中考复习数学分类检测试卷(8)统计与概率(含答案)
初中数学统计与概率测试题(含答案)
初中数学统计与概率测试题(含答案)初中数学统计与概率测试题(含答案)题目1. 某班级中共有32名学生,其中有20名男生和12名女生。
请回答以下问题:a) 男生的比例是多少?b) 女生的比例是多少?答案:a) 男生的比例 = (男生人数 / 总人数) × 100% = (20 / 32) × 100% =62.5%b) 女生的比例 = (女生人数 / 总人数) × 100% = (12 / 32) × 100% =37.5%题目2. 某小组有8名成员,其中有3名男生和5名女生。
请回答以下问题:a) 随机选择一个成员,男生的概率是多少?b) 随机选择一个成员,女生的概率是多少?答案:a) 男生的概率 = 男生人数 / 总人数 = 3 / 8 = 0.375b) 女生的概率 = 女生人数 / 总人数 = 5 / 8 = 0.625题目3. 根据某城市的气象数据,统计了过去一周的天气情况,得到如下表格:| 天气 | 晴天 | 雨天 | 多云 || ------- | ---- | ---- | ---- || 出现次数 | 3次 | 2次 | 2次 |请回答以下问题:a) 晴天的概率是多少?b) 下雨的概率是多少?c) 多云的概率是多少?答案:a) 晴天的概率 = 晴天出现次数 / 总天数= 3 / 7 ≈ 0.429b) 下雨的概率 = 雨天出现次数 / 总天数= 2 / 7 ≈ 0.286c) 多云的概率 = 多云出现次数 / 总天数= 2 / 7 ≈ 0.286题目4. 某班级有35名学生,其中10名学生喜欢阅读科幻小说,15名学生喜欢阅读推理小说,其中有5名学生两者都喜欢,问:a) 喜欢阅读科幻小说或者推理小说的学生有多少人?b) 不喜欢阅读科幻小说和推理小说的学生有多少人?答案:a) 喜欢阅读科幻小说或者推理小说的学生 = 喜欢阅读科幻小说的学生 + 喜欢阅读推理小说的学生 - 两者都喜欢的学生 = 10 + 15 - 5 = 20人b) 不喜欢阅读科幻小说和推理小说的学生 = 总人数 - 喜欢阅读科幻小说或者推理小说的学生 = 35 - 20 = 15人题目5. 某次抽奖活动中,共有100人参与抽奖,其中只有5名幸运儿中奖。
苏科版九年级下册数学第8章 统计和概率的简单应用 含答案
苏科版九年级下册数学第8章统计和概率的简单应用含答案一、单选题(共15题,共计45分)1、某市举行中学生“好书伴我成长”演讲比赛,某同学将所有选手的得分情况进行统计,绘成如图所示的成绩统计图.思考下列四个结论:①比赛成绩的众数为6分;②成绩的极差是5分;③比赛成绩的中位数是7.5分;④共有25名学生参加了比赛,其中正确的判断共有()A.1个B.2个C.3个D.4个2、2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.如图,现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有冰墩墩图案,一张正面印有雪容融图案,将三张卡片正面向下洗匀,从中随机抽取两张卡片,则抽出的两张都是冰墩墩卡片的概率是()A. B. C. D.3、袋中装有大小相同的3个绿球、3个黑球、6个蓝球,闭上眼睛从袋中摸出1个球,下列关于摸出的球的颜色说法正确的是()A.是绿球的概率大B.是黑球的概率大C.是蓝球的概率大 D.三种颜色的球的概率相同4、有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A.50B.30C.15D.35、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。
参加这个游戏的观众有三次翻牌的机会。
某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )A. B. C. D.6、把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1B.C.D.7、一个不透明的袋子中只装有1个黄球和3个红球,它们除颜色外完全相同,从中随机摸出一个球,下列说法正确的是()A.摸到黄球是不可能事件B.摸到黄球的概率是C.摸到红球是随机事件D.摸到红球是必然事件8、如图阴影部分扇形的圆心角是()A.15°B.23°C.30°D.36°9、某校有500名学生参加外语口语考试,考试成绩在70分~85分之间的有120人,则这个分数段的频率是()A.0.2B.0.12C.0.24D.0.2510、在一个不透明的盒子里有n个除颜色外其它均相同的小球,其中有8个黄球,采用有放回的方式摸球,结果发现摸到黄球的频率稳定在40%,那么可以推算出n大约是( )A.8B.20C.32D.4011、从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是( )A. B. C. D.12、某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下列说法正确的是()A.出现正面的频率是6B.出现正面的频率是60%C.出现正面的频率是4D.出现正面的频率是40%13、在a2□4a□4的空格□中,任意填上“+”或“-”,在所得到的代数式中,能构成完全平方式的概率是()A.1B.0.5C.0.75D.0.2514、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.315、已知实数a<0,则下列事件中是必然事件的是()A.3a>0B.a-3<0C.a+3<0D.a 3>0二、填空题(共10题,共计30分)16、布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的球都是白球的概率是________。
中考复习数学分类检测试卷(8)统计与概率(含答案)
中考复习数学分类检测八 统计与概率(时间:90分钟 总分:120分)一、选择题(每小题4分,共40分)1.下列调查中,适宜采用抽样调查方式的是( ) A .对我国首架大型民用直升机各零部件的检查 B .对某校初三(5)班第一小组的数学成绩的调查 C .对我市市民实施低碳生活情况的调查D .对2012年重庆市中考前200名学生的中考数学成绩的调查2.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表所示.则这10户家庭月用水量的众数和中位数分别为( )月用水量/t 10 13 14 17 18 户数22321A .14 t,13.5 tB .14 t,13 tC .14 t,14 tD .14 t,10.5 t3.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A .14B .12C .34D .14.甲、乙两人在同样条件下练习射击,每人打5发子弹,打中环数如下: 甲:6,8,9,9,8 乙:10,7,7,7,9 则甲、乙两人射击的成绩( ) A .甲比乙稳定 B .乙比甲稳定C .甲、乙稳定性相同D .甲、乙两人成绩无法比较5.2012年春某市发生了严重干旱,市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:月用水量/t 5 6 7 户数262则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是46.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( ) A .10 B .10 C .2 D . 27.有一个不透明的袋中,红色、黑色、白色的小球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A .1万件B .19万件C .15万件D .20万件9.如图所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是( )A .13B .34C .25D .3510.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )A .34B .13C .12D .14二、填空题(每小题4分,共24分)11.“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为__________.12.一组数据23,27,20,x ,18,12的中位数是21,则x =__________.13.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图所示的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款__________元.14.已知数据a ,b ,c 的平均数是8,那么数据2a +3,2b +3,2c +3的平均数是__________. 15.某商场开展购物抽奖促销活动,抽奖箱中有200张抽奖卡,其中有一等奖5张,二等奖10张,三等奖25张,其余抽奖卡无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取一张,则中奖的概率为__________.16.从-2,-1,0,1,2这5个数中任取一个数,作为关于x 的一元二次方程x 2-x +k =0的k 值,则所得的方程中有两个不相等的实数根的概率是__________.三、解答题(56分)17.(8分)市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:各奖项人数百分比统计图各奖项人数统计图(1)一等奖所占的百分比是__________.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整.(3)各奖项获奖学生分别有多少人?18.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是__________环,乙的平均成绩是__________环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.19.(9分)某市今年中考理、化实验操作考查,采用学生抽签方式决定自己的考查内容.规定:每位考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考查.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?20.(9分)某校部分男生分三组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如图所示.训练前后各组平均成绩统计图训练后第二组男生引体向上增加个数分布统计图(1)求训练后第一组的平均成绩比训练前增长的百分数.(2)小明在分析了统计图后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由.(3)你认为哪一组的训练效果最好?请提供一个合理的理由来支持你的观点.21.(10分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算摸出的小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.22.(12分)某校宣传栏中公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:姓名性别年龄学历职称王雄辉男35 本科高级李红男40 本科中级刘梅英女40 中专中级张英女43 大专高级刘元男50 中专中级袁桂男30 本科初级蔡波男45 大专高级李凤女27 本科初级孙焰男40 大专中级彭朝阳男30 大专初级龙妍女25 本科初级杨书男40 本科中级(1)该校下学期七年级班主任老师年龄的众数是多少?(2)在图1中,将反映老师学历情况的条形统计图补充完整;(3)在图2中,标注扇形统计图中表示老师职称为初级和高级的百分比;(4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?学历情况条形统计图职称情况扇形统计图图1 图2参考答案一、1.C2.C 从数据表看出:14 t 出现的次数最多,中位数应是第5个数、第6个数的平均数,是14 t ,故选C.3.B4.A x 甲=15×(6+8+9+9+8)=8,x 乙=15×(10+7+7+7+9)=8,s 2甲=15×[(6-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2]=1.2, s 2乙=15×[(10-8)2+(7-8)2+(7-8)2+(7-8)2+(9-8)2]=1.6, ∴s 2甲<s 2乙.∴甲比乙稳定.5.D6.C 由已知可得15(3+a +4+6+7)=5,解得a =5,则方差为s 2=15×[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2.7.B 口袋中白色球的个数为40×(1-15%-45%)=16.8.B 该厂产品100件中有5件不合格,则合格率为1-5%=95%. 所以20万件中合格产品约为20×95%=19(万件). 9.D10.C 若设大正方形的边长为2a ,则它的内切圆的直径等于2a ,则这个圆的内接正方形的对角线长为2a ,其边长等于2a ,面积为2a 2.而大正方形的面积等于4a 2,所以小球停在小正方形内部区域的概率P =2a 24a 2=12. 二、11.5012.22 由题意得20+x2=21,解得x =22.13.31.2 x =5×8%+10×20%+20×44%+50×16%+100×12%=31.2. 14.19 15.1516.35 因为Δ=(-1)2-4k =1-4k ,当方程中有两个不相等的实数根时,Δ>0,即k <14.三、17.解:(1)一等奖所占的百分比为1-20%-24%-46%=10%. (2)从条形统计图可知,一等奖的获奖人数为20. ∴这次比赛中收到的参赛作品为2010%=200份.∴二等奖的获奖人数为200×20%=40. 条形统计图补充如下图所示:(3)一等奖获奖人数为20,二等奖获奖人数为40,三等奖获奖人数为48,优秀奖获奖人数为92. 18.解:(1)9 9 (2)s 2甲=23,s 2乙=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.19.解:(1)列表格如下:所有可能出现的结果:AD AE AF BD BE BF CD CE CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次, 所以P (M )=19.20.解:(1)训练后第一组的平均成绩比训练前增长的百分数是5-33×100%≈67%.(2)不同意小明的观点,因为第二组的平均成绩增加个数为8×10%+6×20%+5×20%+0×50%=3. (3)本题答案不唯一,如:我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.解:(1)列表如下:结果有12种,其中积为6的有2种, ∴P (积为6)=212=16.(2)游戏不公平.因为积为偶数的有8种情况,而积为奇数的有4种情况. P (积为奇数)=13,P (积为偶数)=23,13≠23.游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. 22.解:(1)该校下学期七年级班主任老师年龄的众数是40; (2)大专4人,中专2人(图略); (3)高级:25%,初级:33.3%; (4)班主任老师是女老师的概率是412=13.。
广东省中考数学专题测试(八)统计与概率及答案
8.专题测试卷(八)——统计与概率数学(本卷满分120分,考试用时100分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形2.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件3.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球4.掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数为奇数的概率是()A.B.C.D.5.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.96.为了解某市参加中考的25 000名学生的身高情况,抽查了其中1 200名学生的身高进行统计分析.下面叙述正确的是()A.25 000名学生是总体B.1 200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查7.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.78.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.49.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,2410.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21二、填空题(本大题共6小题,每小题4分,共24分)11.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.12.一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是.13.近年来食品安全问题备受人们的关注,某海关想检验一批进口食品的防腐剂含量是否符合国家标准,这种调查适用(填“全面调查”或“抽样调查”).14.甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而s甲2=3.7,s乙2=6.25,则两人中成绩较稳定的是.15.为了估计池塘里有多少条鱼,从池塘里捕捞了1 000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼条.16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?18.某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.19.不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)四、解答题(二)(本大题共3小题,每小题7分,共21分)20.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.21.由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.22.为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.请你根据统计图表中的信息,解答下列问题: 学生借阅图书的次数统计表(1)a= ,b= .(2)该调查统计数据的中位数是,众数是 . (3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2 000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.24.某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出).请你根据统计图表中的信息,解答下列问题: 抽取的男生“引体向上”成绩统计表(1)填空:m=,n=.(2)求扇形统计图中D组的扇形圆心角的度数;(3)目前该市八年级有男生3 600名,请估计其中“引体向上”得零分的人数.25.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请你结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.8.专题测试卷(八)——(统计与概率)1.C2.D3.C4.C5.A6.B7.B8.A9.A10.B11.15.312.3 13.抽样调查14.甲15.20 00016.17.解:甲的平均成绩为(87×6+90×4)÷10=88.2(分),乙的平均成绩为(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.18.解:(1)从小到大排列此数据为5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数.(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.19.解:(1)(2)画树状图如图:所以共有6种情况,含红球的有4种情况,所以P==,答:从中同时摸出2个球,摸到红球的概率是.20.解:(1)画树状图如图:共有12种等可能的结果(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2),(2,3),(3,4)这3种结果,∴点M(x,y)在函数y=x+1的图象上的概率为=.21.解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率==.(2)列表如下:所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,∴P(小王胜)==,P(小张胜)==,∴游戏公平.22.解:(1)a=86,b=85,c=85.(2)∵86>85,∴八(2)班前5名同学的成绩较好.23.解:(1)17 20 (2)2次2次(3)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°.(4)估计该校学生在一周内借阅图书“4次及以上”的人数为2000×=120人.24.解:(1)8 20(2)=33°,即扇形统计图中D组的扇形圆心角是33°.(3)3600×=960(人).答:“引体向上”得零分的有960人.25.解:(1)60 90°(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,补全条形图如图:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名.(4)画树状图如图:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为=.。
中考数学总复习 单元测试(八)统计与概率试题及答案
单元测试(八) 统计与概率(时间:45分钟 满分:100分)一、选择题(每小题5分,共30分)1.在下列调查中,适宜采用全面调查的是(B) A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.(2016·深圳)数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是(A)A.17B.13C.121D.1103.(2016·资阳)我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50A .11,20B .25,11C .20,25D .25,204.(2016·达州)如图,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的概率为(D)A.13B.12C.23D.345.(2016·雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了扇形统计图,则在被调查的学生中,跑步和打羽毛球的学生人数分别是(B)A .30,40B .45,60C .30,60D .45,406.(2016·泰安)在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m )2+n 的顶点在坐标轴上的概率为(A)A.25B.15C.14D.12二、填空题(每小题5分,共20分)7.(2016·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球20个.8.(2016·邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是乙.9.(2016·金华)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5 mg/L ,则第3次检测得到的氨氮含量是1mg/L.10.(2016·长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是56. 三、解答题(共50分)11.(12分)(2016·济宁)2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整; (2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.解:(1)2013年父亲节当天剃须刀的销售额为5.8-1.7-1.2-1.3=1.6(万元). 补全条形图如图.(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.12.(12分)(2016·黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A 类,20分钟<t≤40分钟的学生记为B 类,40分钟<t≤60分钟的学生记为C 类,t >60分钟的学生记为D 类四种,将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m =26%,n =14%,这次共抽查了50名学生进行调查统计; (2)请补全上面的条形图;(3)如果该校共有1 200名学生,请你估计该校C 类学生约有多少人? 解:(2)20%×50=10(名).补图如图.(3)1 200×20%=240(人). 答:该校C 类学生约有240人.13.(12分)小明参加某网店的“翻牌抽奖”活动,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为14;(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,那么所获奖品总值不低于30元的概率为多少? 解:∴总值不低于30元的概率为412=13.14.(14分)为了培养学生的兴趣,我市某小学决定开设A.舞蹈,B.音乐,C.绘画,D.书法四个兴趣班,为了解学生对这四个项目的兴趣爱好,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的统计图,请结合图中信息解答下列问题:(1)在这次调查中,共调查了多少名学生? (2)请将两幅统计图补充完整;(3)若本校一共有2 000名学生,请估计喜欢“音乐”的人数;(4)若调查到喜欢“书法”的4名学生中有2名男生,2名女生,现从这4名学生中任意抽取两名学生,请用画树状图或列表的方法,求出刚好抽到相同性别的学生的概率. 解:(1)由图可知,这次调查中,共调查了120÷40%=300(名). 所以这次调查中,共调查了300名学生. (2)如图.(3)若本校一共有2 000名学生,则喜欢“音乐”的学生约为:20%×2 000=400(人).(4)若喜欢“书法”的4名学生中有2名男生,2名女生,现从这4名学生中任意抽取两名学生,用列表法如下:)2共有种可能,所以刚好抽到相同性别的学生的概率为412=13.。
初中数学九年级专题八《统计与概率》试卷含答案
专题八《统计与概率》试卷含答案(考试时间120分钟,试卷满分120分)一、选择题1、在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是()A.1.85和0.21B.2.11和0.46C.1.85和0.60D.2.31和0.602.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C3.有13位同学参加学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是()A.方差B.平均数C.众数D.中位数4、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1 B.0.17 C.0.33 D.0.45.某企业1~5月分利润的变化情况图所示,以下说法与图中反映的信息相符的是()A)1~2月分利润的增长快于2~3月分利润的增长B)1~4月分利润的极差于1~5月分利润的极差不同C)1~5月分利润的的众数是130万元D)1~5月分利润的的中位数为120万元6、要反映乌鲁木齐市一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.频数分布直方图D.折线统计图7、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27 购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为( )A 、25.5厘米,26厘米B 、26厘米,25.5厘米C 、25.5厘米,25.5厘米D 、26厘米,26厘米8.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是A .4,7B .7,5C .5,7D .3,79.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是( )A .甲、乙射中的总环数相同B .甲的成绩稳定C .乙的成绩波动较大D .甲、乙的众数相同10.如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一段绳子.若每边每段绳子被选中的机会相等,则两人选到同一条绳子的概率为A . 21B . 31C . 61 D . 91 11.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A .21B .31C .61D .121 12.在 6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆. 在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .61 B .31 C .21 D .3213.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( )A .121B .61C .41 D .31 二、填空题14、妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 .(填普查或抽样调查)15、甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S 乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)16.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是 个.17.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为 .18.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.19.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________.20.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 .21.有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .22.在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为___ _____.23.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是.三、解答题24.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图.(Ⅰ)求这10个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7 t的约有多少户.25.从车站到书城有A1、A2、A3、A4四条路线可走,从书城到广场有B1、B2、B3三条路线可走,现让你随机选择一条从车站出发经过书城到达广场的行走路线.画树状图分析你所有可能选择的路线.你恰好选到经过路线B1的概率是多少?26.市种子培育基地用A、B、C三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%.根据试验数据绘制了下面两个不完整的统计图(图1、图2):(1)C型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C型号发芽种子的概率.27.小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用数状图或列表的方法求小莉去上海看世博会的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.专题八 统计与概率一、选择题1、C 2.D 3. D 4、A 5. C 6、D 7、D 8.C 9.D 10.B11.C 12.D 13.B二、填空题14、抽样调查 15、甲 16.4 17.101 18.15 19.31 20.61 21.31 22.41 23.41 三、解答题24.解:(Ⅰ)观察条形图,可知这组样本数据的平均数是 62 6.54717.5281 6.810x ⨯+⨯+⨯+⨯+⨯==.∴ 这组样本数据的平均数为6.8. ∵ 在这组样本数据中,6.5出现了4次,出现的次数最多,∴ 这组数据的众数是6.5.∵ 将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有6.5 6.5 6.52+=, ∴ 这组数据的中位数是6.5.(Ⅱ)∵ 10户中月均用水量不超过7 t 的有7户,有 7503510⨯=. ∴ 根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7 t 的约有35户.25.解(1)(2)从车站到书城共有12条路线,经过B 1的路线有4条. ∴P (经过B 1)=124=31. 26.解:(1)480.(2)A 型号种子数为:1500×30%=450,发芽率=450420×100%≈93%.B 型号种子数为:1500×30%=450,发芽率=450370×100%≈82%.C 型号种子数发芽率是80%. ∴选A 型号种子进行推广.(3)取到C 型号发芽种子的概率=480370420480++=12748.27.解:(1)所有可能的结果如有表:一共有16种结果,每种结果出现的可能性相同.和为偶数的概率为83166= ,所以小莉去上海看世博会的概率为83 , (2)由(1)列表的结果可知:小莉去的概率为83,哥哥去的概率为85,所以游戏不公平,对哥哥有利.游戏规则改为:若和为偶数则小莉得5分,若和为奇数则哥哥得3分,则游戏是公平的.。
中考数学复习之统计与概率综合训练题(含20大题)
中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。
初中数学中考模拟《第八章统计与概率》自我测试含答案.docx
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过由交通信号灯的路口,遇到红灯”是必然事件试题2:现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.试题3:小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68 B.67、67C.68、68 D.68、67试题4:在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:分数80 85 90 95人数 1 4 3 2这10名学生所得分数的平均数是()A.86 B.88 C.90 D.92试题5:在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个试题6:有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是__试题7:学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环) 9.5 9.5方差0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是__试题8:一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球____个.试题9:如图是由边长为2a和a的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是__试题10:如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是____.试题11:某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了____名学生,扇形统计图中m=____;(2)请根据数据信息补全条形统计图;(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?试题12:为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表身高分组频数百分比x<155 5 10%155≤x<160 a 20%160≤x<165 15 30%165≤x<170 14 bx≥170 6 12%总计100%(1)填空:a=____,b=___;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165 cm的学生大约多少人?试题13:二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了____名学生,a=____%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为____度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.试题14:根据我国《环境空气质量指数AQI技术规定》(试行),AQI共分0~50,51~100,101~150,151~200,201~300和大于300六级,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显,专家建议;当空气质量指数小于150时,可以户外运动;当空气质量指数不低于151时,不适合进行旅游等户外活动.下面是某市未来10天的空气质量指数预测:时间11日12日13日14日15日16日17日18日19日20日AQI 149 143 251 254 138 55 69 102 243 269(1)该市市民在这10天内随机选取1天进行户外运动,求这10天该市市民不适合户外运动的概率;(2)一名外地游客计划在这10天内到该市旅游,随机选取连续2天游玩,求这10天中适合他旅游的概率.(导学号02052632)试题15:A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?(导学号02052633)试题1答案:C试题2答案:C试题3答案:C试题4答案:B试题5答案:A试题6答案:6__.试题7答案:乙__.试题8答案:8试题9答案:__.试题10答案:试题11答案:解:50. 32(2)50×40%=20(人);补全条形统计图如图所示:(3)1000×(16%+40%)=560(人).答:估计选择“非常了解”、“比较了解”共有560人试题12答案:解:10 _28%(2)补全的频数分布直方图如下图所示;(3)600×(28%+12%)=600×40%=240(人).答:该校九年级共有600名学生,身高不低于165cm的学生大约有240人试题13答案:解:50 30(2)补全条形统计图如图所示;36(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,3000×60%=1800(人).答:该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为1800人试题14答案:解:(1)∵这10天该市市民户外运动的机会是相同的,其中不适合户外运动的天数分别是:13日,14日,19日,20日,∴这10天该市市民不适合户外运动的概率==;(2)∵这10天连续2天的组合共有9中可能情况,其中连续2天游玩的情况有4中,分别是(11,12),(15,16)(16,17),(17,18),∴适合他旅游的概率=试题15答案:解:(1)P=;(2)由题意画出树状图如下:一共有6种情况,乘积分别为6,10,12,20,18,30 其中是3的倍数的有4个,则甲获胜的情况有4种,P==,乙获胜的情况有2种,P==,所以,这样的游戏规则对甲乙双方不公平。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率
2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率(考试时间:100分钟试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.下列说法正确的是()A.将油滴入水中,油会浮在水面上是不可能事件B.抛出的篮球会下落是随机事件C.了解一批圆珠笔芯的使用寿命,采用普查的方式D.若甲、乙两组数据的平均数相同,甲2=2,乙2=2.5,则甲组数据较稳定【答案】D【分析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.【详解】解:A、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B、抛出的篮球会下落是必然事件,故B不符合题意;C、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;2=2,乙2=2.5,则甲组数据较稳定,故D符合题意;D、若甲、乙两组数据的平均数相同,甲故选:D.【点睛】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.2.4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生【答案】C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【详解】解:样本是从中抽取的150名师生的国家安全知识掌握情况.故选:C.【点睛】本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【答案】C【分析】在扇形统计图中将总体看做一个圆,用各个扇形表示各部分,能清楚的表示出各部分所占总体的百分比.【详解】根据题意,将空气(除去水汽、杂质等)看做总体,用各个扇形表示空气的成分(除去水汽、杂质等)中每一种成分所占空气的百分比,由此可以选择扇形统计图.故选C.【点睛】本题考查了统计图的选取,扇形统计图的特点及优点,熟练掌握各种统计图的特点及优点是解题的关键.4.【原创题】长沙市某一周内每日最高气温的情况如图所示,下列说法中错误的是()A.这周最高气温是32℃B.这组数据的中位数是30C.这组数据的众数是24D.周四与周五的最高气温相差8℃【答案】B【分析】根据折线统计图,可得答案.【详解】解:A、由纵坐标看出,这一天中最高气温是32℃,说法正确,故A不符合题意;B、这组数据的中位数是27,原说法错误,故B符合题意;C、这组数据的众数是24,说法正确,故C不符合题意;D、周四与周五的最高气温相差8℃,由图,周四、周五最高温度分别为32℃,24℃,故温差为32−24=8(℃),说法正确,故D不符合题意;故选:B.【点睛】此题主要考查了折线统计图,由纵坐标看出气温,横坐标看出时间是解题的关键.5.【创新题】若一组数据1,2,3,⋯,的方差为2,则数据1+3,2+3,3+3,⋯,+3的方差是()A.2B.5C.6D.11【答案】A【分析】根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,设原平均数为 ,现在的平均数为 +3,原来的方差12=1(1− )2+(2− )2+…+(− )2=2,现在的方差22=11+3− −32+2+3− −32+…++3− −32,=1− )2+(2− )2+⋯+(− )2,=2.故选:A.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.6.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分2和乙2,则甲2与乙2的大小关系是()别记为甲测试次数12345甲510938乙868672>乙2B.甲2<乙2C.甲2=乙2D.无法确定A.甲【答案】A【分析】先分别求出甲、乙的平均数,再求出甲、乙的方差即可得出答案.【详解】解:甲的平均数为5+10+9+3+85=7,2=−72+10−72+9−72+3−72+8−72=6.8,甲的方差为乙的平均数为8+6+8+6+7=7,2=−72+6−72+8−72+6−72+7−72=0.8,乙的方差为∵0.8<6.8,2>乙2.∴甲故选:A.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,1,2,…的平均数为=1+2+⋯,则方差2=1−+2+⋯+−2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同【答案】C【分析】根据概率公式计算摸出三种小球的概率,即可得出答案.【详解】解:盒中小球总量为:3+2+5=10(个),摸出“北斗”小球的概率为:310,摸出“天眼”小球的概率为:210=15,摸出“高铁”小球的概率为:510=12,因此摸出“高铁”小球的可能性最大.故选C.【点睛】本题考查判断事件发生可能性的大小,掌握概率公式是解题的关键.8.【原创题】剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是()A.45B.35C.25D.15【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.【详解】解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是25,故选:C.【点睛】本题考查了轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.9.劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:0≤<3,3≤<6,6≤<9,9≤<12,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A.0.6B.0.5C.0.4D.0.32【答案】A【分析】利用概率公式进行计算即可.【详解】解:由题意,得:=10+2010+20+14+6=35=0.6;故选A.【点睛】本题考查直方图,求概率.解题的关键是从直方图中有效的获取信息.10.【原创题】在相同条件下的多次重复试验中,一个随机事件发生的频率为f,该事件的概率为P.下列说法正确的是()A.试验次数越多,f越大B.f与P都可能发生变化C.试验次数越多,f越接近于PD.当试验次数很大时,f在P附近摆动,并趋于稳定【答案】D【分析】根据频率的稳定性解答即可.【详解】解:在多次重复试验中,一个随机事件发生的频率会在某一个常数附近摆动,并且趋于稳定这个性质称为频率的稳定性.【点睛】本题考查了频率与概率,掌握频率的稳定性是关键.二.填空题(共6小题,满分18分,每小题3分)11.某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命<10001000≤<16001600≤<22002200≤<2800≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.【答案】460【分析】用1000乘以抽查的灯泡中使用寿命不小于2200小时的灯泡所占的比例即可.【详解】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×17+650=460(只),故答案为:460.【点睛】本题考查了用样本估计总体,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.12.一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则=.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+=25,去分母,得6×5=26+,经检验=9是所列分式方程的根,∴=9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.13.某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:项目综合知识工作经验语言表达应聘者甲758080乙858070丙707870如果将每位应聘者的综合知识、工作经验、语言表达的成绩按5:2:3的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是.【答案】乙【分析】分别计算甲、乙、丙三名应聘者的成绩的加权平均数,比较大小即可求解.【详解】解:甲=75×510+80×210+80×310=77.5,乙=85×510+80×210+70×310=79.5,丙=70×510+78×210+70×310=71.6,∵71.6<77.5<79.5∴被录用的是乙,故答案为:乙.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算方法是解题的关键.14.【原创题】小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是.【答案】72°/72度【分析】根据“新材料”的占比乘以360°,即可求解.【详解】解:“新材料”所对应扇形的圆心角度数是20%×360°=72°,故答案为:72°.【点睛】本题考查了求扇形统计图的圆心角的度数,熟练掌握求扇形统计图的圆心角的度数是解题的关键.15.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有只A种候鸟.【答案】800【分析】在样本中“200只A种候鸟中有10只佩有识别卡”,即可求得有识别卡的所占比例,而这一比例也适用于整体,据此即可解答.【详解】解:设该湿地约有x只A种候鸟,则200:10=x:40,解得x=800.故答案为:800.【点睛】本题主要考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.16.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:Fol⋅m﹣2⋅s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).【答案】乙【分析】分别求甲、乙两品中的方差即可判断;【详解】解:甲2=32−252+30−252+25−252+18−252+20−252=29.6乙2=−252+25−252+26−252+24−252+22−252=4甲2>乙2∴乙更稳定;故答案为:乙.【点睛】本题主要考查根据方差判断稳定性,分别求出甲、乙的方差,方差越小越稳定,解本题的关键在于知道方差的求解公式.三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)17.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.【答案】(1)23(2)23【分析】(1)直接由概率公式求解即可;(2)列表或画树状图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,再由概率公式求解即可.【详解】(1)解:根据题意,3张扑克牌中,数字为2的扑克牌有一张,数字为3的扑克牌有两张,∴从中随机抽取1张,抽得扑克牌上的数字为3的概率为23,故答案为:23;(2)解:画树状图如下:如图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,∴抽得2张扑克牌的数字不同的概率为=46=23.【点睛】本题考查用列表或画树状图求概率,列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合两步或两步以上完成的事件,解题的关键是能准确利用列表法或画树状图法找出总情况数及所求情况数.18.抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.【答案】34【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=34,即两次分数之和不大于3的概率为34.【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.19.【原创题】甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?【答案】(1)14(2)公平.理由见解析【分析】(1)用列表法或画树状图法列举出所有等可能的结果,再用乙选中球拍C的结果数除以总的结果数即可;(2)分别求出甲先发球和乙先发球的概率,再比较大小,如果概率相同则公平,否则不公平.【详解】(1)解:画树状图如下:一共有12种等可能的结果,其中乙选中球拍C有3种可能的结果,∴乙选中球拍C的概率=312=14;(2)解:公平.理由如下:画树状图如下:一共有4种等可能的结果,其中两枚硬币全部正面向上或全部反面向上有2种可能的结果,∴甲先发球的概率=24=12,乙先发球的概率=4−24=12,∵12=12,∴这个约定公平.【点睛】本题考查列表法或画树状图法求等可能事件的概率,游戏的公平性,掌握列表法或画树状图法求等可能事件的概率的方法是解题的关键.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【详解】(1)∵4+7+10+14+20=55(天).∴这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.72−11.52=0.2(秒),∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【创新题】如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4∗2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.【答案】(1)45.74,2.3,21.7;(2)“鹿鹤同春”的实际质量约为21.0克.【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据题中所给数据求出每一枚古钱币的密封盒质量,即可判断出哪枚古钱币所标的质量与实际质量差异较大,计算其余四个密封盒的平均数,即可求得所标质量有错的古钱币的实际质量.【详解】(1)解:平均数:15×45.4+48.1+45.1+44.6+45.5=45.74mm;这5枚古钱币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm,其中2.3mm出现了2次,出现的次数最多,∴这5枚古钱币的厚度的众数为2.3mm;将这5枚古钱币的重量按从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g,∴这5枚古钱币质量的中位数为21.7g;故答案为:45.74,2.3,21.7;(2)名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1∴“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.其余四个盒子质量的平均数为:34.3+34.1+34.3+34.14=34.2g,55.2-34.2=21.0g故“鹿鹤同春”的实际质量约为21.0克.【点睛】本题考查了平均数、中位数和众数的求解,平均数的应用,将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;众数就是一组数据中出现次数最多的那个数据.一组数据中,众数可能不止一个.22.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下:在—个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片卡片上的数字记为b.然后计算这两个数的和,即a+b,若a+b为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?【答案】(1)见解析,(a,b)所有可能出现的结果总数有8种;(2)游戏公平,理由见解析【分析】(1)列表列出所有等可能结果即可;(2)由和为偶数的有8种情况,而和为奇数的有4种情况,即可判断.【详解】(1)解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)由表格可知,(a,b)所有可能出现的结果总数有8种;(2)解:游戏公平,由表格知a+b为奇数的情况有4种,为奇数的情况也有4种,概率相同,都是48=12,所以游戏公平.【点睛】本题主要考查游戏的公平性及概率的计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【答案】(1)8.6(2)甲(3)丙【分析】(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.【详解】(1)解:丙的平均数:10+10+10+9+9+8+3+9+8+1010=8.6,则=8.6.2=110[2×(8.6−8)2+4×(8.6−9)2+2×(8.6−7)2+2×(8.6−10)2]=1.04,(2)甲2=110[4×(8.6−7)2+4×(8.6−10)2+2×(8.6−9)2]=1.84,乙∵甲2<乙2,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108=8.625,乙:7+7+7+9+9+10+10+108=8.625,丙:10+10+9+9+8+9+8+108=9.125,∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,故答案为:丙.【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.24.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.【答案】(1)69,69,70(2)82分(3)小涵能入选,小悦不一定能入选,见解析【分析】(1)从小到大排序,找出中位数、众数即可,算出平均数.(2)将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出的总评成绩即可.(3)小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.【详解】(1)从小到大排序,。
中考数学总复习易错题8统计与概率(含解析)
中考数学总复习易错题8统计与概率(含解析)易错题 8 统计与概率1.每年 4 月 23 日是“世界读书日”,为了了解某校八年级 500 名学生对“世界读书日”的知晓情况,从中随 机抽取了 10%进行调查.在这次调查中,样本容量是( )A .500B .10%C .50D .52.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7,已知这组数据的平均数是 5,则这组数据的众数 和中位数分别是( )A .4,5B .4,4C .5,4D .5,53.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数 中位数 众数 方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A .平均数B .众数C .方差D .中位数4.下列特征量不能反映一组数据集中趋势的是( )A .众数B .中位数C .方差D .平均数5.若一组数据 1、a 、2、3、4 的平均数与中位数相同,则 a 不可能是下列选项中的( )A .0B .2.5C .3D .56.下列图形:任取一个是中心对称图形的概率是( )A .14B .12C .34D .17.如图,在 5×5 的正方形网格中,从在格点上的点 A ,B ,C ,D 中任取三点,所构成的三角形恰好是直 角三角形的概率为( )A .13 B .12 C .23D .34 8.甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数 是白球个数的 2 倍;乙袋中,红球个数是白球个数的 3 倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸 出一个球,摸出红球的概率是( )A .512 B .712 C .1724D .259.如图,正方形 ABCD 内接于⊙O ,⊙O 分米,若在这个圆面上随意抛一粒豆子,则豆子落 在正方形 ABCD 内的概率是( )A .2πB .2π C .12πD10.已知一组数据x1,x2,x3,x4,x5 的平均数是5,方差是4,那么另一组数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数和方差分别为()A.5,4 B.3,2 C.5,2 D.3,411.为了了解景德镇市中学生本学期的学习成绩整体情况,市教育局准备在初一年级中的语文、数学、英语三个学科和初二年级中的语文、数学、英语、物理四个学科中各抽取一个学科作为调研考试来考察,那么初一、初二年级都抽中数学的概率是()A 13B.14C.16D.112事件 A 必然事件 随机事件 m 的值 12.下列说法正确的是( )A .某市“明天降雨的概率是 75%”表示明天有 75%的时间会降雨B .400 人中一定有两人的生日在同一天C .在抽奖活动中,“中奖的概率是1100”表示抽奖 l00 次就一定会中奖 D .十五的月亮像一个弯弯的细钩13.一家鞋店在一段时间内销售某种女鞋50 双,各种尺码的销售量如表所示: 尺码(厘米) 22 22.5 23 23.5 24 24.5 25销售量(双) 1 2 31 5 7 3 1如果你是店长,为了增加销售量,你最关注哪个统计量( )A .平均数B .众数C .中位数D .方差14.x 1,x 2,…,x 10 的平均数为 a ,x 11,x 12,…,x 50 的平均数为 b ,则 x 1,x 2,…,x 50 的平均数为( )A .a+bB . 2a b +C 105060a b +D .104050a b + 15.如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知 AB=13,AC=5, BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带 上,则小鸟落在花圃上的概率为 . 16.两组数据:3,5,2a ,b 与 b ,6,a 的平均数都是 6,若将这两组数据合并为 一组数据,则这组新数据的中位数和众数分别为 . 17.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测 试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最 小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于 130 次的成绩为优秀,全校共有 1200 名学 生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为 人.18.如图,随机地闭合开关 S 1,S 2,S 3,S 4,S 5 中的三个,能够使灯泡 L 1,L 2 同时发光的概率是 .19.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在偶数区域的概率是 .20.在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为 事件 A .请完成下列表格:(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性大小是45,求 m 的值.21.锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有 3 个选项,第二道单选题有 4 个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20(1)频数分布表中a= ,b= ,并将统计图补充完整;(2)如果该校七年级共有女生 180 人,估计仰卧起坐能够一分钟完成 30 或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.2018 年某市学业水平体育测试即将举行,某校为了解同学们的训练情况,从九年级学生中随机抽取部分学生进行了体育测试(把成绩分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)求本次抽测的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)在测试中甲乙、丙、丁四名同学表现非常优秀,现决定从这四名同学中任选两名给大家介绍训练经验,求恰好选中甲、乙两名同学的概率(用树状图或列表法解答).24.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣2、l、2,它们除了数字不同外,其它都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字 l 的小球的概率为.(2)小红先从布袋中随机摸出一个小球,记下数字作为 k 的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为 b 的值,请用树状图或表格列出 k、b 的所有可能的值,并求出直线 y=kx+b 不经过第四象限的概率.25.某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m 名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.(1)m= ,n= ;(2)请补全图中的条形图;(3)扇形统计图中,足球部分的圆心角是度;(4)根据抽样调查的结果,请估算全校1800 名学生中,大约有多少人喜爱踢足球.参考答案与试题解析1.【分析】根据样本容量是样本中包含的个体的数目,可得答案.【解答】解:500×10%=50,则本次调查的样本容量是50,故选:C.2.【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【解答】解:∵这组数据的平均数是5,∴=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:A.3.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.4.【分析】根据中位数、众数、平均数和方差的意义进行判断.【解答】解:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选:C.5.【分析】首先求出这组数据的平均数是多少,再根据题意,分5 种情况:(1)将这组数据从小到大的顺序排列后为 a,1,2,3,4;(2)将这组数据从小到大的顺序排列后为 1,a,2,3,4;(3)将这组数据从小到大的顺序排列后1,2,a,3,4;(4)将这组数据从小到大的顺序排列后为1,2,3,a,4;(5)将这组数据从小到大的顺序排列为1,2,3,4,a;然后根据这组数据1、a、2、3、4 的平均数与中位数相同,求出a 的值是多少,即可判断出a 不可能是选项中的哪个数.【解答】解:这组数据1、a、2、3、4 的平均数为:(1+a+2+3+4)÷5=(a+10)÷5=0.2a+2(1)将这组数据从小到大的顺序排列后为a,1,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,符号排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(3)将这组数据从小到大的顺序排列后1,2,a,3,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,3,a,4,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,3,4,a,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5;符合排列顺序;综上,可得a=0、2.5 或5.∴a 不可能是3.故选:C.6.【分析】由共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,∴任取一个是中心对称图形的概率是:.故选:C.7.【分析】从点A,B,C,D 中任取三点,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点 A,B,C,D 中任取三点能组成三角形的一共有 4 种可能,其中△ABD,△ADC,△ABC 是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选:D.8.【分析】首先根据每个袋子中球的倍数设出每个袋子中球的个数,然后利用概率公式求解即可.【解答】解:∵甲袋中,红球个数是白球个数的2 倍,∴设白球为4x,则红球为8x,∴两种球共有12x 个,∵乙袋中,红球个数是白球个数的3 倍,且两袋中球的数量相同,∴红球为9x,白球为3x,∴混合后摸出红球的概率为:=,故选:C.9.【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【解答】解:因为⊙O 的直径为分米,则半径为分米,⊙O 的面积为π()2=平方分米;正方形的边长为=1 分米,面积为1 平方分米;因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD 内)== .故选:A.10.【分析】根据平均数和方差的变化规律,即可得出答案.【解答】解:∵数据x1,x2,x3,x4,x5 的平均数是5,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数是5﹣2=3;∵数据x1,x2,x3,x4,x5 的方差是4,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的方差不变,还是4;故选:D.11.【分析】依据题意画出树状图或列表,依据共有 12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,即可得到初一、初二年级都抽中数学的概率.【解答】解:画树状图可得:∵共有12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,∴P(初一、初二年级都抽中数学)=,故选:D.12.【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、某市“明天降雨的概率是75%”表示明天有75%的概率降雨,故此选项错误; B、400 人中一定有两人的生日在同一天,正确; C、在抽奖活动中,“中奖的概率是”表示抽奖l00 次就有可能中奖,故此选项错误;D、十五的月亮是圆圆的,故此选项错误.故选:B.13.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.既然是对该鞋子销量情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.14.【分析】先求前10 个数的和,再求后40 个数的和,然后利用平均数的定义求出50 个数的平均数.【解答】解:前10 个数的和为10a,后40 个数的和为40b,50 个数的平均数为.故选:D.15.【分析】根据AB=13,AC=5,BC=12,得出AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=13,AC=5,BC=12,∴AB2=BC2+AC2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径= =2,∴S△ABC=A C•BC=×12×5=30,S 圆=4π,∴小鸟落在花圃上的概率==;故答案为:.16.【分析】先根据平均数均为6 得出关于a、b 的方程组,解方程组求得a、b 的值后,把两组数据合并、重新排列,根据中位数和众数的定义求解可得.【解答】解:根据题意,得:,解得:,则两组数据重新排列为3、4、5、6、8、8、8,∴这组新数据的中位数为6,众数为8,故答案为:6,8.17.【分析】首先由第二小组有 10 人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260 乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.18.【分析】求出随机闭合开关 S1,S2,S3,S4,S5 中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关 S1,S2,S3,S4,S5 中的三个共有 10 种可能(任意开两个有4+3+2+1=10可能,故此得出结论),能够使灯泡L1,L2 同时发光有2 种可能(S1,S2,S4 或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5 中的三个,能够使灯泡L1,L2 同时发光的概率是=.故答案为.19.【分析】根据几何概率的求法:指针落在偶数区域的概率是就是所标数字为偶数的面积与总面积的比值.【解答】解:观察这个图可知:所标数字为偶数的面积占总面积的(+ )= ,故其概率为.20.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m 的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4 个红球时,摸到黑球是必然事件;∵m>1,当摸出2 个或3 个红球时,摸到黑球为随机事件,事件A 必然事件随机事件m 的值 4 2、3故答案为:4;2、3.(2)依题意,得,解得 m=2,所以m 的值为2.【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=.21.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B 表示剩下的第一道单选题的2 个选项,a,b,c 表示剩下的第二道单选题的3 个选项,树状图如图所示:共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,∴锐锐顺利通关的概率为:.22.【分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30 或30 次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12 种等可能的结果,所选两人正好都是甲班学生的有3 种情况,∴所选两人正好都是甲班学生的概率是:=.23.【分析】(1)根据B 级的频数和百分比求出学生人数;(2)求出A 级的百分比,360°乘百分比即为∠α的度数,根据各组人数之和等于总数求得C 级人数即可补全图形;(3)根据列表法或树状图,运用概率计算公式即可得到恰好选中甲、乙两名同学的概率.【解答】解:(1)160÷40%=400,答:本次抽样测试的学生人数是400 人;(2)×360°=108°,答:扇形图中∠α的度数是108°;C 等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:(3)画树状图如下:或列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣共有12 种等可能的结果,其中恰好选中甲、乙两位同学的结果有2 种,所以P(恰好选中甲、乙两位同学)==.24.【分析】(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,据此可得摸出的球为标有数字1 的小球的概率;(2)先列表或画树状图,列出k、b 的所有可能的值,进而得到直线y=kx+b 不经过第四象限的概率.【解答】解:(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,则摸出的球为标有数字1 的小球的概率=;故答案为;(2)列表:共有9 种等可能的结果数,其中符号条件的结果数为4,所以直线y=kx+b 不经过第四象限的概率=.25.【分析】(1)根据喜爱乒乓球的有10 人,占10%可以求得m 的值,从而可以求得n 的值;(2)根据题意和m 的值可以求得喜爱篮球的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以得到足球部分的百分比,即可得到足球部分的圆心角度数;(4)根据统计图中的数据可以估算出全校1800 名学生中,大约有多少人喜爱踢足球;【解答】解:(1)由题意可得,m=10÷10%=100,n%=15÷100=15%,故答案为:100,15;(2)喜爱篮球的有:100×35%=35(人),补全的条形统计图,如图所示:(3)扇形统计图中,足球部分的圆心角是360°×=144°;故答案为:144;(4)由题意可得,全校1800 名学生中,喜爱踢足球的有:1800×=720(人),答:全校1800 名学生中,大约有720 人喜爱踢足球;。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
初中数学:统计与概率测试题(含答案)
初中数学:统计与概率测试题(含答案)初中数学:统计与概率测试题(含答案)一、选择题1.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.32.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的统计图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周的课外阅读时间不少于4小时的人数占全校人数的百分比约等于()A.50%B.55%C.60%D.65%3.XXX对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别。
频率A型。
0.4B型。
0.35AB型。
0.1O型。
0.15A.16人B.14人C.4人D.6人4.在一个密闭不透明的袋子里有若干个白球.为估计白球个数,XXX向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球()A.18个B.28个C.36个D.42个5.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是(。
)A.平均数是80B.众数是90C.中位数是80D.极差是706.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,XXX得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分.如果按照1∶2∶4∶1的权进行计算,那么XXX老师的综合评分为()A.84.5分B.83.5分C.85.5分D.86.35分7.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12B.12,11C.11,12D.12,128.甲、乙两名同学在四次模拟测试中,数学的平均成绩都是112分,方差分别是s²甲=5,s²乙=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定9.甲、乙、丙三位同学参加了一次节日活动,他们都得到了一件精美的礼物。
2020年中考数学总复习第八章《统计与概率》单元测试卷及答案解析
2020年中考数学总复习第八章《统计与概率》
单元测试卷
(时间:60分钟 分值:100分 得分:__________)
一、选择题(每小题3分,共33分)
1.下列说法正确的是( )
A .调查全校建档立卡户学生的人数,宜采用抽样调查
B .“367人中有至少2人同月同日生”为必然事件
C .一个游戏的中奖概率是10%,则做10次这样的游戏一定会中奖
D .小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大
2.(2019绥化)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )
A .13
B .14
C .15
D .16
3.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是( )
A .平均数
B .中位数
C .众数
D .方差
4.小球在如图所示的地板上自由地滚动,随机地停留在某块方砖上,最终停在白色区域上的概率是( )
A .513
B .813
C .13
D .23
5.(2019徐州)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( )
A .40,37
B .40,39
C .39,40
D .40,38
6.烹饪大赛的菜品按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7∶2∶1.某位厨师的菜所得的分数依次为92分、88分、80分,。
九年级数学复习专题(八):统计与概率参考答案(1)
级数学复习专题(八):统计与概率参考答案19.解:(1)解第一个不等式得:x≥2; 解第二个不等式得:x≤4. 则不等式组的解集是:2≤x≤4 ∴不等式组的整数解是:2,3,4;(2)2,3,4中共有偶数2个.因而P (从此不等式的所有整数解中任取一个数,它是偶数)=23.20.解:(1)列表如下:总共有9种等可能的结果;(2)∵(﹣1,﹣4),(2,2)在函数24y x x =+-上,∴点A 落在24y x x =+-的概率P=29. 21.解:(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张, 故甲摸出“石头”的概率为315=15; (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为814=47; (3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出, 若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71142=; 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42147= ; 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63147=; 若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514.故甲先摸出“锤子”获胜的可能性最大.22.解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知:甲的波动大于乙的波动,则s 甲2>s 乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适; 如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适. 故答案为:乙,甲.23.解:(1)a=30-(2+12+8+2)=6;成绩在“70≤x <80所对应扇形的圆心角度数为360°×1230=144°;故答案为:6,144; (2)获得“优秀“的学生大约有300×8230=100人,故答案为:100人; (3)50≤x <60的两名同学用A 、B 表示,90≤x <100的两名同学用C (小明)、D 表示,画树状图如下:由树状图知共有12种等可能结果,其中小明被选中的结果数为6, ∴小明被选中的概率为612=12. 24.解:(1)调查总人数为:10÷20%=50(人), 户外活动时间为1.5小时的人数为:50×24%=12(人), 频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:2050×100%=40%, 在扇形统计图中的圆心角度数为:40%×360°=144°. (3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时; 由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.(4)户外活动的平均时间为:150×(10×0.5+20×1+12×1.5+8×2)=1.18(小时), ∵1.18>1,∴平均活动时间符合要求.25.解:(1)本次抽查的人数为:140÷28%=500(人), m=500×40%=200, n=500×8%=40,k=500-100-200-140-40=20,故答案为:20、200、40;(2)由(1)可知选择C的有200人,补全的阅读人数分组统计图,如图所示;(3)3000×20+100500=720(人)答:全校课外阅读时间在20小时以下(不含20小时)的学生有720人.26.解:(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,∴小明选择去郊游的概率=;(2)列表得:由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习数学分类检测八 统计与概率(时间:90分钟 总分:120分)一、选择题(每小题4分,共40分)1.下列调查中,适宜采用抽样调查方式的是( ) A .对我国首架大型民用直升机各零部件的检查 B .对某校初三(5)班第一小组的数学成绩的调查 C .对我市市民实施低碳生活情况的调查D .对2012年重庆市中考前200名学生的中考数学成绩的调查2.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表所示.则这10户家庭月用水量的众数和中位数分别为( )月用水量/t 10 13 14 17 18 户数22321A .14 t,13.5 tB .14 t,13 tC .14 t,14 tD .14 t,10.5 t3.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A .14B .12C .34D .14.甲、乙两人在同样条件下练习射击,每人打5发子弹,打中环数如下: 甲:6,8,9,9,8 乙:10,7,7,7,9 则甲、乙两人射击的成绩( ) A .甲比乙稳定 B .乙比甲稳定C .甲、乙稳定性相同D .甲、乙两人成绩无法比较5.2012年春某市发生了严重干旱,市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:月用水量/t 5 6 7 户数262则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是46.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( ) A .10 B .10 C .2 D . 27.有一个不透明的袋中,红色、黑色、白色的小球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A .1万件B .19万件C .15万件D .20万件9.如图所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是( )A .13B .34C .25D .3510.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )A .34B .13C .12D .14二、填空题(每小题4分,共24分)11.“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为__________.12.一组数据23,27,20,x ,18,12的中位数是21,则x =__________.13.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图所示的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款__________元.14.已知数据a ,b ,c 的平均数是8,那么数据2a +3,2b +3,2c +3的平均数是__________. 15.某商场开展购物抽奖促销活动,抽奖箱中有200张抽奖卡,其中有一等奖5张,二等奖10张,三等奖25张,其余抽奖卡无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取一张,则中奖的概率为__________.16.从-2,-1,0,1,2这5个数中任取一个数,作为关于x 的一元二次方程x 2-x +k =0的k 值,则所得的方程中有两个不相等的实数根的概率是__________.三、解答题(56分)17.(8分)市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:各奖项人数百分比统计图各奖项人数统计图(1)一等奖所占的百分比是__________.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整.(3)各奖项获奖学生分别有多少人?18.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是__________环,乙的平均成绩是__________环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.19.(9分)某市今年中考理、化实验操作考查,采用学生抽签方式决定自己的考查内容.规定:每位考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考查.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?20.(9分)某校部分男生分三组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如图所示.训练前后各组平均成绩统计图训练后第二组男生引体向上增加个数分布统计图(1)求训练后第一组的平均成绩比训练前增长的百分数.(2)小明在分析了统计图后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由.(3)你认为哪一组的训练效果最好?请提供一个合理的理由来支持你的观点.21.(10分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算摸出的小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.22.(12分)某校宣传栏中公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:姓名性别年龄学历职称王雄辉男35 本科高级李红男40 本科中级刘梅英女40 中专中级张英女43 大专高级刘元男50 中专中级袁桂男30 本科初级蔡波男45 大专高级李凤女27 本科初级孙焰男40 大专中级彭朝阳男30 大专初级龙妍女25 本科初级杨书男40 本科中级(1)该校下学期七年级班主任老师年龄的众数是多少?(2)在图1中,将反映老师学历情况的条形统计图补充完整;(3)在图2中,标注扇形统计图中表示老师职称为初级和高级的百分比;(4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?学历情况条形统计图职称情况扇形统计图图1 图2参考答案一、1.C2.C 从数据表看出:14 t 出现的次数最多,中位数应是第5个数、第6个数的平均数,是14 t ,故选C.3.B4.A x 甲=15×(6+8+9+9+8)=8,x 乙=15×(10+7+7+7+9)=8,s 2甲=15×[(6-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2]=1.2, s 2乙=15×[(10-8)2+(7-8)2+(7-8)2+(7-8)2+(9-8)2]=1.6, ∴s 2甲<s 2乙.∴甲比乙稳定.5.D6.C 由已知可得15(3+a +4+6+7)=5,解得a =5,则方差为s 2=15×[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2.7.B 口袋中白色球的个数为40×(1-15%-45%)=16.8.B 该厂产品100件中有5件不合格,则合格率为1-5%=95%. 所以20万件中合格产品约为20×95%=19(万件). 9.D10.C 若设大正方形的边长为2a ,则它的内切圆的直径等于2a ,则这个圆的内接正方形的对角线长为2a ,其边长等于2a ,面积为2a 2.而大正方形的面积等于4a 2,所以小球停在小正方形内部区域的概率P =2a 24a 2=12. 二、11.5012.22 由题意得20+x2=21,解得x =22.13.31.2 x =5×8%+10×20%+20×44%+50×16%+100×12%=31.2. 14.19 15.1516.35 因为Δ=(-1)2-4k =1-4k ,当方程中有两个不相等的实数根时,Δ>0,即k <14.三、17.解:(1)一等奖所占的百分比为1-20%-24%-46%=10%. (2)从条形统计图可知,一等奖的获奖人数为20. ∴这次比赛中收到的参赛作品为2010%=200份.∴二等奖的获奖人数为200×20%=40. 条形统计图补充如下图所示:(3)一等奖获奖人数为20,二等奖获奖人数为40,三等奖获奖人数为48,优秀奖获奖人数为92. 18.解:(1)9 9 (2)s 2甲=23,s 2乙=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.19.解:(1)列表格如下:所有可能出现的结果:AD AE AF BD BE BF CD CE CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次, 所以P (M )=19.20.解:(1)训练后第一组的平均成绩比训练前增长的百分数是5-33×100%≈67%.(2)不同意小明的观点,因为第二组的平均成绩增加个数为8×10%+6×20%+5×20%+0×50%=3. (3)本题答案不唯一,如:我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.解:(1)列表如下:结果有12种,其中积为6的有2种, ∴P (积为6)=212=16.(2)游戏不公平.因为积为偶数的有8种情况,而积为奇数的有4种情况. P (积为奇数)=13,P (积为偶数)=23,13≠23.游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. 22.解:(1)该校下学期七年级班主任老师年龄的众数是40; (2)大专4人,中专2人(图略); (3)高级:25%,初级:33.3%; (4)班主任老师是女老师的概率是412=13.。