪≥⎩则.的最大值为。

(完整word版)高三数学基础训练题集(上)1-10套(含答案)

(完整word版)高三数学基础训练题集(上)1-10套(含答案)

俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学基础训练一班级:姓名:座号:成绩:一.选择题:1.复数i1i,321-=+=zz,则21zzz⋅=在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,11=a84=a,则=5a( )A.16 B.16或-16 C.32 D.32或-323.已知向量a =(x,1),b =(3,6),a⊥b ,则实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.已知函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,( ) 则(2)f-=( )A.14B.4-C.41-D.46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是( )A.62 B.63 C.64 D.657.下列函数中最小正周期不为π的是( )A.xxxf cossin)(⋅= B.g(x)=tan(2π+x)C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则”的否命题是( )A.,11a b a b>-≤-若则B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为 ( ) A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是 ( ) A .()()+∞-∞-,11,YB .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222,Y C .()()+∞-∞-,,2222YD .()()+∞-∞-,,22Y二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______ 三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三数学基础训练二班级: 姓名: 座号: 成绩:一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.已知命题p: {}4A x x a =-p ,命题q :()(){}230B x x x =--f ,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。

高三基础知识天天练2-9. 数学 数学doc人教版

高三基础知识天天练2-9. 数学 数学doc人教版

第2模块 第9节[知能演练]一、选择题1.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利( )A .25元B .20.5元C .15元D .12.5元解析:每件获利100(1+25%)×0.9-100=100(1.25×0.9-1)=12.5元. 答案:D2.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种债券面值为1000元,买入价为960元,一年到期本息之和为1000元;C 种面值为1000元,半年到期本息和为1020元.设三种债券的年收益分别为a ,b ,c ,则a ,b ,c 的大小关系是( )A .a =c <bB .a <b <cC .a <c <bD .c <a <b解析:设年初为1000元,则A 种债券收益40元,B 种债券收益1000960×40≈41.67元.C 种债券收益为20+10201000×20=40.4元.∴b >c >a . 答案:C3.在一次数学试验中,运用图形计算器采集到如下一组数据:则x ,y ( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +bx解析:由表格数据逐个验证,知模拟函数为y =a +b x . 答案:B4.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A .2800元B .3000元C .3800元D .3818元解析:设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得y =⎩⎪⎨⎪⎧0 (x ≤800)(x -800)×14% (800<x ≤4000)11%·x (x >4000). 如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800.答案:C 二、填空题5.计算机的价格大约每3年下降23,那么今年花8100元买的一台计算机,9年后的价格大约是________元.解析:设计算机价格平均每年下降p %,由题意可得13=(1-p %)3,∴p %=1-(13)13,∴9年后的价格y =8100[1+(13)13-1]9=8100×(13)3=300(元).答案:3006.如图是一份统计图表,根据此图表得到的以下说法中,正确的是________.①这几年人民生活水平逐年得到提高;②人民生活费收入增长最快的一年是2000年; ③生活价格指数上涨速度最快的一年是2001年;④虽然2002年生活费收入增长缓慢,但由于生活价格指数也略有降低,因而人民生活有较大的改善.解析:由题意,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故①正确;“生活费收入指数”在2000年~2001年最陡,故②正确;“生活价格指数”在2001年~2002年上涨速度不是最快的,故③不正确;由于“生活价格指数”略呈下降,而“生活费收入指数”曲线呈上升趋势,故④正确.答案:①②④ 三、解答题7.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如下图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?解:(1)设投资债券收益与投资额的函数关系为f (x )=k 1x ,投资股票的收益与投资额的函数关系为g (x )=k 2x ,由图象得f (1)=18=k 1,g (1)=k 2=12,f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品x 万元, 则股票类投资为20-x 万元.y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).令t =20-x ,则y =20-t 28+12t =-18(t 2-4t -20)=-18(t -2)2+3.所以当t =2,即x =16时,投资债券16万元,股票4万元时,收益最大,y max =3万元. 8.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).(1)求函数y =f (x )的解析式及其定义域;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解:(1)当x ≤6时,y =50x -115,令50x -115>0, 解得x >2.3.∵x ∈N *,∴x ≥3,∴3≤x ≤6,x ∈N *, 当x >6时,y =[50-3(x -6)]x -115.令[50-3(x -6)]x -115>0,有3x 2-68x +115<0, 上述不等式的整数解为2≤x ≤20(x ∈N *), ∴6<x ≤20(x ∈N *). 故y =⎩⎪⎨⎪⎧50x -115 (3≤x ≤6,x ∈N *)-3x 2+68x -115 (6<x ≤20,x ∈N *), 定义域为{x |3≤x ≤20,x ∈N *}.(2)对于y =50x -115(3≤x ≤6,x ∈N *). 显然当x =6时,y max =185(元), 对于y =-3x 2+68x -115=-3(x -343)2+8113(6<x ≤20,x ∈N *).当x =11时,y max =270(元).∵270>185,∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多.[高考·模拟·预测]1.某种细胞在培养过程中正常情况下,时刻t (单位:分)与细胞数n (单位:个)的部分数据如下:( )A .200B .220C .240D .260解析:由表格中所给数据可以得出n 与t 的函数关系为n =2t 20,令n =1000,得2t20=1000,又210=1024,所以时刻t 最接近200分,故选A.答案:A2.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保证环境,环保部门应给该厂这条生产线拟定最长的生产期限是( )A .5年B .6年C .7年D .8年解析:由题知第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.答案:C3.某市出租车收费标准如下: 起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.解析:设乘客每次乘坐出租车需付费用为f (x )元,由题意可得: f (x )=4.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b (0<b ≤32)为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.解析:由题意实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 关于b 的一次函数的一次项系数2π-8<0,故l 关于b 为单调减函数,因此,当b 取最大值时,l 取得最小值,结合图形知,b 的最大值为32,代入上式得l 最小=(2π-8)×32+12=3π.答案:3π5.如右图,一个铝合金窗分为上、下两栏,圆周框架和中间隔档的材料为铝合金,宽均为6 cm ,上栏与下栏的框内高度(不含铝合金部分)的比为1∶2,此铝合金窗占用的墙面面积为28800 cm 2,设该铝合金窗的宽和高分别为a (cm),b (cm),铝合金窗的透光部分的面积为S (cm 2).(1)试用a ,b 表示S ;(2)若要使S 最大,则铝合金窗的宽和高分别为多少? 解:(1)∵铝合金窗宽为a (cm),高为b (cm),a >0,b >0, ∴ab =28800. ①又设上栏框内高度为h (cm),下栏框内高度为2h (cm),则3h +18=b ,∴h =b -183,∴透光部分的面积S =(a -18)×2(b -18)3+(a -12)×b -183=(a -16)(b -18)=ab -2(9a +8b )+288 =28800-2(9a +8b )+288 =29088-2(9a +8b ). (2)∵9a +8b ≥29a ·8b=29×8×28800=2880,当且仅当9a =8b 时等号成立,此时b =98a ,代入①得a =160,从而b =180,即当a =160,b =180时,S 取得最大值.答:铝合金窗的宽为160 cm ,高为180 cm 时,可使透光部分的面积最大.[备选精题] 6.两县城A 和B 相距20 km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与对城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065.(Ⅰ)将y 表示成x 的函数;(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由.解:(Ⅰ)根据题意∠ACB =90°,AC =x km ,BC =400-x 2 km ,且建在C 处的垃圾处理厂对城A 的影响度为4x 2,对城B 的影响度为k400-x 2,因此,总影响度y =4x 2+k400-x 2(0<x <20).又因为垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065,所以4(102+102)2+k400-(102+102)2=0.065, 解得k =9,所以y =4x 2+9400-x 2(0<x <20).(Ⅱ)因为y ′=-8x 3+18x(400-x 2)2=18x 4-8×(400-x 2)2x 3(400-x 2)2=(x 2+800)(10x 2-1600)x 3(400-x 2)2.由y ′=0解得x =410或x =-410(舍去), 易知410∈(0,20).y ,y ′随xy最小值=y|x=410=116,此时x=410,故在弧AB上存在一点,使得建在此处的垃圾处理厂对城A和城B的总影响度最小,该点与城A的距离x=410 km.。

高三数学天天练1 集合的概念与运算

高三数学天天练1 集合的概念与运算

天天练1 集合的概念与运算一、选择题1.(·银川质检)设全集U ={x ∈N *|x ≤5},A ={1,4},B ={4,5},则∁U (A ∩B )=( )A .{1,2,3,5}B .{1,2,4,5}C .{1,3,4,5}D .{2,3,4,5}2.(·贵阳监测)如图,全集I =R ,集合A ={x |0<x <2},B ={x |1<x <3},则图中阴影部分所表示的集合为( )A .{x |1<x <2}B .{x |0<x <3}C .{x |x <3}D .{x |x >0}3.(·太原五中检测)已知集合A ={x ∈Z |x 2-2x -3≤0},B ={y |y=2x },则A ∩B 子集的个数为( )A .10B .16C .8D .74.(·赣州摸底)已知集合A ={x |x 2-x -2≤0,x ∈R },B ={x |lg(x+1)<1,x ∈Z },则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}5.(·长沙一模)记集合A ={x |x -a >0},B ={y |y =sin x ,x ∈R },若0∈A ∩B ,则a 的取值范围是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)6.(·河南适应性测试)已知集合A ={0,1,2},B ={y |y =2x ,x ∈A },则A ∪B 中的元素个数为( )A .6B .5C .4D .37.(·衡水中学一调)已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |x +1x -4>0},那么集合A ∩(∁U B )=( ) A .{x |-2≤x <4} B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}8.(·太原二模)已知集合A ={x |log 2(x -1)<2},B ={x |a <x <6},且A ∩B ={x |2<x <b },则a +b =( )天天练1集合的概念与运算1.A由于全集U={x∈N*|x≤5}={1,2,3,4,5},A={1,4},B={4,5},A∩B={4},则∁U(A∩B)={1,2,3,5},故选A.2.B由Venn图可知,阴影部分表示的是集合A∪B={x|0<x<3},故选B.3.C因为A={-1,0,1,2,3},B=(0,+∞),所以A∩B={1,2,3},其子集的个数为23=8,故选C.4.D由x2-x-2≤0得-1≤x≤2,所以A={x|-1≤x≤2}.由lg(x+1)<1,得0<x+1<10,解得-1<x<9,所以B={0,1,2,3,4,5,6,7,8},所以A∩B={0,1,2},故选D.5.A依题意得,0∈A,0-a>0,a<0,因此实数a的取值范围是(-∞,0),选A.6.C因为B={0,2,4},所以A∪B={0,1,2,4},元素个数为4,故选C.7.D依题意A={x|-2≤x≤3},B={x|x<-1或x>4},故∁U B ={x|-1≤x≤4},故A∩(∁U B)={x|-1≤x≤3},故选D.。

高三基础知识天天练2-8. 数学 数学doc人教版

高三基础知识天天练2-8. 数学 数学doc人教版

第2模块 第8节[知能演练]一、选择题1.函数f (x )=(x -1)ln xx -3的零点有( )A .0个B .1个C .2个D .3个解析:由f (x )=(x -1)ln xx -3=0得:x =1,∴f (x )=(x -1)ln xx -3只有一个零点,故选B.答案:B 2.若函数f (x )在(1,2)内有一个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次解析:设对区间(1,2)至少二等分n 次,此时区间长为1,第1次二等分后区间长为12,第2次二等分后区间长为122,第3次二等分后区间长为123,…,第n 次二等分后区间长为12n ,依题意得12n <0.01,∴n >log 2100由于6<log 2100<7,∴n ≥7,即n =7为所求.答案:C3.f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0.则方程f (x )=0在区间(0,6)内解的个数的最小值是( )A .5B .4C .3D .2解析:∵f (x )是定义在R 上的偶函数,且周期是3,f (2)=0,∴f (2)=f (5)=f (-2)=f (1)=f (4)=0.答案:B4.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:令g (x )=x 3-22-x ,可求得:g (0)<0,g (1)<0,g (2)>0,g (3)>0,g (4)>0,易知函数g (x )的零点所在区间为(1,2).答案:B二、填空题5.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式a ·f (-2x )>0的解集是________.解析:由于f (x )=x 2+ax +b 的两个零点是-2和3, 即方程x 2+ax +b =0的两个根是-2和3,因此⎩⎪⎨⎪⎧ -2+3=-a -2·3=b ⇒⎩⎪⎨⎪⎧a =-1b =-6,因此f (x )=x 2-x -6, 所以不等式a ·f (-2x )>0,即-(4x 2+2x -6)>0,即2x 2+x -3<0,解集为{x |-32<x <1}.答案:{x |-32<x <1}6.若一元二次方程ax 2+bx +c =0(a >0)的两根x 1、x 2满足m <x 1<n <x 2<p ,则f (m )·f (n )·f (p )________0(填“>”、“=”或“<”).解析:∵a >0,∴f (x )=ax 2+bx +c 的图象开口向上.∴f (m )>0,f (n )<0,f (p )>0. 答案:< 三、解答题7.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈(0,12),使f (x 0)=x 0.解:令g (x )=f (x )-x .∵g (0)=14,g (12)=f (12)-12=-18,∴g (0)·g (12)<0.又函数g (x )在[0,12]上连续,所以存在x 0∈(0,12),使g (x 0)=0.即f (x 0)=x 0.8.函数f (x )=x 3-12x 2-2x +5-λ在区间[-1,2]上有三个零点,求λ的值.解:设g (x )=x 3-12x 2-2x +5,则g ′(x )=3x 2-x -2=(3x +2)(x -1), ∴g (x )在(-1,-23)和(1,2)上单调递增,在(-23,1)上单调递减.又g (-1)=112,g (-23)=15727,g (1)=72,g (2)=7,由题意知g (x )=λ有三个根,∴λ∈[112,15727). [高考·模拟·预测]1.为了求函数f (x )=2x -x 2的一个零点,某同学利用计算器,得到自变量x 和函数值f (x )( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0) 解析:∵f (1.8)·f (2.2)=0.24×(-0.24)<0, ∴零点在(1.8,2.2)上.故选C. 答案:C2.已知函数f (x )=(13)x -log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0.则f (x 1)的值为( )A .恒为正值B .等于0C .恒为负值D .不大于0解析:∵f (x )在定义域(0,+∞)上单调递减,当x →0时,f (x )→+∞, ∵f (x 0)=0,∴f (x )=0只有一个实根. ∴当0<x 1<x 0时,f (x 1)>0恒成立,故选A. 答案:A3.若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( )A .f (x )=4x -1B .f (x )=(x -1)2C .f (x )=e x -1D .f (x )=ln(x -12)解析:∵g ′(x )=4x ln4+2>0,∴g (x )在(-∞,+∞)上是增函数.又g (0)=1-2=-1<0,g (12)=2+1-2=1>0,∴g (x )只有一个零点x 0,且x 0∈(0,12).对于选项A :f (x )=4x -1,其零点为x =14,∴|14-x 0|<14,故选项A 符合.答案:A4.已知方程|x |-ax -1=0仅有一个实根且小于0,则a 的取值范围为________.解析:利用数形结合判断显然有a ≥1. 答案:a ≥15.已知函数f (x )=e x -k -x ,其中x ∈R . (1)k =0时,求函数f (x )的值域;(2)当k >1时,函数f (x )在[k,2k ]内是否存在零点,并说明理由. 解:(1)k =0时,f (x )=e x -x ,f ′(x )=e x -1, 令f ′(x )=0,得x =0.又x ∈(-∞,0)时,f ′(x )<0, ∴f (x )在(-∞,0)内单调递减. x ∈(0,+∞)时,f ′(x )>0, ∴f (x )在(0,+∞)内单调递增. ∴x =0时,f (x )取到极小值.又∵这个极小值是R 上的唯一的极小值, ∴x =0时,f (x )min =f (0)=1. 即函数f (x )的值域为[1,+∞).(2)f (k )·f (2k )=(e k -k -k )·(e 2k -k -2k ) =(1-k )·(e k -2k ). ∵k >1,∴1-k <0.令g (k )=e k -2k ,g (1)=e 1-2>0, 又g ′(k )=e k -2,当k >1时,g ′(k )>e 1-2>0, ∴k ∈(1,+∞),g (k )为增函数. ∴g (k )>g (1)>0.∴k >1时,e k -2k >0. ∴f (k )·f (2k )<0.∴即函数f (x )当k >1时在[k,2k ]内存在零点.[备选精题]6.已知二次函数y =g (x )的导函数的图象与直线y =2x 平行,且y =g (x )在x =-1处取得极小值m -1(m ≠0).设f (x )=g (x )x. (1)若曲线y =f (x )上的点P 到点Q (0,2)的距离的最小值为2,求m 的值. (2)k (k ∈R )如何取值时,函数y =f (x )-kx 存在零点,并求出零点. 解:设二次函数为g (x )=ax 2+bx +c ,∵y =g ′(x )=2ax +b 的图象与直线y =2x 平行, ∴a =1.又∵y =g (x )在x =-1处取得极小值m -1, ∴-b2a=-1,g (-1)=a (-1)2+b (-1)+c =m -1,∴b =2,c =m , 从而f (x )=g (x )x =mx+x +2.(1)已知m ≠0,设曲线y =f (x )上点P 的坐标为P (x ,y ),则点P 到点Q (0,2)的距离为 |PQ |=(x -0)2+(y -2)2=x 2+(mx+x )2=2x 2+m 2x2+2m≥22x 2·m 2x2+2m =22|m |+2m ,当且仅当2x 2=m 2x 2⇒x =±|m |2时等号成立. ∵|PQ |的最小值为2,∴22|m |+2m =2⇒2|m |+m =1. ①当m >0时,解得m =12+1=2-1. ②当m <0时,解得m =11-2=-2-1. 故m =2-1或m =-2-1.(2)y =f (x )-kx 的零点即方程mx +(1-k )x +2=0的解,∵m ≠0,∴mx +(1-k )x +2=0与(k -1)x 2-2x -m =0有相同的解. ①若k =1,(k -1)x 2-2x -m =0⇒x =-m2≠0,∴函数y =f (x )-kx 有零点x =-m2.②若k ≠1,(k -1)x 2-2x -m =0的判别式Δ=4[1+m (k -1)]. 若Δ=0⇒k =1-1m ,此时函数y =f (x )-kx 有一个零点x =-m .若Δ>0⇒1+m (k -1)>0,∴当m >0,k >1-1m ,或m <0,k <1-1m 时,方程(k -1)x 2-2x -m =0有两个解 x 1=1+1+m (k -1)k -1和x 2=1-1+m (k -1)k -1.此时函数y =f (x )-kx 有两个零点x 1和x 2. ③若Δ<0⇒1+m (k -1)<0,∴当m >0,k <1-1m ,或m <0,k >1-1m时,方程(k-1)x2-2x-m=0无实数解.此时函数y=f(x)-kx没有零点.。

高三基础知识天天练1-1. 数学 数学doc人教版

高三基础知识天天练1-1. 数学 数学doc人教版

第1模块 第1节[知能演练]一、选择题1.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A .1B .2C .3D .4解析:满足条件M ∪{1}={1,2,3}的集合M 为{2,3},{1,2,3},共两个. 答案:B2.已知集合P ={(x ,y )||x |+|y |=1},Q ={(x ,y )|x 2+y 2≤1},则( )A .P ⊆QB .P =QC .P ⊇QD .P ∩Q =Ø 答案:A3.若集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( )A .{a |1≤a ≤9}B .{a |6≤a ≤9}C .{a |a ≤9}D .Ø解析:若2a +1>3a -5,即a <6时,A =Ø⊆B ; 若2a +1=3a -5,即a =6时,A ={x |x =13}⊆B ; 若2a +1<3a -5,即a >6时,由A ⊆B 得⎩⎪⎨⎪⎧2a +1≥33a -5≤22,解得6<a ≤9.综上可得a ≤9. 答案:C4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪ (∁R B )=R ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≥2D .a >2解析:∁R B =(-∞,1]∪[2,+∞),又A ∪(∁R B )=R ,数轴上画图可得a ≥2,故选C. 答案:C 二、填空题5.若集合{(x ,y )|x +y -2=0且x -2y +4=0} {(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.答案:26.对于集合M 、N 定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={t |t =x 2-3x ,x ∈R },B ={x |y =lg(-x )},则A ⊕B =________.解析:∵t =x 2-3x =(x -32)2-94≥-94,∴A ={t |t ≥-94}.又由B 可知y =lg(-x ),则-x >0,得x <0, ∴B ={x |x <0},∴A -B ={x |x ≥0},B -A ={x |x <-94},∴A ⊕B =(-∞,-94)∪[0,+∞).答案:(-∞,-94)∪[0,+∞)三、解答题7.已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且B ⊆A ,求实数m 的值组成的集合.解:A ={x |(x -2)(x -3)=0}={2,3}, 若m =0,B =Ø⊆A ;若m ≠0,B ={x |x =-1m},由B ⊆A 得-1m =2,或-1m =3,解得m =-12,m =-13, 因此实数m 的值组成的集合是{0,-12,-13}.8.已知集合E ={x ||x -1|≥m },F ={x |10x +6>1}.(1)若m =3,求E ∩F ;(2)若E ∪F =R ,求实数m 的取值范围; (3)若E ∩F =Ø,求实数m 的取值范围. 解:(1)当m =3时,E ={x ||x -1|≥3}={x |x ≤-2或x ≥4},F ={x |10x +6>1}={x |x -4x +6<0}={x |-6<x <4}.∴E ∩F ={x |x ≤-2或x ≥4}∩{x |-6<x <4} ={x |-6<x ≤-2}. (2)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∪F =R ,满足条件. ②m >0时,E ={x |x ≤1-m 或x ≥1+m }, 由E ∪F =R ,F ={x |-6<x <4},∴⎩⎪⎨⎪⎧ 1-m ≥-6,1+m ≤4,m >0,解得0<m ≤3.∴综上,实数m 的取值范围为(-∞,3]. (3)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∩F =F ≠Ø,不满足条件.②m >0时,E ={x |x ≤1-m 或x ≥1+m },由E ∩F =Ø,F ={x |-6<x <4}, ∴⎩⎪⎨⎪⎧1-m ≤-6,1+m ≥4,m >0,解得m ≥7.∴综上,实数m 的取值范围为[7,+∞).[高考·模拟·预测]1.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个解析:∵阴影部分M ∩N ={x |-2≤x -1≤2}∩{x |x =2k -1,k =1,2,…}={x |-1≤x ≤3}∩{x |x =2k -1,k =1,2,…}={1,3},∴阴影部分所示的集合的元素共有2个,故选B.答案:B 2.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},故N M ,所以选B. 答案:B3.设全集U =A ∪B ={x ∈N *|lg x <1}.若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.解析:由题意得U =A ∪B ={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9},所以B ={2,4,6,8}. 答案:{2,4,6,8}4.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域,有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确的命题的序号都填上)解析:对于整数集Z ,a =1,b =2时,a b =12∉Z ,故整数集不是数域,①错;对于满足Q ⊆M 的集合M =Q ∪{2},1+2∉M ,M 不是数域,②错;若P 是数域,则存在a ∈P 且a ≠0,依定义,2a,3a,4a …均是P 中的元素,故P 中有无数个无素,③正确;类似数集F ,{a +b 3|a ,b ∈Q },{a +b 5|a ,b ∈Q }等均是数域,④正确.答案:③④5.已知集合A ={x |(x -2)[x -(3a +1)]<0},B ={x |x -2ax -(a 2+1)<0}.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围. 解:(1)当a =2时,A ={x |2<x <7},B ={x |4<x <5}. ∴A ∩B ={x |4<x <5}, (2)B ={x |2a <x <a 2+1},①当B =Ø时,2a ≥a 2+1,∴a =1, 此时A ={x |2<x <4},B ⊆A 符合题意.②若B ≠Ø,方程(x -2)[x -(3a +1)]=0的两根为x 1=2,x 2=3a +1. ∵B ≠Ø.∴A ≠Ø∴3a +1≠2,即a ≠13.当3a +1>2,即a >13时,⎩⎪⎨⎪⎧2a ≥2a 2+1≤3a +12a <a 2+1⇒⎩⎪⎨⎪⎧a ≥10≤a ≤3⇒1<a ≤3a ≠1.当3a +1<2,即a <13时,⎩⎪⎨⎪⎧ 2a ≥3a +1a 2+1≤2⇒⎩⎪⎨⎪⎧a ≤-1-1≤a ≤1⇒a =-1. ∴a 的取值范围为[1,3]∪{-1}.[备选精题]6.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1)当m +1>2m -1,即m <2时,B =Ø满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立, 需⎩⎪⎨⎪⎧m +1≥-22m -1≤5,可得2≤m ≤3, 综上,m 的取值范围是m ≤3.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, 所以A 的非空真子集个数为28-2=254.(3)因为x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =Ø,即m +1>2m -1,得m <2时满足条件. ②若B ≠Ø,则要满足的条件是 ⎩⎪⎨⎪⎧ m +1≤2m -1m +1>5或⎩⎪⎨⎪⎧m +1≤2m -12m -1<-2,解得m >4. 综上,m 的取值范围是m <2或m >4.。

高三基础知识天天练 数学检测3.人教版

高三基础知识天天练 数学检测3.人教版
所以a=b=c,所以三角形ABC是等边三角形.
答案:等边三角形
15.函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是________.
如下图所示,则k的取值范围是1<k<3.
答案:1<k<3
16.下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π;
()
解析:根据题意,可得f(x)=|π-x-x|=|π-2x|,图象即为选项A.
答案:A
9.如下图所示,函数y=2sin(ωx+θ)(|θ|<)的图象,那么
()
A.ω=,θ=B.ω=,θ=-
C.ω=2,θ=D.ω=2,θ=-
解析:由图知周期T=π-(-)=π,
∴ω==2,∴y=2sin(2x+θ),
解析:把y=3sin(x+)的图象向左平移个单位,得到的图象解析式为y=3sin(x++)=3sin(x+),然后再把得到的图象横坐标缩短到原来的倍,纵坐标不变,得到的图象解析式为y=3sin(2x+π).
答案:B
11.已知函数f(x)=2sinωx在区间[-,]上的最小值为-2,则ω的取值范围是
()
②终边在y轴上的角的集合是{α|α=,k∈Z};
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④把函数y=3sin(2x+)的图象向右平移个单位得到y=3sin2x的图象;
⑤函数y=sin(x-)在[0,π]上是减函数.
其中真命题的序号是________.
解析:①y=sin2x-cos2x=-cos2x,故最小正周期为π,①正确.
C.D.
解析:设函数f(x)的最小正周期为T,

高三基础知识天天练3-1. 数学 数学doc人教版

高三基础知识天天练3-1. 数学 数学doc人教版

第3模块 第1节[知能演练]一、选择题1.已知角α的终边过点(-1,2),则cos α的值为( )A .-55 B.255 C .-255 D .-12答案:A2.点P (tan2007°,cos2007°)位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:∵2007°=360°×6-153°, ∴2007°与-153°的终边相同, ∴2007°是第三象限角, ∴tan2007°>0,cos2007°<0. ∴P 点在第四象限,故选D. 答案:D3.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( )A .x 轴上B .y 轴上C .直线y =x 上D .直线y =-x 上解析:由角α的余弦线长度为1分析可知,角α的终边与x 轴重合,故选A. 答案:A4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b解析:∵a =-sin1,b =cos1,c =-tan1,∴a <0,b >0,c <0.又∵sin1<tan1,∴-sin1>-tan1,∴c <a <b .故选C.答案:C 二、填空题5.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析:由弧长公式l =|α|r ,l =2π3,r =1得,P 点按逆时针方向转过的角度为α=2π3,所以Q 点的坐标为(cos 2π3,sin 2π3),即(-12,32).答案:(-12,32)6.若角β的终边与60°角的终边相同,在[0°,360°)内,终边与角β3的终边相同的角为________________________.解析:∵β=k ·360°+60°,k ∈Z ,∴β3=k ·120°+20°,k ∈Z .又β3∈[0°,360°),∴0°≤k ·120°+20°<360°,k ∈Z ,∴-16≤k <176,∴k =0,1,2.此时得β3分别为20°,140°,260°.故在[0°,360°)内,与角β3终边相同的角为20°,140°,260°.答案:20°,140°,260° 三、解答题7.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈(π2,π),求sin α,cos α,tan α的值.解:∵θ∈(π2,π),∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ=-5cos θ,故sin α=-45,cos α=35,tan α=-43.8.(1)确定tan(-3)cos8·tan5的符号;(2)确定lg(cos6-sin6)的符号.解:(1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0,∴原式>0.(2)∵6为第四象限角,∴cos6>0,sin6<0,故cos6-sin6>0.∵(cos6-sin6)2=1-2sin6cos6=1-sin12>1(12是第四象限的角),∴cos6-sin6>1,∴lg(cos6-sin6)>0.[高考·模拟·预测]1.已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4解析:由sin 3π4>0,cos 3π4<0知角θ在第四象限,∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.答案:D2.已知sin α=45,cos α=35,则角2α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解法一:由sin α=45,cos α=35知2kπ+π4<α<2kπ+π2,∴4kπ+π2<2α<4kπ+π(k ∈Z ),角2α所在的象限是第二象限,选择B.解法二:由sin α=45,cos α=35易得sin2α=2425,cos2α=-725,∴角2α所在的象限是第二象限,选择B.答案:B3.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.解析:yx=tan300°=-tan60°=- 3.答案:- 34.若角α的终边落在射线y =-x (x ≥0)上,则sin α1-sin 2α+1-cos 2αcos α=________.解析:由定义知,sin α=-22,cos α=22,则原式=0.答案:05.借助单位圆解不等式组⎩⎪⎨⎪⎧sin x ≥02cos x -1>0.解:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,即⎩⎪⎨⎪⎧sin x ≥0,cos x >12,分析正弦函数线和余弦函数线,如右图所示,由三角函数线可得x 满足的条件为 ⎩⎪⎨⎪⎧2kπ≤x ≤2kπ+π,2kπ-π3<x <2kπ+π3(k ∈Z ).此交集恰好为图形中的阴影交错部分,由数形结合可得2kπ≤x <2kπ+π3(k ∈Z ).[备选精题]6.在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l :y =22x (x ≥0).(1)求sin(α+π6)的值;(2)若点P 、Q 分别是角α始边、终边上的动点,且PQ =4,求△POQ 面积最大时,点P 、Q 的坐标.解:(1)由射线l 的方程为y =22x ,可得sin α=223,cos α=13,故sin(α+π6)=223×32+13×12=1+266. (2)设P (a,0),Q (b,22b )(a >0,b >0).在△POQ 中,因为PQ 2=(a -b )2+8b 2=16, 即16=a 2+9b 2-2ab ≥6ab -2ab =4ab , 所以ab ≤4.所以S △POQ =2ab ≤4 2.(当且仅当a =3b ,即a =23,b =233时取得等号).所以△POQ 面积最大时,点P ,Q 的坐标分别为P (23,0),Q (233,463).。

高三数学基础练习一 新课标 人教版

高三数学基础练习一 新课标 人教版

高三数学基础练习一 新课标 人教版一.填空选择部分1.若条件p :14x +≤,条件q :23x <<,则q ⌝是p ⌝的( )BA .充分不必要条件B .必要不充分条件C .充要条件D .既非充分条件也非必要条件 2.若函数()12-=x x f 的定义域是()[)5,21, ∞-,则其值域为( )D A.()0,∞- B.(]2,∞- C.⎥⎦⎤ ⎝⎛21,0 D.()1,0,22⎛⎤-∞ ⎥⎝⎦3.设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x)等于( )BA f (x )=(x +3)2-1B f (x )=(x -3)2-1C f (x )=(x -3)2+1D f (x )=(x -1)2-14.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )AA (22,3)B (3,10)C (22,4)D (-2,3)5. 垂直于直线2610x y -+=,且与曲线3231y x x =+-相切的直线方程是( )A A .320x y ++= B .320x y -+= C .320x y +-= D .320x y --=6. 设点P 是曲线y =x 3-3x +2上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.),32[)2,0[πππ _____7. 把函数)3sin 3(cos 22x x y -=的图象适当变动,就可得到y =-sin3x 的图象,这种变动可以是( )DA 沿x 轴向右平移4π B 沿x 轴向左平移4π C 沿x 轴向右平移12π D 沿x 轴向左平移12π8.如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )AA.{}22,02|≤<<<-x x x 或B.{}22,22|≤<-<≤-x x x 或C.⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 D.{}0,22|≠<<-x x x 且9.在坐标平面上,不等式组⎩⎨⎧+≤-≥11||2x y x y 所表示的平面区域的面积为 3810.在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为 ( ) C A .14 B .15 C .16 D .1711.已知数列{}n a 的各项均为正数,其前n 项和为n S ,若2{log }n a 是公差为-1的等差数列,且638S =,那么1a 的值是( )AA .421B .631C .821D .123112.二面角βα--l 为︒120,A 、B 是棱上两点,AC 、BD 分别在α、β内,l BD l AC ⊥⊥,,且AB = AC =BD =1,则CD 的长为 2 ;13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是( )CA .12πB .32πC .36πD .48π14.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )DA .324+B .13-C .213+ D .13+ 15.将2n 个正整数2,3,2,1n 填入n n ⨯方格中,使其每行,每列,每条对角线上的数的和相等,这个正方形叫做n 阶幻方.记)(n f 为n 阶幻方对角线的和,如右图就是一个3阶幻方,可知,15)3(=f 则=)5(f ( )CA .63B .64C .65D .6616.已知直线01=-+by ax (b a ,不全为0)与圆5022=+y x 有公共点,且公共点的横、纵坐标均为整数,那么这样的直线有( )BA.66条B.72条C.74条D.78条17.从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为( )A8 3 4 1 5 9 672A .4284C C ⋅B .3384C C ⋅C .612CD .4284A A ⋅ 18.已知8a x x ⎛⎫- ⎪⎝⎭展开式中的常数项为1 120,其中实数a 是常数,则展开式中各项系数的和为 1或83 19.定义运算a cad bc b d=-,复数z 满足11z i i i=+,则复数在的模为( )CA .1235 D .12-20.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是( )BA .i >10B .i <10C .i >20D .i <20。

高三基础知识天天练3-6. 数学 数学doc人教版

高三基础知识天天练3-6. 数学 数学doc人教版

第3模块 第6节[知能演练]一、选择题1.若tan α=3,tan β=43,则tan(α-β)等于( )A .-3B .-13C .3D.13 解析:tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=535=13.答案:D2.已知450°<α<540°,则12+1212+12cos2α的值是 ( )A .-sin α2B .cos α2C .sin α2D .-cos α2解析:原式=12+121+cos2α2=12-12cos α=⎪⎪sinα2. ∵450°<α<540°,∴225°<α2<270°.∴原式=-sin α2.答案:A3.等式|sin αcos α|+122α-cos 2α|=12成立的充要条件是( )A .α=kπ(k ∈Z )B .α=kπ2(k ∈Z ) C .α=kπ4(k ∈Z )D .α=kπ8(k ∈Z )解析:由题意知:原式=12|sin2α|+12|cos2α|=12∴|sin2α|+|cos2α|=1,∴1+2|sin2αcos2α|=1. |sin4α|=0,α=kπ4(k ∈Z ). 答案:C4.设M (cos πx 3+cos πx 5sin πx 3+sin πx5)(x ∈R )为坐标平面内一点,O 为坐标原点,记f (x )=|OM |,当x 变化时,函数f (x )的最小正周期是( )A .30πB .15πC .30D .15解析:f (x )=|OM | =2+2(cos π3x cos π5x +sin π3x sin π5x )=2+2cos(π3x -π5x )=2(1+cos 215πx )=2(1+2cos 2π15x -1)=4cos 2π15x=2|cos π15x |.所以其最小正周期T =ππ15=15.答案:D 二、填空题5.求值:cos 4π8+cos 43π8+cos 45π8+cos 47π8=________.解析:原式=2⎝⎛⎭⎫cos 4π8+cos 43π8=2⎝⎛⎭⎫cos 4π8+sin 4π8=2⎝⎛⎭⎫1-2sin 2π8cos 2π8 =2⎝⎛⎭⎫1-12sin 2π4=32. 答案:326.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.答案:π3三、解答题7.用tan α表示sin2α,cos2α. 解:sin2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1,cos2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α.8.已知0<α<π4,β为f (x )=cos ⎝⎛⎭⎫2x +π8的最小正周期,a =⎝⎛⎭⎫tan ⎝⎛⎭⎫α+14,-1,b =(cos α,2),且a·b =m ,求2cos 2α+sin2(α+β)cos α-sin α的值.解:因为β为f (x )=cos ⎝⎛⎭⎫2x +π8的最小正周期,故β=π.因a·b =cos αtan ⎝⎛⎭⎫α+14β-2=m , 故cos αtan ⎝⎛⎭⎫α+π4=m +2.由于0<α<π4,所以2cos 2α+sin2(α+β)cos α-sin α=2cos 2α+sin(2α+2π)cos α-sin α=2cos 2α+sin2αcos α-sin α=2cos α(cos α+sin α)cos α-sin α=2cos α·1+tan α1-tan α=2cos αtan ⎝⎛⎭⎫α+π4=4+2m .[高考·模拟·预测]1.函数f (x )=sin x -13-2cos x -2sin x(0≤x ≤2π)的值域为( )A .[-22,0] B .[-1,0] C .[-2,0]D .[-3,0]解析:f (x )=sin x -13-2cos x -2sin x=sin x -13-22sin(x +π4),此函数的最大值必为0,当x =0时,分子为-1,分母为1,此时函数值最小,最小值为-1,故选B.答案:B2.函数f (x )=(sin 2x +12009sin 2x )(cos 2x +12009cos 2x)的最小值是 ( )A.42009 B.22009(2010-1) C.22009D.22009(2009-1) 解析:f (x )=(2009sin 4x +1)(2009cos 4x +1)20092sin 2x cos 2x=20092sin 4x cos 4x +2009(sin 4x +cos 4x )+120092sin 2x cos 2x=20092sin 4x cos 4x +2009[(sin 2x +cos 2x )2-2sin 2x cos 2x ]+120092sin 2x cos 2x=sin 2x cos 2x +201020092sin 2x cos 2x -22009≥22009(2010-1). 答案:B3.若sin θ22cos θ2=0,则tan θ=________.解析:由sin θ2-2cos θ2=0得tan θ2=2,代入二倍角公式可得tan θ=2tanθ21-tan 2θ2=-43.答案:-434.俗话说“一石激起千层浪”,小时候在水上打“水漂”的游戏一定不会忘记吧.现在一个圆形波浪实验水池的中心已有两个振动源,在t 秒内,它们引发的水面波动可分别由函数y 1=sin t 和y 2=sin(t +2π3)来描述,当这两个振动源同时开始工作时,要使原本平静的水面保持平静,则需再增加一个振动源(假设不计其他因素,则水面波动由几个函数的和表达),请你写出这个新增振动源的函数解析式:________________.解析:因为y 1+y 2+y 3=sin t +sin(t +2π3)+y 3=sin t -12t +32cos t +y 3=0,所以y 3=sin(t +4π3)时符合题意.本题也可为y 3=sin(t -2π3)(答案不唯一). 答案:y 3=sin(t +4π3)(答案不唯一). 5.设函数f (x )=cos(2x +π3)+sin 2x .(Ⅰ)求函数f (x )的最大值和最小正周期;(Ⅱ)设A ,B ,C 为△ABC 的三个内角,若cos B =13f (C 2)=-14C 为锐角,求sin A .解:(Ⅰ)f (x )=cos2x cos π3-sin2x sin π3+1-cos2x2=12cos2x -32sin2x +12-12cos2x =12-32sin2x . 所以当2x =-π2+2kπ,即x =-π4+kπ(k ∈Z )时,f (x )取得最大值,[f (x )]最大值=1+32,f (x )的最小正周期T =2π2=π,故函数f (x )的最大值为1+32,最小正周期为π.(Ⅱ)由f (C 2)=-14,即12-32sin C =-14,解得sin C =32,又C 为锐角,所以C =π3由cos B =13求得sin B =223.因此sin A =sin[π-(B +C )]=sin(B +C ) =sin B cos C +cos B sin C =223×12+13×32=22+36. [备选精题]6.已知A ,B 是△ABC 的两个内角,向量a =(2cos A +B 2,sin A -B 2),若|a |=62.(1)证明:tan A tan B 为定值;(2)当tan C 取最大值时,求△ABC 的三个内角的大小.解:(1)由条件可知32=(62)2=|a |2=2cos 2A +B 2+sin 2A -B 2=1+cos(A +B )+1-cos(A -B )2,∴cos(A +B )=12cos(A -B ),∴3sin A sin B =cos A cos B ,∵A ,B 是△ABC 的两个内角,∴tan A tan B =13为定值.(2)tan C =-tan(A +B )=-tan A +tan B1-tan A tan B由(1)知tan A tan B =13,∴tan A >0,tan B >0,从而tan C =-32(tan A +tan B )≤-32·2·tan A tan B =-3, ∴取等号的条件是当且仅当tan A =tan B =33,即A =B =π6时,tan C 取得最大值,此时△ABC 的三个内角分别是π6,π6,2π3.。

高三基础知识天天练3-7. 数学 数学doc人教版

高三基础知识天天练3-7. 数学 数学doc人教版

第3模块 第7节[知能演练]一、选择题1.在△ABC 中,a 2-c 2+b 2=ab ,则角C 为( )A .60°B .45°或135°C .120°D .30°解析:∵a 2-c 2+b 2=ab ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12.又∵0°<C <180°,∴C =60°.答案:A2.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为 ( )A.85B.58C.53D.35解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即72=52+AC 2-10AC ·cos120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.答案:D3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A 等于( )A .45°B .30°C .120°D .15°解析:由S △ABC =14(b 2+c 2-a 2)=12bc sin A得sin A =b 2+c 2-a 22bc =cos A ,∴A =45°.答案:A4.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33D.32解析:由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ×BC cos B ,∴AC =3,∴△ABC 为直角三角形,其中A 为直角,∴tan C =AB AC =33.答案:C 二、填空题5.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是________.解析:如图所示,该问题转化为已知△ABC 中BC =3,AC =3,B =30°,求AB 的长.由正弦定理AC sin B =BC sin A 可求得角A ,进而可求出角C 再由AB sin C =ACsin B可求得AB ,即x . 答案:3或2 36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________.解析:由余弦定理变形得cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32.又∵B ∈(0,π),∴B =5π6.答案:5π6三、解答题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ). (1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状. (1)证明:因为a 2=b (b +c ),即a 2=b 2+bc , 所以在△ABC 中,由余弦定理可得, cos B =a 2+c 2-b 22bc =c 2+bc 2ac=b +c 2a =a 22ab =a 2b =sin A2sin B, 所以sin A =sin2B ,∴A =2B 或A +2B =π,而当A +2B =π时有B =C 即b =c ,代回已知得a =2b ,此时a 2=b 2+c 2,故A =90°,而B =C =45°也即A =2B .故A =2B .(2)解:因为a =3b ,所以ab =3,由a 2=b (b +c )可得c =2b ,cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b 2=32所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.8.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-2c 2-b 2x -b =0(a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7. (1)求角C ; (2)求a ,b 的值.解:(1)设x 1、x 2为方程ax 2-2c 2-b 2x -b =0的两根,则x 1+x 2=2c 2-b 2a,x 1·x 2=-b a. ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 =4(c 2-b 2)a 2+4b a =4.∴a 2+b 2-c 2=ab .又cos C =a 2+b 2-c 22ab =ab 2ab =12,又∵C ∈(0°,180°),∴C =60°. (2)由S =12ab sin C =103,∴ab =40.①由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2×40×(1+12).∴a +b =13.又∵a >b ② ∴由①②,得a =8,b =5.[高考·模拟·预测]1.△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于( )A .3∶1 B.3∶1 C.2∶1D .2∶1解析:cos2B +3cos(A +C )+2=2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴B=π3.∴c sin C =b sin B =332=2.故选D. 答案:D2.△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3D.32或34解析:1sin30°=3sin C ,∴sin C =32.∴C =60°或120°. (1)当C =60°时,A =90°,∴BC =2,此时,S △ABC =32; (2)当C =120°时,A =30°,S △ABC =12×3×1×sin30°=34,故选D.答案:D3.在锐角△ABC 中,b =2,B =π3,sin2A +sin(A -C )-sin B =0,则△ABC 的面积为________.解析:sin2A +sin(A -C )-sin B =sin2A +sin(A -C )-sin(A +C )=sin2A -2sin C cos A =2cos A (sin A -sin C )=0,∵△ABC 是锐角三角形, ∴cos A ≠0.∴sin A =sin C ,即A =C . 又B =π3,∴△ABC 为正三角形.∴S =34×22= 3. 答案: 34.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:sin A =sin75°=sin(30°+45°)=sin30°cos45°+sin45°cos30°=2+64.由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12.由正弦定理得b =asin A ·sin B=2+62+64×12=2,故选A. 答案:A5.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝⎛⎭⎫2A -π4的值. 解:(1)在△ABC 中,根据正弦定理,AB sin C =BCsin A .于是AB =sin Csin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理得 cos A =AB 2+AC 2-BC 22AB ·AC =255.于是sin A =1-cos 2A =55. 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35.所以sin ⎝⎛⎫2A -π4=sin2A cos π4-cos2A sin π4=210. [备选精题]6.已知函数f (x )=2sin x cos 2φ2+cos x sin φ-sin x (0<φ<π)在x =π处取最小值.(1)求φ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边.已知a =1,b =2,f (A )=32,求角C .解:(1)f (x )=2sin x 1+cos φ2+cos x sin φ-sin x=sin x +sin x cos φ+cos x sin φ-sin x =sin x cos φ+cos x sin φ=sin(x +φ). 因为f (x )在x =π时取最小值. 所以sin(π+φ)=-1,故sin φ=1. 又0<φ<π,所以φ=π2.(2)由(1)知f (x )=sin ⎝⎛⎭⎫x +π2=cos x .因为f (A )=cos A =32,且A 为△ABC 的内角, 所以A =π6.由正弦定理得sin B =b sin A a =22.又b >a ,所以B =π4或B =3π4.当B =π4时,C =π-A -B =π-π6-π4=7π12,当B =3π4时,C =π-A -B =π-π6-3π4=π12.综上所述,C =7π12或C =π12.。

高中数学基础强化天天练必修1第3练

高中数学基础强化天天练必修1第3练

第41练 弧度制(1)目标:使学生理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数.一、填空题1. 将分针拨快10分钟,则分针所转过的弧度为 . 【答案】3π-【解析】 分针拨快为负角,所以32122ππ-=⨯-.2.用弧度制表示与60°角终边相同的角的集合是___________________________.【答案】{α|α=2k π + π3,k ∈Z }. 3 . 37π7是第_____象限角. 【答案】三【解析】因为37π7=4π+9π7,所以37π7是第三象限角.4.把下列各角从弧度化为度:(1)8π3=__________;(2)-1.5=__________. 【答案】 480°, - 270°π【解析】(1)8π3 = 8π3×180°π = 480°;(2)-1.5=-1.5×180°π = - 270°π.5.把下列各角从度化为弧度:(1)260°=__________;(2)33°45'=__________.【答案】13π9,3π16【解析】(1)260°=260×π180 = 13π9;(2)33°45'=33.75°=33.75×π180 = 3π16.6. 下列命题中,是假命题的序号为________.①“度”与“弧度”是度量角的两种不同的度量单位;②1°的角是周角的1360,1 rad 的角是周角的12π; ③1 rad 的角比1°的角要大;④用角度制和弧度制度量角,都与圆的半径有关.【答案】 ④【解析】 ①②③正确,④错误,角的大小与圆的半径无关.7.已知角α的终边与π3的终边相同,在0,2π)内终边与α3角的终边相同的角为________.【答案】 π9,79π,139π 【解析】 由题意得α=2k π+π3(k ∈Z ), 故α3=2k π3+π9(k ∈Z ), 又∵0≤α3<2π,所以当k =0,1,2时, 有α3=π9,79π,139π满足题意.8.若角θ的终边与9π5的终边相同,则[0,2π]内与θ3终边相同的角的集合为_________________. 【答案】{3π5,19π15,29π15}【解析】因为角θ的终边与9π5的终边相同,所以θ=2k π+9π5,k ∈Z ,所以θ3=2k π3+3π5,k ∈Z .分别取k =0,1,2,则θ3=3π5,19π15,29π15,故所求集合为{3π5,19π15,29π15}.9.下列表示中不正确的是________.①终边在x 轴上的角的集合是{α|α=k π,k ∈Z };②终边在y 轴上的角的集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=π2+k π,k ∈Z ; ③终边在坐标轴上的角的集合是⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π2,k ∈Z ; ④终边在直线y =x 上的角的集合是α⎪⎪ α=π4+2k π,k ∈Z . 【答案】 ④【解析】 ④错误,终边在直线y =x 上的角的集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=π4+k π,k ∈Z .10.把π411-表示成πθk 2+)(Z k ∈的形式,使||θ最小的θ的值是 . 【答案】34π- 【解析】 π411-=π43-),2(π-+∴使||θ最小的θ为34π-.二、解答题11.已知α=1680°.(1)把α写成2k π+β(k ∈Z ,0≤β<2π)的形式;(2)求θ,使θ与α的终边相同,且-4π<θ<-2π.解:(1)α=1680°=1680×π180 = 28π3 =8π+4π3; (2)因为α与4π3的终边相同,且θ与α的终边相同,所以θ与4π3的终边相同.设θ=2k π+4π3,k ∈Z ,当k =-2时,θ= - 8π3.12.已知角α的终边在如图所示的阴影区域内.(1)用弧度制表示角α的集合;(2)判定α2+7π12是第几象限角. 解:(1)角α的集合是{α|2k π - π6<α<2k π + π3,k ∈Z }; (2)由2k π - π6<α<2k π + π3,k ∈Z 得k π+π2<α2+7π12< k π+3π4,k ∈Z . 当k =2n ,n ∈Z 时,2n π+π2<α2+7π12< 2n π+3π4,n ∈Z ,此时α2+7π12是第二象限角;当k =2n +1,n ∈Z 时,2n π+3π2<α2+7π12< 2n π+7π4,n ∈Z ,此时α2+7π12是第四象限角.综上所述,α2+7π12是第二或第四象限角.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1模块第3节
[知能演练]
一、选择题
1.若命题“p或q”是假命题,则下列判断正确的是
() A.命题“綈p”与“綈q”的真假不同
B.命题“綈p”与“綈q”至多有一个是真命题
C.命题“綈p”与“綈q”都是假命题
D.命题“綈p”且“綈q”是真命题
解析:由于“p或q”是假命题,所以p和q都是假命题,于是綈p和綈q都是真命题,因此“綈p”且“綈q”是真命题.
答案:D
2.设p、q是简单命题,则“p且q为假”是“p或q为假”的
() A.必要不充分条件
B.充分不必要条件
C.充分条件
D.既不充分也不必要条件
解析:p且q为假,即p和q中至少有一个为假;p或q为假,即p和q都为假,故选A.
答案:A
3.下列全称命题为真命题的是
() A.∀x,y∈{锐角},sin(x+y)>sin x+sin y
B.∀x,y∈{锐角},sin(x+y)>cos x+cos y
C.∀x,y∈{锐角},cos(x+y)<sin x+cos y
D.∀x,y∈{锐角},cos(x-y)<cos x+sin y
解析:由于cos(x-y)=cos x cos y+sin x sin y,而当x,y∈{锐角}时,0<cos y<1,0<sin x<1,所以cos(x-y)=cos x cos y+sin x sin y<cos x+sin y,故选D.
答案:D
4.对下列命题的否定错误的是
() A.p:负数的平方是正数;綈p:负数的平方不是正数
B.p:至少有一个整数,它既不是合数也不是质数;綈p:每一个整数,它是合数或质数
C.p:∀x∈N,x3>x2;綈p:∃x∈N,x3≤x2
D.p:2既是偶数又是质数;綈p:2不是偶数或不是质数
解析:綈p应为:有些负数的平方不是正数.
答案:A
二、填空题
5.命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则对下列命题的判断:
①p或q为真;②p或q为假;
③p且q为真;④p且q为假;
⑤非p为真;⑥非q为假.
其中判断正确的序号是________.(填上你认为正确的所有序号)
解析:p :{2}∈{1,2,3},q :{2}⊆{1,2,3},p 假q 真,故①④⑤⑥正确. 答案:①④⑤⑥
6.已知命题p :∀x ∈R ,ax 2+2x +3>0,如果命题綈p 是真命题,那么实数a 的取值范围是________.
解析:因为命题綈p 是真命题,所以命题p 是假命题,而当命题p 是真命题时,就是不等式ax 2
+2x +3>0对一切x ∈R 恒成立,这时应有⎩⎨

a >0
Δ=4-12a <0
,解得a >1
3,因此当命题
p 是假命题,即命题綈p 是真命题时实数a 的取值范围是a ≤1
3
.
答案:a ≤1
3
三、解答题
7.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的新命题,并判断其真假.
(1)p :2是4的约数,q :2是6的约数;
(2)p :矩形的对角线相等,q :矩形的对角线互相平分;
(3)p :1是素数;q :1是方程x 2
+2x -3=0的根. 解:(1)p 或q :2是4或6的约数,真命题; p 且q :2是4的约数也是6的约数,真命题; 非p :2不是4的约数,假命题.
(2)p 或q :矩形的对角线相等或互相平分,真命题; p 且q :矩形的对角线相等且互相平分,真命题; 非p :矩形的对角线不相等,假命题.
(3)p 或q :1是素数或是方程x 2+2x -3=0的根.真命题. p 且q :1既是素数又是方程x 2+2x -3=0的根,假命题. 非p :1不是素数.真命题. 8.写出下列命题的否定形式:
(1)有些三角形的三个内角都等于60°; (2)能够被3整除的整数,能够被6整除;
(3)∃θ∈R ,使得函数y =sin(2x +θ)是偶函数; (4)∀x ,y ∈R ,|x +1|+|y -1|>0.
解:(1)任意一个三角形的三个内角不能都等于60°. (2)存在一个能够被3整除的整数,不能够被6整除. (3)∀θ∈R ,函数y =sin(2x +θ)都不是偶函数. (4)∃x ,y ∈R ,|x +1|+|y -1|≤0.
[高考·模拟·预测]
1.设结论p :|x |>1,结论q :x <-2,则綈p 是綈q 的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析:由|x |>1得x >1或x <-1, ∴p :x >1或x <-1,∴綈p :-1≤x ≤1, 綈q :x ≥-2,∴綈p 成立,綈q 一定成立, 綈q 成立,綈p 不一定成立. 答案:A
2.有四个关于三角函数的命题:
p 1:∃x 0∈R ,sin
2x 02+cos
2x 0
2=12

p 2:∃x 0,y 0∈R ,sin(x 0-y 0)=sin x 0-sin y 0;
p 3:∀x ∈[0,π], 1-cos2x
2=sin x ;
p 4:sin x =cos y ⇒x +y =π
2
其中的假命题是 ( )
A .p 1,p 4
B .p 2,p 4
C .p 1,p 3
D .p 2,p 3
解析:∵∀x 均有sin 2x 2+cos 2x
2
=1,∴命题p 1为假命题.当x =2kπ时,显然有sin(x -
y )=sin x -sin y ,∴命题p 2为真命题.∵1-cos2x
2
=|sin x |,而x ∈[0,π],sin x ≥0,∴命题
p 3为真命题.∵sin x =cos y =sin ⎝⎛⎭⎫π2+y ,∴当x =2kπ+π2+y 时,有sin x =cos y ,但x +y =π
2

一定成立,∴命题p 4为假命题,故选A.
答案:A
3.下列4个命题.
p 1:∃x 0∈(0,+∞),⎝⎛⎭⎫12x 0<⎝⎛⎭⎫1
3x 0;
p 2:∃x 0∈(0,1),log 12x 0>log 1
3x 0;
p 3:∀x ∈(0,+∞),⎝⎛⎭⎫12x >log 1
2
x ;
p 4:∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <log 1
2
x .
其中的真命题是
( )
A .p 1,p 3
B .p 1,p 4
C .p 1,p 2
D .p 2,p 4
解析:∵当x >0时,恒有⎝⎛⎭⎫12x >⎝⎛⎭⎫13x ,∴p 1为假命题.而x =12时,log 1212=1=log 1313>log 131
2
,∴p 2为真命题.∵当x =14时,
⎝⎛⎭⎫1214<1,而log 1214
2>⎝⎛⎭⎫1214∴p 3为假命题.而当x ∈⎝⎛⎭⎫0,13时,⎝⎛⎭⎫12x <1,log 12x >log 1213
>1,∴p 4为真命题,故选D. 答案:D
4.已知定义在R 上的函数f (x ),写出命题“若对任意实数x 都有f (-x )=f (x ),则f (x )为偶函数”的否定:________________________________.
解析:所给命题是全称命题,其否定为特称命题.
答案:若存在实数x 0,使得f (-x 0)≠f (x 0),则f (x )不是偶函数. 5.设有两个命题:
①关于x 的不等式mx 2
+1>0的解集是R ; ②函数f (x )=log m x 是减函数.
如果这两个命题有且只有一个真命题,则实数m 的取值范围是________.
解析:①关于x 的不等式mx 2
+1>0的解集为R ,则m ≥0; ②函数f (x )=log m x 为减函数,则0<m <1. ①与②有且只有一个正确,
则m 的取值范围是m =0或m ≥1. 答案:m =0或m ≥1
6.已知c >0,设命题p :函数y =c x
为减函数.命题q :当x ∈[12
,2]时,函数f (x )=x
+1x >1
c
恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围. 解:由命题p 知:0<c <1.
由命题q 知:2≤x +1x ≤5
2,
要使此式恒成立,则2>1c ,即c >1
2
.
又由p 或q 为真,p 且q 为假知, p 、q 必有一真一假,
当p 为真,q 为假时,0<c ≤1
2
.
当p 为假,q 为真时,c ≥1.
综上,c 的取值范围为{c |0<c ≤1
2
或c ≥1}.。

相关文档
最新文档