2020版高考数学大二轮复习课时作业13空间向量与立体几何理

合集下载

届高考数学新课标理轮复习辅导空间向量与立体几何精讲课后练习

届高考数学新课标理轮复习辅导空间向量与立体几何精讲课后练习

届高考数学新课标理轮复习辅导空间向量与立体几何精讲课后练习文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]第14讲空间向量与立体几何经典精讲题一:一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形.则该几何体的表面积为( ).A.88 B.98 C.108 D.158题二:如图所示是一个几何体的三视图,则该几何体的体积为( ).A.1 B.12C.34D.32题三:一个简单组合体的三视图及尺寸如图所示(单位:mm),则该组合体的体积为( ).A.32 mm3 B.48 mm3 C.56 mm3 D.64 mm3题四:一个物体的底座是两个相同的几何体,它的三视图及其尺寸(单位:dm)如图所示,则这个物体的体积为( ).A.(120+16π) dm3 B.(120+8π) dm3 C.(120+4π) dm3 D.(60+8π) dm3题五:如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.题六:一个多面体的三视图和直观图如图所示,其中M,N分别是AB,SA 的中点.(1)求证:NB⊥M C;(2)在棱SD上是否存在点P,使AP∥平面SMC若存在,请找出点P的位置;若不存在,请说明理由.题七:如图,棱长为2的正方体ABCD-A1B1C1D1中,E为棱C1D1的中点,F 为棱BC的中点.(1)求证:直线AE⊥直线DA1;(2)求三棱锥D-AEF的体积;(3)在线段AA1上求一点G,使得直线AE⊥平面DFG.题八:如图,在平行四边形ABCD中,AB=2BC=4,∠ABC=120°,E、M 分别为AB、DE的中点,将△ADE沿直线DE翻转成△A′DE,F为A′C的中点,A′C=4.(1)求证:平面A′DE⊥平面BCD;(2)求证:FB∥平面A′DE.题九:如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为( ).A. 2 B. 3 C.2D.2 2题十:已知四棱柱ABCD-A1B1C1D1的侧棱AA1垂直于底面,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AD=AB=AA1=2BC,E为DD1的中点,F为A1D的中点.则直线EF与平面A1CD所成角的正弦值为( ).A.13B.33C.23 D.63第14讲空间向量与立体几何经典精讲题一:答案:(1)证明见详解;(2)3 2.详解:(1)在图(1)中,∵AC=6,BC=3,∠ABC=90°,∴∠ACB=60°.∵CD为∠ACB的平分线,∴∠BCD=∠ACD=30°,∴CD=23.∵CE=4,∠DCE=30°,∴DE=2.则CD2+DE2=EC2,∴∠CDE=90°,DE⊥DC.在图(2)中,∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE平面ACD,∴DE⊥平面BCD.(2)在图(2)中,∵EF∥平面BDG,EF平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.∵点E在线段AC上,CE=4,点F是AB的中点,∴AE=EG=CG=2,作BH⊥CD交CD于H,∵平面BCD⊥平面ACD,∴BH⊥平面ACD.由条件得BH=32.S△DEG=13S△ACD=13×12AC·CD·sin30°=3.∴三棱锥B-DEG的体积V=13S△DEG·BH=13×3×32=32.题二:答案:(1)证明见详解;(2) 当θ=π4时,三棱锥C-AOE的体积最大,最大值为2 3.详解:(1)在直角梯形ABCD中,CD=2AB,E为CD的中点,则AB=DE,又AB∥DE,AD⊥AB,知BE⊥CD.在四棱锥C-ABED中,BE⊥DE,BE⊥CE,CE∩DE=E,CE,DE平面CDE,则BE⊥平面CDE.因为CO平面CDE,所以BE⊥CO.又CO⊥DE,且BE,DE是平面ABED内两条相交直线,故CO⊥平面ABED.(2)由(1)知CO⊥平面ABED,则三棱锥C-AOE的体积V=13S△AOE·OC=13×12×OE×AD×OC.由直角梯形ABCD中,CD=2AB=4,AD=2,CE=2,得三棱锥C-AOE中,OE=CE cosθ=2cosθ,OC=CE sinθ=2sinθ,V=23sin2θ≤23.当且仅当sin2θ=1,θ∈(0,π2),即θ=π4时取等号,(此时OE=2<DE,O落在线段DE内).故当θ=π4时,三棱锥C-AOE的体积最大,最大值为23.题三:见详解.证明:(1)如图所示,取BB1的中点M,连接HM、MC1,易证四边形HMC1D1是平行四边形,∴HD1∥MC1.又∵MC1∥BF,∴BF∥HD1.(2)取BD的中点O,连接EO、D1O,则OE平行且等于12 DC.又D1G平行且等于12DC,∴OE平行且等于 D1G,∴四边形OEGD1是平行四边形.∴GE∥D1O.又D1O 平面BB1D1D,EG平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知D1H∥BF,D1H平面BDF,BF平面BDF,∴D1H∥平面BDF.同理,由B1D1∥BD可得,B1D1∥平面BDF.又B1D1、HD1平面HB1D1,且B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.题四:见详解.详解:(1)取AD的中点O,连接NO,BO,∵N是SA的中点,O是AD的中点,∴NO∥SD.又∵SD⊥底面ABCD,∴NO⊥底面ABCD,MC⊂平面ABCD,∴NO⊥MC.又∵ABCD是正方形,M,O分别是AB,AD的中点,由平面几何知识可得BO⊥MC,NO∩BO=O,∴MC⊥平面NOB,NB ⊂平面NOB.∴NB⊥MC.(2)取线段SD的中点P即可.设SC的中点为Q,连接PQ,MQ,∴PQ=12CD且PQ∥CD;又AM∥CD且AM=12CD;∴PQ∥AM且PQ=AM.∴APQM是平行四边形.∴AP∥MQ,AP平面SMC,MQ 平面SMC.∴AP∥平面SMC.题五:(2) 43.详解:(1)连接AD1,BC1,由正方体的性质可知,DA1⊥AD1,DA1⊥AB,又AB∩AD1=A,∴DA1⊥平面ABC1D1,又AE平面ABC1D1,∴DA1⊥AE.(2)V D-AEF =V E-ADF =13·DD1·S△ADF =13×2×2=43.(3)所示G点即为A1点,证明如下:由(1)可知AE⊥DA1,取C D的中点H,连接AH,EH,由DF⊥AH,DF⊥EH,AH∩EH=H,可证DF⊥平面A HE,∴DF⊥AE.又DF∩A1D=D,∴AE⊥平面DFA1,即AE⊥平面DFG.题六:见详解.详解:(1)由题意得△A′DE是△ADE沿DE翻折而成,所以△A′DE≌△ADE.∵∠ABC=120°,四边形ABCD是平行四边形,∴∠A=60°.又∵AD=AE=2,∴△A′DE和△ADE都是等边三角形.∵M是DE的中点,∴A′M⊥DE,A′M=3.在△DMC中,MC2=42+12-2×4×1·cos60°,∴MC=13.在△A′MC中,A′M2+MC2=(3)2+(13)2=42=A′C2,∴△A′MC是直角三角形.∴A′M⊥MC.又∵A′M⊥DE,MC∩DE=M,∴A′M⊥平面BCD.又∵A′M ⊂平面A′DE,∴平面A′DE⊥平面BCD.(2)取DC的中点N,连接FN,NB.∵A′C=DC,F,N点分别是A′C,DC的中点,∴FN∥A′D.又∵N,E点分别是平行四边形ABCD的DC,AB的中点,∴BN∥DE.又∵A′D∩DE=D,FN∩NB=N,∴平面A′DE∥平面FNB.∵FB平面FNB,∴FB∥平面A′DE.题七:A .详解:如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0, 0, 0),A (1, 0, 0),B 1(0, 2, 2),C 1(0, 0, 2)设AD =a ,则D 点坐标为(1, 0, a ),CD =(1, 0, a ),1CB =(0, 2, 2),设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⎩⎨⎧2y +2z =0x +az =0,令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n (0,1,0),则由cos60°=m·n |m ||n |,得1a 2+2=12,即a =2,故AD =2.题八:C .详解:∵AB ,AD ,AA 1两两垂直,故以AB 所在直线为x 轴,AD 所在直线为y 轴,AA 1所在直线为z 轴,建立空间直角坐标系, 如图所示,设BC =1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),E (0,2,1),F (0,1,1),FE =(0,1,0),设平面A 1CD 的一个法向量为n =(1,y ,z ),则⎩⎪⎨⎪⎧n ·1A D =2y -2z =0n ·CD =-2+y =0,故n =(1,2,2),则sin θ=|cos<n ,FE >|=|n ·FE |n |·|FE ||=|1×0+2×1+2×04+4+1×0+1+0|=23, 故直线EF 与平面A 1CD 所成的角θ的正弦值为23.。

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1­ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­PA ­C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M ­PA ­C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G ­xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A ­MA 1­N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A ­MA 1­N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O ­xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC ­A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A ­B 1D ­A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A ­B 1D ­A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ­ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ­ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ­ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G ­xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ­AF ­E 与二面角C ­BE ­F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E ­BC ­A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G ­xyz .由(1)知∠DEF 为二面角D ­AF ­E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C ­BE ­F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E ­BC ­A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H ­xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H ­xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B ­D ′A ­C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A ­PE ­C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A ­EP ­C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A ­EP ­C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz . 当三棱锥M ­ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ­ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A ­xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。

2020年高考数学二轮复习专题突破课时作业13空间向量与立体几何理2

2020年高考数学二轮复习专题突破课时作业13空间向量与立体几何理2

课时作业 13 空间向量与立体几何1.如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .证明:以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系A -xyz 如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB .又AB ⊂平面PAB ,EF ⊄平面PAB , 所以EF ∥平面PAB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又因为AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD , 所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面PAD ⊥平面PDC .得cos ∠C 1A 1B 1=67,sin ∠C 1A 1B 1=17,所以C 1D =3, 故sin ∠C 1AD =C 1D AC 1=3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是3913.方法2:(1)证明:如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O ­xyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1 (0,-3,4),B 1 (1,0,2),C 1 (0,3,1).因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3). 由AB 1→·A 1B 1→=0, 得AB 1⊥A 1B 1.由AB 1→·A 1C 1→=0,得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(2)解:设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的法向量为n =(x ,y ,z ).由⎩⎨⎧n ·AB →=0,n ·BB 1→=0,得⎩⎨⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是3913.3.[2018·江苏卷]如图,在正三棱柱ABC ­A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.解析:如图,在正三棱柱ABC ­A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB →,OC →,OO 1→}为基底,建立空间直角坐标系O ­xyz .因为AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)解:因为P 为A 1B 1的中点,所以P ⎝⎛⎭⎪⎫32,-12,2,从而BP →=⎝ ⎛⎭⎪⎫-32,-12,2,AC 1→=(0,2,2),故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →|·|AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)解:因为Q 为BC 的中点,所以Q ⎝⎛⎭⎪⎫32,12,0, 因此AQ →=⎝ ⎛⎭⎪⎫32,32,0,AC 1→=(0,2,2),CC 1→=(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量,则⎩⎨⎧AQ →·n =0,AC 1→·n =0,即⎩⎪⎨⎪⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos 〈CC 1→,n 〉|=|CC 1→·n ||CC 1→|·|n |=25×2=55.所以直线CC 1与平面AQC 1所成角的正弦值为55.4.[2018·郑州市高中毕业班第一次质量预测]如图,在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,AB =6,BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线PA 与平面ABC 所成的角为π4,求平面PAC 与平面PDE 所成的锐二面角.解析:(1)证明:由题意知AC =26,BC =23,AB =6, ∴AC 2+BC 2=AB 2,∴∠ACB =π2,∴cos ∠ABC =236=33. 又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面PAB ⊥平面ABC ,∴CD ⊥平面PAB , ∴CD ⊥PD ,∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的直角坐标系D -xyz , ∵直线PA 与平面ABC 所成的角为π4,即∠PAD =π4,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4), ∴CB →=(-22,2,0),AC →=(22,4,0),PA →=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC ,由(1)知AC ⊥BC ,∴DE ⊥BC , 又PD ⊥平面ABC ,∴PD ⊥BC ,∵PD ∩DE =D , ∴CB ⊥平面PDE ,∴CB →=(-22,2,0)为平面PDE 的一个法向量.设平面PAC 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ⊥AC →,n ⊥PA →,∴⎩⎨⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1,∴n =(2,-1,1)为平面PAC 的一个法向量. ∴cos 〈n ,CB →〉=-4-24×12=-32,∴平面PAC 与平面PDE 所成的锐二面角的余弦值为32, 故平面PAC 与平面PDE 所成的锐二面角为30°.5.[2018·北京卷]如图,在三棱柱ABC ­A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC =5,AC =AA 1=2.(1)求证:AC ⊥平面BEF ; (2)求二面角B ­CD ­C 1的余弦值; (3)证明:直线FG 与平面BCD 相交. 解析:(1)证明:在三棱柱ABC ­A 1B 1C 1中, 因为CC 1⊥平面ABC , 所以四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, 所以AC ⊥EF . 因为AB =BC ,所以AC ⊥BE ,所以AC ⊥平面BEF .(2)解:由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC , 所以EF ⊥平面ABC . 因为BE ⊂平面ABC , 所以EF ⊥BE .如图,建立空间直角坐标系E ­xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),E (0,0,0),F (0,0,2),G (0,2,1). 所以BC →=(-1,-2,0),BD →=(1,-2,1). 设平面BCD 的法向量为n =(x 0,y 0,z 0),则⎩⎨⎧n ·BC →=0,n ·BD →=0,即⎩⎪⎨⎪⎧x 0+2y 0=0,x 0-2y 0+z 0=0.令y 0=-1,则x 0=2,z 0=-4. 于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题知二面角B ­CD ­C 1为钝角, 所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1). 因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.6.[2018·太原市高三年级模拟试题(二)]如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在平面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.解析:(1)证明:如图,连接AC ,交BD 于点O ,连接EO , ∵AD =AB ,CD =CB ,AC =AC ,∴△ADC ≌△ABC ,易得△ADO ≌△ABO ,∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,∴BD ⊥平面AEC , 又OE ⊂平面AEC ,∴OE ⊥BD .又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt △ADC 中,由AD =3,CD =1,可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°,即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O ,∴EO ⊥平面ABCD , 又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°,即∠DAB =60°, ∴△ABD 为正三角形, ∴DN ⊥AB , 又BC ⊥AB ,∴平面DMN ∥平面EBC ,∴点P 在线段MN 上. 以O 为坐标原点,建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎫32,0,0,B ⎝ ⎛⎭⎪⎫0,32,0,E ⎝⎛⎭⎪⎫0,0,32,M ⎝ ⎛⎭⎪⎫34,0,34,D ⎝ ⎛⎭⎪⎫0,-32,0,N ⎝ ⎛⎭⎪⎫34,34,0, ∴AB →=⎝ ⎛⎭⎪⎫-32,32,0,AE →=⎝ ⎛⎭⎪⎫-32,0,32,DM →=⎝ ⎛⎭⎪⎫34,32,34,MN →=⎝⎛⎭⎪⎫0,34,-34,设平面ABE 的法向量n =(x ,y ,z ),则⎩⎨⎧AB →·n =0,AE →·n =0,即⎩⎨⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝ ⎛⎭⎪⎫34,32+34λ,34-34λ,。

届数学统考第二轮专题复习第12讲立体几何学案理含解析

届数学统考第二轮专题复习第12讲立体几何学案理含解析

第12讲立体几何高考年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2020证明线面垂直,求二面角的余弦值·T18证明线面平行、面面垂直,求线面角的正弦值·T20点面的位置关系,求二面角的正弦值·T192019证明线面平行,求二面角的正弦值·T18证明线面垂直,求二面角的正弦值·T17翻折问题,证明四点共面、面面垂直,求二面角的大小·T192018翻折问题,证明面面垂直,求线面角的正弦值·T18证明线面垂直,给出二面角求线面角的正弦值·T20证明面面垂直,求二面角的正弦值·T191。

[2020·全国卷Ⅱ]如图M4—12-1,已知三棱柱ABC—A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图M4—12-12.[2020·全国卷Ⅰ]如图M4—12-2,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三DO.角形,P为DO上一点,PO=√66(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E的余弦值。

图M4—12-23.[2019·全国卷Ⅲ]如图M4—12—3,图①是由矩形ADEB,Rt △ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②。

(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B—CG-A的大小.①②图M4-12—3平行、垂直关系的证明1如图M4—12-4,在四棱锥P—ABCD中,四边形ABCD为平行四边形,E为侧棱PD的中点,O为AC与BD的交点。

高中数学第二章空间向量与立体几何2.3.3空间向量运算的坐标表示课时作业北师大版选修21

高中数学第二章空间向量与立体几何2.3.3空间向量运算的坐标表示课时作业北师大版选修21

2.3.3 空间向量运算的坐标表示[基础达标]1.设一地球仪的球心为空间直角坐标系的原点O ,球面上有两个点A ,B 的坐标分别为A (1,2,2),B (2,-2,1),则|AB |=( )A .18B .12C .3 2D .2 3解析:选C.AB →=(1,-4,-1),|AB |=|AB →|=12+(-4)2+(-1)2=3 2. 2.若ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (-3,7,-5),则顶点D 的坐标为( )A.⎝ ⎛⎭⎪⎫72,4,-1 B .(2,3,1) C .(-3,1,5)D .(-1,13,-3)解析:选D.设D (x ,y ,z ),∵AB →=DC →,∴(-2,-6,-2)=(-3-x ,7-y ,-5-z ), ∴⎩⎪⎨⎪⎧-2=-3-x -6=7-y -2=-5-z ∴⎩⎪⎨⎪⎧x =-1y =13z =-3. 3.向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( ) A .a ∥b ,a ⊥b B .a ∥b ,a ⊥c C .a ∥c ,a ⊥bD .以上都不对解析:选C.a ·b =-4+0+4=0,∴a ⊥b ,又c =2a ,∴a ∥c ,故选C.4.已知A (2,-2,1),B (1,0,1),C (3,-1,4),则向量AB →,AC →夹角的余弦值为( ) A.55 B .5555 C.1111D .5511解析:选B.由点A ,B ,C 的坐标可求得AB →=(-1,2,0),AC →=(1,1,3),则|AB →|=(-1)2+22+02=5, |AC →|=12+12+32=11, AB →·AC →=(-1)×1+2×1+0×3=1,因此,cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=15×11=5555.5.若a =(1,λ,2),b =(2,-1,1),a 与b 的夹角为60°,则λ的值为( ) A .17或-1B .-17或1C .-1D .1解析:选B.a ·b =4-λ,|a |=5+λ2,|b |=6,由题意得cos 60°=a ·b |a ||b |即4-λ5+λ2·6=12, 解之得λ=1或λ=-17.6.已知a =2(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则λ的值为________.解析:由共面向量定理知存在有序实数组(x ,y )使得a =x b +y c ,即(4,-2,6)=(-x ,4x ,-2x )+(7y ,5y ,λy ),即⎩⎪⎨⎪⎧4=-x +7y ,-2=4x +5y ,6=-2x +λy ,解得⎩⎪⎨⎪⎧x =-3433,y =1433,λ=657.故填657.答案:6577.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2→=4MM 2→,则向量OM →的坐标为________.解析:M 1M 2→=(1,-7,-2),设M (x ,y ,z ), ∴MM 2→=(3-x ,-2-y ,-5-z ). 由M 1M 2→=4MM 2→,∴(1,-7,-2)=4(3-x ,-2-y ,-5-z ), ∴x =114,y =-14,z =-92.答案:(114,-14,-92)8.设AB →=(cos α+sin α,0,-sin α),BC →=(0,cos α,0),则|AC →|的最大值为________.解析:AC →=AB →+BC →=(cos α+sin α,cos α,-sin α),∴|AC →|=(cos α+sin α)2+cos 2α+(-sin α)2=2+sin 2α≤ 3. 答案: 39.已知关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根,a =(-1,1,3),b =(1,0,-2),c =a +t b .(1)当|c |取最小值时,求t 的值;(2)在(1)的情况下,求b 和c 夹角的余弦值.解:(1)因为关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根, 所以Δ=[-(t -2)]2-4(t 2+3t +5)≥0,即-4≤t ≤-43.又c =(-1,1,3)+t (1,0,-2)=(-1+t ,1,3-2t ), 所以|c |=(-1+t )2+12+(3-2t )2=5(t -75)2+65.因为t ∈[-4,-43]时,上述关于t 的函数单调递减,所以当t =-43时,|c |取最小值3473.(2)当t =-43时,c =(-73,1,173),所以cos 〈b ,c 〉=b ·c|b ||c |=-73+0-34312+02+(-2)2× (-73)2+12+(173)2=-411 735=-41 1 7351 735.10.在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别为D 1D 、BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,应用空间向量方法求解下列问题:(1)求证:EF ⊥B 1C ;(2)求EF 与C 1G 所成角的余弦值; (3)求FH 的长.解:如图所示,建立空间直角坐标系,则有E ⎝ ⎛⎭⎪⎫0,0,12、F ⎝ ⎛⎭⎪⎫12,12,0、C (0,1,0)、C 1(0,1,1)、B 1(1,1,1)、G ⎝ ⎛⎭⎪⎫0,34,0.(1)证明:EF →=⎝ ⎛⎭⎪⎫12,12,0-⎝⎛⎭⎪⎫0,0,12=⎝ ⎛⎭⎪⎫12,12,-12,B 1C →=(0,1,0)-(1,1,1)=(-1,0,-1),∴EF →·B 1C →=12×(-1)+12×0+⎝ ⎛⎭⎪⎫-12×(-1)=0,∴EF →⊥B 1C →,即EF ⊥B 1C .(2)∵C 1G →=⎝ ⎛⎭⎪⎫0,34,0-(0,1,1)=⎝ ⎛⎭⎪⎫0,-14,-1,∴|C 1G →|=174.又EF →·C 1G →=12×0+12×⎝ ⎛⎭⎪⎫-14+⎝ ⎛⎭⎪⎫-12×(-1)=38,|EF →|=32,∴cos 〈EF →,C 1G →〉=EF →·C 1G →|EF →|·|C 1G →|=5117.即异面直线EF 与C 1G 所成角的余弦值为5117. (3)∵F ⎝ ⎛⎭⎪⎫12,12,0、H ⎝ ⎛⎭⎪⎫0,78,12, ∴FH →=⎝ ⎛⎭⎪⎫-12,38,12,∴|FH →|=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫382+⎝ ⎛⎭⎪⎫122=418. [能力提升]1.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5解析:选A.设AD →=λAC →,其中λ∈R ,D (x ,y ,z ), 则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ. ∴BD →=(-4,4λ+5,-3λ). ∴4(4λ+5)-3(-3λ)=0. ∴λ=-45,∴BD →=(-4,95,125).∴|BD →|=(-4)2+(95)2+(125)2=5.2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则BP →的坐标为________.解析:因为AB →⊥BC →,所以AB →·BC →=0, 即1×3+5×1+(-2)z =0,所以z =4. 因为BP ⊥平面ABC , 所以BP →⊥AB →,且BP →⊥BC →,即1×(x -1)+5y +(-2)×(-3)=0, 且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP →=(337,-157,-3).答案:(337,-157,-3)3.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). 求以向量AB →,AC →为一组邻边的平行四边形的面积S . 解:∵AB →=(-2,-1,3),AC →=(1,-3,2), ∴cos ∠BAC =AB →·AC →|AB →||AC →|=12,∴∠BAC =60°,∴S =|AB →||AC →|sin 60°=7 3.4.已知A (4,10,9),B (3,7,5),C (2,4,1),D (10,14,17),M (1,0,1),N (4,4,6),Q (2,2,3).(1)求证:A ,B ,C 三点共线; (2)求证:M ,N ,Q ,D 四点共面.证明:(1)由题意,得AB →=(-1,-3,-4), AC →=(-2,-6,-8),显然AC →=2AB →,∴AC →与AB →共线.又AC →,AB →有共同的起点A ,∴A ,B ,C 三点共线. (2)MN →=(3,4,5),MQ →=(1,2,2),MD →=(9,14,16). 设MD →=xMN →+yMQ →,即(9,14,16)=(3x +y ,4x +2y ,5x +2y ), 则⎩⎪⎨⎪⎧3x +y =9,4x +2y =14,5x +2y =16,解得⎩⎪⎨⎪⎧x =2,y =3.故MD →=2MN →+3MQ →,由共面向量定理知MN →,MQ →,MD →共面, 即M ,N ,Q ,D 四点共面.。

《空间向量与立体几何》章末复习

《空间向量与立体几何》章末复习

[例 3] 已知空间四边形 OABC,M段 MN 上,且MGNG=2,设O→G=
xO→A+yO→B+zO→C,则 x、y、z 的值分别是
()
A.x=13,y=13,z=13
B.x=13,y=13,z=16
C.x=13,y=16,z=13
D.x=16,y=13,z=13
从而F→E=(-a3,b3,3c),A→C1=(-a,b,c), ∴F→E=13A→C1. 又 FE 与 AC1 不共线,所以直线 EF∥AC1.
(2)∵D1(0,0,c),B1(a,b,c),A1(a,0,c),B(a,b,0), ∴D→1B1=(a,b,0),A→1B=(0,b,-c). ∵EF 是两异面直线 B1D1,A1B 的公垂线, ∴FF→ →EE··DA→→11BB=1=00,,
2 a·2 a
因此,二面角
M-BN-C
的大小为
π-arccos
3 3.
[例7] 如图所示,在长方体OABC-O1A1B1C1中,OA =2,AB=3,AA1=2,E是BC的中点.
(1)求直线AO1与B1E所成角的大小; (2)作O1D⊥AC于D,求点O1到点D的距离.
[解析] 如图所示,建立空间直角坐标系. (1)由题设知,A(2,0,0),O1(0,0,2), B1(2,3,2),E(1,3,0)
∴E→F与D→B成的角为3π ∴EF 与平面 ACC1A1 所成的角为6π.
[例6] 如图所示,已知ABCD是正方形,过A作AP⊥平 面ABCD,,且AP=AB=a,M,N分别为BP、AC的中点.
(1)求证MN⊥CD; (2)求二面角M-BN-C的大小.
[解析] (1)证明:建立如图所示的空间直角坐标系, 则 A(0,0,0),B(a,0,0),D(0,a,0),P(0,0,a),C(a,a,0), M(a2,0,a2),N(a2,a2,0)

20届高考数学(理)二轮复习 第2部分 专题3 第2讲 立体几何(1)

20届高考数学(理)二轮复习 第2部分 专题3 第2讲  立体几何(1)

第2讲 立体几何(大题)热点一 平行、垂直关系的证明用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.例1 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12. OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA → =-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又BF ,BC ⊂平面BCF ,OM ⊄平面BCF , ∴OM ∥平面BCF .(2)由题意及(1)知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0,∴OM →⊥CD →,OM →⊥FC →, 即OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .跟踪演练1 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AD ⊥CD ,BC =2,AD =CD =1,M 是PB 的中点.(1)求证:AM ∥平面PCD ; (2)求证:平面ACM ⊥平面P AB .证明 (1)如图,以C 为坐标原点建立空间直角坐标系C -xyz ,则A (1,1,0),B (0,2,0),C (0,0,0),D (1,0,0),P (1,1,a )(a >0),M ⎝⎛⎭⎫12,32,a 2,CP →=(1,1,a ),CD →=(1,0,0),AM →=⎝⎛⎭⎫-12,12,a 2, 设平面PCD 的法向量为n 1=(x 0,y 0,z 0),则⎩⎪⎨⎪⎧x 0+y 0+az 0=0,x 0=0,令y 0=a ,则n 1=(0,a ,-1), 所以AM →·n 1=a 2-a 2=0,又AM ⊄平面PCD , 所以AM ∥平面PCD .(2)由(1)得,CA →=(1,1,0),CM →=⎝⎛⎭⎫12,32,a 2, 设平面ACM 的法向量为n 2=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧x 1+y 1=0,12x 1+32y 1+a2z 1=0, 令x 1=1,则n 2=⎝⎛⎭⎫1,-1,2a , AP →=(0,0,a ),AB →=(-1,1,0),设平面P AB 的法向量为n 3=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧-x 2+y 2=0,az 2=0,令x 2=1,则n 3=(1,1,0), 所以n 2·n 3=1-1=0. 所以平面ACM ⊥平面P AB .热点二 利用空间向量求空间角设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21 a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)二面角设α-a -β的平面角为θ(0≤θ≤π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 例2 (2019·南昌模拟)如图,四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,CC 1⊥底面ABCD ,且∠BAD =60°,CD =CC 1=2C 1D 1=4,E 是棱BB 1的中点.(1)求证:AA 1⊥BD ;(2)求二面角E -A 1C 1-C 的余弦值.(1)证明 因为C 1C ⊥底面ABCD ,所以C 1C ⊥BD . 因为底面ABCD 是菱形,所以BD ⊥AC . 又AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1A 1, 所以BD ⊥平面ACC 1A 1. 又AA 1⊂平面ACC 1A 1, 所以BD ⊥AA 1.(2)解 如图,设AC 交BD 于点O ,依题意,A 1C 1∥OC 且A 1C 1=OC , 所以四边形A 1OCC 1为平行四边形, 所以A 1O ∥CC 1,且A 1O =CC 1. 所以A 1O ⊥底面ABCD .以O 为原点,OA ,OB ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (23,0,0),A 1(0,0,4),C 1(-23,0,4),B (0,2,0), AB →=(-23,2,0).由A 1B 1----→=12AB →,得B 1(-3,1,4).因为E 是棱BB 1的中点, 所以E ⎝⎛⎭⎫-32,32,2, 所以EA 1→=⎝⎛⎭⎫32,-32,2,A 1C 1----→=(-23,0,0).设n =(x ,y ,z )为平面EA 1C 1的法向量,则⎩⎨⎧n ·A 1C 1----→=-23x =0,n ·EA 1→=32x -32y +2z =0,取z =3,得n =(0,4,3),平面A 1C 1C 的法向量m =(0,1,0),又由图可知,二面角E -A 1C 1-C 为锐二面角, 设二面角E -A 1C 1-C 的平面角为θ, 则cos θ=|m ·n ||m ||n |=45,所以二面角E -A 1C 1-C 的余弦值为45.跟踪演练2 (2019·河南名校联盟联考)如图,在四棱锥P -ABCD 中,∠P AB =90°,AB ∥CD ,且PB =BC =BD =6,CD =2AB =22,∠P AD =120°.E 和F 分别是棱CD 和PC 的中点.(1)求证:CD ⊥BF ;(2)求直线PB 与平面PCD 所成的角的正弦值. (1)证明 ∵E 为CD 中点,CD =2AB , ∴AB =DE .又AB∥CD,∴四边形ABED为平行四边形.∵BC=BD,E为CD中点,∴BE⊥CD,∴四边形ABED为矩形,∴AB⊥AD.由∠P AB=90°,得P A⊥AB,又P A∩AD=A,P A,AD⊂平面P AD,∴AB⊥平面P AD.∵AB∥CD,∴CD⊥平面P AD.又PD⊂平面P AD,∴CD⊥PD.∵EF∥PD,∴CD⊥EF.又CD⊥BE,BE∩EF=E,BE,EF⊂平面BEF,∴CD⊥平面BEF.又∵BF⊂平面BEF,∴CD⊥BF.(2)解由(1)知AB⊥平面P AD.以A为原点,AB所在直线为x轴,AD所在直线为y轴,平面P AD内过点A且与AD垂直的线为z轴建立空间直角坐标系A-xyz,如图所示.∵∠P AD=120°,∴∠P Az=30°.又PB=6,AB=2,AB⊥P A,∴P A=2.∴点P到z轴的距离为1.∴P(0,-1,3),同时知A(0,0,0),B(2,0,0).又BC=BD=6,CD=22,∴BE=2.∴C (22,2,0),D (0,2,0).设平面PCD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PD →=(x ,y ,z )·(0,3,-3)=0,n ·CD →=(x ,y ,z )·(-22,0,0)=0,得⎩⎨⎧3y -3z =0,-22x =0.令y =1,则n =(0,1,3). 又PB →=(2,1,-3),设直线PB 与平面PCD 所成的角为θ. 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n |·|PB →|=22+1+3×1+3=66.即直线PB 与平面PCD 所成的角的正弦值为66. 热点三 利用空间向量解决探索性问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则是:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.例3 (2019·临沂模拟)如图,平面ABCD ⊥平面ABE ,四边形ABCD 是边长为2的正方形,AE =1,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)线段AD 上是否存在一点M ,使平面ABE 与平面MCE 所成二面角的余弦值为34?若存在,试确定点M 的位置;若不存在,请说明理由. (1)证明 ∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴BF ⊥AE ,∵四边形ABCD 是正方形,∴BC ⊥AB ,又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB , ∴CB ⊥平面ABE , ∵AE ⊂平面ABE , ∴CB ⊥AE ,∵BF ∩BC =B ,BF ,BC ⊂平面BCE , ∴AE ⊥平面BCE .(2)解 线段AD 上存在一点M ,当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. ∵AE ⊥平面BCE ,BE ⊂平面BCE , ∴AE ⊥BE ,在Rt △AEB 中,AB =2,AE =1, ∴∠ABE =30°,∠BAE =60°,以A 为原点,建立空间直角坐标系A -xyz , 设AM =h ,则0≤h ≤2, ∵AE =1,∠BAE =60°, ∴M (0,0,h ),E ⎝⎛⎭⎫32,12,0,B (0,2,0),C (0,2,2),所以ME →=⎝⎛⎭⎫32,12,-h ,CE →=⎝⎛⎭⎫32,-32,-2,设平面MCE 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·ME →=3x 2+12y -hz =0,n ·CE →=3x 2-32y -2z =0,令z =2,解得n =⎝⎛⎭⎫33(2+3h ),h -2,2,平面ABE 的一个法向量m =(0,0,1),由题意可知cos 〈m ,n 〉=m ·n|m ||n |=213(2+3h )2+(h -2)2+4=34, 解得h =3,所以当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. 跟踪演练3 如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =AA 1=2,点P 为棱B 1C 1的中点,点Q 为线段A 1B 上一动点.(1)求证:当点Q 为线段A 1B 的中点时,PQ ⊥平面A 1BC ;(2)设BQ →=λBA 1→,试问:是否存在实数λ,使得平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010?若存在,求出这个实数λ;若不存在,请说明理由. (1)证明 连接AB 1,AC 1,∵点Q 为线段A 1B 的中点, ∴A ,Q ,B 1三点共线, 且Q 为AB 1的中点, ∵点P 为B 1C 1的中点, ∴PQ ∥AC 1.在直三棱柱ABC -A 1B 1C 1中, AC ⊥BC ,∴BC ⊥平面ACC 1A 1, 又AC 1⊂平面ACC 1A 1, ∴BC ⊥AC 1.∵AC =AA 1,∴四边形ACC 1A 1为正方形, ∴AC 1⊥A 1C ,又A 1C ,BC ⊂平面A 1BC ,A 1C ∩BC =C , ∴AC 1⊥平面A 1BC , 而PQ ∥AC 1, ∴PQ ⊥平面A 1BC .(2)解 由题意可知,CA ,CB ,CC 1两两垂直,以C 为原点,分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系C -xyz , 连接B 1Q ,PB ,设Q (x ,y ,z ), B (0,2,0),A 1(2,0,2), P (0,1,2),B 1(0,2,2), ∵BQ →=λBA 1→,∴(x ,y -2,z )=λ(2,-2,2), ∴⎩⎪⎨⎪⎧x =2λ,y =2-2λ,z =2λ,∴Q (2λ,2-2λ,2λ). ∵点Q 在线段A 1B 上运动,∴平面A 1PQ 的法向量即为平面A 1PB 的法向量, 设平面A 1PB 的法向量为n 1=(x ,y ,z ), BP →=(0,-1,2),P A 1→=(2,-1,0), 由⎩⎪⎨⎪⎧n 1·BP →=0,n 1·P A 1→=0,得⎩⎪⎨⎪⎧-y +2z =0,2x -y =0,令y =2,得n 1=(1,2,1),设平面B 1PQ 的法向量为n 2=(x ,y ,z ), PB 1→=(0,1,0),B 1Q →=(2λ,-2λ,2λ-2).由⎩⎪⎨⎪⎧n 2·PB 1→=0,n 2·B 1Q →=0,得⎩⎪⎨⎪⎧y =0,2λx -2λy +(2λ-2)z =0,令z =1得n 2=⎝⎛⎭⎫1-λλ,0,1=1λ(1-λ,0,λ), 取n 2=(1-λ,0,λ),由题意得|cos 〈n 1,n 2〉|=|()1,2,1·()1-λ,0,λ|6·(1-λ)2+λ2=16×2λ2-2λ+1=3010,∴9λ2-9λ+2=0, 解得λ=13或λ=23,∴当λ=13或λ=23时,平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010.真题体验(2019·全国Ⅰ,理,18)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.(1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,所以MN ∥平面C 1DE .(2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1-N 的正弦值为105.押题预测如图1,在梯形ABCD 中,AB ∥CD ,过A ,B 分别作AE ⊥CD ,BF ⊥CD ,垂足分别E ,F ,AB =AE =2,CD =5,已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE -BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥平面ABFE ;(2)若DE ∥CF ,CD =3,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为520,求AP 的长.(1)证明 由已知得四边形ABFE 是正方形,且边长为2,在图2中,AF ⊥BE , 由已知得AF ⊥BD ,BE ∩BD =B ,BE ,BD ⊂平面BDE , ∴AF ⊥平面BDE ,又DE ⊂平面BDE ,∴AF ⊥DE ,又AE ⊥DE ,AE ∩AF =A ,AE ,AF ⊂平面ABFE , ∴DE ⊥平面ABFE .(2)解 在图2中,AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,DE ,EF ⊂平面DEFC ,即AE ⊥平面DEFC ,在梯形DEFC 中,过点D 作DM ∥EF 交CF 于点M ,连接CE , 由题意得DM =2,CM =1, 由勾股定理可得DC ⊥CF , 则∠CDM =π6,CE =2,过E 作EG ⊥EF 交DC 于点G , 可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA →,EF →,EG →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝⎛⎭⎫0,-12,32,AC →=(-2,1,3),AD →=⎝⎛⎭⎫-2,-12,32.设平面ACD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,得⎩⎪⎨⎪⎧-2x +y +3z =0,-2x -12y +32z =0, 取x =1,得n =(1,-1,3), 设AP =m ,则P (2,m ,0),0≤m ≤2, 得CP →=(2,m -1,-3), 设CP 与平面ACD 所成的角为θ, sin θ=|cos 〈CP →,n 〉|=|m |5×7+(m -1)2=520⇒m =23(舍负). 所以AP =23.A 组 专题通关1.(2019·全国Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B -EC -C 1的正弦值.(1)证明 由已知得,B 1C 1⊥平面ABB 1A 1,因为BE ⊂平面ABB 1A 1,故B 1C 1⊥BE . 又BE ⊥EC 1,EC 1∩B 1C 1=C 1, 所以BE ⊥平面EB 1C 1. (2)解 由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC 1→=(0,0,2). 设平面EBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧CC 1→·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 1=0,x 1-y 1+z 1=0,所以可取m =(1,1,0).于是cos 〈n ,m 〉=n ·m |n ||m |=-12,sin 〈n ,m 〉=1-⎝⎛⎭⎫-122=32, 所以二面角B -EC -C 1的正弦值为32. 2.(2019·全国Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B —CG —A 的大小.(1)证明 由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG , 故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,BE ∩BC =B , BE ,BC ⊂平面BCGE ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°, 可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0), 所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.3.(2019·马鞍山模拟)如图,在三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34?若存在,确定点P 的位置;若不存在,请说明理由. (1)证明 如图,∵AC =AA 1, ∴四边形AA 1C 1C 为菱形,连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1,且A 1C ∩A 1B =A 1, A 1C ,A 1B ⊂平面A 1CB ,∴AC 1⊥平面A 1CB ,则AC 1⊥BC , 又∠ACB =90°,即BC ⊥AC ,又AC 1∩AC =A ,AC 1,AC ⊂平面A 1ACC 1, ∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)解 在平面ACC 1A 1中,过点C 作CE ⊥AC 交A 1C 1于E , 由(1)知,CE ⊥平面ABC ,以C 为坐标原点,分别以CA ,CB 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系C -xyz ,∵AC =AA 1=4,BC =2,∠A 1AC =60°, ∴C (0,0,0),B (0,2,0),A (4,0,0),A 1(2,0,23).设在线段AC 上存在一点P ,满足AP →=λAC →(0≤λ<1),使得二面角B -A 1P -C 的平面角的余弦值为34. 则AP →=(-4λ,0,0).BP →=BA →+AP →=(4,-2,0)+(-4λ,0,0) =(4-4λ,-2,0),A 1P →=A 1A →+AP →=(2-4λ,0,-23), CA 1→=(2,0,23).设平面BA 1P 的一个法向量为m =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧m ·BP →=(4-4λ)x 1-2y 1=0,m ·A 1P →=(2-4λ)x 1-23z 1=0,取x 1=1,得m =⎝⎛⎭⎪⎫1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n =(0,1,0). 由|cos 〈m ,n 〉|=|m ·n ||m ||n |=|2-2λ|1+(2-2λ)2+(1-2λ)23×1=34, 解得λ=43或λ=34,因为0≤λ<1,所以λ=34.故在线段AC 上存在一点P ,满足AP →=34AC →,使二面角B -A 1P -C 的平面角的余弦值为34.B 组 能力提高4.如图所示,在四棱锥P -ABCD 中,P A =PD =AD =2CD =2BC =2,且∠ADC =∠BCD =90°.(1)当PB =2时,证明:平面P AD ⊥平面ABCD ;(2)当四棱锥P -ABCD 的体积为34,且二面角P -AD -B 为钝角时,求直线P A 与平面PCD所成角的正弦值.(1)证明 如图所示,取AD 的中点O ,连接PO ,OB .∵P A =PD ,∴PO ⊥AD . ∵∠ADC =∠BCD =90°, ∴BC ∥AD ,又BC =12AD =1,∴BC =OD ,∴四边形BCDO 为矩形, ∴OB =CD =1.在△POB 中,PO =3,OB =1,PB =2, ∴∠POB =90°,则PO ⊥OB .∵AD ∩OB =O ,∴PO ⊥平面ABCD , 又PO ⊂平面P AD , ∴平面P AD ⊥平面ABCD .(2)解 由(1)知AD ⊥PO ,AD ⊥BO , ∵PO ∩OB =O ,∴AD ⊥平面POB , 又AD ⊂平面ABCD , ∴平面POB ⊥平面ABCD . 过点P 作PE ⊥平面ABCD ,则垂足E 一定落在平面POB 与平面ABCD 的交线OB 上. ∵四棱锥P -ABCD 的体积为34,∴13×PE ×12×(AD +BC )×CD =13×PE ×12×(2+1)×1 =12PE =34, ∴PE =32.∵PO =3,∴OE =PO 2-PE 2=32. 以O 为坐标原点,OA ,OB 所在直线分别为x 轴,y 轴, 在平面POB 内过点O 作垂直于平面AOB 的直线为z 轴, 建立如图所示的空间直角坐标系O -xyz . 由题意可知A (1,0,0),P ⎝⎛⎭⎫0,-32,32,D (-1,0,0),C (-1,1,0), 则DP →=⎝⎛⎭⎫1,-32,32,DC →=(0,1,0),P A →=⎝⎛⎭⎫1,32,-32.设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DP →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x -32y +32z =0,y =0,令x =1,则y =0,z =-23,∴n =⎝⎛⎭⎫1,0,-23. 设直线P A 与平面PCD 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=22×133=31313,故直线P A 与平面PCD 所成角的正弦值为31313.5.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1的半径为r =5,OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E 为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE; (2)求二面角B -AD -O 的正弦值.(1)证明 依题意知,圆锥的高为h =(52)2-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2, 因为AB ⊥BD , 所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2, 所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64,解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内, 所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,DE ⊂平面BDE ,所以DE ⊥AB , 因为AB ∩BD =B ,AB ,BD ⊂平面ABD , 所以DE ⊥平面ABD . 又因为DE ⊂平面ODE , 所以平面ABD ⊥平面ODE .(2)解 如图,以D 为原点,DB ,DE 所在直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4), 设平面DAO 的法向量为u =(x ,y ,z ),所以DA →·u =8x +6.4z =0,DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15).可取平面BDA 的一个法向量为v =(0,1,0),所以cos 〈u ,v 〉=u·v |u||v |=41582=8210, 所以二面角B -AD -O 的正弦值为3210.。

2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)

2020年高考数学(理)重难点专练03  空间向量与立体几何(解析版)

重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ 其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C. 5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D 【答案】A取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R =.【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径2R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. (1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==, 所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P . 由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u u u v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥,因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩ 令1x =,得1,y z =⎧⎪⎨=⎪⎩ 所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,(0,2F E ⎛⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1),21,22BQ λλλ⎛⎫++=-- ⎪ ⎪⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值为.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角.在Rt PCD V 中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u u r,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --. 【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)1λ=±. 【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E , ()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r,所以12BC FP =u u u u r u u u r ,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r. 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在12λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业13 空间向量与立体几何1.[2019·安徽芜湖质检]如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.解析:(1)证明:因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以BB 1⊥AC .因为AC ⊥BD 且BD ∩BB 1=B ,所以AC ⊥平面BB 1D ,又B 1D ⊂平面BB 1D ,所以AC ⊥B 1D .(2)易知AB ,AD ,AA 1两两垂直,如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系A ­xyz .设AB =t ,则A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0), 因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0, 解得t =3或t =-3(舍去).所以AD 1→=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0), 设n =(x ,y ,z )是平面ACD 1的法向量,则⎩⎨⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0,取x =1,则y =-3,z =3,所以n =(1,-3,3)是平面ACD 1的一个法向量.设直线B 1C 1与平面ACD 1所成的角为θ,则sin θ=|cos 〈n ,B 1C 1→〉|=|n ·B 1C 1→||n ||B 1C 1→|=37=217, 故直线B 1C 1与平面ACD 1所成角的正弦值为217. 2.[2019·广东五校第一次诊断]如图,在菱形ABCD 中,∠ABC =60°,AC 与BD 交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值. 解析:(1)证明:∵四边形ABCD 是菱形,∴BD ⊥AC . ∵AE ⊥平面ABCD ,BD ⊂平面ABCD , ∴BD ⊥AE .又AC ∩AE =A ,AC ,AE ⊂平面ACFE , ∴BD ⊥平面ACFE .(2)连接OE ,以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴建立如图所示的空间直角坐标系O ­xyz ,则B (0,3,0),O (0,0,0),E (1,0,2),F (-1,0,a )(a >0),则OB →=(0,3,0),OE →=(1,0,2),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0,得y =0.令z =1,则x =-2,∴n =(-2,0,1) 是平面EBD 的一个法向量. 由题意得sin45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22,得a =3或a =-13,由a >0,得a =3, OF →=(-1,0,3),BE →=(1,-3,2), cos 〈OF →,BE →〉=OF →·BE →|OF →|·|BE →|=54,所以异面直线OF 与BE 所成角的余弦值为54. 3.[2019·广东惠州一调]如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,侧面是正方形,∠DAB =60°,E 是棱CB 的延长线上一点,经过点A ,C 1,E 的平面交棱BB 1于点F ,B 1F =2BF .(1)求证:平面AC 1E ⊥平面BCC 1B 1; (2)求二面角E -AC 1-C 的余弦值.解析:(1)证明:设四棱柱ABCD -A 1B 1C 1D 1的棱长为a , ∵B 1F =2BF ,△B 1C 1F ∽△BEF ,∴BE =a2.由∠DAB =60°=∠ABE ,得∠ABC =120°,由余弦定理得AE =3a2,AC =3a . ∵CE =BE +BC =3a 2,∴AE 2+CE 2=AC 2,AE ⊥CE .又ABCD -A 1B 1C 1D 1是直四棱柱, ∴C 1C ⊥平面ABCD ,又AE ⊂平面ABCD ,∴C 1C ⊥AE . ∵CE ∩CC 1=C ,∴AE ⊥平面BCC 1B 1.∵AE ⊂平面AC 1E ,∴平面AC 1E ⊥平面BCC 1B 1.(2)解法一 过C 作CG ⊥AC 1于G ,CH ⊥C 1F 于H ,连接GH .由平面AC 1E ⊥平面BCC 1B 1,平面AC 1E ∩平面BCC 1B 1=C 1E ,得CH ⊥平面AC 1E . ∴CH ⊥AC 1,又CG ⊥AC 1,CG ∩CH =C ,∴AC 1⊥平面CGH ,AC 1⊥GH , ∴∠CGH 是二面角E -AC 1-C 的平面角. 在Rt△ACC 1中,AC =3a ,CC 1=a ,AC 1=2a ,CG =32a , 在Rt△ECC 1中,CE =32a ,CC 1=a ,EC 1=132a ,CH =31313a ,∴GH =CG 2-CH 2=3926a ,cos∠CGH =GH CG =1313, ∴二面角E -AC 1-C 的余弦值为1313. 解法二 以E 为坐标原点,EC ,EA 所在直线分别为x 轴,y 轴,平行于BB 1的直线为z 轴建立空间直角坐标系E ­xyz ,则E (0,0,0),A ⎝ ⎛⎭⎪⎫0,32a ,0,C 1⎝ ⎛⎭⎪⎫32a ,0,a ,则EA →=⎝ ⎛⎭⎪⎫0,32a ,0,EC 1→=⎝ ⎛⎭⎪⎫32a ,0,a .设平面EAC 1的法向量为n =(p ,q ,r ),则 ⎩⎪⎨⎪⎧n ·EA →=32aq =0,n ·EC 1→=32ap +ar =0,即⎩⎪⎨⎪⎧q =0,3p +2r =0,不妨取n =(-2,0,3).连接BD ,B ⎝ ⎛⎭⎪⎫12a ,0,0,D ⎝ ⎛⎭⎪⎫a ,32a ,0,易知平面AC 1C 的一个法向量为n 1=BD →=⎝ ⎛⎭⎪⎫12a ,32a ,0.设二面角E -AC 1-C 的平面角为θ,则|cos θ|=|n 1·n ||n 1|·|n |=1313,又由题图知θ为锐角,∴二面角E -AC 1-C 的余弦值为1313.4.[2019·河南洛阳统一考试]如图1,平面多边形PABCD 中,PA =PD ,AD =2DC =2BC =4,AD ∥BC ,AP ⊥PD ,AD ⊥DC ,E 为PD 的中点,现将△APD 沿AD 折起,如图2,使PC =2 2.(1)证明:CE ∥平面ABP ;(2)求直线AE 与平面ABP 所成角的正弦值.解析:(1)证明:取PA 的中点H ,连接HE ,BH ,如图.∵E 为PD 的中点,∴HE 为△APD 的中位线, ∴HE ∥AD ,且HE =12AD .又AD ∥BC ,BC =12AD ,∴HE ∥BC ,HE =BC ,∴四边形BCEH 为平行四边形,∴CE ∥BH . ∵BH ⊂平面ABP ,CE ⊄平面ABP ,∴CE ∥平面ABP .(2)由题意知△PAD 为等腰直角三角形,四边形ABCD 为直角梯形.取AD 的中点F ,连接BF ,PF ,∵AD =2BC =4,∴平面多边形PABCD 中,P ,F ,B 三点共线, 且PF =BF =2,∴翻折后,PF ⊥AD ,BF ⊥AD ,PF ∩BF =F ,∴DF ⊥平面PBF , ∴BC ⊥平面PBF ,∵PB ⊂平面PBF ,∴BC ⊥PB .在直角三角形PBC 中,PC =22,BC =2,∴PB =2, ∴△PBF 为等边三角形.取BF 的中点O ,DC 的中点M ,连接PO ,OM ,则PO ⊥BF , ∵DF ⊥平面PBF ,∴DF ⊥PO .又DF ∩BF =F ,∴PO ⊥平面ABCD .以O 为原点,OB →,OM →,OP →的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系O ­xyz , 则B (1,0,0),D (-1,2,0),P (0,0,3),A (-1,-2,0),∴E ⎝ ⎛⎭⎪⎫-12,1,32,∴AE →=⎝ ⎛⎭⎪⎫12,3,32,AB →=(2,2,0),BP →=(-1,0,3).设平面ABP 的法向量为n =(x ,y ,z ),则 ⎩⎨⎧n ·AB →=0,n ·BP →=0,∴⎩⎨⎧x +y =0,-x +3z =0,故可取n =(3,-3,3),∴cos〈n ,AE →〉=n ·AE →|n |·|AE →|=-21035,∴直线AE 与平面ABP 所成角的正弦值为21035. 5.[2019·天津卷]如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长.解析:本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.依题意,可以建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系A ­xyz (如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).(1)依题意,AB →=(1,0,0)是平面ADE 的法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,BD →=(-1,1,0),BE →=(-1,0,2), CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎨⎧n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1).因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49.所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设m =(x ,y ,z )为平面BDF 的法向量,则⎩⎨⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x +y =0,2y +hz =0,不妨令y =1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h 2=13, 解得h =87.经检验,符合题意.所以,线段CF 的长为87.6.[2019·四川成都模拟]如图,四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明:B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长. 解析:(1)证明:在△B 1C 1E 中,EB 1=1+22=5,B 1C 1=1+1=2,EC 1=3, ∴B 1C 21+EC 21=EB 21,∴B 1C 1⊥EC 1,∵AA 1⊥平面ABCD ,∴AA 1⊥BC ,∴CC 1⊥B 1C 1, 而CC 1∩EC 1=C 1, ∴B 1C 1⊥平面CC 1E . ∵CE ⊂平面CC 1E , ∴B 1C 1⊥CE .(2)由题可知,DA ,AA 1,AB 两两垂直,如图,以点A 为原点,分别以AD ,AA 1,AB 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A ­xyz ,则A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),B 1C →=(1,-2,-1),CE →=(-1,1,-1),B 1C 1→=(1,0,-1),设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,所以x =-3,y =-2, 则m =(-3,-2,1)为平面B 1CE 的一个法向量. 由(1)知,B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.所以cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217. (3)由(2)知AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→,则EM →=(λ,λ,λ)(0≤λ≤1),则AM →=AE →+EM →=(λ,λ+1,λ).易知AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →|=2λ2λ2+(λ+1)2+λ2=λ3λ2+2λ+1=26, 得λ=13⎝⎛⎭⎪⎫λ=-15(负值舍去),所以AM →=⎝ ⎛⎭⎪⎫13,43,13,|AM →|=2,故线段AM 的长为 2.。

相关文档
最新文档