2013年全国高考数学 试题分类汇编7 立体几何

合集下载

2013年全国高考理科数学试题分类汇编7:立体几何-推荐下载

2013年全国高考理科数学试题分类汇编7:立体几何-推荐下载

的坐标分别是 (1,0,1),(1,1,0),(0,1,1),(0,0,0) ,画该四面体三视图中的正视图时,以 zOx 平面为投影面,则得到
正视图可以为
A.
B.
【答案】A 15..(2013 年普通高等学校招生统一考试安徽数学(理))在下列命题中,不是公理的是
C.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年全国高考文科数学 :立体几何

2013年全国高考文科数学 :立体几何

2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题错误!未指定书签。

.(2013年高考重庆卷 )某几何体的三视图如题(8)所示,则该几何体的表面积为( )A .180B .200C .220D .240错误!未指定书签。

.(2013年高考大纲卷)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23BCD .13【答案】A错误!未指定书签。

.(2013年高考浙江卷 )已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是A .108cm 3B .100 cm 3C .92cm 3D .84cm 3错误!未指定书签。

.(2013年高考北京卷 )如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有 ( ) A .3个B .4个C .5个D .6个错误!未指定书签。

.(2013年高考湖南 )已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个的矩形,则该正方体的正视图的面积等于______ ( )A B .1 C D错误!未指定书签。

.(2013年高考浙江卷 )设m.n 是两条不同的直线,α.β是两个不同的平面, ( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β错误!未指定书签。

.(2013年高考辽宁卷 )已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A B .C .132D .错误!未指定书签。

.(2013年高考广东卷 )设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 ( )1A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥错误!未指定书签。

2013年全国各地高考文科数学试题分类汇编7:立体几何含答案

2013年全国各地高考文科数学试题分类汇编7:立体几何含答案

2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( ) A.B.C.D.【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ()A .23B .33C .23D .13【答案】A5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是 ( )A .棱柱B .棱台C .圆柱D .圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3 【答案】B7 .(2013年高考北京卷(文))如图,在正方体1111ABCD A B C D 中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(非选择题 共110分) 【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是1D1BPD 1CCBA1A图 2俯视图侧视图正视图 ( )A .16B .13C .23D .1【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,的矩形,则该正方体的正视图的面积等于______ ( )AB .1 CD 【答案】D10.(2013年高考浙江卷(文))设m 。

2013年高考试题分类汇编(立体几何)

2013年高考试题分类汇编(立体几何)

2013年高考试题分类汇编(立体几何)考点1 公理体系1.(2013·新课标卷Ⅱ·理科)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,l α⊄,l β⊄,则 A.α∥β且l ∥α B.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l 2.(2013·广东卷·理科)设,m n 是两条不同的直线,αβ,是两个不同的平面,下列命题中正确的是A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊂,m n ∥,n β∥,则αβ⊥ 3.(2013·安徽卷·理科)在下列命题中,不是公理..的是 A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.(2013·江西卷·理科)如图,正方体的底面与正四面体的底面 在同一平面α上,且AB ∥CD ,正方体的六 个面所在的平面与直线CE ,EF 相交的平面 个数分别记为,m n ,那么m n += A.8 B.9 C.10 D.11考点2多面体1.(2013·江苏卷)如图,在三棱柱ABC C B A -111中, F E D ,,分别是AB ,AC ,1AA 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .ABC1ADEF1B1CABCDEFα2.(2013·江苏卷)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点. 求证:(Ⅰ)平面EFG ∥平面ABC ;(Ⅱ)SA BC ⊥.3.(2013·北京卷·理科)如图,在棱长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在线段1D E 上,点P 到直线1CC 的 距离的最小值为 .4.(2013·北京卷·文科)如图,在正方体1111ABCD A BC D-中,P 为对角线1BD 的三等分点,P 到各顶点的距离的不同取值有 A.3个 B.4个 C.5个 D.6个5.(2013·辽宁卷·文科)如图,如图,AB 是圆的直径,PA 垂直圆O 所在的平面,C 是圆上的点.(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)设Q 为的中点,G 为的AOC ∆重心, 求证:平面∥平面PCB .考点3 旋转体1.(2013·新课标卷Ⅰ·文科)已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为____. 2.(2013·全国大纲卷·理科)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =且圆O 与圆K 所在的平面所成的角为60,则球O 的表面积等于 .A BCSG FE AB 1 BC DA 1C 1D 1P A BCDA 1B 1C 1D 1P B考点4 组合体1.(2013·新课标卷Ⅰ·理科)如图,容器高8cm 面恰好接触水面时测得水深为6cm 则球的体积为 A.35003cm π B.38663cm πC.313723cm πD.320483cm π2.(2013·新课标卷Ⅱ·文科)已知正四棱锥O ABCD -的体积为2,底面边O 为球心,OA 为半径的球的表面积为________.3.(2013·天津卷·文科)已知一个正方体的所有顶点在一个球面上,若球的体积为92π,则正方体的棱长为 .4.(2013·辽宁卷·理科)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为A B . C .132 D .考点5解答题考法1 线线所成的角 考法2 线面所成的角1.(2013·全国大纲卷·文理科)已知正四棱柱1111ABCD A BC D -中,12AA AB =,CD 与平面1BDC 所成角的正弦值等于A.23 C.3D.13 2.(2013·山东卷·理科)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为A.512π B.3π C.4π D.6π 3.(2013·新课标卷Ⅰ·理科)如图,三棱柱111ABC A B C -中,CA CB =,4.(2013·浙江卷·文科)如图,在在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==PA =120ABC ∠=,G 为线段PC 上的点.(Ⅰ)证明:BD ⊥面PAC ;(Ⅱ)若G 是PC 的中点,求DG 与PAC 所成的角的正切值;(Ⅲ)若G 满足PC ⊥面BGD ,求PGGC 的值.5.(2013·天津卷·理科)如图,四棱柱1111ABCD A BC D -中,侧棱1AA ⊥底面ABCD ,AB ∥DC ,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明11B C CE ⊥(Ⅱ)求二面角11B CE C --的正弦值.(Ⅲ)设点M 在线段1C E 上,且直线AM 与平面11ADD A ,求线段AM 的长.6.(2013·天津卷·文科)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,且各棱长均相等.,,D E F 分别为棱AB ,BC ,11AC 的中点. (Ⅰ)证明EF ∥平面1ACD ; (Ⅱ)证明平面1ACD ⊥平面11A ABB ; (Ⅲ)求直线BC 与平面1ACD 所成角的正弦值 AC BDPG AB CDEA 1B 1C 1D 1BAC D EF A 1B 1C 17.(2013·福建卷·理科)如图,在四棱柱1111ABCD A BC D -中,侧棱⊥1AA底面ABCD ,)0(,6,5,4,3,1,//1>=====k k DC kBC k AD k AB AA DC AB (Ⅰ)求证:⊥CD 平面11A ADD(Ⅱ)若直线1AA 与平面C AB 1所成角的正弦值为76, 求k 的值8.(2013·湖南卷·理科)如图,在直棱柱1111ABCD A BC D -中,AD ∥BC , 90BAD ∠=,AC BD ⊥,1BC =,13AD AA ==.(Ⅰ)证明:1AC B D ⊥;(Ⅱ)求直线11B C 与平面1ACD 所成角的正弦值.考法3 二面角1.(2013·辽宁卷·理科)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是3.(2013·全国大纲卷·理科)如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB ∆与PAD ∆都是等边三角形.(Ⅰ)证明:PB CD ⊥;ADPABCDA 1B 1C 1D 1B 1 BCDA 1C 1D 1A(Ⅱ)求二面角A PD C --的大小.4.(2013·山东卷·理科)如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,D ,C ,E ,F 分别是AQ ,BQ , AP ,BP 的中点,2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ)求证:AB ∥GH ;(Ⅱ)求二面角D GH E --的余弦值.5.(2013·北京卷·理科)如图,在三棱柱111ABC A B C -中,11AAC C 是边长为4的正方形.平面ABC ⊥平面11AAC C ,3AB =,5BC =. (Ⅰ)求证:1AA ⊥平面ABC ; (Ⅱ)求二面角111A BC B --的余弦值;(Ⅲ)证明:在线段1BC 存在点D ,使得1AD A B ⊥,并求1BDBC 的值. 6.(2013·陕西卷·理科)如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1AO ⊥平面ABCD ,1AB AA =(Ⅰ)证明:1AC ⊥平面11BB D D ; (Ⅱ)求平面11OC B 与平面11BB D D 的夹角θ的大小. 考法4 距离或体积1. (2013·新课标卷Ⅰ·文科)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.ABCDEFGH PQA BCA 1B 1C 12.(2013·新课标卷Ⅱ·文科)如图,直三棱柱111ABC A B C -中,,D E 分别是AB ,1BB 的中点.(Ⅰ)证明:1BC ∥平面1ACD ; (Ⅱ)设12AA AC CB ===,AB =求三棱锥1C ADE -的体积. 3.(2013·全国大纲卷·文科)如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB ∆与PAD ∆都是边长为2的等边三角形.(Ⅰ)证明:PB CD ⊥; (Ⅱ)求点A 到PCD 平面的距离.4.(2013·安徽卷·文科)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=,已知2PB PD ==,PA =(Ⅰ)证明:PC BD ⊥; (Ⅱ)若E 为PA 的中点, 求三菱锥P BCE -的体积.5.(2013·福建卷·文科)如图,在四棱柱P ABCD -中,PD ⊥平面ABCD ,AB ∥DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(Ⅰ)当正视方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图(要求标出尺寸,并写出演算过程);(Ⅱ)若M 为PA 的中点,求证:求二面角DM ∥平面PBC . (Ⅲ)求三棱锥D PBC -的体积.6.(2013·陕西卷·文科)如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,ABCDA 1B 1C 1 EABCDPCABCDP1AO ⊥平面ABCD,1AB AA =(Ⅰ)证明:1A BD ∥平面11CD B ; (Ⅱ)求三棱柱111ABD A B D -的体积.7.(2013·湖南卷·文科)如图,在直菱柱111ABC A B C -中,90ABC ∠=,AB AC ==13AA =,D 是BC 的中点,点E 在菱1BB 上运动.(Ⅰ)证明:1AD C E ⊥;(Ⅱ)当异面直线AC ,1C E 所成的角 为60时,求三菱锥111C AB E -的体积.8.(2013·江西卷·文科)如图,直四棱柱1111ABCD A BC D -中,AB ∥CD ,AD AB ⊥,2AB =,AD =,13AA =,E 为CD 上一点,1DE =,3CE =(Ⅰ)证明:BE ⊥平面11BB C C ; (Ⅱ)求点1B 到平面11EAC 的距离.ABCD A 1B 1C 1D 1OAB CDEA 1B 1C 1ACDA 1B 1C 1D 1E。

2013年全国高考理科数学考试试题分类汇编7:立体几何

2013年全国高考理科数学考试试题分类汇编7:立体几何

2013年全国高考理科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm πD .320483cm π【答案】A2 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D3 .(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .3C .3D .13【答案】A5 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A6 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<< B.1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C7 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1BC .2D .2【答案】C8 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6【答案】B9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则 ( )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D10.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,的正三角形.若P 为底面111A B C的中心,则PA 与平面ABC所成角的大小为( )A .512πB .3πC .4πD .6π【答案】B11.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为 ( )A .5603B .5803C .200D .240正视图俯视图侧视图第5题图【答案】C12.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为 ( )A B .C .132D .【答案】C13.(2013年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且ABCD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11【答案】A14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A .B .C .D .【答案】A15.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 【答案】A16.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A17.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是【答案】D 二、填空题18.(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【答案】2216ππ+.19.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3π_____.【答案】3π 20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60,则球O 的表面积等于______.【答案】16π21.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E上,点P 到直线CC 1的距离的最小值为__________.【答案】51B22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2423.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】2424.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,SA BCADEF BC【答案】①②③⑤25.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-26.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π27.(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______【答案】3π三、解答题28.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;D 1 C 1 B 1A 1D C AB(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值【答案】29.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】1.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图,圆锥顶点为p.底面圆心为o,其母线与底面所成的角为22.5°.AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.(Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠.【答案】解: (Ⅰ) PAB P D ,////C m AB CD CD PCD AB PCD ⋂=⊂⇒设面面直线且面面//AB m ⇒直线 ABCD m ABCD AB 面直线面//⇒⊂ . 所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ) rPOOPF F CD r =︒︒=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ︒-︒=︒∠==︒⋅︒⇒=︒5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[21cos ,1-25.22tan 12cos 2cos 22-==+∠=︒⇒-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以.法二:1.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCDA -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;ABCDPQM(第20题图)方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////P OQ H P Q O H ∴,且OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以C H G ∠就是C B M D--的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===, 在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在R T B H G ∆中,2133HG α=∴=,所以在RT CHG ∆中tan tan 6033CGCHG HG ∠==== tan (0,90)6060BDC ααα∴=∈∴=∴∠=;2.(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==,从而2ABC S ∆==因此该三棱柱的体积为16ABC V S AA ∆=⋅==3.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC 同理:FG∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SABAF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SAABCSGFEB 1A 1C 1ACB4.(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,11AC DC AD ===,故132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.5.(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(I)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.【答案】解:(I)EF AC ,AC ABC ⊆平面,EF ABC ⊆平面EF ABC ∴平面第19题图⊆平面又EF BEF∴EF l∴平面l PAC(II)连接DF,用几何方法很快就可以得到求证.(这一题用几何方法较快,向量的方法很麻烦,特别是用向量不能方便的表示角的正弦.个人认为此题与新课程中对立体几何的处理方向有很大的偏差.)6.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===.CO BDEA CDOBE'A图1图2连结,OD OE ,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故2OH =,从而2AH '== 所以cos OH A HO A H '∠=='所以二面角A CD '--.向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-+=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,53n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦值为5.7.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2,E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;C D OBE'AH(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1, 求线段AM的长.【答案】8.(2013年高考新课标1(理))如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.【答案】(Ⅰ)取AB 中点E,连结CE,1A B ,1A E,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB, ∵CA=CB, ∴CE⊥AB, ∵1CE A E ⋂=E,∴AB⊥面1CEA,∴AB⊥1AC ;(Ⅱ)由(Ⅰ)知EC⊥AB,1EA ⊥AB,又∵面ABC⊥面11ABB A ,面ABC∩面11ABB A =AB,∴EC⊥面11ABB A ,∴EC⊥1EA ,∴EA,EC,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA |为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A(0,,0),C(0,0,),B(-1,0,0),则BC1BB =1AA),1A C设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧∙=⎪⎨∙=⎪⎩n n ,即0x x ⎧+=⎪⎨+=⎪⎩,可取n,1,-1), ∴1cos ,A C n =11|A C A C ∙n |n ||∴直线A 1C 与平面BB1C 1C9.(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.1A【答案】解:(Ⅰ) BD O A ABCD BD ABCD O A ⊥∴⊂⊥11,,面且面 ;又因为,在正方形AB CD中,BD C A AC A C A AC A BD A AC O A BD AC ⊥⊂⊥=⋂⊥11111,,故面且面所以;且. 在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在O E C A OCE A E D B 1111111⊥为正方形,所以,则四边形的中点为设. [来源:学_科_网],所以由以上三点得且,面面又O O BD D D BB O D D BB BD =⋂⊂⊂111111E .E ,D D BB C A 111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O 为原点,以OC 为X 轴正方向,以OB 为Y 轴正方向.则)1,0,1()1,1,1(),100(),001(,0,1,0111-=⇒A B A C B ,,,,)(.由(Ⅰ)知, 平面BB 1D 1D 的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OB A n 设平面OCB 1的法向量为,则0,0,2122=⋅=⋅n OB n n ).1-,1,0(法向量2=n 为解得其中一个21221|||,cos |cos 212111=⋅=⋅=><=n n n n θ. 所以,平面OCB 1与平面BB 1D 1D 的夹角θ为3π1A10.(2013年高考江西卷(理))如图,四棱锥P A B-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 与平面DCP 的夹角的余弦值.【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====,故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG .(3) 以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(2A B C D ,(4)3(0,0,)2P ,故133333(0),(,),(2222BC CP CD ==--=-,,,设平面BCP 的法向量111(1,,)n y z =,则11110233022y y z ⎧=⎪⎪⎨⎪-+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,)3n =. 设平面DCP 的法向量222(1,,)n y z =,则2223233022y y z ⎧-=⎪⎪⎨⎪-+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,即2n =.从而平面BCP 与平面DCP 的夹角的余弦值为12124cos 416n n n n θ⋅===. 11.(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.[来源:学,科,网](Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.1C【答案】解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC 在平面1A BC 内,由直线与平面平行的判定定理可知, l //平面1A BC .由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交,所以直线平面11ADD A()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1A M AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --的平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==. 又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AA P 中, 12A P =;在1Rt A AM中, 1AM =从而,11AA AP AE A P ∙==11AA AM AF A M ∙==,所以sin AE AF θ==.所以cos θ===. 故二面角1A A M N --解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,A E A D ,1AA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,1,,12222M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以131,12A M ⎛⎫= ⎪⎪⎝⎭,()10,0,1A A =,()3,0,0NM =.设平面1AA M 的一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩即11110,0,n A M n A A ⎧∙=⎪⎨∙=⎪⎩故有 ()()()1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫∙=⎪⎪ ⎪⎨⎝⎭⎪∙=⎩ 从而111110,20.y z z ++=⎪=⎩取11x =,则1y =所以()11,n =. 设平面1A MN 的一个法向量为()2222,,n x y z =,则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩即2120,0,n A M n NM ⎧∙=⎪⎨∙=⎪⎩故有()())2222221,,,10,2,,0,x y z x y z ⎧⎫∙=⎪⎪⎪⎪⎝⎭⎨⎪∙=⎪⎩从而222210,220.x y z ++=⎨⎪=⎩取22y =,则21z =-,所以()20,2,1n =-. 设二面角1A A M N --的平面角为θ,又θ为锐角,则1212cos 5n n n n θ∙===∙.故二面角1A A M N -- 12.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.如图,在直三棱柱111A B C ABC -中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点 (1)求异面直线B A 1与D C1所成角的余弦值 (2)求平面1ADC 与1ABA 所成二面角的正弦值.【答案】本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力.解:(1)以{}1,,AA 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=B A ,)4,1,1(1--=B A∴10103182018,cos 11==>=<C A ∴异面直线B A 1与D C 1所成角的余弦值为10103 (2))0,2,0(=AC 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x m =,∵)0,1,1(=AD ,)4,2,0(1=AC 由1,AC ⊥⊥ ∴⎩⎨⎧=+=+0420z y y x 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=设平面1ADC 与1ABA 所成二面角为θ∴32324,cos cos =⨯-==><=m AC θ, 得35sin =θ ∴平面1ADC 与1ABA 所成二面角的正弦值为3513.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四棱锥P ABCD-中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形. (I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,AQ BQ AP BP 的中点,2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ)求证:AB GH ; (Ⅱ)求二面角D GH E --的余弦值. 【答案】解:(Ⅰ)证明:因为,,,D C E F 分别是,,,AQ BQ AP BP 的中点,所以EF ∥AB ,DC ∥AB ,所以EF ∥DC ,又EF ⊂平面PCD ,DC ⊂平面PCD ,所以EF ∥平面PCD ,又EF ⊂平面EFQ ,平面EFQ平面PCD GH =,所以EF ∥GH ,又EF ∥AB ,所以AB ∥GH . (Ⅱ)解法一:在△ABQ 中, 2AQ BD =,AD DQ =,所以=90ABQ ∠,即AB BQ ⊥,因为PB ⊥平面ABQ ,所以AB PB ⊥,又BP BQ B =,所以AB ⊥平面PBQ ,由(Ⅰ)知AB ∥GH ,所以GH ⊥平面PBQ ,又FH ⊂平面PBQ ,所以GH FH ⊥,同理可得GH HC ⊥,所以FHC ∠为二面角D GH E --的平面角,设2BA BQ BP ===,连接PC ,在t R △FBC 中,由勾股定理得,FC =在t R △PBC 中,由勾股定理得,PC =又H 为△PBQ 的重心,所以133HC PC == 同理3FH =,在△FHC 中,由余弦定理得552499cos 5529FHC +-∠==-⨯,即二面角D GH E --的余弦值为45-. 解法二:在△ABQ 中,2AQ BD =,AD DQ =,所以90ABQ ∠=,又PB ⊥平面ABQ ,所以,,BA BQ BP 两两垂直,以B 为坐标原点,分别以,,BA BQ BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,设2BA BQ BP ===,则(1,0,1)E ,(0,0,1)F ,(0,2,0)Q ,(1,1,0)D ,(0,1,0)C (0,0,2)P ,,所以(1,2,1)EQ =--,(0,2,1)FQ =-,(1,1,2)DP =--,(0,1,2)CP =-,设平面EFQ 的一个法向量为111(,,)m x y z =,由0m EQ ⋅=,0m FQ ⋅=,得111112020x y z y z -+-=⎧⎨-=⎩取11y =,得(0,1,2)m =.设平面PDC 的一个法向量为222(,,)n x y z =由0n DP ⋅=,0n CP ⋅=,得222222020x y z y z --+=⎧⎨-+=⎩取21z =,得(0,2,1)n =.所以4cos ,5m n m n m n ⋅==因为二面角D GH E --为钝角,所以二面角D GH E --的余弦值为45-.15.(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值.【答案】解:(Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。

(2014年高考必备)2013年全国各地高考理科数学立体几何

(2014年高考必备)2013年全国各地高考理科数学立体几何

2013年全国高考理科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm πB .38663cm πC .313723cm πD .320483cm π【答案】A2 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D3 .(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B C D .13【答案】A5 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A6 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<< B.1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C7 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B C D 【答案】C8 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6【答案】B9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则 ( )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D10.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,.若P 为底面111A B C 的中心,则PA 与平面ABC所成角的大小为( )A .512πB .3πC .4πD .6π【答案】B11.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为 ( )A .5603B .5803C .200D .240正视图俯视图侧视图第5题图【答案】C12.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A B .C .132D .【答案】C13.(2013年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11【答案】A14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A .B .C .D .【答案】A15.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是 ( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 【答案】A 16.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A 17.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是【答案】D 二、填空题18.(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48ππ,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【答案】2216ππ+.19.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3π_____.【答案】3π 20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O 和圆K 是球O的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60 ,则球O 的表面积等于______.【答案】16π21.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E上,点P 到直线CC 1的距离的最小值为__________.【答案】 22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2423.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】2424.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A BC D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S的面积为2【答案】①②③⑤25.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.A BCADEF BC【答案】1616π-26.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π27.(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A BC D -中,异面直线1A B 与1B C 所成角的大小为_______【答案】3π三、解答题28.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB【答案】29.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】1.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图,圆锥顶点为p.底面圆心为o,其母线与底面所成的角为22.5°.AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.(Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠.【答案】解: (Ⅰ) PAB P D ,////C m AB CD CD PCD AB PCD ⋂=⊂⇒ 设面面直线且面面//AB m ⇒直线 ABCD m ABCD AB 面直线面//⇒⊂ . 所以,ABCD D P PAB的公共交线平行底面与面面C . (Ⅱ) rPOOPF F CD r =︒︒=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ︒-︒=︒∠==︒⋅︒⇒=︒5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[21cos ,1-25.22tan 12cos 2cos 22-==+∠=︒⇒-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以.法二:1.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;ABCDPQM(第20题图)方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////P O Q H P Q O H∴,且OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以C H G ∠就是C B M D --的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===, 在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在R T B H G ∆中, 13HG =∴=,所以在RT CHG ∆中tan tan 60CG CHG HG ∠====tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;2.(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==,从而24ABC S BC ∆==因此该三棱柱的体积为16ABC V S AA ∆=⋅==3.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC 同理:FG∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SABAF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA4.(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面ABCS GFEB 1A 1C 1ACBDA 1C,并求直线BC 1到平面D 1AC 的距离.C 11【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1ADC ∆中,11AC DC AD ===故132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.5.(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(I)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.【答案】解:(I)EFAC ,AC ABC ⊆平面,EF ABC ⊆平面EF ABC ∴ 平面又EF BEF ⊆平面EF l ∴第19题图平面l PAC(II)连接DF,用几何方法很快就可以得到求证.(这一题用几何方法较快,向量的方法很麻烦,特别是用向量不能方便的表示角的正弦.个人认为此题与新课程中对立体几何的处理方向有很大的偏差.)6.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===.CO BDEA CDOBE'A图1图2连结,OD OE ,在OCD ∆中,由余弦定理可得OD==由翻折不变性可知A D '=所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故OH =,从而AH '==所以cos OH A HO A H '∠=='所以二面角A CD B '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--.7.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2,E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.C D OBE'AH(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1, 求线段AM的长.【答案】8.(2013年高考新课标1(理))如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.【答案】(Ⅰ)取AB 中点E,连结CE,1A B ,1A E,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB, ∵CA=CB, ∴CE⊥AB, ∵1CE A E ⋂=E,∴AB⊥面1CEA,∴AB⊥1AC ;(Ⅱ)由(Ⅰ)知EC⊥AB,1EA ⊥AB,又∵面ABC⊥面11ABB A ,面ABC∩面11ABB A =AB,∴EC⊥面11ABB A ,∴EC⊥1EA ,∴EA,EC,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA|为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A(0,,0),C(0,0,),B(-1,0,0),则BC1BB =1AA),1AC),设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧∙=⎪⎨∙=⎪⎩n n ,即0x x ⎧+=⎪⎨+=⎪⎩,可取n,1,-1), ∴1cos ,A C n =11|A C A C ∙n |n||∴直线A 1C 与平面BB 1C 1C9.(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA =(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.1A【答案】解:(Ⅰ) BD O A ABCD BD ABCD O A ⊥∴⊂⊥11,,面且面 ;又因为,在正方形AB CD中,BD C A AC A C A AC A BD A AC O A BD AC ⊥⊂⊥=⋂⊥11111,,故面且面所以;且. 在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在O E C A OCE A E D B 1111111⊥为正方形,所以,则四边形的中点为设. [来源:学_科_网],所以由以上三点得且,面面又O O BD D D BB O D D BB BD =⋂⊂⊂111111E .E ,D D BB C A 111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O 为原点,以OC 为X 轴正方向,以OB 为Y 轴正方向.则)1,0,1()1,1,1(),100(),001(,0,1,0111-=⇒A B A C B ,,,,)(.由(Ⅰ)知, 平面BB 1D 1D 的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OC OB C A n 设平面OCB 1的法向量为,则0,0,2122=⋅=⋅n OB n n ).1-,1,0(法向量2=n 为解得其中一个21221|||||,cos |cos 212111=⋅=⋅=><=n n n n θ. 所以,平面OCB 1与平面BB 1D 1D 的夹角θ为3π 10.(2013年高考江西卷(理))如图,四棱锥P A B-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,1A3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 与平面DCP 的夹角的余弦值.【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====,故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG .(3) 以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(,22A B C D , (4)3(0,0,)2P ,故1333(0),(),(2222BC CP CD ==-=-设平面BCP 的法向量111(1,,)n y z = ,则111102233022y y z ⎧+=⎪⎪⎨⎪-+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,)33n =- .设平面DCP 的法向量222(1,,)n y z = ,则22232233022y y z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,即2(1n = .从而平面BCP 与平面DCP的夹角的余弦值为12124cos 4n n n n θ⋅=== . 11.(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.1C【答案】解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1ABC 外,BC 在平面1ABC 内,由直线与平面平行的判定定理可知, l //平面1ABC . 由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADDA 内,且AD 与1AA 相交,所以直线平面11ADD A()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF AM ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1AM AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A AM N --的平面角(设为θ). 设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==. 又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AAP 中, 1AP =在1Rt A AM 中, 1AM =从而,11AA AP AE A P ∙==11AA AM AF A M ∙==所以sin AE AF θ==.所以cos θ===. 故二面角1A AM N --解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,AE AD ,1AA的方向为x轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,1,,122M N ⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭,所以11,12A M ⎫=⎪⎪⎝⎭,()10,0,1A A =,)NM =.设平面1AA M 的一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩ 即11110,0,n A M n A A ⎧∙=⎪⎨∙=⎪⎩故有 ()()()1111111,,,10,2,,0,0,10,x y z x y z ⎧⎫∙=⎪⎪⎪⎨⎝⎭⎪∙=⎩从而111110,220.x y z z ++=⎪⎨⎪=⎩取11x =,则1y =,所以()11,n =. 设平面1A MN 的一个法向量为()2222,,n x y z =,则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩ 即2120,0,n A M n NM ⎧∙=⎪⎨∙=⎪⎩故有()())2222221,,,10,22,,0,x y z x y z ⎧⎛⎫∙=⎪ ⎪ ⎪⎪⎝⎭⎨⎪∙=⎪⎩从而222210,20.y z ++=⎨⎪=⎩取22y =,则21z =-,所以()20,2,1n =-.设二面角1A AM N --的平面角为θ,又θ为锐角, 则1212cos n n n n θ∙===∙.故二面角1A AM N --的余弦值为512.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.如图,在直三棱柱111A B C ABC -中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点 (1)求异面直线B A 1与D C1所成角的余弦值 (2)求平面1ADC 与1ABA 所成二面角的正弦值.【答案】本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力.解:(1)以{}1,,AA AC AB 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=B A ,)4,1,1(1--=B A∴10103182018,cos 11==∙>=<D C B A C A∴异面直线B A 1与D C 1所成角的余弦值为10103 (2))0,2,0(=AC 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x m =,∵)0,1,1(=AD ,)4,2,0(1=AC 由1,AC ⊥⊥ ∴⎩⎨⎧=+=+0420z y y x 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=设平面1ADC 与1ABA 所成二面角为θ∴32324,cos cos =⨯-==><=m AC θ, 得35sin =θ ∴平面1ADC 与1ABA 所成二面角的正弦值为3513.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四棱锥P ABCD-中,902,ABC BAD BC AD PAB ∠=∠==∆ ,与PAD ∆都是等边三角形. (I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,AQ BQ AP BP 的中点,2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ)求证:AB GH ; (Ⅱ)求二面角D GH E --的余弦值.【答案】解:(Ⅰ)证明:因为,,,D C E F 分别是,,,AQ BQ AP BP 的中点,所以EF ∥AB ,DC ∥AB ,所以EF ∥DC ,又EF ⊂平面PCD ,DC ⊂平面PCD ,所以EF ∥平面PCD ,又EF ⊂平面EFQ ,平面EFQ 平面PCD GH =,所以EF ∥GH ,又EF ∥AB ,所以AB ∥GH .(Ⅱ)解法一:在△ABQ 中, 2AQ BD =,AD DQ =,所以=90ABQ ∠ ,即AB BQ ⊥,因为PB ⊥平面ABQ ,所以AB PB ⊥,又BP BQ B = ,所以AB ⊥平面PBQ ,由(Ⅰ)知AB ∥GH ,所以GH ⊥平面PBQ ,又FH ⊂平面PBQ ,所以GH FH ⊥,同理可得GH HC ⊥,所以FHC ∠为二面角D GH E --的平面角,设2BA BQ BP ===,连接PC ,在t R △FBC 中,由勾股定理得,FC =在t R △PBC 中,由勾股定理得,PC =,又H 为△PBQ 的重心,所以13HC PC == 同理FH =,在△FHC 中,由余弦定理得552499cos 5529FHC +-∠==-⨯,即二面角D GH E --的余弦值为45-. 解法二:在△ABQ 中,2AQ BD =,AD DQ =,所以90ABQ ∠=,又PB ⊥平面ABQ ,所以,,BA BQ BP 两两垂直,以B 为坐标原点,分别以,,BA BQ BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,设2BA BQ BP ===,则(1,0,1)E ,(0,0,1)F ,(0,2,0)Q ,(1,1,0)D ,(0,1,0)C (0,0,2)P ,,所以(1,2,1)EQ =-- ,(0,2,1)FQ =- ,(1,1,2)DP =-- ,(0,1,2)CP =- ,设平面EFQ 的一个法向量为111(,,)m x y z = , 由0m EQ ⋅= ,0m FQ ⋅=,得111112020x y z y z -+-=⎧⎨-=⎩取11y =,得(0,1,2)m = . 设平面PDC 的一个法向量为222(,,)n x y z = 由0n DP ⋅= ,0n CP ⋅=,得222222020x y z y z --+=⎧⎨-+=⎩取21z =,得(0,2,1)n = .所以4cos ,5m n m n m n ⋅==因为二面角D GH E --为钝角,所以二面角D GH E --的余弦值为45-. 15.(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A BC D AD BC -中,,90,,1BAD AC BD BC ∠=⊥= ,13AD AA ==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值.【答案】解: (Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。

2013年全国高考理科数学试题立体几何

2013年全国高考理科数学试题立体几何

2013年全国高考理科数学试题分类汇编7:立体几何一、选择题1错误!未指定书签。

.(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm π D .320483cm π2错误!未指定书签。

.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B.若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥3错误!未指定书签。

.(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为 ( )A .1:2B .1:4C .1:8D .1:164错误!未指定书签。

.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .13错误!未指定书签。

.5.(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+错误!未指定书签。

6.(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( ) A .1243V V V V <<<B .1324V V V V <<<C .213V V V <<7错误!未指定书签。

2013年高考真题解析分类汇编(文科数学)7:立体几何

2013年高考真题解析分类汇编(文科数学)7:立体几何

2013年高考解析分类汇编7:立体几何一、选择题1 .(2013年高考重庆卷(文8))某几何体的三视图如题(8)所示,则该几何体的表面积为( )A .180B .200C .220D .240【答案】D【解析】本题考查三视图以及空间几何体的表面积公式。

由三视图可知该几何体是个四棱柱。

棱柱的底面为等腰梯形,高为10.等腰梯形的上底为2,下底为8,高为4,腰长为5。

所以梯形的面积为284202+⨯=,梯形的周长为282520++⨯=。

所以四棱柱的表面积为2022010240⨯+⨯=,选D.2 .(2013年高考课标Ⅱ卷(文9))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A)(B)(C)(D)【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),所以选A.3 .(2013年高考课标Ⅰ卷(文11))某几何函数的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A【解析】由三视图可知,该几何体的下部分是平放的半个圆柱,圆柱的底面半径为2,圆柱的高为4。

上部分是个长方体,长方体的棱长分别为2,2,4.所以半圆柱的体积为212482ππ⨯⨯⨯=,正方体的体积为22416⨯⨯=,所以该几何体的体积为168π+,选A.4.(2013年高考大纲卷(文11))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23BCD .13【答案】A【解析】如图,因为BD ⊥平面ACC 1A 1,所以平面ACC 1A 1⊥平面BDC 1,在Rt △CC 1O 中,过C 作CH ⊥C 1O 于H ,连结DH ,则∠CDH 即为所求,令a AB =,显然2223aCH a ⨯===,所以223sin3aCDHa∠==,故选A.5 .(2013年高考四川卷(文2))一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由三视图可知,该几何体为圆台.6 .(2013年高考浙江卷(文5))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】B【解析】此图的直观图是一个底面边长为6和3,高为6的长方体截去一个角,对应三棱锥的的三条侧棱上分别为3,4,4.如图。

2013年高考理科数2013年高考理科数学试题分类汇编:7立体几何

2013年高考理科数2013年高考理科数学试题分类汇编:7立体几何

实用文档2013年高考理科数2013年高考理科数学试题分类汇编:7立体几何一、选择题1、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为 ( )AB.C .132D.2、(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm πB .38663cm πC .313723cm πD .320483cm π实用文档3、(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是4、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则 ( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为0605、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是 ( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面实用文档C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线6、(2013年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .117、高中数学人教版备份2013-10-15.ln8、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,3的正三角形.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )实用文档A .512πB .3πC .4πD .6π9、(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于 ( )A .23BCD .1310、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥11、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为实用文档( )A .B .C .D .12、(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:1613、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l实用文档14、(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+15、(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<<B .1324V V V V <<<C 2134V V V V <<<D .2314V V V V <<<16、(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方等于()体的正视图的面积不可能...A.1B2C2-1D2+117、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))某四棱台的三视图如图所示,则该四棱台的体积是实用文档实用文档( )A .4B .143 C .163D .6二、填空题18、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P ,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 61 221 1正视俯视侧视第5题图实用文档19、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.20、(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3_____.112121、实用文档(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O 和圆K是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60,则球O 的表面积等于______.22、(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.23、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.A B C 1A D E F1B 1C 1B实用文档24、(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________25、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________26、(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线实用文档1A B 与1B C 所成角的大小为_______27、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .三、解答题28、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.DC B ADC AB实用文档(1) 证明:A O '⊥平面BCDE ; (2) 求二面角A CD B '--的平面角的余弦值.29、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的中点,1AA AC CB AB ===. (1)证明:1//BC 平面1ACD ; (2)求二面角1D AC E --的正弦值.. CO B D EAC D O B E 'A图1图2实用文档 ABC D1A 1C 1B E实用文档30、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)实用文档31、(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(1)证明:1AC B D ⊥; (2)求直线111B C ACD 与平面所成角的正弦值..32、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥P ABQ-中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,AQ BQ AP BP 的中点, 2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(1)求证:AB GH ; (2)求二面角D GH E --的余弦值.33、(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))如图,四棱锥P ABCD-中,902,ABC BAD BC AD PAB∠=∠==∆,与PAD∆都是等边三角形.(I)证明:;PB CD⊥(II)求二面角A PD C--的大小.34、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))本小题满分10分.如图,在直三棱柱111A B C ABC-中,ACAB⊥,2==ACAB,41=AA,点D是BC的中点(1)求异面直线BA1与DC1所成角的余弦值实用文档实用文档(2)求平面1ADC 与1ABA 所成二面角的正弦值.35、(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(1)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(2)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值. D 1D B A B 1C 1AP36、如图,四棱锥P ABCD-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,实用文档 3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面; (2) 求平面BCP 与平面DCP 的夹角的余弦值.37、(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD , 12AB AA ==.(1) 证明: A 1C ⊥平面BB 1D 1D ;(2) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.O D 1B 1C 1DA C A 1实用文档38、(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(1) 证明B 1C 1⊥CE ;(2) 求二面角B 1-CE -C 1的正弦值.(3) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.39、(2013年高考北京卷(理))如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求1BD BC 的值.实用文档40、(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.41、(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.第19题图实用文档 D 1C 1B 1A 1DC B A42、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.43、(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.B 1A 1C 1 AC B ABC SGF E实用文档44、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCDA -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.;45、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°.(1)证明:平面PAB 与平面PCD 的交线平行于底面; (2)求cos COD ∠.AB CDP QM(第20题图)实用文档46、(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.47、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(1)求证:PAC PBC ⊥平面平面;(2)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值48、(2013年高考新课标1(理))如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.(1)证明AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.以下是答案一、选择题1、C2、A3、D4、A5、A6、A实用文档7、C8、B9、A10、D11、A12、C13、D14、A15、C16、C17、D二、填空题18、①②③⑤π-19、1616实用文档实用文档20、3π21、16π2223、1:2424、2216ππ+.25、12π26、23π27、24三、解答题28、(1) 在图1中,易得3,OC AC AD ===实用文档x连结,OD OE ,在OCD ∆中,由余弦定理可得OD == 由翻折不变性可知A D '=所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE .(2) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥,所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故OH =,从而A H '== 所以cos OH A HO A H '∠=='所以二面角A CD '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=-设(),,n x y z =为平面A CD '的法向量,则 CDO B E 'AH实用文档 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即330230y z x y z ⎧+=⎪⎨-++=⎪⎩,解得3y x z x =-⎧⎪⎨=⎪⎩,令1x =,得()1,1,3n =- 由(Ⅰ) 知,()0,0,3OA '=为平面CDB 的一个法向量, 所以315cos ,535n OA n OA n OA '⋅'===⋅',即二面角A CD B '--的平面角的余弦值为155.29、30、解:(1)取CD 中点E ,连接BE实用文档//AB DE ,3AB DE k ==∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE 中,4,3,5BE k CE k BC k ===222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD ,所以CD AD ⊥1AA ⊥平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =,CD ∴⊥平面11ADD A(2)以D 为原点,1,,DA DC DD 的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-,1(0,3,1)AB k =,1(0,0,1)AA =设平面1AB C 的法向量(,,)n x y z =,则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA n AA n AA n θ=〈〉=⋅26673613k k ==+,解得1k =.故所求k 的值为1 (3)共有4种不同的方案实用文档2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩31、(1) AC BB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。

2013年高考数学试题分类汇编——立体几何

2013年高考数学试题分类汇编——立体几何

2013高考数学试题分类汇编——立体几何一、选择题1、(2010浙江理数)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //解析:选B ,可对选项进行逐个检查。

本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题2、(2010全国卷2理数)(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.3、(2010全国卷2理数)(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3 【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.4、(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )13解析:本题考查立体图形三视图及体积公式 如图,该立体图形为直三棱柱所以其体积为122121=⨯⨯⨯5、(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=6、(2010辽宁理数)(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)((B)(1,(D) (0,221【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。

2013年全国高考理科数学试题分类汇编7:立体几何(修改)

2013年全国高考理科数学试题分类汇编7:立体几何(修改)

全国高考数学试题分类汇编7:立体几何一、选择题错误!未指定书签。

.(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm πD .320483cm π【答案】A错误!未指定书签。

.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D错误!未指定书签。

.(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C错误!未指定书签。

.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B C .3D .13【答案】A错误!未指定书签。

.(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A错误!未指定书签。

.(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( )A .1243V V V V <<< B.1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C错误!未指定书签。

2013年全国高考理科数学试题分类汇编7:立体几何

2013年全国高考理科数学试题分类汇编7:立体几何

2013年全国高考理科数学试题分类汇编7:立体几何2013年国理科数学试题分类汇编7立体几何一、选择题1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的厚度则球的体积为( )A .35003cm πB .38663cm πC .313723cm πD .320483cm π【答案】A2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,αβ是两个不同的平面下列命题正确的是( )[]A .若αβ⊥m α⊂n β⊂则m n ⊥B .若//αβm α⊂n β⊂则//m nC .若m n ⊥m α⊂n β⊂则αβ⊥D .若m α⊥//m n //n β则αβ⊥ 【答案】D3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积之比为( ) A .1:2B .1:4C .1:8D .1:16【答案】C4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D-12AA AB=则CD 与平面1BDC 所成角的正弦值等于( ) A .23B .33C .23D .13【答案】A []5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V VV V <<<B .1324V VV V <<<C .2134VV V V <<<D .2314V V V V <<<【答案】C7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正方体的正视图的面积不可能...等于( ) A .1 B .2C .2-12D .2+12【答案】C8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如图所示则该四棱台的体积是( )A .4B .143C .163D .6【答案】B9 .(2013年普通等学校招生统一试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知nm ,为异面直线⊥m 平面α⊥n 平面β直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄则( )A .βα//且α//lB .βα⊥且β⊥lC .α与β相交且交线垂直于lD .α与β相交且交线平行于l【答案】D10.(2013年普通等学校招生统一试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -94长为3的正三角形若P 为底面111A B C 的心则PA 与平面ABC 所成角的大小为( ) A .512πB .3πC .4πD .6π1 2211正视图俯视图侧视图第5题图【答案】B11.(2013年普通等学校招生统一试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示则该几何体的体积为( )A .5603B .5803C .200D .240【答案】C12.(2013年普通等学校招生统一试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上若34AB AC ==,AB AC ⊥112AA =则球O 的半径为( )A .3172B .210C .132D .310【答案】C13.(2013年江西卷(理))如图正方体的底面与正四面体的底面在同一平面α上且AB CD P 正方体的六个面所在的平面与直线CEEF 相交的平面个数分别记为,m n 那么m n +=()A.8B.9C.10D.11【答案】A14.(2013年普通等学校招生统一试新课标Ⅱ卷数学(理)(纯WORD版含答案))一个四面体的顶点在空间直角坐标系O xyz 的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0)画该四面体三视图的正视图时以zOx平面为投影面则得到正视图可以为()A.B.C.D.【答案】A15.(2013年普通等学校招生统一试安徽数学(理)试题(纯WORD版))在下列命题不是公理..的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点有且只有一个平面C .如果一条直线上的两点在一个平面内那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点 那么他们有且只有一条过该点的公共直线【答案】A16.(2013年普通等学校招生统一试浙江数学(理)试题(纯WORD 版))在空间过点A 作平面π的垂线垂足为B 记)(A fB π=设βα,是两个不同的平面对空间任意一点P )]([)],([21P f f Q P f f Q βααβ==恒有21PQ PQ =则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A17.(2013年四川卷(理))一个几何体的三视图如图所示则该几何体的直观图可以是【答案】D二、填空题18.(2013年上海卷(理))在xOy 平面上将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D 如图阴影部分记D绕y 轴旋转一周而成的几何体为Ω过(0,)(||1)y y ≤作Ω的水平截面所得截面面积为2418y ππ-+试利用祖暅原理、一个平放的圆柱和一个长方体得出Ω的体积值为__________【答案】2216ππ+19.(2013年陕西卷(理))某几何体的三视图如图所示 则其体积为___3π_____1121【答案】3π20.(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知圆O 和圆K 是球O 的大圆和小圆其公共弦长等于球O 的半径32OK =O 与圆K 所在的平面所成的一个二面角为60o则球O 的表面积等于______【答案】16π21.(2013年北京卷(理))如图在棱长为2的正方体ABCD -A 1B 1C 1D 1E 为BC 的点点P 在线段D 1E 上点P 到直线CC 1的距离的最小值为__________【答案】 25522.(2013年普通等学校招生国统一招生试江苏卷(数学)(已校对纯WORD 版含附加题))1D1BP gD1CC EB A 1A如图在三棱柱ABC C B A -111FE D ,,分别是1AAAC AB ,,的点设三棱锥ADEF -的体积为1V 三棱柱ABCC B A -111的体积为2V 则=21:V V____________【答案】1:2423.(2013年普通等学校招生统一试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示则此几何体的体积等于________2cm【答案】2424.(2013年普通等学校招生统一试安徽数学(理)试题(纯WORD 版))如图正方体1111ABCD A B C D -的棱长为1P 为BC 的点Q 为线段1CC 上的动点过点APQ 的平面截该正方体所得的截面记为S 则下列命题正确的是__①②③⑤___(写出所有正确命题的编号)[]43 233正视图侧视图俯视图(第12题图)ABC1A DEF 1B 1C①当102CQ <<时S 为四边形;②当12CQ =时S 为等腰梯形;③当34CQ =时S 与11C D 的交点R 满足1113C R =;④当314CQ <<时S 为六边形;⑤当1CQ =时S 的面积为62【答案】①②③⑤25.(2013年普通等学校招生统一试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示则该几何体的体积是____________【答案】1616π-26.(2013年普通等学校招生统一试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体如果该组合体的正视图测试图俯视图均如图所示且图的四边形是边长为2的正方形则该球的表面积是_______________【答案】12π27.(2013年上海市春季数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -异面直线1A B 与1B C 所成角的大小为_______D C B A D C ABπ【答案】3三、解答题28.(2013年普通等学校招生统一试辽宁数学(理)试题(WORD版))如图AB是圆的直径PA垂直圆所在的平面C是圆上的点(I)求证:PAC PBC平面平面;⊥(II)2.若,1,1,求证:二面角的余弦值===--AB AC PA C PB A【答案】[]29.(2013年普通等学校招生统一试重庆数学(理)试题(含答案))如图四棱锥P ABCD -PA ABCD ⊥底面2,4,3BC CD AC ACB ACD π===∠=∠=F为PC的点AF PB ⊥(1)求PA 的长; (2)求二面角B AF D --的正弦值【答案】1.(2013年普通等学校招生统一试安徽数学(理)试题(纯WORD版))如图圆锥顶点为p底面圆心为o其母线与底面所成的角为225°AB和CD是底面圆O上的两条平行的弦轴OP与平面PCD所成的角为60°(Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠【答案】解:(Ⅰ)PAB P D ,////C m AB CD CD PCD AB PCD ⋂=⊂⇒Q 设面面直线且面面//AB m⇒直线 ABCD m ABCD AB 面直线面//⇒⊂Θ所以ABCD D P PAB 的公共交线平行底面与面面C (Ⅱ)rPO OPF F CD r =︒︒=∠5.22tan .60,由题知,则的中点为线段设底面半径为︒-︒=︒∠==︒⋅︒⇒=︒5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF法二:1.(2013年普通等学校招生统一试浙江数学(理)试题(纯WORD 版))如图在四面体BCD A -⊥AD 平面BCD 22,2,==⊥BD AD CD BC M是AD的点P 是BM 的点点Q 在线段AC 上且QC AQ 3= (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060求BDC ∠的大小【答案】解:证明(Ⅰ)方法一:如图6取MD的点F 且M是AD点所以3AF FD=因为P是BM点所以//PF BD;又因为(Ⅰ)3AQ QC=且3AF FD=所以//QF BD所以面//PQF面BDC且PQ⊂面BDC所以//PQ面BDC;方法二:如图7所示取BD点O且P是BM点所以1//2PO MD;取CD的三等分点H使3DH CH=且3AQ QC=11////42QH AD MD////PO QH PQ OH∴OH BCD⊂所以//PQ面BDC;(Ⅱ)如图8所示由已知得到面ADB⊥面BDC过C作CG BD⊥于G所以CG BMD⊥过G作GH BM⊥于HABCDPQM(第20题图)连接CH所以CHG∠就是CBM D--的二面角;由已知得到813BM=+=设BDCα∠=所以cos,sin22cos,22cos sin,22sin, CD CG CBCD CG BC BD CD BDαααααα===⇒===在RT BCG∆2sin22sinBGBCG BGBCααα∠=∴=∴=所以在RT BHG∆22122sin3322sinHGHGαα=∴=所以在RT CHG∆222cos sintan tan60322sin3CGCHGHGααα∠====otan3(0,90)6060BDCααα∴=∴∈∴=∴∠=o o o;2.(2013年上海市春季数学试卷(含答案))如图在正三棱锥111ABC A B C-16AA=异面直线1BC与1AA所成角的大小为6π求该三棱柱的体积【答案】[解]因为1CC 1AA所以1BC C ∠为异面直线1BC 与1AA 所成的角即1BC C∠=6π 在Rt 1BC C ∆113tan 6233BC CC BC C =⋅∠=⨯=从而23334ABCSBC ∆==因此该三棱柱的体积为1336183ABCV S AA ∆=⋅=⋅=3.(2013年普通等学校招生国统一招生试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分 如图在三棱锥ABCS -平面⊥SAB 平面SBC BC AB ⊥ABAS =过A 作SB AF ⊥垂足为F 点G E ,分别是棱SC SA ,的点求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥ABC SG FE B A C ACB【答案】证明:(1)∵AB AS =SB AF ⊥∴F 分别是SB 的点∵EF 分别是SASB 的点 ∴EF∥AB 又∵EF ⊄平面ABC AB ⊆平面ABC ∴EF∥平面ABC同理:FG∥平面ABC又∵EF I FG=F EFFG ⊆平面ABC∴平面//EFG 平面ABC(2)∵平面⊥SAB 平面SBC 平面SAB I 平面SBC =BC AF ⊆平面SAB AF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC 又∵BCAB ⊥ ABIAF=A ABAF⊆平面SAB∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA4.(2013年上海卷(理))如图在长方体ABCD-A 1B 1C 1D 1AB=2AD=1A 1A=1证明直线BC 1平行于平面DA 1C 并求直线BC 1到平面D 1AC 的距离D 1C 1B 1A 1D C BA【答案】因为ABCD-A 1B 1C 1D 1为长方体故1111//,AB C D AB C D =故ABC 1D 1为平行四边形故11//BC AD 显然B 不在平面D 1AC 上于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h虑三棱锥ABCD 1的体积以ABC 为底面可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆115,2AC D C AD ===故132AD CS∆=所以13123233V h h =⨯⨯=⇒=即直线BC 1到平面D 1AC 的距离为235.(2013年湖北卷(理))如图AB 是圆O 的直径点C 是圆O 上异于,A B 的点直线PC ⊥平面ABC E F 分别是PA PC 的点 (I)记平面BEF 与平面ABC 的交线为l 试判断直线l 与平面PAC 的位置关系并加以证明; (II)设(I)的直线l 与圆O 的另一个交点为D且点Q 满足12DQ CP=u u u ru u u r 记直线PQ 与平面ABC 所成的角为θ异面直线PQ 与EF 所成的角为α二面角E l C --的大小为β求证:sin sin sin θαβ=【答案】解:(I)EF AC Q P AC ABC ⊆平面EF ABC ⊆平面 EF ABC ∴P 平面又EF BEF ⊆平面 EF l ∴P l PAC ∴P 平面(II)连接DF 用几何方法很快就可以得到求证(这一题用几何方法较快向量的方法很麻烦特别是用向量不能方便的表示角的正弦个人认为此题与新课程对立体几何的处理方向有很大的偏差)第19题6.(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD版))如图1在等腰直角三角形ABC90BC=,D E分别是,AC ABA∠=︒6上的点2==O为BC的点将ADECD BE∆沿DE折起得到如图2所示的四棱锥A BCDE'-其3A O'=(Ⅰ) 证明:A O'⊥平面BCDE; (Ⅱ) 求二面角A CD B'--的平面角的余弦值【答案】(Ⅰ) 在图1易得3,32,22OC AC AD ===连结,OD OE 在OCD ∆由余弦定理可得222cos 455OD OC CD OC CD =+-⋅︒=由翻折不变性可知22A D '= 所以222A OOD A D ''+=所以A O OD '⊥理可证A O OE '⊥ 又OD OE O =I 所以A O '⊥平面BCDE (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H连结A H '因为A O '⊥平面BCDE 所以A H CD '⊥ 所以A HO '∠为二面角A CD B '--的平面角 结合图1可知H为AC点故322OH =从而22302A H OH OA ''=+=C D OBE'AHC OB DEACDOBE'A图图C D O x E 'A 向量法图y zB 所以15cos 5OH A HO A H '∠=='所以二面角A CD B '--的平面角的余弦值为155向量法:以O 点为原点建立空间直角坐标系O xyz -如图所示 则()0,0,3A '()0,3,0C -()1,2,0D -所以()0,3,3CA '=u u u r ()1,2,3DA '=-u u u u r设(),,n x y z =r为平面A CD '的法向量则0n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩r u u u r r u u u u r 即330230y z x y z ⎧+=⎪⎨-++=⎪⎩解得3y xz x=-⎧⎪⎨=⎪⎩令1x =得()1,1,3n =-r()0,0,3OA '=u u u rCDB 的一个法向量 所以315cos ,535n OA n OA n OA '⋅'===⋅'r u u u rr u u u r r u u u r A CD B'--的平面角的余弦值为1557.(2013年普通等学校招生统一试天津数学(理)试题(含答案))如图 四棱柱ABCD -A 1B 1C 1D 1 侧棱A 1A ⊥底面ABCD AB //DC AB ⊥AD AD = CD = 1 AA 1 = AB = 2 E 为棱AA 1的点(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值(Ⅲ) 设点M在线段C1E上且直线AM与平面ADD1A1所成角的正弦值为2求线段AM的6长【答案】8.(2013年新课标1(理))如图三棱柱ABC-A 1B 1C 1CA=CBAB=A A 1∠BA A 1=60° (Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC⊥平面AA 1B 1BAB=CB=2求直线A 1C 与平面BB 1C 1C 所成角的正弦值【答案】(Ⅰ)取AB 点E 连结CE 1A B 1A E∵AB=1AA 1BAA ∠=060∴1BAA ∆是正三角形∴1A E⊥AB ∵CA=CB ∴CE⊥AB∵1CE A E ⋂=E∴AB⊥面1CEA∴AB⊥1AC ;(Ⅱ)由(Ⅰ)知EC⊥AB 1EA ⊥AB又∵面ABC⊥面11ABB A 面ABC∩面11ABB A =AB∴EC⊥面11ABB A ∴EC⊥1EA∴EAEC 1EA 两两相互垂直以E 为坐标原点EAu u u r 的方向为x 轴正方向|EAu u u r |为单位长度建立如图所示空间直角坐标系O xyz -有题设知A(100)1A (030)C(003)B(-100)则BCu u u r =(103)1BB u u u r=1AA u u u r =(-103)1AC u u u r =(0-33)设n =(,,)x y z 是平面11CBB C 的法向量 则100BC BB ⎧•=⎪⎨•=⎪⎩u u u r u u u r n n 即3030x z x y ⎧+=⎪⎨+=⎪⎩可取n =(31-1)∴1cos ,AC u u u rn =11|AC AC •u u u r u u u rn |n ||105∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为1059.(2013年陕西卷(理))如图 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形 O 为底面心 A 1O ⊥平面ABCD12AB AA ==(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小OD 1B 1C 1D ACBA 1【答案】解:(Ⅰ) BD O A ABCD BD ABCD O A ⊥∴⊂⊥11,,面且面Θ;又因为在正方形ABCDBDC A AC A C A AC A BD A AC O A BD AC ⊥⊂⊥=⋂⊥11111,,故面且面所以;且在正方形AB CDAO = 1 .111=∆O A OA A RT 中,在OE C A OCE A E D B 1111111⊥为正方形,所以,则四边形的中点为设 [],所以由以上三点得且,面面又O O BD D D BB O D D BB BD =⋂⊂⊂111111E .E ,DD BB C A 111面⊥(证毕)(Ⅱ) 建立直角坐标系统使用向量解题 以O 为原点以OC 为X 轴正方向以OB 为Y 轴正方向则)1,0,1()1,1,1(),100(),001(,0,1,0111-=⇒C A B A C B ,,,,)(由(Ⅰ)知 平面BB 1D 1D 的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OC OB C A n设平面OCB 1的法向量为D 1B 1C 1A 1,则0,0,2122=⋅=⋅OC n OB n n).1-,1,0(法向量2=n 为解得其中一个21221|||||||,cos |cos 212111=⋅=⋅⋅=><=n n n n n n θ所以平面OCB 1与平面BB 1D 1D 的夹角θ为3π 10.(2013年江西卷(理))如图四棱锥P ABCD -PA ,ABCD E BD ⊥平面为的中点G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,连接CE 并延长交AD于F(1)求证:AD CFG ⊥平面;(2)求平面BCP 与平面DCP 的夹角的余弦值【答案】解:(1)在ABD ∆因为E 是BD 的点所以1EA EB ED AB ====故,23BAD ABE AEB ππ∠=∠=∠=因为DAB DCB ∆≅∆所以EAB ECB ∆≅∆ 从而有FED FEA ∠=∠故,EF AD AF FD ⊥=又因为,PG GD =所以FG ∥PA 又PA ⊥平面ABCD所以,GF AD ⊥故AD ⊥平面CFG(3)以点A 为坐标原点建立如图所示的坐标系则33(0,0,0),(1,0,0),(,,0),(0,3,0)22A B C D(4)3(0,0,)2P 故1333333(0),(,),(,,0)2222222BC CP CD ==--=-u u u r u u u r u u u r ,,, 设平面BCP 的法向量111(1,,)n y z =u r则111130223330222y y z ⎧+=⎪⎪⎨⎪--+=⎪⎩解得113323y z ⎧=-⎪⎪⎨⎪=⎪⎩即132(1,,)33n =-u r设平面DCP 的法向量222(1,,)n y z =u u r则222330223330222y y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩解得2232yz ⎧=⎪⎨=⎪⎩即2(1,3,2)n =u u r从而平面BCP 与平面DCP 的夹角的余弦值为1212423cos 41689n n n n θ⋅===⋅u r u u r u r u u r11.(2013年四川卷(理))如图在三棱柱11ABC A B C -侧棱1AA ⊥底面ABC 12AB AC AA ==120BAC ∠=o1,D D 分别是线段11,BC B C 的点P 是线段AD 的点[](Ⅰ)在平面ABC 内试作出过点P 与平面1A BC 平行的直线l 说明理由并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)的直线l 交AB 于点M 交AC 于点N 求二面角1A A M N --的余弦值D 1DCBA 1B 1C 1A P【答案】解:()I 如图在平面ABC 内过点P 做直线l//BC 因为l 在平面1A BC 外BC 在平面1A BC 内由直线与平面平行的判定定理可知 l //平面1A BC由已知AB AC =D 是BC 的点所以BC AD ⊥则直线l AD ⊥因为1AA ⊥平面ABC 所以1AA ⊥直线l 又因为1,AD AA在平面11ADD A 内且AD 与1AA 相交所以直线平面11ADD A()II 解法一:连接1A P 过A 作1AE A P ⊥于E 过E 作1EF A M ⊥于F 连接AF由()I 知MN ⊥平面1AEA 所以平面1AEA ⊥平面1A MN所以AE ⊥平面1A MN 则1A M AE ⊥所以1A M ⊥平面AEF 则1A M ⊥AF故AFE ∠为二面角1A A M N --的平面角(设为θ)设11AA =则由12AB AC AA ==120BAC ∠=o有60BAD ∠=o2,1AB AD ==又P 为AD 的点所以M 为AB 的点且1,12AP AM == 在1Rt AA P V 152A P =;在1Rt A AM V 12A M =从而1115AA AP AE A P •==1112AA AM AF A M •==[]所以2sin 5AEAF θ==所以22215cos 1sin 155θθ⎛⎫=-=-= ⎪ ⎪⎝⎭故二面角1A A M N --的余弦值为155解法二:设11AA =如图过1A 作1A E 平行于11B C 以1A 为坐标原点分别以111,A E A D u u u r u u u u r 1AA u u u r 的方向为x 轴y 轴z 轴的正方向建立空间直角坐标系Oxyz (点O 与点1A 重合)则()10,0,0A ()0,0,1A因为P 为AD 的点所以,M N 分别为,AB AC 的点 故3131,,1,,,12222M N ⎛⎫⎛⎫- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭所以131,,122A M ⎛⎫= ⎪ ⎪⎝⎭u u u u r ()10,0,1A A =u u ur ()3,0,0NM =u u u u r设平面1AA M 的一个法向量为()1111,,n x y z =则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩u u u u u ru u u u r 即11110,0,n A M n A A ⎧•=⎪⎨•=⎪⎩u u u u ru u u r 故有()()()11111131,,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫•=⎪ ⎪ ⎪⎨⎝⎭⎪•=⎩ 从而1111310,220.x y z z ⎧++=⎪⎨⎪=⎩取11x =则13y=-所以()11,3,0n =-设平面1A MN 的一个法向量为()2222,,nx y z =则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩u u u u u ru u u u u r 即2120,0,n A M n NM ⎧•=⎪⎨•=⎪⎩u u u u r u u u u r 故有()()()22222231,,,,10,22,,3,0,00,x y z x y z ⎧⎛⎫•=⎪⎪ ⎪⎪⎝⎭⎨⎪•=⎪⎩从而2222310,2230.x y z x ⎧++=⎪⎨⎪=⎩取22y=则21z=-所以()20,2,1n=-设二面角1A A M N --的平面角为θ又θ为锐角则()()12121,3,00,2,115cos 525n n n n θ-•-•===••故二面角1A A M N --的余弦值为15512.(2013年普通等学校招生国统一招生试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分如图在直三棱柱111A B C ABC -AC AB ⊥2==AC AB 41=AA点D 是BC 的点(1)求异面直线B A 1与D C 1所成角的余弦值(2)求平面1ADC 与1ABA 所成二面角的正弦值【答案】本题主要察异面直线二面角空间向量等基础知识以及基本运算察运用空间向量解决问题的能力解:(1)以{}1,,AA AC AB 为为单位正交基底建立空间直角坐标系xyz A -则)0,0,0(A )0,0,2(B )0,2,0(C )4,0,0(1A )0,1,1(D )4,2,0(1C∴)4,0,2(1-=B A )4,1,1(1--=B A []∴10103182018,cos 111111==•>=<DC B AD C B A D C B A∴异面直线B A 1与D C 1所成角的余弦值为10103(2))0,2,0(=AC 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x m =∵)0,1,1(=AD )4,2,0(1=AC由1,AC m AD m ⊥⊥∴⎩⎨⎧=+=+0420z y y x 取1=z 得2,2=-=x y ∴平面1ADC 的法向量为)1,2,2(-=m设平面1ADC 与1ABA 所成二面角为θ∴32324,cos cos =⨯-=•=><=mAC m AC m AC θ得35sin =θ∴平面1ADC 与1ABA 所成二面角的正弦值为3513.(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))如图四棱锥P ABCD -902,ABC BAD BC AD PAB ∠=∠==∆o,与PAD ∆都是等边三角形(I)证明:;PB CD ⊥ (II)求二面角A PD C--的大小【答案】14.(2013年普通等学校招生统一试山东数学(理)试题(含答案))如图所示在三棱锥P ABQ-PB⊥平面ABQ BA BP BQ==,,,D CE F分别是,,,AQ BQ AP BP的点2AQ BD=PD与EQ交于点G PC与FQ交于点H连接GH(Ⅰ)求证:AB GHP; (Ⅱ)求二面角D GH E--的余弦值【答案】解:(Ⅰ)证明:因为,,,D CE F分别是,,,AQ BQ AP BP的点所以EF∥AB DC∥AB所以EF∥DC又EF⊂平面PCD DC⊂平面PCD所以EF∥平面PCD又EF⊂平面EFQ平面EFQ I平面PCD GH=所以EF∥GH又EF∥AB所以AB∥GH(Ⅱ)解法一:在△ABQ2AQ BD=AD DQ=所以=90ABQ∠o即AB BQ⊥因为PB⊥平面ABQ所以AB PB⊥又BP BQ B=I所以AB⊥平面PBQ由(Ⅰ)知AB∥GH 所以GH⊥平面PBQ又FH⊂平面PBQ所以GH FH⊥同理可得GH HC⊥所以FHC∠为二面角D GH E--的平面角设2BA BQ BP===连接PC在t R△FBC由勾股定理得2FC=在t R△PBC由勾股定理得5PC=又H为△PBQ的重心所以1533 HC PC==同理53 FH=在△FHC由余弦定理得552499cos5529FHC+-∠==-⨯即二面角D GH E--的余弦值为4 5 -解法二:在△ABQ2AQ BD=AD DQ=所以90ABQ∠=又PB⊥平面ABQ所以,,BA BQ BP两两垂直以B为坐标原点分别以,,BA BQ BP所在直线为x轴y 轴z 轴建立如图所示的空间直角坐标系设2BA BQ BP ===则(1,0,1)E (0,0,1)F (0,2,0)Q (1,1,0)D (0,1,0)C (0,0,2)P 所以(1,2,1)EQ =--u u u r (0,2,1)FQ =-u u u r (1,1,2)DP =--u u u r (0,1,2)CP =-u u u r设平面EFQ的一个法向量为111(,,)m x y z =u r由0m EQ ⋅=u r u u u r 0m FQ ⋅=u r u u u r得111112020x y z y z -+-=⎧⎨-=⎩ 取11y =得(0,1,2)m =u r设平面PDC 的一个法向量为222(,,)n x y z =r由0n DP ⋅=r u u u r 0n CP ⋅=r u u u r得222222020x y z y z --+=⎧⎨-+=⎩ 取21z=得(0,2,1)n =r所以4cos ,5m n m n m n ⋅==u r ru r r u r r因为二面角D GH E--为钝角所以二面角D GH E--的余弦值为45-15.(2013年湖南卷(理))如图5在直棱柱1111//ABCD A B C D AD BC -中,90,,1BAD AC BD BC ∠=⊥=o 13AD AA ==(I)证明:1AC B D ⊥; (II)求直线111B C ACD与平面所成角的正弦值【答案】解: (Ⅰ)ACBB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱ΘDB AC BDBD B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。

2013年全国各地高考文科数学试题分类汇编:立体几何(解析版

2013年全国各地高考文科数学试题分类汇编:立体几何(解析版

2013年全国各地高考文科数学试题分类汇编:立体几何一、选择题1 . (2013年高考重庆卷(文某几何体的三视图如图所示 , 则该几何体的表面积为 (A. 180 B . 200C . 220D . 240【答案】 D2 . (2013年高考课标Ⅱ卷 (文一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1,(1,1,0,(0,1,1,(0,0,0, 画该四面体三视图中的正视图时 , 以 zOx 平面为投影面 , 则得到正视图可以为(A.B.C.D.【答案】 A3 . (2013年高考课标Ⅰ卷(文某几何函数的三视图如图所示 , 则该几何的体积为 (A. 168π+B. 88π+C. 1616π+D. 816π+ 【答案】 A4 . (2013年高考大纲卷(文已知正四棱锥 1111112, ABCD A B C D AA AB CD BDC -=中, 则与平面所成角的正弦值等于 ( A.23 D. 13 【答案】 A5 . (2013年高考四川卷(文一个几何体的三视图如图所示 , 则该几何体可以是A. 棱柱B. 棱台C. 圆柱D. 圆台【答案】 D6 . (2013年高考浙江卷(文已知某几何体的三视图 (单位 :cm如图所示 , 则该几何体的体积是(A.108cm 3B.100 cm3C.92cm 3D.84cm 3 【答案】 B图 2俯视图侧视图正视图7 . (2013年高考北京卷(文如图 , 在正方体 1111ABCD A B C D -中 , P 为对角线1BD 的三等分点 , 则 P 到各顶点的距离的不同取值有A.3个B.4个C.5个D.6个【答案】 B8 . (2013年高考广东卷(文某三棱锥的三视图如图 2所示 , 则该三棱锥的体积是( A.16 B.13C.23D. 1【答案】 B9 . (2013年高考湖南(文已知正方体的棱长为 1, 其俯视图是一个面积为 1的正方形 , 的矩形 , 则该正方体的正视图的面积等于 ______B.1【答案】 D10. (2013年高考浙江卷(文设 m.n 是两条不同的直线,α.β是两个不同的平面 , 则(A. 若 m ∥ α,n∥ α,则 m ∥ nB. 若 m ∥ α,m∥ β,则α∥ βC. 若 m ∥ n,m ⊥ α,则n ⊥ αD. 若 m ∥ α,α⊥ β,则 m ⊥ β 【答案】 C11. (2013年高考辽宁卷 (文已知三棱柱 111A B C A B C-的 6个顶点都在球 O 的球面上 , 若 34AB AC ==, , AB AC ⊥, 112AA =, 则球 O 的半径为 (A.2B.C.132D.【答案】 C12. (2013年高考广东卷(文设 l 为直线, , αβ是两个不同的平面 , 下列命题中正确的是 (A. 若//l α, //l β, 则//αβB. 若l α⊥, l β⊥, 则//αβC. 若l α⊥, //l β, 则//αβD. 若αβ⊥, //l α, 则l β⊥【答案】 B13. (2013年高考山东卷(文一个四棱锥的侧棱长都相等 , 底面是正方形 , 其正(主视图如右图所示该四棱锥侧面积和体积分别是(A. B. 83 C. 81, 3+ D.8,8【答案】 B14. (2013年高考江西卷(文一几何体的三视图如右所示 , 则该几何体的体积为( A. 200+9π B. 200+18π C. 140+9π D. 140+18π 【答案】 A 二、填空题15. (2013年高考课标Ⅱ卷 (文已知正四棱锥 O-ABCD 的体积为, 底面边长为 , 则以 O 为球心 ,OA 为半径的球的表面积为 ________.【答案】24π16. (2013年高考湖北卷(文我国古代数学名著《数书九章》中有“ 天池盆测雨” 题 :在下雨时 , 用一个圆台形的天池盆接雨水 . 天池盆盆口直径为二尺八寸 , 盆底直径为一尺二寸 , 盆深一尺八寸 . 若盆中积水深九寸 , 则平地降雨量是__________寸 . (注 :①平地降雨量等于盆中积水体积除以盆口面积 ; ②一尺等于十寸【答案】 317. (2013年高考课标Ⅰ卷(文已知 H 是球 O 的直径 AB 上一点 , :1:2AH HB =, AB ⊥平面α, H 为垂足, α截球 O 所得截面的面积为π, 则球 O 的表面积为 _______. 【答案】92π; 18. (2013年高考北京卷(文某四棱锥的三视图如图所示 , 该四棱锥的体积为__________.【答案】 319. (2013年高考陕西卷(文某几何体的三视图如图所示 , 则其表面积为________. 【答案】π320. (2013年高考大纲卷 (文已知圆 O 和圆 K 是球 O 的大圆和小圆 , 其公共弦长等于球 O 的半径 , 3602OK O K =,且圆与圆所在的平面所成角为 , 则球 O 的表面积等于 ______. 【答案】16π21. (2013年上海高考数学试题(文科已知圆柱Ω的母线长为 l , 底面半径为 r , O 是上地面圆心 , A 、 B 是下底面圆周上两个不同的点 , BC 是母线 , 如图 . 若直线 OA 与 BC 所成角的大小为π6, 则 1r=________.22. (2013年高考天津卷 (文已知一个正方体的所有顶点在一个球面上 . 若球的体积为 92π, 则正方体的棱长为23. (2013年高考辽宁卷(文某几何体的三视图如图所示 , 则该几何体的体积是____________.【答案】1616π-24. (2013年高考江西卷(文如图 , 正方体的底面与正四面体的底面在同一平面α上 , 且 AB//CD,则直线 EF 与正方体的六个面所在的平面相交的平面个数为_____________.【答案】 425. (2013年高考安徽(文如图 , 正方体 1111ABCD A B C D -的棱长为 1, P 为BC 的中点 , Q 为线段 1CC 上的动点 , 过点 , , A P Q 的平面截该正方体所得的截面记为 S , 则下列命题正确的是 __________(写出所有正确命题的编号.①当 102CQ <<时 , S 为四边形 ; ②当 12CQ =时 , S 为等腰梯形 ; ③当 34CQ =时 , S 与 11C D 的交点 R 满足113C R =; ④当 314CQ <<时 , S 为六边形 ; ⑤当 1CQ =时 , S【答案】①②③⑤三、解答题26. (2013年高考辽宁卷(文如图 , . AB O PA O C O 是圆的直径, 垂直圆所在的平面, 是圆上的点 (I求证 :BC PAC ⊥平面 ;(II设//. Q PA G AOC QG PBC ∆为的中点, 为的重心,求证:平面【答案】27. (2013年高考浙江卷 (文如图 , 在在四棱锥 P-ABCD 中 ,PA ⊥面ABCD,AB=BC=2,AD=CD=7,PA=3, ∠ ABC=120°,G 为线段 PC 上的点 . (Ⅰ证明 :BD⊥面 PAC ;(Ⅱ若 G 是 PC 的中点 , 求 DG 与 APC 所成的角的正切值 ; (Ⅲ若 G 满足 PC ⊥面 BGD, 求 PGGC的值 .【答案】解 :证明 :(Ⅰ由已知得三角形ABC是等腰三角形 , 且底角等于 30°, 且6030AB CB AD CD ABD CBD ABD CBD BAC BD DB =⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭且 , 所以 ; 、 BD AC ⊥, 又因为 PA ABCD BD PA BD PAC BD AC ⊥⇒⊥⎫⇒⊥⎬⊥⎭;(Ⅱ设 AC BD O =, 由 (1知 DO PAC ⊥, 连接 GO , 所以 DG 与面 APC 所成的角是 DGO ∠, 由已知及(1知:1, 2BO AO CO DO =====,12tan 2OD GO PA DGO GO ==⇒∠===, 所以 DG 与面 APC 所成的角的正切值是; (Ⅲ由已知得到 :PC===, 因为 PC BGD PC GD ⊥∴⊥, 在 PDC∆中, PD CD PC====, 设223 1072 PGPG x CG x x x PG x GCGC=∴=-∴-=--∴==== 28. (2013年高考陕西卷(文如图 , 四棱柱 ABCD -A 1B 1C 1D 1的底面 ABCD 是正方形 , O 为底面中心 , A 1O ⊥平面ABCD,1 AB AA =1A(Ⅰ证明 : A 1BD // 平面 CD 1B 1;(Ⅱ求三棱柱 ABD -A 1B 1D 1的体积 .【答案】解 : (Ⅰ设111ODB 线段的中点为 . 11111111//DBBDDCBAABCDDBBD ∴-的对应棱是和. 的对应线段是棱柱和同理,111111DCBAABCDOAAO -为平行四边形四边形且且11111111//////OCO AOCOAOCOAOC AOOAAO ⇒=⇒∴111 1 1 1 1 1 1 1 // , . //B CD BD A O D B COOBDOACOOA 面面且⇒==⇒.(证毕(Ⅱ的高是三棱柱面 ABD DBAOAABCDOA -∴⊥11111.在正方形 AB CD中 ,AO = 1 . . 1 11=∆OAOAART 中, 在112 (2121111111=⋅⋅=⋅=-∆-OASV ABD DBA ABD ABDDBA的体积三棱柱 . 所以 , 1 111111=--ABD DBAVABDDBA 的体积三棱柱 .29. (2013年高考福建卷 (文如图 , 在四棱锥 P ABCD -中 , PD ABCD⊥面 , //AB DC , AB AD⊥, 5BC =, 3DC =, 4AD =, 60PAD∠=.(1当正视图方向与向量 AD 的方向相同时 , 画出四棱锥 P ABCD-的正视图 .(要求标出尺寸 , 并画出演算过程 ; (2若 M 为 PA 的中点 , 求证 :// DM PBC面 ;(3求三棱锥 D PBC-的体积 .【答案】解法一 :(Ⅰ在梯形 ABCD 中 , 过点 C 作 CE AB ⊥, 垂足为 E , 由已知得 , 四边形 ADCE 为矩形 , 3AE CD == 在Rt BEC ∆中 , 由 5BC =, 4CE =, 依勾股定理得 :3BE =, 从而 6AB =又由 PD ⊥平面 ABCD 得 , PD AD ⊥从而在Rt PDA ∆中 , 由 4AD =, 60PAD ∠=︒,得 PD = 正视图如右图所示 :(Ⅱ取 PB 中点 N , 连结 MN , CN 在PAB ∆中 , M 是 PA 中点 ,∴ MN AB , 132MN AB ==, 又 CD AB , 3CD = ∴ MN CD , MN CD =∴四边形 MNCD 为平行四边形 , ∴ DM CN 又 DM ⊄平面 PBC , CN ⊂平面PBC ∴ DM 平面 PBC(Ⅲ 13D PBC P DBC DBC V V S PD --∆==⋅又6PBC s ∆=, PD =,所以 D PBC V -= 解法二 : (Ⅰ同解法一(Ⅱ取 AB 的中点 E , 连结 ME , DE 在梯形 ABCD 中 , BE CD , 且 BE CD = ∴四边形 BCDE 为平行四边形∴ DE BC , 又 DE ⊄平面 PBC , BC ⊂平面 PBC ∴ DE 平面 PBC , 又在PAB ∆中 , ME PBME ⊄平面 PBC , PB ⊂平面 PBC∴ ME 平面 PBC . 又 DEME E =,∴平面 DME 平面 PBC , 又 DM ⊂平面 DME ∴ DM 平面 PBC (Ⅲ同解法一30. (2013年高考广东卷(文如图 4, 在边长为 1的等边三角形 ABC 中 , , D E 分别是 , AB AC边上的点 , AD AE =, F 是 BC 的中点 , AF 与 DE 交于点 G , 将ABF ∆沿 AF 折起 , 得到如图 5所示的三棱锥 A BCF -,其中 BC =. (1 证明 :DE //平面 BCF ; (2 证明 :CF ⊥平面 ABF ; (3 当 23AD =时 , 求三棱锥 F DEG -的体积 F DEG V -. 图 4 【答案】 (1在等边三角形 ABC 中 , AD AE = AD AEDB EC ∴=, 在折叠后的三棱锥 A BCF -中也成立 , //DE BC ∴ ,DE ⊄平面 BCF ,BC ⊂平面 BCF , //DE ∴平面 BCF ;(2在等边三角形 ABC 中 , F 是 BC 的中点 , 所以 AF BC ⊥① ,12BF CF ==.在三棱锥 A BCF -中 ,2BC =, 222BC BF CF CF BF ∴=+∴⊥②BF CF F CF ABF ⋂=∴⊥平面 ;(3由 (1可知 //GE CF , 结合 (2可得 GEDFG ⊥平面 .111111132323323324F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎝⎭31. (2013年高考湖南(文如图 2. 在直菱柱 ABC-A 1B 1C 1中 , ∠BAC=90°,AB=AC=,AA 1=3,D是 BC 的中点 , 点E 在菱 BB 1上运动 .(I 证明 :AD⊥ C 1E;(II 当异面直线 AC,C 1E 所成的角为 60°时 , 求三菱子 C 1-A 2B 1E 的体积.【答案】解 : (Ⅰ 11C CBB AD E 面为动点,所以需证因为⊥.AD BB ABC AD ABC BB C B A ABC ⊥⇒⊂⊥∴-11111, 面且面是直棱柱AD BC BC D ABC RT ⊥∴∆的中点, 为是等腰直角且又 .. 1111111E C AD C CBB E C C CBB AD B BB BC ⊥⇒⊂⊥⇒=⋂面且面由上两点,且 (证毕(Ⅱ 660, //111111=∆⇒︒=∠∴AE E C A RT E C A A C CA 中, 在 .的高是三棱锥是直棱柱中, 在 1111111111. 2C B A E EB C B A ABC EB E B A RT -∴-=∆⇒ .. 3232213131111111111111的体积为所以三棱锥 E B A C EB S V V C B A C B A E E B A C -⋅=⋅⋅=⋅⋅==∆-- 32. (2013年高考北京卷(文如图 , 在四棱锥 P ABCD -中 , //AB CD , AB AD ⊥, 2CD AB =, 平面 PAD ⊥底面 ABCD , PA AD ⊥, E 和 F 分别是 CD 和 PC 的中点 , 求证 : (1PA ⊥底面ABCD ;(2//BE 平面 PAD ;(3平面 BEF ⊥平面 PCD【答案】 (I因为平面 PAD ⊥平面 ABCD, 且 PA 垂直于这个平面的交线 AD 所以 PA 垂直底面 ABCD.(II因为 AB ∥ CD,CD=2AB,E为 CD 的中点所以 AB ∥ DE, 且 AB=DE 所以ABED 为平行四边形 ,所以 BE ∥ AD, 又因为 BE ⊄平面 PAD,AD ⊂平面 PAD 所以 BE ∥平面 PAD.(III因为 AB ⊥ AD, 而且 ABED 为平行四边形所以 BE ⊥ CD,AD ⊥ CD, 由 (I 知 PA ⊥底面 ABCD,所以 PA ⊥ CD, 所以 CD ⊥平面 PAD所以 CD ⊥ PD, 因为 E 和 F 分别是 CD 和 PC 的中点所以 PD ∥ EF, 所以 CD ⊥ EF, 所以 CD ⊥平面 BEF, 所以平面 BEF ⊥平面PCD.33. (2013年高考课标Ⅰ卷(文如图 , 三棱柱 111ABC A B C -中 , CA CB =, 1AB AA =, 160BAA ∠=. (Ⅰ证明 :1AB AC ⊥; (Ⅱ若 2AB CB ==, 1AC =, 求三棱柱 111ABC A B C -的体积 .11A1【答案】【答案】 (I取 AB 的中点 O, 连接 OC O 、 1OA O 、 1A B , 因为CA=CB,所以 OC AB ⊥, 由于 AB=A A1, ∠ BA A 1=600, 故, AA B ∆为等边三角形 , 所以 OA 1⊥ AB.因为 OC ⨅ OA 1=O,所以 AB ⊥平面 OA 1C. 又 A 1CC 平面 OA 1C, 故 AB ⊥AC. (II由题设知12ABC AA B ∆∆与都是边长为的等边三角形,12AAB 都是边长为的等边三角形,所以2211111. OC OA AC AC OA OA OC =+⊥又 ,故111111111, --=3.ABC ABCOC AB O OA ABC OA ABC A B CABC S A B C V S OA=⊥∆=⨯=因为所以平面 , 为棱柱的高,又的面积 ABC 的体积34. (2013年高考山东卷 (文如图 , 四棱锥 P ABCD -中 , , AB AC AB PA⊥⊥, , 2AB CD AB CD=∥ , , , , ,E F G M N 分别为,, , ,PBAB BC PDPC 的中点(Ⅰ求证 :CE PAD∥平面 ; (Ⅱ求证 :EFG EMN ⊥平面平面【答案】35. (2013年高考四川卷(文如图 , 在三棱柱 11ABC A B C -中 , 侧棱 1AA ⊥底面 ABC , 122AB AC AA ===, 120BAC ∠=, 1, D D 分别是线段 11, BC B C 的中点 , P 是线段 AD 上异于端点的点 .(Ⅰ在平面 ABC 内 , 试作出过点 P 与平面 1A BC 平行的直线 l , 说明理由 , 并证明直线 l ⊥平面 11ADD A ; (Ⅱ设 (Ⅰ中的直线 l 交 AC 于点 Q , 求三棱锥 11A QC D -的体积 .(锥体体积公式 :13V Sh =, 其中 S 为底面面积 , h 为高【答案】解 :(Ⅰ如图 , 在平面 ABC 内 , 过点 P 作直线 BC l //, 因为 l 在平面BC A 1外 , BC 在平面 BC A 1内 , 由直线与平面平行的判定定理可知 , //l 平面 1A BC .由已知 , AC AB =, D 是 BC 中点 , 所以 BC ⊥ AD , 则直线 AD l ⊥, 又因为1AA ⊥底面 ABC , 所以 l AA ⊥1,又因为 AD , 1AA 在平面 11A ADD 内 , 且 AD 与 1AA 相交 , 所以直线⊥l 平面11A ADD(Ⅱ过 D 作 AC DE ⊥于 E , 因为 1AA ⊥平面 ABC , 所以 DE AA ⊥1,又因为 AC , 1AA 在平面 C C AA 11内 , 且 AC 与 1AA 相交 , 所以⊥DE 平面C C AA 11, 由 2==AC AB , ∠ BAC ︒=120, 有 1=AD , ∠ DAC ︒=60, 所以在△ACD 中 , 232==AD DE , 又 1211111=⋅=∆AA C A S AQC , 所以 6123131111111=⋅⋅=⋅==--QC A QC A D D QC A S DE V V 因此三棱锥 11A QC D -的体积为 6336. (2013年高考湖北卷(文如图 , 某地质队自水平地面 A , B , C 三处垂直向地下钻探 , 自 A 点向下钻到 A 1处发现矿藏 , 再继续下钻到 A 2处后下面已无矿 , 从而得到在 A 处正下方的矿层厚度为 121A A d =. 同样可得在 B , C 处正下方的矿层厚度分别为 122B B d =, 123C C d =, 且 123d d d <<. 过 AB , AC 的中点 M , N 且与直线 2AA 平行的平面截多面体 111222A B C A B C -所得的截面 DEFG 为该多面体的一个中截面 , 其面积记为 S 中 .(Ⅰ证明 :中截面 DEFG 是梯形 ;(Ⅱ在△ ABC 中 , 记 BC a =, BC 边上的高为 h , 面积为 S . 在估测三角形 ABC 区域内正下方的矿藏储量 (即多面体111222A B C A B C -的体积 V 时 , 可用近似公式 V S h =⋅估中来估算 . 已知1231( 3V d d d S =++, 试判断 V 估与 V 的大小关系 , 并加以证明 .C 11BCB 1【答案】 (Ⅰ依题意 12A A ⊥平面 ABC , 12B B ⊥平面 ABC , 12C C ⊥平面ABC , 所以 A 1A 2∥ B 1B 2∥ C 1C 2. 又 121A A d =, 122B B d =, 123C C d =, 且123d d d << . 因此四边形 1221A A B B 、 1221A A C C 均是梯形 .由 2AA ∥平面 MEFN , 2AA ⊂平面 22AA B B , 且平面 22AA BB平面 MEFN ME =,可得 AA 2∥ ME , 即 A 1A 2∥ DE . 同理可证 A 1A 2∥ FG , 所以 DE ∥ FG . 又 M 、 N 分别为 AB 、 AC 的中点 ,则 D 、 E 、 F 、 G 分别为 11A B 、 22A B 、 22A C 、 11AC 的中点 , 即DE 、 FG 分别为梯形 1221A A B B 、 1221A A C C 的中位线 .因此 12121211( ( 22DE A A B B d d =+=+, 12121311( ( 22FG A A C C d d =+=+,而 123d d d <<, 故 DE FG <, 所以中截面 DEFG 是梯形 . (Ⅱ V V <估 . 证明如下 :由 12A A ⊥平面 ABC , MN ⊂平面 ABC , 可得 12A A MN ⊥. 而 EM ∥ A 1A 2, 所以 EM MN ⊥, 同理可得 FN MN ⊥. 由 MN 是△ ABC 的中位线 , 可得 1122MN BC a ==即为梯形 DEFG 的高 , 因此 13121231( (2 22228DEFG d d d d a aS S d d d ++==+⋅=++中梯形 ,即 123(2 8ahV S h d d d =⋅=++估中 . 又 12S ah =, 所以 1231231( ( 36ahV d d d S d d d =++=++.于是 1231232131( (2 [( (]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估 . 由 123d d d <<, 得 210d d ->, 310d d ->, 故 V V <估 .37. (2013年高考课标Ⅱ卷(文如图 , 直三棱柱 ABC-A 1B 1C 1中 ,D,E 分别是AB,BB 1的中点 .第 20题图(1 证明 : BC1//平面 A 1CD;(2 设 AA 1= AC=CB=2,AB=2, 求三棱锥 C 一 A 1DE 的体积.【答案】38. (2013年高考大纲卷(文如图 , 四棱锥902, P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中, , 与都是边长为 2的等边三角形 .(I证明 :; PB CD ⊥ (II求点 . A PCD 到平面的距离【答案】 (Ⅰ证明 :取 BC 的中点 E, 连结 DE, 则 ABED 为正方形 .过 P 作 PO ⊥平面 ABCD, 垂足为 O.连结 OA,OB,OD,OE.由PAB ∆和PAD ∆都是等边三角形知 PA=PB=PD,所以 OA=OB=OD,即点 O 为正方形 ABED 对角线的交点 ,故 OE BD ⊥, 从而 PB OE ⊥.因为 O 是 BD 的中点 ,E 是 BC 的中点 ,所以 OE//CD.因此 , PB CD ⊥.(Ⅱ解 :取 PD 的中点 F, 连结 OF, 则 OF//PB.由 (Ⅰ知 , PB CD ⊥, 故 OF CD ⊥.又 12OD BD ==OP = 故POD ∆为等腰三角形 , 因此 , OF PD ⊥. 又 PD CD D =, 所以 OF ⊥平面PCD.因为 AE//CD,CD ⊂平面 PCD, AE ⊄平面 PCD, 所以 AE//平面 PCD.因此 ,O 到平面 PCD 的距离 OF 就是 A 到平面 PCD 的距离 , 而 112OF PB = =, 所以 A 至平面 PCD 的距离为 1.39. (2013年高考安徽(文如图 , 四棱锥 P ABCD -的底面 ABCD 是边长为 2的菱形 , 60BAD ∠=.已知 2, PB PD PA === .(Ⅰ证明 :PC BD ⊥(Ⅱ若 E 为 PA 的中点 , 求三菱锥 P BCE -的体积.【答案】解 :(1证明 :连接 , BD AC 交于 O 点PB PD = PO BD ∴⊥又 ABCD 是菱形 BD AC ∴⊥而 AC PO O ⋂= BD ∴⊥面 PAC ∴BD ⊥ PC(2 由 (1BD ⊥面 PAC︒⨯⨯⨯==45sin 3262121PAC PEC S S △△ =32236=⨯⨯ 111132322P BEC B PEC PEC V V S BO --∆==⋅⋅=⨯⨯= 40. (2013年上海高考数学试题(文科如图 , 正三棱锥 O ABC -底面边长为 2, 高为 1, 求该三棱锥的体积及表面积 .第19题图B【答案】41. (2013年高考天津卷(文如图 , 三棱柱 ABC -A 1B 1C 1中 , 侧棱 A 1A ⊥底面 ABC , 且各棱长均相等 . D , E , F 分别为棱 AB , BC , A 1C 1的中点 .(Ⅰ证明 EF //平面 A 1CD ;(Ⅱ证明平面 A 1CD ⊥平面 A 1ABB 1;(Ⅲ求直线 BC 与平面 A 1CD 所成角的正弦值 .【答案】42. (2013年高考重庆卷(文 (本小题满分 12分 ,(Ⅰ小问 5分 ,(Ⅱ小问 7分如题 (19图 , 四棱锥 P ABCD -中 , PA ⊥底面 A B C D, PA =, 2BC CD ==, 3ACB ACD π∠=∠=. (Ⅰ求证 :BD ⊥平面 PAC ;(Ⅱ若侧棱 PC 上的点 F 满足 PF 7 FC ,求三棱锥 P BDF 的体积. 【答案】43.(2013 年高考江西卷(文如图,直四棱柱 ABCD – A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD= ,AA1=3,E 为CD 上一点,DE=1,EC=3 (1 证明:BE⊥平面 BB1C1C; (2 求点 B1 到平面 EA1C1 的距离【答案】解.(1证明:过 B 作 CD 的垂线交 CD 于 F,则 BF AD 2, EF AB DE 1, FC 2 在 Rt BFE中,BE= 3 ,Rt BFC中,BC= 6 . 2 2 2 在 BCE中,因为BE BC =9=EC ,故 BE BC 由 BB1 平面ABCD,得BEBB1,所以BE 平面BB1C1C (2 三棱锥E A1 B1C1的体积V= AA1 S A1B1C1= 2 1 3 在Rt A1 D1C1中,A1C1= A1 D12 D1C12 =3 2 , EA1=AD ED AA1 =2 3 同理, EC1= EC CC1 =3 2 , 2 2 2 2 2 因此 S A C E 3 5 .设点 B1 到平面 EAC 的体积 1 EAC 1 1 1 1 的距离为 d,则三棱锥B 1 1 1 10 V= d S A1EC1= 5d ,从而 5d 2, d 3 5。

2013年全国高考理科数学试题分类汇编7:立体几何22

2013年全国高考理科数学试题分类汇编7:立体几何22

2013年全国高考理科数学试题分类汇编7:立体几何大题1.(2013辽宁数学(理)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值【答案】2.(2013重庆数学(理)如图,四棱锥P A B-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】1.(2013安徽数学(理)如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°.(Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠.1.(2013浙江数学(理)如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.;2.(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.3.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)本小题满分12分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.4.(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.ABC SGF EB 1 A 1C 1 AC BABCD PQ M(第20题图)C 115.(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(I)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明; (II)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.6.(2013广东省数学(理)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.7.(2013天津数学(理)试题如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD =CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值..CO B D EACD O BE 'A 图1 图2 第19题图(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.【答案】8.(2013年高考新课标1(理))如图,三棱柱ABC-A 1B 1C 1中,CA=CB,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC⊥平面AA 1B 1B,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.9.(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA =(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.1A10.(2013江西卷(理))如图,四棱锥P A B-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 与平面DCP 的夹角的余弦值.11.(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.1C12.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)本小题满分10分.如图,在直三棱柱111A B C ABC -中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点(1)求异面直线B A 1与D C 1所成角的余弦值(2)求平面1ADC 与1ABA 所成二面角的正弦值.13.(2013大纲版数学(理)如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】14.(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A BC D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值.15.(2013年普通高等学校招生统一考试福建数学(理)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)17.(2013年高考北京卷(理))如图,在三棱柱-111中,11是边长为4的正方形,平面⊥平面AA 1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求1BD BC 的值.。

2013年高考真题理科数学解析分类汇编7-立体几何

2013年高考真题理科数学解析分类汇编7-立体几何

2013年高考真题理科数学解析分类汇编7 立体几何一选择题1。

[湖南]7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 B .2 C .2-12 D .2+12【答案】 C 【解析】由题知,正方体的棱长为1,121-2.]2,1[]2,1[1<而上也在区间上,所以正视图的面积,宽在区间正视图的高为。

选C2.陕西12。

某几何体的三视图如图所示, 则其体积为 3π。

【答案】3π 【解析】立体图为半个圆锥体,底面是半径为1的半圆,高为2。

所以体积32121312ππ=⋅⋅⋅⋅=V3。

安徽理(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C ,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。

所以选A4。

广东5。

某四棱台的三视图如图1所示,则该四棱台的体积是1121图1A. 4B.143 C 。

163D 。

6 解析:显然棱台的上下底的面积分别为1214S S ==、,故其体积为11221114V=()(124)2333S S S S h ++=++⨯= 选B5。

广东6.设m ,n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 A.若,,m n αβαβ⊥⊂⊂,则m ⊥n ; B 。

若//,,m n αβαβ⊂⊂,则//m n C 。

若,,m n m n αβ⊥⊂⊂,则αβ⊥; D 。

若,//,//m m n n αβ⊥,则αβ⊥ 解析:选D ∵,//,//m m n n αβ⊥,∴平面β内存在直线α⊥,故αβ⊥ 其它选项均错。

6.新课标I ,6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、错误!cm 3B 、错误!cm 3C 、错误!cm 3D 、错误!cm 3【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R —2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=错误!3cm ,故选A.7.新课标I,8、某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国高考理科数学试题分类汇编7:立体几何一、选择题 1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( ) A .35003cm πB .38663cm πC .313723cm πD .320483cm π【答案】A2 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D 3 .(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 【答案】C 4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B C D .13【答案】A 5 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( ) A .168π+ B .88π+ C .1616π+ D .816π+ 【答案】A 6 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C 7 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A .1BCD【答案】C 8 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6【答案】B 9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知nm ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D 10.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,的正三角形.若P为底面正视图俯视图侧视图第5题图111A B C 的中心,则PA与平面ABC所成角的大小为( )A .512πB .3πC .4πD .6π【答案】B 11.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为( ) A .5603B .5803C .200D .240【答案】C 12.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O的球面上,若34AB AC ==,,AB AC⊥,112AA =,则球O的半径为( ) AB.C .132D.【答案】C 13.(2013年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( ) A .8B .9C .10D .11【答案】A14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( ) A . B . C . D . 【答案】A 15.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 【答案】A 16.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A 17.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是【答案】D 二、填空题18.(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【答案】2216ππ+.19.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3π_____.【答案】3π20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60 ,则球O 的表面积等于______.【答案】16π 21.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.【答案】22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.A BCADEF BC【答案】1:24 23.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】24 24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S的面积为【答案】①②③⑤25.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π- 26.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π27.(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______【答案】3π三、解答题 28.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1B 1A 1D C A B【答案】29.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】1.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°.(Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠. 【答案】解:(Ⅰ)PAB P D ,////C m AB CD CD PCD AB PCD ⋂=⊂⇒ 设面面直线且面面//AB m ⇒直线 ABCD m ABCD AB 面直线面//⇒⊂ .所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ)rPOOPF F CD r =︒︒=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ︒-︒=︒∠==︒⋅︒⇒=︒5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[21cos ,1-25.22tan 12cos 2cos 22-==+∠=︒⇒-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以.法二:1.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;ABCDPQM(第20题图)方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////PO QH PQ OH ∴,且OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中, 13HG =∴=所以在RT CHG ∆中tan tan 60CG CHG HG ∠====tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;2.(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π.在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==,从而2ABC S ∆==因此该三棱柱的体积为16ABC V S AA ∆=⋅==.3.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点. 求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC 同理:FG∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SABABSGFEB 1A 1C 1ACBAF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA4.(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.D 1C 11A D C BA【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,11AC D C AD ===,故132AD C S ∆=所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.5.(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(I)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.第19题图【答案】解:(I)EF AC ,AC ABC ⊆平面,EF ABC ⊆平面EF ABC ∴ 平面又EF BEF ⊆平面 EF l ∴l PAC ∴ 平面(II)连接DF,用几何方法很快就可以得到求证.(这一题用几何方法较快,向量的方法很麻烦,特别是用向量不能方便的表示角的正弦.个人认为此题与新课程中对立体几何的处理方向有很大的偏差.)6.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE ,在OCD ∆中,由余弦定理可得OD ==由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ',因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故OH =,从而A H '== 所以cos OH A HO A H '∠=='所以二面角A CD '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-C D OBE'AH.CO BDEA CDOBE'A图1图2设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧=⎪⎨-+=⎪⎩,解得y xz =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦值为. 7.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点. (Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.【答案】8.(2013年高考新课标1(理))如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.【答案】(Ⅰ)取AB 中点E,连结CE,1A B ,1A E,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB, ∵CA=CB, ∴CE⊥AB, ∵1CE A E ⋂=E,∴AB⊥面1CEA,∴AB⊥1AC ;(Ⅱ)由(Ⅰ)知EC⊥AB,1EA ⊥AB,又∵面ABC⊥面11ABB A ,面ABC∩面11ABB A =AB,∴EC⊥面11ABB A ,∴EC⊥1EA ,∴EA,EC,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA|为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A(0,,0),C(0,0,),B(-1,0,0),则BC1BB =1AA1AC),设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧∙=⎪⎨∙=⎪⎩n n ,即0x x ⎧=⎪⎨=⎪⎩,可取n,1,-1), ∴1cos ,A C n =11|A C A C ∙n |n||∴直线A 1C 与平面BB 1C 1C9.(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==.(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.1A【答案】解:(Ⅰ) BD O A ABCD BD ABCD O A ⊥∴⊂⊥11,,面且面 ;又因为,在正方形ABCD 中,BD C A AC A C A AC A BD A AC O A BD AC ⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在O E C A OCE A E D B 1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又O O BD D D BB O D D BB BD =⋂⊂⊂111111E .E ,D D BB C A 111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O 为原点,以OC 为X 轴正方向,以OB 为Y 轴正方向.则)1,0,1()1,1,1(),100(),001(,0,1,0111-=⇒C A B A C B ,,,,)(.由(Ⅰ)知, 平面BB 1D 1D 的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OC OB C A n 设平面OCB 1的法向量为,则0,0,2122=⋅=⋅OC n OB n n ).1-,1,0(法向量2=n 为解得其中一个21221|||||,cos |cos 212111=⋅=⋅=><=n n n n θ.1A所以,平面OCB 1与平面BB 1D 1D 的夹角θ为3π 10.(2013年高考江西卷(理))如图,四棱锥P ABCD-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 与平面DCP 的夹角的余弦值.【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====, 故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG . (3) 以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(2A B C D ,(4)3(0,0,)2P ,故1333(0),(),(2222BC CP CD ==--=- , 设平面BCP 的法向量111(1,,)n y z = ,则11110233022y y z ⎧=⎪⎪⎨⎪-+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩即12(1,)3n = . 设平面DCP 的法向量222(1,,)n y z = ,则22230233022y y z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,即22)n =.从而平面BCP 与平面DCP 的夹角的余弦值为1212cos n n n n θ⋅=== . 11.(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.1C【答案】解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC 在平面1A BC 内,由直线与平面平行的判定定理可知, l //平面1A BC .由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交,所以直线平面11ADD A()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1A M AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --的平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠= ,有60BAD ∠= ,2,1AB AD ==. 又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AA P 中, 1A P =在1Rt A AM 中, 1A M =.从而,11AA AP AE A P ∙==,11AA AM AF A M ∙==所以sin AE AF θ==.所以cos θ===. 故二面角1A A M N --解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,A E A D ,1AA的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,1,,122M N ⎫⎛⎫⎪ ⎪⎪ ⎪⎭⎝⎭,所以11,12A M ⎫=⎪⎪⎭,()10,0,1A A =,)NM = .设平面1AA M 的一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩ 即11110,0,n A M n A A ⎧∙=⎪⎨∙=⎪⎩故有()()()1111111,,,10,2,,0,0,10,x y z x y z ⎧⎫∙=⎪⎪⎪⎨⎭⎪∙=⎩从而111110,20.y z z ++=⎪=⎩取11x =,则1y =,所以()11,n =. 设平面1A MN 的一个法向量为()2222,,n x y z =,则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩ 即2120,0,n A M n NM ⎧∙=⎪⎨∙=⎪⎩故有()())2222221,,,10,2,,0,x y z x y z ⎧⎫∙=⎪⎪⎪⎪⎭⎨⎪∙=⎪⎩从而222210,20.x y z ++=⎪=⎩取22y =,则21z =-,所以()20,2,1n =-. 设二面角1A A M N --的平面角为θ,又θ为锐角,则cos θ. 故二面角1A A M N -- 12.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.如图,在直三棱柱111A B C ABC -中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点(1)求异面直线B A 1与D C 1所成角的余弦值 (2)求平面1ADC 与1ABA 所成二面角的正弦值.【答案】本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力.解:(1)以{}1,,AA AC AB 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=B A ,)4,1,1(1--=B A∴10103182018,cos 11=<D C B A ∴异面直线B A 1与D C 1所成角的余弦值为10103 (2))0,2,0(=AC 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x m =,∵)0,1,1(=AD ,)4,2,0(1=AC 由1,AC m AD m ⊥⊥ ∴⎩⎨⎧=+=+0420z y y x 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=m设平面1ADC 与1ABA 所成二面角为θ∴32,cos cos <=m AC θ, 得35sin =θ ∴平面1ADC 与1ABA 所成二面角的正弦值为3513.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,AQ BQ AP BP的中点, 2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH . (Ⅰ)求证:AB GH ; (Ⅱ)求二面角D GH E --的余弦值.【答案】解:(Ⅰ)证明:因为,,,D C E F 分别是,,,AQ BQ AP BP 的中点, 所以EF ∥AB ,DC ∥AB ,所以EF ∥DC , 又EF ⊂平面PCD ,DC ⊂平面PCD , 所以EF ∥平面PCD ,又EF ⊂平面EFQ ,平面EFQ 平面PCD GH =, 所以EF ∥GH , 又EF ∥AB , 所以AB ∥GH .(Ⅱ)解法一:在△ABQ 中, 2AQ BD =,AD DQ =,所以=90ABQ ∠,即AB BQ ⊥,因为PB ⊥平面ABQ ,所以AB PB ⊥,又BP BQ B = ,所以AB ⊥平面PBQ ,由(Ⅰ)知AB ∥GH ,所以GH ⊥平面PBQ ,又FH ⊂平面PBQ ,所以GH FH ⊥,同理可得GH HC ⊥, 所以FHC ∠为二面角D GH E --的平面角,设2BA BQ BP ===,连接PC , 在t R △FBC 中,由勾股定理得,FC =在t R △PBC 中,由勾股定理得,PC =,又H 为△PBQ 的重心,所以13HC PC ==同理FH =,在△FHC 中,由余弦定理得552499cos 5529FHC +-∠==-⨯, 即二面角D GH E --的余弦值为45-.解法二:在△ABQ 中,2AQ BD =,AD DQ =,所以90ABQ ∠=,又PB ⊥平面ABQ ,所以,,BA BQ BP 两两垂直,以B 为坐标原点,分别以,,BA BQ BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,设2BA BQ BP ===,则(1,0,1)E ,(0,0,1)F ,(0,2,0)Q ,(1,1,0)D ,(0,1,0)C (0,0,2)P ,,所以(1,2,1)EQ =-- ,(0,2,1)FQ =- ,(1,1,2)DP =-- ,(0,1,2)CP =-,设平面EFQ 的一个法向量为111(,,)m x y z =,由0m EQ ⋅= ,0m FQ ⋅=,得111112020x y z y z -+-=⎧⎨-=⎩取11y =,得(0,1,2)m =.设平面PDC 的一个法向量为222(,,)n x y z =由0n DP ⋅= ,0n CP ⋅=, 得222222020x y z y z --+=⎧⎨-+=⎩取21z =,得(0,2,1)n =.所以4cos ,5m n m n m n ⋅==因为二面角D GH E --为钝角,所以二面角D GH E --的余弦值为45-.15.(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥= ,13AD AA ==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值. 【答案】解:(Ⅰ)AC BB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱 D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。

相关文档
最新文档