人教A版数学必修一1.1.1《集合的含义与表示》(一)学案

合集下载

人教课标A版数学必修一1.1.1集合的含义与表示教案

人教课标A版数学必修一1.1.1集合的含义与表示教案

1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。

2017人教a版数学必修一1.1.1集合的含义与表示导学案

2017人教a版数学必修一1.1.1集合的含义与表示导学案

1.1.1集合的含义与表示一. 教学目标:l.知识与技术(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)明白常常利用数集及其专用记号;(3)了解集合中元素的肯定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培育学生抽象归纳的能力.2. 进程与方式(1)让学生经历从集合实例中抽象归纳出集合一路特征的进程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的踊跃性.二. 教学重点.难点重点:集合的含义与表示方式.难点:表示法的恰被选择.三. 学法学法:学生通过阅读教材,自主学习.试探.交流.讨论和归纳,从而更好地完本钱节课的教学目标.四. 学习流程(一)知识连线:一、一般地,咱们把____________统称为元素,把________________________叫做集合。

二、集合中元素的特性:________、________、________。

3、只要________________________________,咱们就称这两个集合是相等的。

4、元素与集合的关系有两种:________、________。

若是a是集合A的元素,就说________________,记作________。

.若是a不是集合A的元素,就说________________,记作___________。

五、集合的表示方式有:________、________、________。

六、常见集合的符号表示:(二) 知识演练:7、下面两个集合中表示同一集合的是: ( )A 、P={1,-5,3};Q={3,1,-5};B 、P={1,3};Q={(1,3)};C 、P ={π};Q={};D 、P={2,3,5,7};Q={2,3,5,9};八、用符号“∈”或“∉”填空:(1)2__{2,3,5}; (2)4__{x ︱2x =9}(3) 若A={x ∈N ︱1≤x ≤10},则5__A, ,(4)若A={x ︱1≤x ≤10},则5__A, ,9、选择适当方式表示下列集合:(1)二次函数y = 32-x 的函数值组成的集合; (2)大于1且小于8的整数(3)不等式230x ->的解集 (4)由方程082=-x 的所有实数根组成的集合(5)直线y=x+3与抛物线y=2x 的交点组成的集合(6)方程0)2(12=-+-y x 的解集(三)、知识提升:10已知集合A={x ∈R ︱a x ax ,0122=++∈R} 只有一个元素,则a 的值为______1一、设集合A={2,3,322-+a a },已知5∈A ,求a 的值1二、设集合A={a +2,2a ,332++a a },若1∈A ,求a 的值(四)、知识总结:一、本节课咱们学习哪些知识?二、选择集合的表示法时应注意些什么?(五)、作业布置1.讲义第12页习题(A 组)第二、4题。

高中数学 1.1.1 集合的含义与表示学案 新人教A版必修1

高中数学 1.1.1 集合的含义与表示学案 新人教A版必修1

1.1.1集合的含义与表示一.学习目标:l.知识与技能(1)通过三张图片,了解集合的含义,理解元素与集合之间的属于关系;(2)掌握集合中元素的三要素:确定性.互异性.无序性;(3)熟练应用常用数集及其专用记号;会用集合语言表示有关数学对象.二. 学习重点、难点:重点:集合的含义与表示方法.难点:集合的三要素:确定性、互异性、无序性.三.自学指导:(一)创设情景,揭示课题1.教师首先提出问题:通过PPT 图片,启发引导学生找到三张图片的共同特征,并引导学生举出一些集合的例子。

通过举例说明和互相交流.做好教师对学生的活动的梳理引导,并给予积极评价.2.用6分钟时间预习教材P2~P5,完成下列内容:(1)、集合:一般地,我们把 统称为元素,把一些元素组成的 叫做集合,简称为: 。

(2)、集合元素的三要素(三特征): 、 、 ;若两个集合相等,那么必须有: 。

(3)、元素与集合的关系:若a 是集合A 的元素,则记作:a A ;若a 不是集合A 的元素,则记作:a A 。

(4)、常用数集的记法:自然数集: ; 有理数集: ; 整数集: ;实数集: ; 正实数集: ; 正整数集: .(5)集合的表示方法列举法:把集合中的元素 ,并用 括起来表示集合的方法叫列举法描述法:用集合所含元素的 表示集合的方法称为描述法,具体方法是: 在 内写上表示这个集合元素的 及取值(或变化)范围,再画 , 最后在 后写出这个集合中元素所具有的共同特征。

四.教学过程:(一)、问题导学:检查自学指导内容,并分组探讨一下问题:a.如何判断所给对象是否组成集合?b.集合中元素的特征性质有哪些?如何判断两个集合是相等的?判断集合A={-2,2}与集合2{|40}B x R x =∈-=一样吗?c.试着总结集合的表示方法有哪些?并试比较各自的特点和适用的对象。

(二).自学检测:完成以下练习:1.下面给出的四类对象中,能组成集合的是( )A.高一某班个子较高的同学B.比较著名的科学家C.无限接近于4的实数D.到一个定点的距离等于定长的点的全体2.用符号∈或∉填空:(1)0 *N ;(2;(3)23 Q ;(4)π Q 。

人教A版数学必修一教案:集合的含义与表示

人教A版数学必修一教案:集合的含义与表示

第一章集合與函數概念一. 課標要求:本章將集合作為一種語言來學習,使學生感受用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言描述數學對象,發展學生運用數學語言進行交流的能力 .函數是高中數學的核心概念,本章把函數作為描述客觀世界變化規律的重要數學模型來學習,強調結合實際問題,使學生感受運用函數概念建立模型的過程與方法,從而發展學生對變數數學的認識 .1. 瞭解集合的含義,體會元素與集合的“屬於”關係,掌握某些數集的專用符號.2. 理解集合的表示法,能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用.3、理解集合之間包含與相等的含義,能識別給定集合的子集,培養學生分析、比較、歸納的邏輯思維能力.4、能在具體情境中,瞭解全集與空集的含義.5、理解兩個集合的並集與交集的含義,會求兩個簡單集合的交集與並集, 培養學生從具體到抽象的思維能力.6. 理解在給定集合中,一個子集的補集的含義,會求給定子集的補集 .7. 能使用Venn圖表達集合的關係及運算,體會直觀圖示對理解抽象概念的作用 .8. 學會用集合與對應的語言來刻畫函數,理解函數符號y=f(x)的含義;瞭解函數構成的三要素,瞭解映射的概念;體會函數是一種刻畫變數之間關係的重要數學模型,體會對應關係在刻畫函數概念中的作用;會求一些簡單函數的定義域和值域,並熟練使用區間表示法 .9. 瞭解函數的一些基本表示法(列表法、圖象法、分析法),並能在實際情境中,恰當地進行選擇;會用描點法畫一些簡單函數的圖象.10. 通過具體實例,瞭解簡單的分段函數,並能簡單應用.11. 結合熟悉的具體函數,理解函數的單調性、最大(小)值及其幾何意義,瞭解奇偶性和週期性的含義,通過具體函數的圖象,初步瞭解中心對稱圖形和軸對稱圖形.12. 學會運用函數的圖象理解和研究函數的性質,體會數形結合的數學方法.13. 通過實習作業,使學生初步瞭解對數學發展有過重大影響的重大歷史事件和重要人物,瞭解生活中的函數實例.二. 編寫意圖與教學建議1. 教材不涉及集合論理論,只將集合作為一種語言來學習,要求學生能夠使用最基本的集合語言表示有關的數學對象,從而體會集合語言的簡潔性和準確性,發展運用數學語言進行交流的能力. 教材力求緊密結合學生的生活經驗和已有數學知識,通過列舉豐富的實例,使學生瞭解集合的含義,理解並掌握集合間的基本關係及集合的基本運算.教材突出了函數概念的背景教學,強調從實例出發,讓學生對函數概念有充分的感性基礎,再用集合與對應語言抽象出函數概念,這樣比較符合學生的認識規律,同時有利於培養學生的抽象概括的能力,增強學生應用數學的意識,教學中要高度重視數學概念的背景教學.2. 教材儘量創設使學生運用集合語言進行表達和交流的情境和機會,並注意運用Venn圖表達集合的關係及運算,幫助學生借助直觀圖示認識抽象概念. 教學中,要充分體現這種直觀的數學思想,發揮圖形在子集以及集合運算教學中的直觀作用。

人教A版数学必修一教案:§1.1.1集合的含义与表示

人教A版数学必修一教案:§1.1.1集合的含义与表示

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

2019人教A版数学必修一1-1-1《集合的含义与表示》(1)导学案

2019人教A版数学必修一1-1-1《集合的含义与表示》(1)导学案

2019人教A版数学必修一1-1-1《集合的含义与表示》(1)导学案一、认知探究:1. 元素与集合的概念(1)把统称为元素,通常用表示;(2)把叫做集合(简称为),通常用表示;2.集合中元素的特征: .3.元素与集合的关系(1)如果是集合A的元素,就说,记作;(2)如果不是集合A的元素,就说,记作;5.集合的两种表示方法列举法和描述法(1)列举法:把集合中的元素出来,并表示集合的方法;(2)描述法:表示集合的方法.二、合作探究:例1:下列对象能组成集合吗?(1)较小的正数;(2)我国的小河流;(3)方程的所有解;(4)不等式的所有解;(5)平面内到坐标原点的距离等于1的所有点.例2:用适当的方法表示下列集合:(1)单词wele中的所有字母组成的集合;(2)大于3小于10的整数组成的集合;(3)地球上的七大洲;(4)第一象限和第三象限内的点的集合;(5)方程的解集;(6)二元一次方程组的解集.例3:已知集合,若,求实数的值.变式训练:若集合为,当时,求的值.三、反馈练习1.用或符号填空:(1) ;(2) ;(3) ;(4) ;(5) ;(6) .2.已知集合中的三个元素可以构成的三边长,那么一定不是( )锐角三角形 直角三角形 钝角三角形 等腰三角形3.设以方程的解作为元素构成的集合为,用列举法表示 .4. 已知{}{1,2,3},{1,2},(,)|,,A B C x y x A y B ===∈∈则用列举法表示集合5.用适当方法表示下列集合:(1)24的正约数组成的集合; (2)方程的解集;(3)能被3整除的整数的集合; (4)不等式 的解集.6.设,,已知,求实数的值.。

人教版高中数学必修1第1章1.1.1 集合的含义与表示(1)教案

人教版高中数学必修1第1章1.1.1  集合的含义与表示(1)教案

第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示(一)教学目标分析:知识目标:1、了解集合的含义,体会元素与集合的“属于”关系。

2、掌握集合中元素的特性。

3、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

过程与方法:通过实例,从集合中的元素入手,正确表示集合,结合集合中元素的特性,学会观察、比较、抽象、概括的思维方法,领悟分类讨论的数学思想。

情感目标:在运用集合语言解决问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学思维方法解决问题。

重难点分析:重点:集合的含义与表示方法。

难点:集合表示方法的恰当选择及应用。

互动探究:一、课堂探究:1、情境引入军训前学校通知:8月13日上午8点,高一年级学生在学校操场集合前往军训基地;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

2、集合论是德国著名数学家康托尔于19世纪末创立的。

在学习集合之前,我们先来简单了解这位著名数学家的生平。

1845年3月3日,乔治••康托尔生于俄国的一个丹麦——犹太血统的家庭。

1856年康托尔和他的父母一起迁到德国的法兰克福。

像许多优秀的数学家一样,他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论。

他的父亲力促他学工,因而康托尔在1863年带着这个目的进入了柏林大学。

这时柏林大学正在形成一个数学教学与研究的中心。

康托尔很早就向往这所由外尔斯特拉斯占据着的世界数学中心之一。

所以在柏林大学,康托尔受了外尔斯特拉斯的影响而转到纯粹的数学。

他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授。

1874年康托尔在克列勒的《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章。

高中数学 1.1.1集合的含义与表示教案 新人教A版必修1

高中数学 1.1.1集合的含义与表示教案 新人教A版必修1

第1课时集合的含义与表示(一)教学目标1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义.理解集合相等的含义.(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识.导入课题.识:集.第一组实例(幻灯片一):实数.间的距离的点.)班全体同学.成员..集合:这些对象的全体构成的集合(或集)..集合的元素(或成员):的要点,然后教师肯定或补充.师总结.?第二组实例(幻灯片二):国代表团的成员构成的集合.集合.合.的点的全体构成的集合.念…表示.,”..集合的元素的基本性质;的.不能确定的对象不能构成集合.能算作一个元素.第三组实例(幻灯片三):个式子构成的集合.的点的全体构成的集合.成的集合.为有限集和无限集..:非负整数集(或自然数集).).为什么?师的引导下明确:只能算作集合的一个元素.例1(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集. (2)用描述法表示下列集合:①正偶数集;②{1,–3,5,–7,…,–39,41}. 【分析】考查集合的两种表示方法的概念及其应用.【解析】(1)①{1,3,5,15}②{0,2,4,6,8,10}(2)①{x | x = 2n ,n ∈N *}②{x | x = (–1) n –1·(2n –1),n ∈N *且n ≤21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.例2 用列举法把下列集合表示出来:(1)A = {x ∈N |99x -∈N }; (2)B = {99x-∈N | x ∈N }; (3)C = { y = y = – x 2 + 6,x ∈N ,y ∈N };(4)D = {(x ,y ) | y = –x 2 +6,x ∈N };(5)E = {x |p q= x ,p + q = 5,p ∈N ,q ∈N *}. 【分析】先看五个集合各自的特点:集合A 的元素是自然数x ,它必须满足条件99x -也是自然数;集合B 中的元素是自然数99x-,它必须满足条件x 也是自然数;集合C 中的元素是自然数y ,它实际上是二次函数y = – x 2 + 6 (x ∈N )的函数值;集合D 中的元素是点,这些点必须在二次函数y = – x 2 + 6 (x ∈N )的图象上;集合E 中的元素是x ,它必须满足的条件是x =p q,其中p + q = 5,且p ∈N ,q ∈N *. 【解析】(1)当x = 0,6,8这三个自然数时,99x-=1,3,9也是自然数. ∴ A = {0,6,9}(2)由(1)知,B = {1,3,9}.(3)由y = – x 2 + 6,x ∈N ,y ∈N 知y ≤6.∴ x = 0,1,2时,y = 6,5,2 符合题意.∴ C = {2,5,6}.(4)点 {x ,y }满足条件y = – x 2 + 6,x ∈N ,y ∈N ,则有:0,1,2,6,5, 2.x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩∴ D = {(0,6) (1,5) (2,2) }(5)依题意知p + q = 5,p ∈N ,q ∈N *,则0,1,2,3,4,5,4,3,2, 1.p p p p p q q q q q =====⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨=====⎩⎩⎩⎩⎩ x 要满足条件x =P q, ∴E = {0,14,23,32,4}. 【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3 已知–3∈A = {a –3,2a – 1,a2 + 1},求a的值及对应的集合A.–3∈A,可知–3是集合的一个元素,则可能a –3 = –3,或2a –1 = –3,求出a,再代入A,求出集合A.【解析】由–3∈A,可知,a –3 = –3或2a–1 = –3,当a–3 = –3,即a = 0时,A = {–3,–1,1}当2a– 1 = –3,即a = –1时,A = {– 4,–3,2}.【评析】元素与集合的关系是确定的,–3∈A,则必有一个式子的值为–3,以此展开讨论,便可求得a.。

人教A版必修1 数学:1.1.1 集合的含义与表示 学案1

人教A版必修1 数学:1.1.1 集合的含义与表示  学案1

集合的含义与表示【学习目标】1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力。

2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性。

【学习重难点】1.学习重点:集合的含义与表示方法,用集合语言表达数学对象或数学内容。

2.学习难点:区别元素与集合等概念及其符号表示。

【学习过程】1.元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母表示。

(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母表示。

2.集合中元素的特性:确定性、互异性、无序性。

3.集合相等:只要构成两个集合的元素是一样的,就说这两个集合是相等的。

4.元素与集合的关系:(1)如果A.是集合A的元素,就说A.属于集合A,记作A.∈A.(2)如果A.不是集合A的元素,就说A.不属于集合A,记作A.∉A.5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N +来表示。

一、集合的概念例1 考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2007年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体。

解(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(6)不能构成集合。

集合的含义及其表示1学案(人教A版必修1)

集合的含义及其表示1学案(人教A版必修1)

第1章集合§1.1集合的含义及其表示(一)1.一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.2.集合通常用大写拉丁字母A,B,C…表示,用小写拉丁字母a,b,c,…表示集合中的元素.3.如果a是集合A的元素,就说a属于集合A,记作a∈A,读作“a属于A”,如果a不是集合A的元素,就说a不属于A,记作a A或a∈A,读作“a不属于A”.4.集合中的元素具有确定性、互异性、无序性三种性质.5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.练习集合的概念【例1】考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2010年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.规律方法判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式迁移1 下面有四个命题:(1)集合N中最小的数是零;(2)0是自然数;(3){1,2,3}是不大于3的自然数组成的集合;(4)若a∈N,b∈N,则a+b的最小值为2.其中正确的命题有________个.集合中元素的特性【例2】已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a.变式迁移2 已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.元素与集合的关系【例3】若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.规律方法 判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.变式迁移3 集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,判断12-3是不是集合A 中的元素.1.充分利用集合中元素的三大特性是解决集合问题的基础.2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.课时作业一、填空题 1.由下列对象组成的集体属于集合的是____ ____(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.2.下列四个说法中正确的个数是________.①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.3.用“∈”或“∉”填空.(1)-3______N ;(2)3.14______Q ;(3)13______Z ; (4)-12______R ;(5)1______N *;(6)0________N . 4.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则M 中元素的个数为________. 6.方程x 2-2x +1=0的解集中含有________个元素.7.已知集合S 的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC (填“能”或“不能”)________为等腰三角形.二、解答题8.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .9.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?10.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.答案:集合的概念【例1】 考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2010年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点; (6)3的近似值的全体.解 (1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数比如“2”是不是它的近似值,所以(6)不能构成集合.规律方法 判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式迁移1 下面有四个命题:(1)集合N 中最小的数是零;(2)0是自然数;(3){1,2,3}是不大于3的自然数组成的集合;(4)若a ∈N ,b ∈N ,则a +b 的最小值为2.其中正确的命题有________个.答案 2解析 因为集合N 中最小的数是零,故(1)(2)正确,(3)(4)错误.故正确的命题有2个.集合中元素的特性【例2】 已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .分析 考查元素与集合的关系,体会分类讨论思想的应用.解 ∵-3∈A ,则-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去. 当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 规律方法 对于解决集合中元素含有参数的问题一定要全面思考,特别关注元素在集合中的互异性.分类讨论的思想是中学数学中的一种重要的数学思想,我们一定要在以后的学习中熟练掌握.变式迁移2 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值.解 ∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3.m =0不合题意,舍去.经验证m =3符合题意,∴m 的值为3.元素与集合的关系【例3】 若所有形如3a +2b (a ∈Z ,b ∈Z )的数组成集合A ,判断6-22是不是集合A 中的元素.分析 解答本题首先要理解∈与∉的含义,然后要弄清所给集合是由一些怎样的数构成的,6-22能否化成此形式,进而去判断6-22是不是集合A 中的元素.解 因为在3a +2b (a ∈Z ,b ∈Z )中,令a =2,b =-2,即可得到6-22,所以6-22是集合A 中的元素.规律方法 判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.变式迁移3 集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,判断12-3是不是集合A 中的元素. 解 ∵12-3=2+3=2+3×1,而2,1∈Z , ∴2+3∈A , 即12-3∈A .1.充分利用集合中元素的三大特性是解决集合问题的基础.2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.课时作业一、填空题1.由下列对象组成的集体属于集合的是________(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.答案 ①④⑤2.下列四个说法中正确的个数是________.①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.答案 03.用“∈”或“∉”填空.(1)-3______N ;(2)3.14______Q ;(3)13______Z ; (4)-12______R ;(5)1______N *;(6)0________N . 答案 (1) ∉ (2)∈ (3) ∉ (4)∈ (5)∈(6)∈4.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.答案 1解析当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.5.已知x、y、z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则M中元素的个数为________.答案 3解析分类讨论:x、y、z中三个为正,两个为正,一个为正,全为负,此时代数式的值分别为4,0,0,-4,根据集合中元素的互异性知,M中的元素为4,0,-4.6.方程x2-2x+1=0的解集中含有________个元素.答案 17.已知集合S的三个元素a、b、c是△ABC的三边长,那么△ABC(填“能”或“不能”)________为等腰三角形.答案不能解析由元素的互异性知a,b,c均不相等.二、解答题8.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x.解当3 x2+3x-4=2时,即x2+x-2=0,则x=-2或x=1.经检验,x=-2,x=1均不合题意.当x2+x-4=2时,即x2+x-6=0,则x=-3或2.经检验,x=-3或x=2均合题意.∴x=-3或x=2.9.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.10.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.。

高中数学 1.1.1 集合的含义与表示教案 新人教A版必修1

高中数学 1.1.1 集合的含义与表示教案 新人教A版必修1

1.1.1集合的含义与表示(第一课时)教学目标:1.理解集合的含义。

2.了解元素与集合的表示方法及相互关系。

3.熟记有关数集的专用符号。

4.培养学生认识事物的能力。

教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。

归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。

复习问题问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有x-<的解的集合,到一个定点的距离等于定长的点的集合,到一理数的集合,不等式73条线段的两个端点距离相等的点的集合等等)。

(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。

说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。

(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

问题4:由此上述例中集合的元素分别是什么?问题:(1)A={1,3},问3、5哪个是A的元素?(2)A={所有素质好的人},能否表示为集合?B={身材较高的人}呢?(3)A={2,2,4},表示是否准确?(4)A={太平洋,大西洋},B={大西洋,太平洋},是否表示为同一集合?由以上四个问题可知,集合元素具有三个特征:(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)a 属于集合A ,记作a ∈A ;若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。

1.1.1集合的含义与表示学案高一上学期数学人教A版必修1

1.1.1集合的含义与表示学案高一上学期数学人教A版必修1

第一章第1节 1.1.1集合的含义与表示(第1课时) 班级 小组 学生姓名 教师评价【使用说明与学法指导】1.请同学们认真阅读课本1-5页,划出重要知识,规范完成预习案并记熟基础知识。

2.结合课本独立规范完成探究案,疑难问题用红色笔做好标记,准备课上质疑讨论。

3.小组长控制预习过程,确保本组成员能够顺利地完成预习,及时上交。

【学习目标】1.通过具体实例说出集合的含义.能用相关符号表示元素与集合之间的关系.识记常用数集 .2.通过具体例子说出集合元素的性质.3.能用适当的方法表示集合.【重点·难点】重点:集合的含义.集合的元素与集合之间的关系.用适当的方法表示集合. 难点:集合元素的性质.用适当的方法表示集合.预习案1.集合的含义是什么?2.集合的元素具有哪些性质?3.集合的相等是如何定义的?4.识记实数集、有理数集、整数集、非负整数集、正整数集及其记法.5.元素与集合之间的关系是什么?6.集合常用的表示方法有哪些,分别适用哪些对象?【预习自测】1.由下列对象组成的集体属于集合的是____ ____(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.2.下列四个说法中正确的个数是________.①集合N 中最小数为1; ②若a ∈N .则-a ∉N ;③若a ∈N .b ∈N .则a +b 的最小值为2;④所有小的正数组成一个集合.3.方程x 2-2x +1=0的解集中含有________个元素.4.数集{}21,,x x x -中元素x 所满足的条件是 .【我的疑问】对预习自学的内容,你有什么疑问? 探究案探究一 集合的概念①高一(3)班的所有男生; ② 直线y 1x =+的所有点;③ 所有的正方形; ④ 2x , 32x +, 35y x -, 22x y +;⑤ 方程230x x +=的所有实数根.问题1.各组对象分别是一些什么?有多少个对象?问题2.探究1①~⑤元素分别是什么?各题中元素的全体能形成一个集合吗?【针对训练1】现有下列各组对象:(1) 著名的数学家;(2) 建始一中高一年级在校的所有高个子同学;(3) 不超过30的所有非负整数;(4) 方程240x -=在实数范围内的解;(5) 平面直角坐标系中,第一象限内的点.其中能构成集合的是A .()()13 B.()()23 C.()()34 D.()()()345探究二 元素与集合之间的关系问题.如果用A 表示本班全体学生组成的集合,用a 表示本班的一位同学,b 是个另外班的一位同学,那么a .b 与集合A 分别有什么关系?如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A .【针对训练2】用符号∈和∉填空(1) {}22*13|,,x x m n m n N =+∈; (2) {}22*102|,,y y m n m n N =-∈; (3) (){}()(){}222,4|,3,9,|y y x x y y x == 探究三 集合中元素的性质问题1.“高一年级的所有高个子同学”与“我国著名的数学家”是否构成集合.为什么?问题2.{}123A =,, {}321B =,, 这两个集合是否相等.为什么?集合还有哪些性质?例3.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A .求a ..【针对训练3】已知集合{}{}22,1,1,,,A x x B x x x x =+=+,且A B =,求实数x 的值。

高一数学人教A版必修一教案:1.1.1集合的含义与表示Word版含答案

高一数学人教A版必修一教案:1.1.1集合的含义与表示Word版含答案

课题:§ 1.1集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1 )通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法一一列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,研究对象统称为元素(element ),—些元素组成的总体叫集合(set),也简称集。

3. 思考1 :课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2 )互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to )A,记作a € A(2)如果a不是集合A的元素,就说a不属于(not belong to )A,记作a A (或a A □举例)6. 常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N + ;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

人教版高中数学必修一第一章:1.1.1集合的含义与表示学案1

人教版高中数学必修一第一章:1.1.1集合的含义与表示学案1

集合的含义与表示1一.课标解读1.《普通高中数学课程标准》明确指出:“通过实例,了解集合的含义,体会元素与集合的”属于”关系;能选择自然语言.图形语言(列举法或描述法)描述不同的具体问题感受集合语言的意义和作用.”2.重点:集合的概念与表示方法.3.难点:运用集合的两种常用表示法---列举法与描述法,正确表示一些简单的集合.二.要点扫描1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。

集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。

2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质: ⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。

设集合A 给定,若有一具体对象x ,则x 要么是A 的元素,要么不是A 的元素,二者必居 其一,且只居其一。

⑵互异性特征:集合中的元素必须是互不相同的。

设集合A 给定,A 的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。

3.集合与元素之间的关系集合与元素之间只有“属于)(∈”或“不属于)(∉”。

例如:a 是集合A 的元素,记作A a ∈,读作“a 属于A ”;a 不是集合A 的元素,记作A a ∉,读作“a 不属于A ”。

4.集合的分类集合按照元素个数可以分为有限集和无限集。

特殊地,不含任何元素的集合叫做空集,记作∅。

5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。

⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。

例如:集合A 可以用它的特征性质)(x p 描述为{)(x p I x ∈},这表示在集合I 中,属于集合A 的任意一个元素x 都具有性质)(x p ,而不属于集合A 的元素都不具有性质)(x p 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省衡水中学高一数学必修一学案:1.1.1集合的含义与表示(一)
一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。

二、自学导引:
1.集合的含义:
一般的,我们把研究
统称为 ;把 叫做集合(简称集)
2.集合的相等关系:只要构成两个集合的元素是一样的,我们就称这两个集合是 相等的。

3.如果a 是集合A 的元素,就说a 集合A,记作:
如果a 不是集合A 的元素,就说a 集合A,记作:
4.常用数集及表示符号
0;集合还可以用文氏图来表示。

集合的概念
常用数集 属于(a A ∈)
集 元素与集合的关系
合 不属于(a A ∉)
确定性
集合种元素的性质 互异性
无序性
6.集合元素的三个性质:
(1)确定性:设A 是一个给定的集合,x 是某一具体对象。

则x 或者是A 的元素,x 或者不是A 的元素,两种情况必有一种且只有一种情况成立。

(2)互异性:“集合的元素必须是互异的”,就是说“对于一个给定集合,它的任何两个元素都
是不同的”。

如方程012
=-x 的解构成的集合为{},1而不能记为{}1,1
(3)无序性:集合与它的元素的排列顺序无关,如集合{}c b a ,,与{}a c b ,,是同一集合。

三、典例剖析
例1.考察下列每组对象能否构成一个集合:
(1) 著名的数学家;
(2) 某校2007年在校的所有高个子同学;
(3) 不超过20的非负数;
(4) 方程092=-x 在实数范围内的解;
(5) 直角坐标平面内第一象限的一些点;
(6)
3的近似值的全体。

变式训练
1.下列各组对象:①接近于0的数的全体;②某一班级内视力较好的同学;③平面内到点O 的距离等于2的点的全体;④所有锐角三角形;⑤太阳系内的所有行星。

其中能构成集合的组数是 ( )
A. 2组
B. 3组
C. 4组
D. 5组
例2.(1)已知a ∈N ,b ∈N ,(a+b )∈N 吗?
(2)已知a ∈N ,b ∈Z ,(a+b )∈Z 吗?
变式训练:
2.已知a ∈Q ,b ∈R ,试判断元素a+b 与集合Q ,R 的关系。

例3。

已知}{
12,52,22a a a A
+-=,且A ∈-3,求实数a 的值。

变式训练:
3.已知{x,x2-x,0}表示一个集合,求实数x的范围。

相关文档
最新文档