2.7 静定结构与超静定结构
《材料力学》课程教案2
《材料力学》课程教案2(二)拉伸、压缩的超静定问题设教学安排 ● 新课引入如图所示的两杆组成的桁架结构受力,由于是平面汇交力系,可由静力平衡方程求出两杆内力。
如果为了提高构件安全性,再加一个杆,三杆内力还能由静力平衡方程求出吗?● 新课讲授一、 静定结构(一)提出问题1和2两杆组成桁架结构受力如图所示,角度已知,两杆抗拉刚度相同,2211A E A E =,求两杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程)⇒=∑0x 021=-ααSin F Sin F N N ⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,两个未知数,可以求解。
引出静定结构:约束反力(轴力)可以由静力平衡方程完全求出。
二、 超静定结构和超静定次数(一)继续提问在现实中为了增加构件的安全性,往往可以多加一个杆,在问题一的基础上在中间再加一个3杆,抗拉刚度为33A E ,如图所示,求3杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程) ①静平衡方程:平面汇交力系,只能列两个平衡方程⇒=∑0x21=-ααSin F Sin F N N⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,三个未知数,解不出。
引出超静定结构:约束反力(轴力)不能由静力平衡方程完全求出。
超静定次数:约束反力(轴力)多余平衡方程的个数。
上述问题属于一次超静定问题。
三、超静定结构的求解方法(一)继续提问,引导学生深入思考:超静定到底能不能求解?实际上F 一定,作用于每个杆上的力都是确定的。
还需再找一个补充方程,材料力学是变形体,受力会引起变形,力和力的关系看不出, 先把变形关系找到,再转化成力的关系。
(重点)②几何方程——变形协调方程:要找变形关系,关键是画变形图(难点)。
节点在中间杆上,左右两杆抗拉刚度相同,角度相同,即对称,因此中间杆仅沿竖直方向产生伸长,确定最终位置。
静定结构和超静定结构
第十章静定结构和超静定结构课题:第一节结构的计算简图[教学目标]一、知识目标:1、理解结构计算简图的作用和意义。
2、掌握结构计算简图基本的简化方法。
二、能力目标:通过对结构计算简图的讲解,提高学生分析问题的能力。
三、素质目标:培养学生善于区分事物的主要矛盾和次要矛盾[教学重点]1、支座的简化和节点的简化。
2、计算简图的概念和要求。
[难点分析]计算简图简化的原理。
[学生分析]学生由于缺乏实际工程知识,不太理解计算简图的作用以及这种分析方法。
[辅助教学手段]理论联系实际、分析、讨论的方法[课时安排]1课时[教学内容]一、导入新课何谓结构?结构的举例。
通过启发学生联系工程实例,理解结构的概念。
二、新课讲解1.结构的计算简图2.结构的计算简图应满足的要求(1)基本上反映结构的实际工作性能(2)计算简便3.实际结构的计算简图的简化(1)支座的简化三种形式;简支梁、阳台、柱的实例。
(2)节点的简化铰节点和刚节点的特点及其应用(3)构件的简化实际上是力学中杆件的简化(4)荷载的简化集中荷载和均布荷载三、讨论1 牛腿柱的计算简图2 雨蓬的计算简图四、小结在结构设计中,选定了结构的计算简图后,在按简图计算的同时,还必须采取相应的措施,以保证实际结构的受力和变形特点与计算简图相符。
五、作业思考题:1课题:第二节平面结构的几何组成分析[教学目标]一、知识目标:1、理解几何组成分析的作用和意义。
2、了解结构从几何组成的观点的分类。
3、了解结构几何组成分析的规则和方法。
4、了解静定结构和超静定结构的概念。
5、会对简单结构进行几何组成分析。
二、能力目标:通过对结构几何组成分析的讲解,提高学生分析问题的能力。
三、质目标:培养学生善于区分事物的主要矛盾和次要矛盾[教学重点]1、几何组成分析的意义和结果。
2、几何组成分析的方法。
[难点分析]结构几何组成分析的概念和方法都比较抽象,尤其是方法,学生学习起来比较困难。
讲解时,淡化理论,结合例题讲解。
超静定
l A
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
4l 4l 3 d11 = 3EI D 1F - Fl 3 = 2 EI
F X1
F
l 1
4)带入正则方程求解 3 X1 = F 8 4)做弯矩图
M = M 1 ?X 1 MF
例1, 试求图示梁的约束反力,设EI为常数. 试求图示梁的约束反力, EI为常数 为常数.
q A l B
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
骣 1 骣 鼢2 1 l3 珑l l = d11 = 珑 l鼢 桫 桫 EI 珑 鼢3 2 3EI D 1F
二,正则方程的建立
1,一次超静定问题的正则方程 力法求解静不定问题的关键——建立正则方程. 力法求解静不定问题的关键——建立正则方程.下 建立正则方程 面通过一例说明建立正则方程的步骤. 面通过一例说明建立正则方程的步骤. 图为车削工件安有尾顶针的简化模型. 图为车削工件安有尾顶针的简化模型.
力法求解过程如下: 力法求解过程如下:
第二节
用力法解超静定结构
一,力法
力法——以多余约束力为基本未知量 力法——以多余约束力为基本未知量,将变形或位移表 为基本未知量, 示为未知力的函数,通过变形协调条件作为补充方程求 示为未知力的函数, 来解未知约束力,这种方法称为力法 又叫柔度法 力法, 柔度法. 来解未知约束力,这种方法称为力法,又叫柔度法. 力法的基本思路: 力法的基本思路: 1,结构静定化 2,在未知力处 3,变形条件 4,正则方程 解除多余约束 建立 借助莫尔积分 解线性方程 静定基与相当系统 变形协调条件 补充方程(正则方程) 补充方程(正则方程) 未知力
静定超静定判断及计算
目的和意义
目的
理解静定与超静定的概念,掌握判断方法,能够进行相应的计算。
意义
在实际工程中,正确判断结构和系统的静定或超静定状态对于确保结构安全、节约材料和降低成本具有重要意义。
02
静定与超静定的基本概念
静定结构的定义
静定结构
在任何外界影响下,其平衡位置都是稳定的 ,且在受到微小扰动后能自动恢复到原来的 平衡状态。
内力计算的方法
静定结构的内力计算通常采用截面法或节点法进行。截面法是通过 截取结构的一部分进行分析,节点法则是对结构的节点进行受力分 析。
内力的表示方法
内力可以用实线和虚线表示,实线表示实际受力方向,虚线表示实际 受力反方向。
静定结构的位移计算
1
位移计算的意义
在结构分析中,位移是一个重要的参数 。通过计算位移,可以了解结构的变形 情况,从而评估结构的稳定性和安全性 。
本文的研究成果已被广泛应用于建筑、机械、航空航天等工程领 域,解决了众多实际工程问题,取得了显著的经济和社会效益。
对未来研究的展望
深入研究复杂结构体系
随着科技的发展,复杂结构体系在工程中越来越常见,未 来研究可进一步探讨复杂结构体系的静定与超静定问题, 提高工程结构的稳定性和安全性。
引入先进计算技术
计算公式
自由度数 = 刚片数 - 约束数。
判断标准
若自由度数等于0,则结构为静定;若自由度数不等于0,则结 构为超静定。
几何法判断
定义
几何法判断是指通过分析结构的几何形状来判断结构是否为静定或超静定的一种方法。
判断标准
若结构的几何形状满足静定结构的条件(即所有刚片都是相互平行的),则结构为静定;否则为超静 定。
01
超静定结构
l
A
B
l
q
D
2 )建立正则方程 1 (δ 11 + ) X 1 + ∆1P = 0 C
3 )求解 2 1 2 2l 3 δ11 = ( × l × l × × l) = EI 2 3 3EI 1 1 ql 2 2l 1 ql 2 3l ∆ 1P = − ( ×l × × + ×l × × ) EI 2 2 3 3 2 4 ∆ 1P 7 ql 4 7 ql =− X1 = − = (↑ ) 1 24 EI 24 δ11 + C 2 )据平衡条件,求得
ql 2 M C = M × X1 = 7
0 C
q
A
ql 2 7
X1
MP
ql 2 2
M
5ql 2 14
M A = M × X 1 − M PA
0 A
5 ql 2 =− 14
例14 − 2 − 4 画图示刚架的内力图。
q
D
q
C
X2
解:利用对称性,从CD中间
X1
EI
D K
剖开,由于结构对称,载荷 对称,故只有对称内力, 所以,X 3 = 0。
δ11
求得 X 1 后,则可解出相当系统所有内力、位移,此相当系统的解 即为原系统的解。
三、n次静不定的正则方程
可将上述思想推广到n次静不定系统,如解除n个多余约束后的未知多余 约束力为 X j ( j = 1,2,..., n ) 它们将引起 X i 作用点的相应的位移为 ∑ ∆ ij ,而原系统由 x j ( j = 1, K n) j =1 与外载荷共同作用对此位移限制为零(或已知),故有
P A C D n O B P (b) P A
14超静定结构
F
B
a
C
11 X1 1F 0
求解 1 F 积分法 F AB: M 1 ( x ) Fx
M 1(x) a
a
A
X1
B
C
x
x
F 1
BC:M 2 ( x ) 0
M 2 (x) x
A
1F
EI
1
a
0
M 1M 1dx
EI
1
a
0
M 2 M 2 dx
Fa
3
2
(拉 )
FN 3 FN 2
F cos 1 2 cos
3
(拉 )
例3 求图示钢架C处反力。
解:视C处为多余约束,用X1代替 q
B
a
C
11 X1 1F 0
求解 1 F 积分法
qx 2
2
a
X1
AB: M 1 ( x )
M 1(x) a
A B
C
x q
x
F 1
3 qa 8
第十四章 超静定结构
§14-1 超静定结构概述
一、静定结构与超静定结构 静定结构:全部反力和内力只用平衡条件便可确 定的结构。
F
A B B A
FCBiblioteka 超静定结构:仅用平衡条件不能确定全部反力和 内力的结构。
B A
F
A B
F
C
外力超静定问题 F
A
B
内力超静定问题
四、 静定基和相当系统
B A B A B A
BC:M 2 ( x ) 0
M 2 (x) x
1F
EI
超静定结构的概述
(a)
(b)
图 11-3
除上述主要特征外,超静定结构还具有整体性强、变形小、受力较为 均匀等特点,因而这种结构在实际工程中被广泛采用。例如,图11-4a 所 示的两跨连续梁较图11-4b 所示的两跨简支梁,在力 F 作用点处的弯矩和 挠度均为小。
(a) 静定结构
(b) 超静定结构
(c) 静定结构受力图
算上来说,静定结构的静力特征是用静力平衡条件就能求得全 部反力和内力;而超静定结构的静力特征是仅用静力平衡条件不能求得 全部反力和内力。例如,对图11-1a 所示的静定梁,其受力图如图11-1c 所示,梁的反力(FAx、FAy、FB)和内力(FN、FQ、M)分别由三个静 力平衡方程求得。 而对图 11-lb 所示的连续梁,其受力图如图 11-ld 所示, 梁的反力共有四个(FAx、FAy、Fx1、FB),其中Fx1称为多余约束所对应 的多余未知力,用三个静力平衡方程不可能将此四个反力全部求得,只 要有一个反力尚未确定,梁的内力就不能确定。因此,还须补充其他条 件,才能求解。
【例11-3】确定图11-13a 所示结构的超静定次数。
解:图11-13a 所示刚架,具有一个多余约束。若将横梁某处改为铰接, 即相当于去掉一个约束,得到如图11-13b 所示的静定结构,故原结构 n = l。
若去掉支座 B 处的水平支杆,则得图11-13c 所示的静定结构。 但是,若去掉支座 B 或支座 A 的竖向支杆,即成可变体系如图11-13d 所 示,显然这是不允许的,所以此刚架支座处的竖向支杆不能作为多余约束。
图 11-6
② 去掉一个单铰,相当于去掉两个约束 。 如图11-7a 所示的结构,去掉一个单铰而变成静定结构,如图11-7b 所示。 因 n = 2,故该结构为两次超静定 。
超静定结构内力计算
超静定结构内力计算首先,需要明确的是,超静定结构与静定结构的计算方法基本相同,都是通过力平衡和力矩平衡方程来计算结构内力。
下面以一简支梁为例,介绍超静定结构内力计算的方法。
假设有一简支梁,梁长为L,受到均布载荷q,支座A、B处有横向支撑。
我们需要计算梁上任意一点x处的弯矩和剪力。
首先,对于简支梁,力平衡方程可得:∑Fx=0=>RA+RB=0(1)∑Fy=0=>VA+VB-qL=0(2)力矩平衡方程可得:∑Mz=0=>-qLx+VBx=0(3)(x为横坐标)由以上方程可以得到:RA=-RB=-qL/2,VA=-VB=qL/2接下来,我们可以使用能量方法计算结构内力。
能量方法是利用结构所受外界实际工作等于内力做的虚功,通过对外界做功和结构内工作的平衡,求解得到内力。
我们将简支梁分解为多个力学小段,每一小段的长度为Δx。
考虑梁上一小段AB,以A点为起点,Δx位置为B点。
对这一小段,外界对结构所做的虚功为:δWext = -VAdy (4) (dy为小段长度)其中,结构内力V由能量方法得到。
结构内力杆件AB的内工作为:dU = VAdy (5)因为外界做的虚功等于内工作,可得:-δWext = dU将式(4)和式(5)代入上式,得:VAdy = -VAdy对上式进行积分,得:∫VAdy = -∫VAdy∫VAdy = -(∫VAdy)由于简支梁内力为常数,所以可以将其从积分符号中移出,得:V∫Ady = -V∫Ady即:VAΔy=-VAΔy可以看出,对于简支梁而言,外界虚功和结构内工作的积分是相等的。
通过上述分析,我们可以发现,能量方法实际上是在计算外界对结构做的虚功,而虚功就是外界力对结构的作用力乘以作用距离的积分。
所以能量方法的基本思想是通过积分计算外界对结构的虚功,然后根据虚功等于内工作的原理,推导出结构的内力。
总结起来,超静定结构的内力计算方法主要是使用力平衡和力矩平衡方程,利用能量方法计算结构内力。
大学工程力学试题及答案
大学工程力学试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是材料力学中的基本假设?A. 均匀性假设B. 连续性假设C. 各向同性假设D. 各向异性假设答案:D2. 梁的弯曲应力公式为:A. σ = (M/I) * (y/R)B. σ = (M/I) * (R/y)C. σ = (M/I) * (y/R)D. σ = (M/I) * (R/y)答案:C3. 弹性模量E的单位是:A. N/mB. N/m²C. PaD. J/m³答案:C4. 以下哪种材料不属于脆性材料?A. 玻璃B. 陶瓷C. 橡胶D. 混凝土答案:C5. 根据能量守恒定律,以下说法不正确的是:A. 机械能守恒B. 能量可以无中生有C. 能量可以转化为其他形式D. 能量守恒定律适用于所有物理过程答案:B6. 静定结构与超静定结构的主要区别在于:A. 材料种类B. 受力情况C. 几何形状D. 约束数量答案:D7. 以下哪种情况不属于平面力系的平衡条件?A. 合力为零B. 合力矩为零C. 合外力为零D. 合外力矩为零答案:C8. 梁的剪力图和弯矩图可以用来确定:A. 梁的变形B. 梁的内力C. 梁的自重D. 梁的外力答案:B9. 梁的挠度与弯矩之间的关系是:A. 线性关系B. 非线性关系C. 没有关系D. 反比关系答案:B10. 以下哪种方法不适用于解决超静定结构问题?A. 弯矩分配法B. 力法C. 位移法D. 能量法答案:A二、填空题(每题2分,共20分)1. 材料的弹性模量E与泊松比μ之间的关系是E = _______。
答案:2G(1+μ)2. 梁在纯弯矩作用下,其横截面上的应力分布为_______。
答案:线性分布3. 在静力平衡状态下,一个物体的合力为_______。
答案:零4. 材料力学中的胡克定律表明,在弹性范围内,材料的应力与应变之间存在_______关系。
答案:线性5. 梁的弯矩与截面的惯性矩I成_______关系。
1、静定结构与超静定结构静力计算公式(总结)
静定结构与超静定结构静力常用计算公式一、短柱、长柱压应力极限荷载计算公式1、短柱压应力计算公式荷载作用点轴方向荷载AF =σ bhF =σ 偏心荷载)1(21xY i ye A F W M A F -=-=σ )1(22xY i ye A F W M A F +=+=σ )61(2,1hebh F ±=σ 偏心荷载)1(22xy y x xx y Y i ye i xe A FI xM I x M A F ±±=⨯±⨯±=σ )661(beh ebh F yx ±±=σ长短柱分界点如何界定?2、长柱方程式及极限荷载计算公式 支座形式图 示方 程 式极限荷载 一般式 n=1两端铰支 β=1y a dxy d ∙=222 ax B ax A y sin cos +=y F M EIFa ∙==,2 EI ln 222π EI l 22π一端自由他端固定β=2y a dxyd ∙=222 ax B ax A y sin cos +=EI l n 2224)12(π-EI l 224πy F M EIFa ∙==,2 两端固定 β=0.50)(22=-+F M y a dxyd A FM ax B ax A y A++=sin cos A M y F M EIFa +∙-==,2 EI l 224π EI l 224π 一端铰支他端固定 β=0.75)(222x l EI Q y a dx y d -=∙+)(sin cos x l FQax B ax A y -++=水平荷载-=Q EIFa ,2 ——EI l227778.1π注:压杆稳定临界承载能力计算公式:EI l P cr 22)(βπ=二、单跨梁的反力、剪力、弯矩、挠度计算公式 1、简支梁的反力、剪力、弯矩、挠度计算公式荷载形式M 图V 图反力 2F R R B A == L Fb R A =L Fa R B =2qL R R B A == 4qL R R B A == 剪力V A =R A V B =-R B V A =R A V B =-R B V A =R A V B =-R BV A =R A V B =-R B弯矩4max FL M =LFabM =max 82maxqL M = 122maxqL M = 挠度EIFL 483max=ω 若a >b 时,3)2(932maxab a EIL Fb +=ω(在)2(3b a ax +=处) EIqL 84max=ω EIqL 1204max=ω 注:1、弯矩符号以梁截面下翼缘手拉为正(+),反之为负(—)。
静定结构知识点总结
静定结构知识点总结一、静定结构的概念静定结构是指在受到外力作用时,结构内部的各点处于静态平衡的结构。
换句话说,静定结构是一个力学模型,它受到有限个外力作用,但是通过构造支反力平衡方程可以唯一确定支座反力的结构。
静定结构的平衡条件可用以下两种方法表示:力平衡方程和力矩平衡方程。
1.力平衡方程对于一个受力作用的物体或结构,力平衡方程是最基本的平衡条件。
力平衡方程描述了作用在结构上的所有外力之和等于零。
力平衡方程的一般形式可以表示为:ΣF=0其中,ΣF表示作用在结构上的所有外力之和。
对于一个静定结构而言,只有n个未知的支反力需要确定,而且力平衡方程可以用来唯一确定这n个未知的支反力。
2.力矩平衡方程力矩平衡方程描述了作用在结构上的所有外力产生的力矩之和等于零。
力矩平衡方程通常表示为:ΣM=0其中,ΣM表示作用在结构上的所有外力产生的力矩之和。
力矩平衡方程可以用来判断结构是否受到扭转力的影响,并且可以用来确定支座的扭矩反力。
二、静定结构的原理静定结构问题是力学中的一个重要问题,其解决原理可以归纳为以下几个方面:1.平衡条件静定结构的平衡条件是基本原理。
在受到外力作用时,结构内部的各点处于静态平衡状态,即结构内力和外力的作用线都经过结构的重心,并且内力满足平衡条件和相互协调条件。
2.叠加原理叠加原理是静定结构分析的基本原理之一。
叠加原理是指一个结构在受到多个外力作用时,结构的响应可以被看作是各个外力单独作用时的响应之和。
这样可以简化分析过程,使问题的解决变得相对容易。
3.位移方法位移方法是一种常用的静定结构分析方法。
它是根据力学平衡条件和结构变形的关系,通过假设结构的位移形式,利用位移与受力的关系来求解结构的反力-位移关系。
常见的位移方法有假设位移法、能量法等。
4.变形协调条件变形协调条件是指结构在受力作用下的变形满足一定的条件。
在静定结构问题中,结构的变形必须满足变形协调条件,即结构的变形必须使得结构满足平衡条件,不会产生过度的变形。
静定结构超静定结构不同
静定结构超静定结构不同静定结构与超静定结构的不同1、静定结构是无多余约束的几何不变体;静定结构中,温度变化、支座移动等不会在结构中产生附加应力。
2、超静定结构是在静定结构的基础上增加了(多余)的约束;超静定结构会随温度变化及支座移动均可能在结构中产生附加应力。
附:机械设计通用的技术要求1.零件去除氧化皮。
2.零件加工表面上,不应有划痕、擦伤等损伤零件表面的缺陷。
3.去除毛刺飞边。
4.经调质处理,HRC50~55。
5.零件进行高频淬火,350~370℃回火,HRC40~45。
6.渗碳深度0.3mm。
7.进行高温时效处理。
8.未注形状公差应符合GB1184-80的要求。
9.未注长度尺寸允许偏差±0.5mm。
10.铸件公差带对称于毛坯铸件基本尺寸配置。
11.未注圆角半径R5。
12.未注倒角均为2×45°。
13.锐角倒钝。
14.各密封件装配前必须浸透油。
15.装配滚动轴承允许采用机油加热进行热装,油的温度不得超过100℃。
16.齿轮装配后,齿面的接触斑点和侧隙应符合GB10095和GB11365的规定。
17.装配液压系统时允许使用密封填料或密封胶,但应防止进入系统中。
18.进入装配的零件及部件(包括外购件、外协件),均必须具有检验部门的合格证方能进行装配。
19.零件在装配前必须清理和清洗干净,不得有毛刺、飞边、氧化皮、锈蚀、切屑、油污、着色剂和灰尘等。
20.装配前应对零、部件的主要配合尺寸,特别是过盈配合尺寸及相关精度进行复查。
21.装配过程中零件不允许磕、碰、划伤和锈蚀。
22.螺钉、螺栓和螺母紧固时,严禁打击或使用不合适的旋具和扳手。
紧固后螺钉槽、螺母和螺钉、螺栓头部不得损坏。
23.规定拧紧力矩要求的紧固件,必须采用力矩扳手,并按规定的拧紧力矩紧固。
24.同一零件用多件螺钉(螺栓)紧固时,各螺钉(螺栓)需交叉、对称、逐步、均匀拧紧。
25.圆锥销装配时应与孔应进行涂色检查,其接触率不应小于配合长度的60%,并应均匀分布。
2.7 静定结构与超静定结构
二、有多余约束的几何不变体系
有多余约束的几何不变 体系称为超静定结构 体系称为超静定结构
静力特征: 静力特征: 未知约束力的个数多于独立的静力平衡方程的个数, 未知约束力的个数多于独立的静力平衡方程的个数, 多于独立的静力平衡方程的个数 在任意已知荷载作用下, 在任意已知荷载作用下,其反力和内力仅由静力平衡条 件不能完全确定。 不能完全确定。
2.7 静定结构与超静定结构
一、无多余约束的几何不变体系
无多余约束的几何不变 体系称为静定结构 体系称为静定结构
静力特征: 静力特征: 未知约束反力的个数与独立的静力平衡方程的个数相等, 未知约束反力的个数与独立的静力平衡方程的个数相等, 约束反力的个数与独立的静力平衡方程的个数相等 在任意已知荷载作用下其全部反力和内力仅由静力平衡方 在任意已知荷载作用下其全部反力和内力仅由静力平衡方 程就能唯一确定。 程就能唯一确定。
All Rights Reserved
重庆大学土木工程学院®
All Rights Reserved 重庆大学土木工程学院®
四、几何瞬变体系
静力特征: 静力特征: 静力平衡方程个数与未知约束力的个数相等; 静力平衡方程个数与未知约束力的个数相等; 在一般荷载作用下, 在一般荷载作用下,体系不可能在原始位置保 持平衡,因而反力、内力无解。当它发生微小位移 持平衡,因而反力、内力无解。 后,体系会产生很大的反力和内力,将导致体系发 体系会产生很大的反力和内力, 生破坏。 生破坏。 在特定荷载作用下, 在特定荷载作用下,体系的反力和内力是超静 定的。 定的。
ቤተ መጻሕፍቲ ባይዱ
All Rights Reserved
超静定结构的受力分析及特性超静定结构的特征及超静定
第四节超静定结构的受力分析及特性一、超静定结构的特征及超静定次数超静定结构的几何特征是除了保证结构的几何不变性所必须的约束外,还存在多余约束。
超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。
结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。
通常采用去除多余约束的方法来确定结构的超静定次数。
即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。
去除约束的方法有以下几种:(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。
(二)切断一根两端刚接的杆件,相当于去除三个约束。
(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。
(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。
去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。
去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。
再用其他去除多余约束的方案确定其超静定次数,结果是相同的。
(a)(b)图4-1二、力法的基本原理(一)力法基本结构和基本体系去除超静定结构的多余约束,代以相应的未知力X i (i=1、2、…、n),X i 称为多余未知力或基本未知力,其方向可以任意假定。
去除多余约束后的结构称为力法基本结构。
力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。
选取力法基本结构应注意下面两点:1.基本结构一般为静定结构,即无多余约束的几何不变体系。
有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。
静定结构和超静定结构的优缺点及工程应用
静定结构和超静定结构优缺点及工程应用一、静定结构和超静定结构概念静定结构与超静定结构都是几何不变体系。
在几何结构方面, 二者不一样在于: 静定结构无多出联络, 而超静定结构则含有多出联络。
有多出约束( n > 0)几何不变体系——超静定结构;无多出约束( n = 0)几何不变体系——静定结构。
静定结构──几何特征为无多出约束几何不变, 是实际结构基础。
因为静定结构撤销约束或不合适更改约束配置能够使其变成可变体系, 而增加约束又能够使其成为有多出约束不变体系(即超静定结构)。
静定结构约束反力或内力均能经过静力平衡方程求解, 也就是说, 其未知约束反力或内力数目等于独立静力平衡方程数目。
静定结构在工程中被广泛应用, 同时是超静定结构分析基础。
超静定结构——几何特征为几何不变但存在多出约束结构体系, 是实际工程常常采取结构体系。
因为多出约束存在, 使得该类结构在部分约束或连接失效后仍能够负担外荷载, 但需要注意是, 此时超静定结构受力状态与以前是大不一样, 假如需要话, 要重新核实。
因为其结构中有不需要多出联络, 所以所受约束反力或内力仅凭静力平衡方程不能全部求解, 也就是未知力数目多于独立静力平衡方程个数。
二、静定结构基础特征及优缺点1、静定结构是几何不变体系, 无多出约束, 全部支座反力和内力只要用静力平衡条件就能确定, 而且解答是唯一。
2、静定结构支座反力和内力与结构所用材料性质、截面大小和形状都没相关系。
3、静定结构在温度改变、支座移动、材料伸缩和制造误差等原因影响下, 都不产温度变化(自由地产生弯曲变形,不产生内力)支座移动(刚体位移,不产生内力)制造误差生制作反力和内力。
即没有荷载作用在静定结构上时, 支座反力均为零, 所以内力也均为零。
4、静定结构局部平衡特征在一组平衡力系作用下, 假如静定结构中某一几何不变部分能够与荷载平衡, 则只会是该部分产生内力, 其它部分支座反力和内力均为零。
静定结构超静定结构不同
65.补焊区及坡口四周 20mm 以内的粘砂、油、水、锈等脏物必
气或其他方法清晰管子内壁附着的杂物和浮锈。
需彻底清理。
59.装配前,全部钢管〔包括预制成型管路〕都要进行脱脂、酸
66.在补焊的全过程中,铸钢件预热区的温度不得低于 350°C。
魏
第4页共5页
本文格式为 Word 版,下载可任意编辑
67.在条件允许的状况下,尽可能在水平位置施焊。
38.齿轮〔蜗轮〕基准端面与轴肩〔或定位套端面〕应贴合,用
去除洁净。
0.05mm 塞尺检查不入。并应保证齿轮基准端面与轴线的垂直度要求。
47.铸件有倾斜的部位、其尺寸公差带应沿倾斜面对称配置。
39.齿轮箱与盖的结合面应接触良好。
48.铸件上的型砂、芯砂、芯骨、多肉、粘沙等应铲磨平整,清
40.组装前严格检查并去除零件加工时残留的锐角、毛刺和异物。 理洁净。
36.球面轴承的轴承体与轴承座应匀称接触,用涂色法检查,其
符合图样要求。
接触不应小于 70%。
44.铸件非加工外表的粗糙度,砂型铸造 R,不大于 50μm。
37.合金轴承衬外表成黄色时不准使用,在规定的接触面内不准
45.铸件应去除浇冒口、飞刺等。非加工外表上的浇冒口残留量
有脱衬象,在接触面以外的脱衬面积不得大于非接触区总面积的 10%。 要铲平、磨光,到达外表质量要求。46.铸件上的型砂、芯砂和芯骨应
77.加工的螺纹外表不允许有黑皮、磕碰、乱扣和毛刺等缺陷。
缩孔和严重的ቤተ መጻሕፍቲ ባይዱ折。
78、发蓝、变色的现象。</P
71.锻件应在有足够能力的锻压机上锻造成形,以保证锻件内部
充分锻透。
72.锻件不允许有肉眼可见的裂纹、折叠和其他影响使用的外观
常见的超静定结构形式
常见的超静定结构形式
1. 平衡树:平衡树是一种特殊的二叉查找树,它在每个节点左右子树的高度最多相差一,也就是说每个节点的子树中叶子节点分布平衡,它可以在O(logN)时间内完成插入,删除,查找操作。
2. AVL树:AVL树也是一种特殊的二叉查找树,它具有以下特性:1)每个节点的左右子树的高度最多相差1;2)每个节点的左右子树的高度最多相差1;3)它可以在O(logN)时间内完成插入,删除,查找操作。
3. 红黑树:红黑树也是一种特殊的二叉查找树,它具有以下特性:1)每个节点的左右子树的高度相等;2)每个节点的子节点不允许相互交叉;3)它可以在
O(logN)时间内完成插入,删除,查找操作。
4. 哈夫曼树:哈夫曼树是一种最优查找树,它的每个节点的权重符合最优性原理。
哈夫曼树的最坏情况的查找时间复杂度是O(logN)。
;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静定结构与超静定结构的几何特征和静力特性 一、几何特征
1、静定结构——几何不变且无多余约束的体系。 、静定结构 几何不变且无多余约束的体系。 几何不变且无多余约束的体系 2、超静定结构——几何不变但有多余约束的体系。 、超静定结构 几何不变但有多余约束的体系。 几何不变但有多余约束的体系
聊城大学建筑工程学院
Hale Waihona Puke 二、静力特性1、静定结构 — 其杆件内力(包括反力)可由静力平衡 、 其杆件内力(包括反力) 条件惟一确定。 条件惟一确定。 2、超静定结构—其杆件内力(包括反力)由静力平衡条 、超静定结构 其杆件内力(包括反力) 其杆件内力 件还不能惟一确定, 必须同时考虑变 件还不能惟一确定,而必须同时考虑变 形条件才能惟一确定