2003年浙江大学数学专业考研高等代数试题
2003-数三真题、标准答案及解析
(2)已知曲线 y x 3a x b 与 x 轴相切,则 b 可以通过 a 表示为 b 4a
3 2
2
2
6
.
【分析】 曲线在切点的斜率为 0,即 y 0 ,由此可确定切点的坐标应满足的条件,再根据在切点处 纵坐标为零,即可找到 b 与 a 的关系. 【详解】 由题设,在切点处有
(1) 求 F(x)所满足的一阶微分方程; (2) 求出 F(x)的表达式. 八、 (本题满分 8 分) 设函数 f(x)在[0,3]上连续,在(0,3)内可导,且 f(0)+f(1)+f(2)=3, f(3)=1.试证必存在 (0,3) ,使
f ( ) 0.
九、 (本题满分 13 分) 已知齐次线性方程组
a, 若0 x 1, 而 D 表示全平面, 则 I f ( x) g ( y x)dxdy = 0, 其他, D
a2 .
【分析】 本题积分区域为全平面,但只有当 0 x 1,0 y x 1 时,被积函数才不为零,因此实际 上只需在满足此不等式的区域内积分即可. 【详解】
2 y 3x 2 3a 2 0 ,有 x0 a2.
2
又在此点 y 坐标为 0,于是有
3 0 x0 3a 2 x0 b 0 , 2 2 2 b 2 x0 (3a 2 x0 ) a 2 4a 4 4a 6 .
故
【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. (3) 设 a>0, f ( x) g ( x)
1 n 2 X i 依概率收敛于______. n i 1
二、选择题(本题共 6 小题,每小题 4 分,满分 24 分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内) (1)设 f(x)为不恒等于零的奇函数,且 f (0) 存在,则函数 g ( x) (A) 在 x=0 处左极限不存在. (C) 在 x=0 处右极限不存在. (B) 有跳跃间断点 x=0. (D) 有可去间断点 x=0.
2003考研数一真题及解析
2003年全国硕士研究生入学统一考试数学一试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)21ln(1)0lim(cos )x x x +→=(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4) 从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为.(5) 设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P.(6) 已知一批零件的长度X (单位:cm cm)服从正态分布)1,(μN ,从中随机地抽取16个 零件,得到长度的平均值为40 (cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示, 则()f x 有( )(A)一个极小值点和两个极大值点. (B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(2) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3) 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则( ) (A) 点(0,0)不是(,)f x y 的极值点. (B) 点(0,0)是(,)f x y 的极大值点. (C) 点(0,0)是(,)f x y 的极小值点.(D) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4) 设向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则( )(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.(5) 设有齐次线性方程组0Ax =和0Bx =, 其中,A B 均为n m ⨯矩阵,现有4个命题:① 若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ② 若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③ 若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④ 若秩(A )=秩(B ), 则0Ax =与0Bx =同解. 以上命题中正确的是( )(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④.(6) 设随机变量21),1)((~X Y n n t X =>,则( ) (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y .三 、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1) 求D 的面积A ;(2) 求D 绕直线x e =旋转一周所得旋转体的体积V .四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xex Ly x L ysin sin sin sin -=-⎰⎰--;(2).22sin sin π≥--⎰dx ye dy xe x Ly六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a m . 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<. 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论()F t 在区间),0(+∞内的单调性. (2) 证明当0t >时,).(2)(t G t F π>设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数X 的数学期望; (2) 从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数()F x ; (2) 求统计量θˆ的分布函数)(ˆx F θ;(3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【详解】方法1:求()lim ()v x u x 型极限,一般先化为指数形式()()ln ()lim ()lim v x v x u x u x e =然后求lim ()ln ()v x u x ,再回到指数上去.)1ln(12)(cos lim x x x +→=220ln cos ln cos limln(1)ln(1)lim x xxx x x e e→++→=,而2200ln cos ln(1cos 1)limlim ln(1)ln(1)x x x x x x →→+-=++20cos 1lim x x x →-=(等价无穷小替换ln(1)x x +) 220112lim 2x x x →-==-(等价无穷小替换211cos 2x x -) 故 原式=.121ee=-方法2:令21ln(1)(cos )x y x +=,有2ln cos ln ln(1)xy x =+,以下同方法1.(2)【答案】542=-+z y x【详解】由题意,只要满足所求切平面的法向量与已知平面的法向量平行即可.平面042=-+z y x 的法向量:1{2,4,1}n =-;曲面22y x z +=在点),,(000z y x 的法向量:20000{(,),(,),1}x y n z x y z x y =-00{2,2,1}x y =- 由于12//n n ,因此有00221241x y -==- 可解得,2,100==y x ,相应地有.520200=+=y x z所求切平面过点(1,2,5),法向量为:2{2,4,1}n =-,故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x(3)【答案】1【详解】将)()(2ππ≤≤-=x x x f 展开为余弦级数2()cos ()n n f x x a nx x ππ∞===-≤≤∑,其中⎰=ππcos )(2nxdx x f a n .所以 x d x xdx x a 2sin 12cos 2222⎰⎰=⋅=ππππ21[sin2sin22]x xx xdx πππ=-⋅⎰1cos2xd x ππ=⎰001[cos2cos2]x x xdx πππ=-⎰1=(4)【答案】⎪⎪⎭⎫ ⎝⎛--2132【详解】n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P =[121],,,-n ααα [],,,21n βββ .根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P =[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)【答案】14. 【分析】本题为已知二维随机变量(,)X Y 的概率密度(,)f x y ,求满足一定条件的概率}),({0z Y X g P ≤.连续型二维随机变量(,)X Y 概率的求解方法(,)(,),y xF x y f u v dudv -∞-∞=⎰⎰此题可转化为二重积分}),({0z Y X g P ≤0(,)(,)g x y z f x y dxdy ≤=⎰⎰进行计算.【详解】图中阴影区域为积分区域. 由题设,有=≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰1220(612)x x dx =-⎰14=(6)【答案】)49.40,51.39(. 【分析】可以用两种方法求解:(1) 已知方差12=σ,对正态总体的数学期望μ进行估计. 因为(,1)X N μ,设有n 个样本,样本均值11ni i X X n ==∑,则1(,)XN n μ,将其标准化,由公式~(0,1)X N 得:)1,0(~1N nX μ- 由正态分布分为点的定义αμα-=<-1}1{2u nX P 可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22(x u x u αα-+,其中2{}1,(0,1)P U u UN αα<=-,可以直接得出答案.【详解】方法1:由题设,95.01=-α,可见.05.0=α 查标准正态分布表知分位点.96.12=αu 本题16n =, 40=x .根据 1.96}0.95P <=,有 1.96}0.95P <=,即{39.5140.49}0.95P μ<<=,故μ的置信度为0.95的置信区间是)49.40,51.39(.方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu 将1σ=,16n =, 40=x代入22(x u x u αα-+得置信区间)49.40,51.39(二、选择题(1)【答案】()Cy【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定. 【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(2)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(3)【答案】()A 【详解】由2220,0(,)lim1()x y f x y xyx y →→-=+222(,)(1)()f x y xy x y α⇒-=++,其中00lim 0x y α→→=. 由(,)f x y 在点(0,0)连续知,(0,0)0f =.取y x =,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=++>; 取y x =-,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=-++<故点(0,0)不是(,)f x y 的极值点,应选()A . (极值的定义)(4)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).(5)【答案】(B)【分析】本题可找反例用排除法进行分析,但①、②两个命题的反例比较复杂一些,关键是抓住③、④,迅速排除不正确的选项.【详解】若0AX =与0BX =同解,则它们的解空间中的基础解系所含向量个数相同,即n -秩(A )=n -秩(B ), 得秩(A )=秩(B ),命题③成立,可排除(A), (C);但反过来,若秩(A )=秩(B ),则不能推出0AX =与0BX =同解,通过举一反例证明,若⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A )=秩(B )=1,但0AX =与0BX =不同解,可见命题④不成立,排除(D). 故正确选项为(B).(6)【答案】(C).【分析】求解这类问题关键在于了解产生2χ变量、t 变量、F 变量的典型模式.(1)2χ分布:设12,,,n X X X 相互独立且均服从标准正态分布,则随机变量21ni i Z X ==∑服从自由度为n 的2χ分布.记做2().Zn χ(2)t 分布:设1(0,1)X N ,22~()X n χ,且12,X X 相互独立,则随机变量Z =从自由度为n 的t 分布.记做()Zt n(3)F 分布:设2212(),(),Xn Y n χχ且,X Y 相互独立,则随机变量12X n Z Y n =服从F 分布,其第一、二自由度分别为12,.n n 记做12(,).ZF n n【详解】其实,由F 分布的性质以及t 分布和F 分布的关系得,(1) 如果统计量 ()T t n ,则有2(1,)T F n ;(2) 如果统计量12(,)FF n n ,则有211(,)F n n F.由以上两条性质可以直接得出本题的答案为(C).先由t分布的定义知()X t n =,其中)(~),1,0(~2n V N U χ,于是 21XY ==122U n V U n V =,分母中只含有一个标准正态分布的平方,所以)1(~22χU . 由F 分布的定义知~(,1).Y F n故应选(C).三【分析】圆锥体体积公式:213V r h π=⋅;旋转体的体积:(1) 连续曲线()y f x =,直线x a =、x b =所围成的图形绕直线0x x =旋转一周而成的立体的体积[]210()ba V f x x dx π=-⎰(2) 连续曲线()x g x =,直线y c =、y d =所围成的图形绕直线0y y =旋转一周而成的立体的体积[]220()dc V g y y dy π=-⎰【详解】为了求D 的面积,首先要求出切点的坐标,设切点的横坐标为0x ,则曲线ln y x =在点)ln ,(00x x 处的切线方程是:).(1ln 000x x x x y -+= 切线的斜率为01x y x '=,由于该切线过原点,将(0,0)点代入切线方程,得01ln 0=-x ,从而.0e x = 所以该切线的方程为.1x ey =(1) 利用平面图形D 的面积公式()()S y y dy βαϕψ=-⎰,得⎰-=-=1.121)(e dy ey e A y (2) 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.切线x ey 1=与x 轴及直线x e =所围成的三角形绕直线x e =旋转所得的圆锥体积为: 122101().3V e ey dy e ππ=-=⎰曲线ln y x =与x 轴及直线x e =所围成的图形绕直线x e =旋转所得的旋转体体积为:dy e e V y 212)(⎰-=π1220(2)y y e e e e dy π=-⋅+⎰12201(2)2yy e y e e e π=-⋅+211(2)22e e π=-+-因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四【分析】幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.另外,由于函数展开成的幂级数,经两边求导或积分(其中一边是逐项求导或逐项积分)后,其新的展开式收敛区间不变,但在收敛区间端点处,求导(积分)后的展开式成立与否,要另行单独处理,设已有00()()n n n f x a x x ∞==-∑收敛区间为00(,)x R x R -+. 如果在0x x R =+处级数收敛,并且()f x (左)连续,则展开式成立的范围可扩大到0x x R =+处,在0x x R =-处亦有类似的结论,不过此时()f x (左)连续应改称(右)连续.【详解】本题可先求导,()f x '()2222(12)2(12)1212121212111212x x x x x x x x x '-+---⎛⎫ ⎪++⎝⎭==--⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭基本求导公式 22422(14)14x x --==++21214x=-+ 对于函数2114x+,可以利用我们所熟悉的函数x -11的幂级数展开: 2011(11)1nnn x x x x x x ∞==+++++=-<<-∑所以 2222001(4)(1)414114n n n nn n x x x x ∞∞===-=--<-<+∑∑ (把x 换成24x -) 有 22111()22(1)4,(,).1422n n n n f x x x x ∞='=-=--∈-+∑对上式两边求积分,得200()(0)()2(1)4xxn n n n f x f f t dt t dt ∞=⎛⎫'-==-- ⎪⎝⎭∑⎰⎰221000(1)4112(1)42,(,)2122n n x nnnn n n t dt x x n ∞∞+==-=--=-∈-+∑∑⎰,又因为04f π=(),所以()(0)()xf x f f t dt '=+⎰=).21,21(,124)1(24120-∈+--+∞=∑x x n n n nn π即 21012(1)411arctan 2,(,).1242122n n n n x x x x n π∞+=--=-∈-++∑ (*)在21=x 处,右边级数成为0(1)1212n n n ∞=-⋅+∑,收敛(利用莱布尼茨定理),左边函数()f x 连续,所以成立范围可扩大到21=x 处.而在12x =-处,右边级数虽然收敛,但左边函数()f x 不连续,所以成立范围只能是11(,]22x ∈-.为了求∑∞=+-012)1(n nn ,令21=x 代入(*)得∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ,再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n五【详解】(1) 方法1:用格林公式证明. 由曲线为正向封闭曲线,自然想到用格林公式L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰. 所以 ⎰⎰⎰--+=-D x y x L ydxdy e e dx ye dy xe)(sin sin sin sin所以⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin 因为积分区域D 关于y x =对称,所以sin sin sin sin ()()x y yxyx DDeedxdyee dxdy --+=+⎰⎰⎰⎰与互换故dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰-- 方法2:化为定积分证明左边sin sin y x LLxe dy ye dx -=-⎰⎰=dx edy exy⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x右边sin sin y x LLxe dy ye dx -=-⎰⎰=⎰⎰--ππππ00sin sin dx e dy e x y =⎰-+ππ0sin sin )(dx e e x x所以dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--. (2) 方法1:用格林公式证明⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy eDDx y⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDx x ⎰⎰⎰⎰-+sin sin 利用轮换对称性=sin sin ()2x x DDe e dxdy dxdy -+≥⎰⎰⎰⎰22π=(因为0,0a b a b +≥>>)方法2:由(1)知,sin sin sin sin 0()2y x x x Lxe dy ye dx e e dx dx ππππ---=+≥⎰⎰⎰22π=六【详解】(1) 建立坐标系,地面作为坐标原点,向下为x 轴正向,设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n .由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,汽锤所作的功等于克服阻力所做的功.121102x k W kxdx x ==⎰,2122221()2x x k W kxdx x x ==-⎰,3222332()2x x k W kxdx x x ==-⎰,1x a =从而 212332k W W W x ++=又 12rW W =,2321W rW r W ==, 从而222231231(1)(1)22k k x W W W r r W r r a =++=++=++于是 3x =(2) 第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 则汽锤前n 次所功的和等于克服桩被打进地下n x m 所做的功.11210(1)nx n n kxdx W W W r r W -=+++=+++⎰而 2102a kW kxdx a ==⎰ 牛-莱公式所以212(1)22n n k k x r r a -=+++从而 n x == 等比数列求和公式由于01r <<,所以1lim n n x +→∞.七【详解】 (1) 将题中的dy dx 与22d xdy变换成以x 为自变量y 为因变量的导数dx dy 与22d y dx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为 .sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.八【详解】(1) 首先对()F t 进行化简,三重积分转化为在球面坐标系中的计算;二重积分转化为在极坐标系中的计算.222222220()()()sin 2sin ()t tt f x y z dv d d f r r dr d f r r dr πππθϕϕπϕϕΩ++==⎰⎰⎰⎰⎰⎰⎰⎰()2222002()cos 4()t tf r r dr f r r dr ππϕπ=⋅-=⎰⎰ (球面坐标)222220()()()2()t tD t f x y d d f r rdr f r rdr πσθπ+==⎰⎰⎰⎰⎰ (极坐标)所以222220000222()sin 4()()()2()ttttd d f r r drf r r drF t d f r rdrf r rdrπππθϕϕπθπ==⎰⎰⎰⎰⎰⎰⎰22022()()ttf r r drf r rdr=⎰⎰为了讨论()F t 在区间),0(+∞内的单调性,对()F t 求导:222222022()()()()()2[()]t ttt f t f r rdr f r r dr f t tF t f r rdr ⋅-⋅'=⎰⎰⎰22022()()()2[()]tttf t f r r t r drf r rdr ⋅-=⎰⎰由于()0,0,0f t r t r >>->,所以2()()0f r r t r ->. 再利用定积分的性质:若在区间[,]a b 上()0f x >,则()0baf x dx >⎰. 所以()0F t '>,所以()F t 在区间),0(+∞内严格单调增加.(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可. 因为 2220()2()2()tt ttf x dx f x dx f r dr -==⎰⎰⎰,所以2222()0022200()2()()()()2()()ttD t ttttf x y d f r rdr f r rdrG t f x dxf r drf r drσππ-+===⎰⎰⎰⎰⎰⎰⎰要证明0t >时)(2)(t G t F π>,只需证明0t >时,0)(2)(>-t G t F π,即22200222()2()2()()()()t tttf r r drf r rdrF tG t f r rdrf r drπ-=-⎰⎰⎰⎰()()()()()222222202()()()()()tt tttf r r dr f r dr f r rdr f r rdr f r dr⎡⎤⋅-⎢⎥⎣⎦=⋅⎰⎰⎰⎰⎰令 ()()()22222()()()()tt tg t f r r dr f r dr f r rdr =⋅-⎰⎰⎰222222220222()()()()()2()()()()()0t t ttg t f t t f r dr f t f r r dr f t t f r rdrf t f r t r dr t '=+-=->>⎰⎰⎰⎰故()g t 在),0(+∞内单调增加,又因为(0)0g =,所以当0t >时,有()0)0g t g>=(, 从而0t >时,).(2)(t G t F π>九【分析】 法1:可先求出*1,A P -,进而确定P A P B *1-=及2B E +,再按通常方法确定其特征值和特征向量;法2:先求出A 的特征值与特征向量,再相应地确定*A 的特征值与特征向量,最终根据2B E +与*2A E +相似求出其特征值与特征向量. 【详解】方法1:经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,所以 P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B . 令 2900(2)274(9)(3)0225E B E λλλλλλ--+=-=--=-,故2B E +的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η,所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数. 方法2:设A 的特征值为λ,对应的特征向量为η,即ληη=A .由于07≠=A ,所以.0≠λ所以 ***()()A A A E A A A E A A A E ηηηη=⇒=⇒=***()AA A A A A ληηληηηηλ⇒=⇒=⇒=,于是 11*11()()()AB P P A P P P ηηηλ----==,.)2()2(11ηλη--+=+P AP E B因此,2+λA为2B E +的特征值,对应的特征向量为.1η-P由于)7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为1231,7λλλ===当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP .因此,2B E +的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.十【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bca b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b ca c abc a b-=++-=-++-1006()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a b cB bc a bca A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb ba ++-=-==222[()]0ab a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.十一【详解】乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.(1) 方法1:X 的可能取值为0,1,2,3, 取出k 件次品()0,1,2,3k =的取法有333k kC C -种;样本空间即从两个箱子中取出3件产品的总的取法数为36C .所以有,X 的概率分布为36333}{C C C k X P kk -==, k 0,1,2,3.= 即 X 0 1 2 3 P201 209 209 201 因此,由离散型数学期望的定义{}1()nk k k E X x P X x ==⋅=∑易得 19913()0123.202020202E X =⨯+⨯+⨯+⨯= 方法2:本题对数学期望的计算也可用分解法:设0, ,1,i i X i ⎧=⎨⎩从甲箱中取出的第件产品是合格品从甲箱中取出的第件产品是次品. 则i X 的概率分布为i X 0 1P21 21.3,2,1=i 因为321X X X X ++=,所以由数学期望的线性可加性,有200321 ()()()()1233.2E X E X E X E X =++= (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====30}{}{)(k k X A P k X P A P =33001{}{}66k k k P X k k P X k ===⋅=⋅=∑∑ ()1131.6624E X ==⋅=十二【分析】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.求分布函数()F X 是基本题型:求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立.【详解】(1) 由连续型随机变量分布函数的定义,有.,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) 由题给).,,,min(ˆ21nX X X =θ,有 }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ 121{min(,,,)}n P X X X x =->121{,,,}n P X x X x X x =->>> 1[1()]n F x =--2(),1,.0,n x x e x θθθ-->⎧-=⎨≤⎩(3) 由连续型随机变量概率密度是分布函数在相应区间上的微分得θˆ概率密度为.,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n 因为 2()ˆˆ()()2n x E xf x dx nxe dx θθθθ+∞+∞---∞==⎰⎰12nθθ=+≠, 所以θˆ作为θ的估计量不具有无偏性.。
最新2003年浙江大学数学分析试题答案
2003年浙江大学数学分析试题答案2003年浙江大学数学分析试题答案一、,,0N ∃>∀ε当N n >时,ε<->>∀m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{kn a ,a a k n k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。
三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减, 又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。
考研数学-浙江大学99-06年研究生高等代数试题
2000年攻读硕士学位研究生入学考试试题解答 一、()f x 是数域P 上的不可约多项式(1)()[]g x P x ∈,且与()f x 有一公共复根,证明:()|()f x g x 。
(2)若c 及1c 都是()f x 的根,b 是()f x 的任一根,证明:1b 也是()f x 的根。
Proof :(1)()f x 是数域P 上的不可约多项式,故对于P 上任一多项式()g x 只有以下两种情形:01()|()f x g x , 02 ((),())1f x g x =下证不可能是情形二。
(反证法)若不然为情形二,就是((),())1f x g x =则(),()[].()()()()1(*)u x v x P x s t u x f x v x g x ∃∈+=由已知条件,f 与g 有一公共复根(设为α),则()()0f g αα==,将α代入(*)中得到10=的矛盾,故假设不正确,得证!(2)设b 是()f x 的任一根,下证1()0f b =。
证明见《高等代数题解精粹》钱吉林编20P第42题.二、计算行列式210...000121...000........000 (012)n D =Solution:我们已经知道:1111,1(1),1n n n n αβαβαβαβαβαβαβαβαββαβαβ+++++⎧-≠⎪=+-⎨⎪+=⎩+在此结论中令1αβ==,知1n D n =+三、(1)A 是正定矩阵,C 是实对称矩阵,证明:∃可逆矩阵P .s t ,P AP P CP ''同时为对角形Proof: (1)A 正定,∴ ∃可逆矩阵T 使得T AT E '=,此时T CT '还是对称的,∴∃ 正交矩阵M 使得M T CTM ''为对角形,令P TM =,此时P AP E '=P CP '是对角形,得证!(2)由(1)知P ∃非异s.t 12n P AP E P ABP λλλ'=⎧⎪⎛⎫⎪⎨ ⎪'=⎪⎪ ⎪⎪⎝⎭⎩所以112n P BP λλλ-⎛⎫⎪= ⎪ ⎪⎝⎭,故AB 正定⇔0,1,2,,i i nλ>=得证!!四、设n 维线性空间V 的线性变换A 有n 个互异的特征值,线性变换B A 与可交换的充分必要条件是B 是121,,,,n E A A A -的线性组合,其中E 为恒等变换。
浙江大学2003年研究生高等代数试题
浙江大学2003年研究生高等代数试题1.(20分)令12,,,s ααα 是n R 中s 个线性无关的向量。
证明:存在含n 个未知量的齐次线性方程组,使得12{,,,}s ααα 是它的一个基础解系。
2.(20分)设有分块矩阵AB C D ⎛⎫⎪⎝⎭,其中,A D 都可逆,试证: (1)1det()det A B A B D C DCD-=-;(2)1111111()()A BD C A A B C A B D C A --------=--。
3.(20分)设V 是数域P 上n 维线性空间,1234,,,V αααα∈,1234(,,,)W L αααα=,又有12,Wββ∈且12,ββ线性无关。
求证:可用12,ββ替换1234,,,αααα中的两个向量12,i i αα,使得剩下的两个向量34,i i αα与12,ββ仍然生成子空间W ,也即1234(,,,)i i W L ββαα=。
4.(20分)设A 为n 阶复矩阵,若存在正整数n 使得0n A =,则称A 为幂零矩阵。
求证:(1)A 为幂零矩阵的充要条件是A 的特征值全为零;(2)设A 不可逆,也不是幂零矩阵,那么存在n 阶可逆矩阵P ,使得100B PA P C -⎛⎫=⎪⎝⎭,其中是B 幂零矩阵,C 是可逆矩阵。
5.(20分)已知实对称矩阵422242224A ⎛⎫⎪= ⎪ ⎪⎝⎭,求正交矩阵P 使得T P AP 成为对角矩阵。
6.(20分)设V 是n 维欧氏空间,内积记为(,)αβ,又设T 是V 的一个正交变换,记12{|},{|}V V T V T V αααααα=∈==-∈。
证明:(1)12,V V 都是V 的子空间;(2)12V V V =⊕。
7.(10分)设()f x 是一个整系数多项式。
证明:若存在一个偶数a 及一个奇数b ,使得()f a 与()f b 都是奇数,则()f x 没有整数根。
8.(10分)1V ,2V 是n 维欧氏空间V 的子空间,且1V 的维数小于2V 的维数,证明:2V 中必有一个非零向量正交于1V 中的一切向量。
(NEW)浙江大学601高等代数历年考研真题汇编(含部分答案)
目 录2012年浙江大学601高等代数考研真题2011年浙江大学601高等代数考研真题及详解2010年浙江大学360高等代数考研真题2009年浙江大学360高等代数考研真题2008年浙江大学724高等代数考研真题及详解2007年浙江大学741高等代数考研真题及详解2006年浙江大学341高等代数考研真题及详解2005年浙江大学341高等代数考研真题2004年浙江大学341高等代数考研真题2003年浙江大学344高等代数考研真题2002年浙江大学365高等代数考研真题2001年浙江大学359高等代数考研真题2000年浙江大学226高等代数考研真题1999年浙江大学高等代数考研真题及详解2012年浙江大学601高等代数考研真题浙江大学2012年攻读硕士学位研究生入学试题考试科目:高等代数(601)考生注意:1.本试卷满分为150 分,共计10道题,每题满分15分,考试时间总计180 分钟;2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
一、设是阶单位矩阵,,矩阵满足,证明的行列式等于.二、设是阶幂零矩阵满足,.证明所有的都相似于一个对角矩阵,的特征值之和等于矩阵的秩.三、设是维欧氏空间的正交变换,证明最多可以表示为个镜面反射的复合.四、设是阶复矩阵,证明存在常数项等于零的多项式使得是可以对角化的矩阵,是幂零矩阵,且.五、设.当为何值时,存在使得为对角矩阵并求出这样的矩阵和对角矩阵;求时矩阵的标准型.六、令二次型.求次二次型的方阵;当均为实数,给出次二次型为正定的条件.七、令和是域上的线性空间,表示到所有线性映射组成的线性空间.证明:对,若,则和在中是线性无关的.八、令线性空间,其中是的线性变换的不变子空间.证明;证明若是有限维线性空间,则;举例说明,当时无限维的,可能有,且.九、令.求阶秩为的矩阵,使得(零矩阵);假如是满足的阶矩阵,证明:秩.十、令是有限维线性空间上的线性变换,设是的不变子空间.那么,的最小多项式整除的最小多项式.。
200数二真题标准答案及解析
2003年考研数学(二)真题一、填空题(此题共6小题,每题4分,总分值24分.把答案填在题中横线上) 1(1)假设XT 0时,(1 - ax 2)4 -1与xsinx 是等价无穷小,那么 a= . (2)设函数y=f(x)由方程xy +21nx = y 4所确定,那么曲线y=f(x)在点(1,1)处的切线方程 是 .(3) y =2X的麦克劳林公式中x n项的系数是 .(4)设曲线的极坐标方程为P=e a8(a >0),那么该曲线上相应于围成的图形的面积为 .1-11(5) 设u 为3维列向量,a T 是a 的转置.假设otc(T = -11—1 ,那么-J-11一:- T:- =(6)设三阶方阵 A,B 满足A 2B — A —B = E ,其中E 为三阶单位矩阵,假设、选择题(此题共6小题,每题4分,?茜分24分.每题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)(1)设{a n }, {bj {g}均为非负数列,且 lim a n =0, lim b =1 ,lim g3 _n_ (2)设an =- ^n + x n ^v1 +x ndx ,那么极限 四中2门等于日从0变到2n 的一段弧与极轴所101A= 020,那么:一2 0 1一,那么必有(A)a n <b n 对任意n 成立.(B)b n < C n 对任意n 成立.(C)极限n ma n C n 不存在. (D)极限n mb n C n 不存在.3(A)(1 e)21.3(C)(1 e])21.31 二(B)(1 - e )2 -1.3(D)(1 e)2-1.X(3)y = ——是微分方程ln Xy' = '+中(>)的解,那么中泠)的表达式为2 y(A)±.X2(B ) X(6)设向量组I : %,£2,…P r 可由向量组II :81,葭,,B s 线性表示,那么(A)当r <s 时,向量组II 必线性相关.(B)当r >s 时,向量组II 必线性相关. (C)当r <s 时,向量组I 必线性相关.(D)当r AS 时,向量组I 必线性相关.[]三、(此题总分值10分)ln(1 +ax 3) , x<0,x -arcsin x设函数 f (x) = «6, x = 0,ax 2e +x -ax-1 x>0,x ,xsin 一 L 4问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四、(此题总分值9分)'x=1+2t 2,.2d y设函数y=y(x)由参数万程1产1nte 代〉1)所确正,求 一2|y =[——dudx x=9(C) (D) (4)设函数f(x)在(_oo ,+oc )内连续,其导函数的图形如下图,那么[]f(x)有(A) 一个极小值点和两个极大值点 (B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(B)1 I 112.(C)I 2 I i 1.(D)1 I2 I i .1u 五、(此题总分值9分)arctan x计算不定积分Xe2 dX.(1X2)2六、(此题总分值12分)设函数y=y(x)在(_co,〜)内具有二阶导数,且y0, x = x( y)是y=y(x)的反函数.d 2 xdx Q(1)试将x=x(y)所满足的微分方程dt + (y + sin x)(©x)3 = 0变换为y=y(x)满足的微分万程;dydy3(2)求变换后的微分方程满足初始条件y(0) = 0, y '(0) = 2的解.七、(此题总分值12分)讨论曲线y =4lnx+k与y =4x+in4 x的交点个数.八、(此题总分值12分),「,2 1设位于第一象限的曲线y=f(x)过点(匚,一),其上任一点P(x,y)处的法线与y轴的交点为Q,且线2 2段PQ被x轴平分.(1)求曲线y=f(x)的方程;(2)曲线y=sinx在[0,n]上的弧长为l,试用l表示曲线y=f(x)的弧长s.九、(此题总分值10分)有一平底容器,其内侧壁是由曲线x =平(y)(y之0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以3m3 / min的速率向容器内注入液体时,速率均匀扩大(假设注入液体前,容器内无液体)(1)根据t时刻液面的面积,写出t与平(y)之间的关系式;(2)求曲线x =④(y)的方程.(注:m表示长度单位米,min表示时间单位分.) 十、(此题总分值10分)明:(1)在(a,b)内f(x)>0;⑶ 在(a,b)内存在与(2)中之相异的点“,使f '(")(b2—a2) =v2 ,. 一放面的面积将以nm / min的设函数f(x)在闭区间[a,b]上连续, 在开区间(a,b)内可导,且f '(x) >0. 假设极限limf (2x—a)存在证x阳x- a(2)在(a,b)内存在点使b2 2-aba f(x)dxba f(x)dx.十一、〔此题总分值10分〕2 2 0假设矩阵A= 8 2a相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P/AP=A.0 0 6_十二、〔此题总分值8分〕平面上三条不同直线的方程分别为11: ax +2by +3c = 0 ,12: bx +2cy +3a = 0,13: cx 2ay 3b = 0.试证这三条直线交于一点的充分必要条件为a+b + c = 0.2003年考研数学(二)真题评注一、填空题(此题共6小题,每题4分,总分值24分.把答案填在题中横线上)1(1)假设XT 0时,(1 - ax 2)4-1与xsinx 是等价无穷小,那么 a=-4.1【分析】 根据等价无穷小量的定义,相当于lim(1-aX尸=1 ,反过来求a.注意在计算过程中X0 xsin X应尽可能地应用无穷小量的等价代换进行化简.11【详解】当 X T 0时,(1 -ax 2)4 -1 ~ — ax 2 , xsin X ~ X 2.4112(1 - ax 2)4ax 1于是,根据题设有lim(1)= lim42= _1 a = 1,故 a=-4.X )0xsin X X 50X 4(2) 设函数y=f(x)由方程xy+21nx = y 4所确定,那么曲线y=f(x)在点(1,1)处的切线方程是x-y=0 .【分析】先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可 【详解】 等式xy + 21n X = y 4两边直接对X 求导,得23y+xy +-=4y y ,X将X=1,y=1代入上式,有 y(1) =1.故过点(1,1)处的切线方程为y -1 =1 (x -1),即 X - y = 0.【评注】此题属常规题型,综合考查了隐函数求导与求切线方程两个知识点【分析】此题相当于先求y=f(x)在点X =0处的n 阶导数值f (n)(0),那么麦克劳林公式中x n项的系数是f (n)(0). n!【详解】由于 y' = 2Xln2, y*=2X(ln 2)2,…,y (X)=2X(ln 2)n,于是有(3) y=2X 的麦克劳林公式中x n 项的系数是(ln2)n n!y (n)(0) =(ln2)n,故麦克劳林公式中x n项的系数是y ⑺(0) _ (ln2)n【评注】此题属常规题型,在一般教材中都可找到答案^(4)设曲线的极坐标方程为P =e a%a > 0),那么该曲线上相应于日从0变到2n的一段弧与极轴所围成的图形的面积为工〔e 4[a-1〕4a利用极坐标下的面积计算公式S=1 fp 2〔e 〕d 日即可. 所求面积为S=11P 2⑼da =1 j“e 2a 9d H此题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比拟复杂1-11(5) 设ct 为3维列向量,a T 是a 的转置.假设& = -11—1 ,那么1-11 _T、工、工=31.2【分析】 先化简分解出矩阵 B,再取行列式即可 【详解】 由A 2B — A —B =E 知,(A 2— E)B=A + E ,即 (A + E)(A —E)B = A + E ,【分析】1 2a r =e 4a 2二」(e 4a4a -1). 【评注】【分析】 此题的关键是矩阵〔行〔或任一非零行〕,列向量的元素那么 1-1 [详解]由aa T= -11:1-1一1〕a[ =1 -1 1 ] -1 =3.J J【评注】一般地,假设n 阶矩阵的秩为1,必可分解为一夕各行与选定行的倍数构成1 [1 ]-1 = -1 1 -1 1 ],知 1 _ J _行的形式,而行向量一般可选第一1 1-1 ,于是 J 一〔6〕设三阶方阵A,B 满足A 2A 的秩为1 ,那么必有A =一 _a n3—A —B = E ,其中E 为三阶 b b2…b n 】1011位矩阵,假设A=020,那么8 =-201 _再两边取行列式,得A - E| B = 1 ,001010=2,所以 -2 0 0【评注】 此题属基此题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算 二、选择题(此题共6小题,每题4分,工茜分24分.每题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)(1)设{aj,{b n }, {C n } 土匀为非负数歹U, 且 lim a n = 0, lim b n = 1,lim g =㈠,那么必有 n )二二n )二二n )二二(A) a n <b n 对任意n 成立.(B) b n <c n 对任意n 成立. (C)极限lim a n C n 不存在.(D)极限lim bng 不存在.[D ]n .n _.【分析】 此题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除lim a nc n是0 8型未定式,可能存在也可能不存在,举反例说明即可;极限lim b nc n 属1 8型,必为无穷n ,n大量,即不存在.21【详解】用举反例法,取a n =£ , b n=1, c n=」n(n=1,2,…),那么可立即排除(A),(B),(C),因此 n2正确选项为(D).【评注】 对于不便直接证实的问题,经常可考虑用反例,通过排除法找到正确选项^V 1 +x n dx ,那么极限lim na n 等于n )二二易知矩阵A+E 可逆,于是有(A 一 E)B =E.由于 A -E(A),(B);而极限(A)(C)【分析】3(1 e)2 1.3(1 e 4)2 1.先用换元法计算积分,再求极限 由于(B)(D)3(1 e 4)2 -1.3(1 e)2 -1.n 4n 3x . 1 x dx =—— 2nn0n 1. 1 x nd(1 x n) 13 = 1(1 x n )2 n1 n 3=科+(西)]2-1},可见 lim na n= lim {[ 1 (门2-1} =(1 e 4)2-1.【评注】 此题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限 的计算均是最根底的问题,一般教材中均可找到其计算方法^xvxx(3)y=一是微分方程「=」十中(―)的解,那么中(―)的表达式为In xxyy2y (B)2x2 x (D)— yx .x【分析】将y = ——代入微分方程,再令中的中间变量为u,求出中(u)的表达式,进而可计算出中(一).In xy x. y x【详解】将丫= ——代入微分方程丫’=上+中(一),得In xx y2^(-) =--y2.应选(A).y x【评注】 此题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复 杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在(口,y )内连续,其导函数的图形如下图,那么 f(x)有(D) 一个极小值点和两个极大值点(E)两个极小值点和一个极大值点 (F)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定^【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而x=0那么是导数不存在的点.三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧 一阶导数为正,右侧一阶导数为负,可见 x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应 选(C).【评注】 此题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是f(x)的图象去y (A)x 2 x (C)-- y(In x)工1 In2 x令Inx=u ,有1 (u)=--,故u推导f (x)的图象,此题是其逆问题.完全类似例题在文登学校经济类串讲班上介绍过一—一 . H可见有I1 >12且I 2<-,可排除(A);(C);(D),故应选(B).4II : 网,22,…,P s 线性表示,那么当r >s 时,向量组I 必线性相关.或其逆否命题:假设向量组可由向量组II : 3,P 2,…,P s 线性表示,且向量组I 线性无关,那么必有r <s .可见正确选项为(D).此题也 可通过举反例用排除法找到答案【评注】 此题将一定理改造成选择题,如果考生熟知此定理应该可直接找到答案,假设记不清楚,(5)设 I 1——dx ,I 2 xtan x(A) I 1 I 21. (B) 1 I 1 I 2. (C) I 2 I i 1.(D)1 I2 I i .【详解】 直接计算I i ,I 2是困难的,可应用不等式tanx>x, x>0.由于当 x>0时,有tanx>x,于x——<1 ,从而有 11 tanxJI dx > —, 4二 Xi 2 = r — tan x冗dx ::一, 4【评注】 此题没有必要去证实I 1 <1 ,由于用排除法,(A),(C),(D)均不正确,剩下的 (B) 一定为正确(6)设向量组I: %,0(2,…P 「可由向量组II :丸鼠(A)当r <s 时,向量组II 必线性相关.(C)当r <s 时,向量组I 必线性相关.(B)当r >s 时,向量组II 必线性相关. (D)当r a s 时,向量组I 必线性相关.【分析】 此题为一般教材上均有的比拟两组向量个数的定理:假设向量组I :«1«2;,r 可由向量组【详解】 用排除法:如、1 -二0「’0、串2,但P1,P 2线性无关,排除(A) ; 0t l0;:1J那么%尸2可由3线性表示,但 %可由「1,「2线性表示,但1a1线性无关,排除3线性无关,排除(B);(C).故正确选项为(D).也可通过构造适当的反例找到正确选项 、(此题总分值10分)设函数f (x)= 3 ln(1 ax ) , x -arcsin x6, e ax x 2 -ax -1 :二0,=0, 0, -x xsin 一 4 问a 为何值时, 【分析】 f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点? 分段函数在分段点 x=0连续,要求既是左连续又是右连续,即 f (0 -0) = f (0) = f (0 0). 【详解】f(0 -0) = lim f(x)=x _0 - 3、ln(1 ax ) lim 二 lim3ax xw —x-arcsinx x P —x - arcsinx ..3ax 23ax 2=lim 二 lim x"1 1 x 〞 .1-x 2 -1 .1 - x 223ax =limx Q- 12 --x2-6a.f (0 0) = lim f (x) =limx _0 'x )0e ax x 2 - ax -1 cn xxsin 一 4=4 lim x -0 ax 2e x - ax -1 ae a x 2x - a 2 =4 lim = 2a 4. x Q 2x令 f(0—0) = f(0+0),有—6a=2a 2+4 ,得 a = —1 或 a = —2. 当 a=-1 时,lim f (x) = 6 = f (0),即 f(x)在 x=0 处连续. x 「0当a=-2时,lim f (x) = 12 0 f (0),因而x=0是f(x)的可去间断点. x 0【评注】此题为基此题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度, 在计算过程中应尽量利用无穷小量的等价代换进行简化^ 四、(此题总分值9分) x =1 2t 2,设函数y=y(x)由参数方程1 2lnt y= 1e u (t A 1)所确定,求——du u d 2y dx 2x=9【分析】 此题为参数方程求二阶导数,按参数方程求导的公式进行计算即可 地确定参数t 的取值.dy2et得 dy _^dt _ 1 2lnt __e —dx dx4t2(1 2lnt)dt2_d yddy x 1e -1212"()=2dx 2dtdxdx2(1 2lnt)2t4tdt_ e -4t 2(1 2ln t)2.当x=9时,由x =1 +2t 2及t>1得t=2,故.2 d y _ e_ edx 2x 3 ―4t 2(1+2lnt)2J-16(1 + 21n2)2五、(此题总分值9分)arctan x xe计算不定积分e3dx.(1 x 2) 2【分析】 被积函数含有根号 J 1 +x 2,典型地应作代换:x=tant,或被积函数含有反三角函数 同样可考虑作变换:arctanx=t,即x=tant.[详解]设x =tant,那么arctanxt ,,xe .e tant 2 3 t3-dx= 3-sec tdt = e sintdt. (1x 2) 2(1 tan 21) 2又 e t sin tdt - - e t d cost=-(e t cost - e t costdt)=-e t cost +S sint - je t sintdt ,t ._1 t故 e s i n d t=—e (s in-c os) + C. 2 arctan x因此 xe3 dx 」e arctanx(——x—) C (1 x 2)3221 x 21x 2【详解】由 dy _dt 一 1 2lnt 0e 21 2lnt t2et 1 2ln tdx x ——=4t , dt.注意当x=9 所以arctanx,d /dx 、 d , 1、dx dy dy dx y dyy(y)3.然后再代入原方程化简即可一, ,, dx【详解】(1)由反函数的求导公式知 dxdyarctan x2 Tx2-C.【评注】此题也可用分布积分法:arctan xxe(1 +x 2『2 x arctan xdx = de,1 x 2arctan xxe .1 x 2arctan x3dx (1 x 2) 2移项整理得arctan xxe 1x 2arctanxxe ,1 x 2arctanxxe (1 x 2)1arctan x de ,1 x 2arctan xed2,1 xarctan xxe 3-dx ,3 3arctan x」(x -1)e c dx = C. 2 1 x 2此题的关键是含有反三角函数,作代换 arctanx = 1或tant=x.、(此题总分值12分)设函数y=y(x)在(-°o ,〜)内具有二阶导数,且 y ' # 0, x = x( y)是y=y(x)的反函数.d 2xdx o试将x=x(y)所满足的微分方程 一2 + (y + sin x)(—)3= 0变换为y=y(x)满足的微分万程;dydy(2)求变换后的微分方程满足初始条件y(0) = 0, y '(0) = 3的解.一 ,dx【分析】将空转化为dy 出比拟简单,dxdx 1dy dy dx1 —,关键是应注意:y d 2x dy 2-2 y代入原微分方程得y y = sin x.当k>4,即4-k<0时,由于d 2xd ,dx 、 d 1 dx dy(dy )= dx (7) dy-y1~1~ 一yy(2)方程(* )所对应的齐次方程y " - y=0的通解为Y =C 〔e xC 2「设方程(* )的特解为*y = Acosx + B sin,一、 (1)代入万程(* ),求得A = 0, B ,故y1- 一一sinx, 2从而y " — y = sin x 的通解是y =Y y * =C 1e xC 2e" -gsinx.二人八 —3由y(0) =0, y(0)=万,得C I =1,C 2 = -1.故所求初值问题的解为x_x 1.y = e - e - - s i nx. 2【评注】此题的核心是第一步方程变换. 七、(此题总分值12分) (4)讨论曲线丫=4m*+卜与丫 = 4*+mx 的交点个数.【分析】问题等价于讨论方程ln 4x-4lnx+4x-k = 0有几个不同的实根.此题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与设(x) = ln 4x -4ln x 4x那么有八 3)、:(x )二4(1n x -1 x)不难看出, x=1是中(x)的驻点.当0 <x <1时,邛(x) <0,即邛(x)单调减少;当x>1时,丝(x) a 0,即5(x)单调增加,故中⑴=4 — k 为函数中(x)的最小值.当 k<4,即 4-k>0 时, 5(x)=0无实根,即两条曲线无交点;当 k=4,即 4-k=0 时,中(x)=0有唯一实根,即两条曲线只有一个交点;x 轴交点的个数)lim 邛(x) = lim [ln x(ln x 一4) +4x -k]=";x_0 -x_0 -_4 ______3_x lim 中(x) = ^lim [ln x(ln x 一4) + 4x 一k]=",故中(x) = 0有两个实根,分别位于(0,1)与(1, +oc)内,即两条曲线有两个交点【评注】讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数别离开来,使得求导后不含参数,便于求驻点坐标.八、(此题总分值12分)_.2 1…, 一…八设位于第一象限的曲线y=f(x)过点(——,一),其上任一点P(x,y)处的法线与y轴的交点为Q,且线2 2段PQ被x轴平分.(3)求曲线y=f(x)的方程;(4)曲线y=sinx在[0, n ]上的弧长为l,试用l表示曲线y=f(x)的弧长s.【分析】(1)先求出法线方程与交点坐标Q,再由题设线段PQ被x轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程.(2) 将曲线y=f(x)化为参数方程,再利用弧长公式y dt进行计算即可【详解】(1)曲线y=f(x)在点P(x,y)处的法线万程为1Y-y = --(X -x),y其中(X,Y)为法线上任意一点的坐标.令X=0 ,那么x、故Q点的坐标为(0, y + —).由题设知y1(y+y+—)=0,即2ydy+xdx=0.2y积分得x2+2y2 =C (C为任意常数).,1 . 一、一 .由y ,,=一知C=1,故曲线y=f(x)的万程为x=T 222,x 2y = 1.(2)曲线y=sinx在[0 ,n]上的弧长为7r ,Hl =1 cos2 xdx =2 2 d cos2 xdx.00曲线y=f(x)的参数方程为x = c o&/-n2 .0<t --. y =——sM,22. 2121sin t -cos tdt:2 ,令t = ±—u,那么21°/212/2,s -——-\ 1 cos u(-du)——°21 1 cos udu2 2- -'2l 2, = --= l. 2.24【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0至U ,而不是从0到2i. 九、(此题总分值10分)有一平底容器,其内侧壁是由曲线x=④(y)(y 之0)绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2 m. 根据设计要求,当以 3m 3/min 的速率向容器内注入液体时, 液面的面积将以Jim 2/ min 的速率均匀扩大(假设注入液体前, 容器内无液体).(3)根据t 时刻液面的面积,写出 t 与% y)之间的关系式; (4)求曲线x =9(y)的方程.(注:m 表示长度单位米,min 表示时间单位分.)【分析】 液面的面积将以nm 2/min 的速率均匀扩大,因此 t 时刻液面面积应为:n 22+收,而液面 为圆,其面积可直接计算出来,由此可导出t 与甲(y) 之间的关系式;又液体的体积可根据旋转体的体积公 式用定积分计算,t 时刻的液体体积为3t,它们之间也可建立积分关系式,求导后转化为微分方程求 解即可.【详解】(1)设在t 时刻,液面的高度为v,那么由题设知此时液面的面积为n 邛2(y) = 4n +n t ,从而t =q 、2(y) -4.y cc(2)液面的高度为y 时,液体的体积为 nj 0cp(u)du=3t=3平(y)T2.H , 2J l +上式两边对y求导,得2. 一一*(y) =6 9(yH'(y),即即(y)=69'(y).解此微分方程,得. 袅中(y) =Ce6,其中C为任意常数,由中(0) =2知C=2,故所求曲线方程为A y x = 2e【评注】作为应用题,此题比拟好地综合考查了定积分在几何上的应用与微分方程的求解^十、(此题总分值10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f'(x)A0.假设极限|im f (2x—a)存在证x声x - a明:(2)在(a,b)内f(x)>0;(3)在(a,b)内存在点匕,使b2—a221f(x)dx f( )a(3)在(a,b)内存在与(2)中巴相异的点灯,使222 bf ( )(b -a ) = f (x)dx.-a a【分析】(1)由lim4f (2x存在知,f(a)=0,利用单调性即可证实f(x)>0. (2)要证的结论显含x—a x - af(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证实.(3)注意利用(2)的结论证明即可.【详解】(1)由于lim ,f (2x—段■存在,故lim+f(2x —a) = f (a) =0.x—a x -a x 旧内单调增加,故f (x) f (a) = 0, x (a,b).2x(2)设F(x)= x2,g(x) = f f(t)dt(a <x<b),那么g'(x)= f(x) >0,故F (x), g(x)满足柯西中值定理a的条件,于是在(a,b)内存在点之,使F(b) - F (a)b2 - a2_ (x2)又f'(x) > 0 ,于是f(x)在(a,b)g(b)-g(a)J b f(t)dt-f f(t)dt (『f(t)dt)'aaab 2 -a 2 _ 2.:f(x)dx f()(3)因f(9= f(9 _ f(0) = f(D — f (a),在[a,引上应用拉格朗日中值定理,知在(a,£)内存在一 点刈,使f 仁)=f '(")仁-a),从而由(2)的结论得b 2 -a 22b :f(x)dx f ()( -a)….222 b即有 f ( )(b 2 -a 2) = f (x)dx.-a a【评注】 证实(3),关键是用(2)的结论:222 bf ( )(b -a ) = f (x)dx 二-a au f(D = f P )(C_a)(根据(2)结论)u f(t)-f(a) = f P )(t,a), 可见对f(x)在区间[a,盯上应用拉格朗日中值定理即可十一、(此题总分值10分)2 2 0假设矩阵A= 8 2a 相似于对角阵 A,试确定常数a 的值;并求可逆矩阵 P 使P,AP=A.:0 0 6_-20八一八2九 一2-a =(九 一6)[(九 -2) -16] 06 -6=(九一6)2(九 +2), 故A 的特征值为入=% =6, % = -2.由于A 相似于对角矩阵 A,故对应% =% =6应有两个线性无关的特征向量,即3 -r(6E - A) =2 ,于是有 r(6E - A) =1.b 2 - a 22 b f(x)dx = f ( )( -a) a【分析】 A 相似于对角矩阵,应先求出 的个数相同,转化为特征矩阵的秩,进而确定参数【详解】矩阵A 的特征多项式为A 的特征值,再根据特征值的重数与线性无关特征向量 a.至于求P,那么是常识问题.由 知 a=0. 于是对应于Z i =九2 =6的两个线性无关的特征向量可取为一..、.._ i _,那么P 可逆,并有P AP =A . 十二、〔此题总分值8分〕平面上三条不同直线的方程分别为11 : ax +2by +3c = 0 , 12 : bx 2cy 3a = 0, 13 : cx 2ay 3b = 0. 试证这三条直线交于一点的充分必要条件为a + b + c = 0.【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的 秩均为2.【详解】方法一:必要性设三条直线1i12/3交于一点,那么线性方程组l ax2by--3c,bx2cy=- 3a,〔*〕cx2ay=- 3b, 01一2 - a T 0 0 01一11 .=0 ,-2 = 2〕一立当,电=一2时, -4 -2 -2E —A= -8 -4 -00 '2x +x0 =0.解万程组〕12,得对应于乂3 =0,0210 0 T 001, _8_/00_ 一 1 1 %=—2的特征向量—2 I 012 o O 11—2 4-2 6E —A = —8400 -1 00 a 00a 2b -3c由于 I Al = b 2c -3a c 2a -3b=3(a b c)[(a-b)2(b -c)2 (c-a)2], 但根据题设(a —b)2+(b —c)2+ (c —a)2 # 0 ,故 a b c = 0.充分性:由a+b+c=0,那么从必要性的证实可知,网=0,故秩(入)<3.由于a 2b 〜2、、2r= 2(ac - b ) = —2[a(a +b) + b ]b 2c 1c 3_=-2[(a + — b) + — b ] # 0 ,24故秩(A)=2.于是,秩(A 尸秩(A) =2.因此方程组(*)有唯一解,即三直线11,12,13交于一点. 方法二:必要性设三直线交于一点(x 0,y 0),那么y 0为Ax=0的非零解,其中 J 一a 2b 3cA = |b 2c 3a:c 2a 3b J是 A =0.2b 3c..2 .2 .22c 3a =-6(a+b+c)[a +b +c -ab - ac-bc]2a 3b=-3(a b c)[( a -b)2(b -c)2(c - a)2], -a 2b]a 2b -3c 有唯一解,故系数矩阵 A = b:c2c 与增广矩阵A= b 2a 1 ? 2c -3a 的秩均为2,于是A =0. 2a -3b 222二6(a b c)[a b c - ab - ac -bc]但根据题设(a -b)2 +(b -c)2 +(c—a)2 #0,故a b c = 0.充分性:考虑线性方程组'ax +2by = -3c,«bx+2cy = ^3a,(*)cx +2ay = -3b,将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组ax 2by =-3c,(* *)bx 2cy = -3a.由于a 2? = 2(ac—b2) =—2[a(a+b)+b2] b 2c 222=-[a b (a b) ] ;0,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线l1,l2,l3交于一点.【评注】此题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点^。
2003年考研数学真题与答案
⎜⎜⎝⎛
1 0
⎟⎟⎠⎞,
β
2
=
⎜⎜⎝⎛
0 1
⎟⎟⎠⎞
,
α
1
可由
β1
,
β
2
线性表示,但
α1
线性无
关,排除(C). 故正确选项为(D).
3. 设有齐次线性方程组 Ax=0 和 Bx=0, 其中 A,B 均为 m × n 矩阵,现有 4 个命题:
① 若 Ax=0 的解均是 Bx=0 的解,则秩(A) ≥ 秩(B);
5. 已知平面上三条不同直线的方程分别为
l1 : ax + 2by + 3c = 0 ,
l2 : bx + 2cy + 3a = 0 ,
l3 : cx + 2ay + 3b = 0 .
试证这三条直线交于一点的充分必要条件为 a + b + c = 0.
【详解】 :必要性
设三条直线 l1, l2 , l3 交于一点,则线性方程组
可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出
Ax=0
与
Bx=0
同解,如
A
=
⎡1 ⎢⎣0
0⎤ 0⎥⎦
,
B
=
⎡0 ⎢⎣0
0⎤ 1⎥⎦
,则秩(A)=秩(B)=1,但
Ax=0
与
Bx=0
不同解,可见命题④不成立,排除(D),
故正确选项为(B).
⎡3 2 2⎤
⎡0 1 0⎤
4. 设矩阵 A = ⎢⎢2 3 2⎥⎥ , P = ⎢⎢1 0 1⎥⎥ , B = P −1 A*P ,求 B+2E 的特征值与特征向
(A) 当 r < s 时,向量组 II 必线性相关. (B) 当 r > s 时,向量组 II 必线性相关. (C) 当 r < s 时,向量组 I 必线性相关. (D) 当 r > s 时,向量组 I 必线性相关.
2003--2010高等代数真题
2003年高等代数(综合卷)6.(14)设P 是数域,n n P B A ⨯∈,,E 是n 阶单位矩阵.证明:P b a ∈∀,(1)当bB aA +是可逆矩阵时,bB aA B bB aA B b A bB aA A a -=+-+--1212)()(.(2)当bB aA +,bB aA -都是可逆矩阵时, E bB aA B bB aA B b bB aA A bB aA A a =+--+-----112112)()()()(7.(20)设Ax x '是秩为r 的n 元半正定二次型,(1)证明:存在秩为r 的r n ⨯实矩阵C ,使C C A '=. (2)证明:x E A x )(+'是n 元正定二次型.8.(20)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2212221212121n n n n n a a a a a a a a a a a a a a a A是数域P 上的n 阶非零矩阵)1(>n (1)求A 的行列式A 和A 的秩. (2)当022221≠=+++k a a a n 时,证明存在n 阶可逆矩阵T 使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-001 k AT T . 9.(21)设P 是数域,m n P A ⨯∈,如果m n P X ⨯∈∀规定AX X A :(1)证明A 是数域上线性空间n n P ⨯的线性变换.(2)令},{m n m n O AY P Y Y W ⨯⨯=∈=,证明W 是m n P ⨯的-A 子空间.(3)设秩n r A <=,求W 的维数W dim .2004年 高等代数1.(15)设n a a ,,1 是数域P 上n 个不同的数,解线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++----11212111222221212211211n nn n n n n n n n n n n n a x a x a x a a x a x a x a a x a x a x a x x x . 2.(15)设P 是数域,12)(,3++=∈⨯x x x m P A n n 是A 的最小多项式,求—A ,3.(20) 设P 是数域,n n n ij P a A ⨯∈==),,()(1αα ,nn a 的代数余子式0≠nn A ,(1)证明: n αα,,1 线性无关.(2)当0=A 时,求线性方程组O X A =*的基础解系,其中*A 是A 的伴随矩阵4.(30) 设P 是数域,}{1A A P A V n n ='∈=⨯, }{2是上三角矩阵B P B V n n ⨯∈=,(1)证明: 21V V ,都是n n P ⨯的子空间.(2)证明2121,V V P V V P n n n n ⊕≠+=⨯⨯.5.(30)设)(x p 是数域P 上的不可约多项式,α是)(x p 的复根,(1)证明:)(x p 的常数项不等于零.(2)证明:对任意正整数1)),((,=m x x p m (3)设22)(3+-=x x x p ,求51x. 6.(20)设n 元实二次型Ax x x x x f n '=),,,(21 经过正交替换Qy x =(其中Q 是正交矩阵)化为223222132n ny y y y ++++ ,证明: (1)A 的特征值是n ,,2,1 . (2)存在正定矩阵B ,使2B A =7.(20)设A 是数域P 上n 维线形空间V 的线性变换,0)(,0)(1=A ≠A ∈=αααn n V ,,证明:(1))(,),(),(,12αααα-A A A n 是V 的基.(2)设W 是A 的不变子空间,0,,,,121≠∈a P a a a n ,并且存在向量W a a a a n n ∈A ++A +A +=-)()()(12321ααααβ ,则V W =.2005年 高等代数1.(15)设A 是数域P 上的r r ⨯阶矩阵,D 是s s ⨯阶矩阵,A B M C D ⎛⎫= ⎪⎝⎭,并且r A r M r ==)()(,证明:1D CA B -=.2.(15)设A 是数域P 上的m n ⨯矩阵,12,,,t ααα 是齐次方程组0Ax =的线形无关的解,0A β≠,证明12,,,t ββαβαβα+++ 线性无关.3.(30)设P 是数域,1110{()|,0,1,2,,}n n n n i V f x a x a x a x a a P i n --==++++∈= .(1)证明V 关于多项式的加数乘多项式构成数域P 上的线性空间.(2)(),f x V ∀∈规定:()().'(),A f x f x x f x - 证明A 是V 的线性变换.(3)求线性变换A 在基21,,,,n x x x 上的矩阵.4.(20)设A 是n n ⨯阶复矩阵,0,k A =123,,,,r λλλλ 是A 的所有非零的特征值,(1)证明E A -是可逆矩阵,并求1()E A --. (2)求1()E A --的所有特征值.5.(20)设A 是n 阶正定矩阵,B 是n 阶半正定矩阵,(1)证明1A -是n 阶正矩阵;(2)求实的可逆矩阵T ,使得1210000'()00n a a T A B T a -⎛⎫ ⎪ ⎪+= ⎪ ⎪⎝⎭ (0,1,2,,.ia i n >= )是对角矩阵,并说明主对角线上的元素6.(20)设()ij A a =是n 阶矩阵,1()nii i Tr A a ==∑是主对角线上的元素之和,22P ⨯表示数域P 上所有2阶构成的集合,22,A P ⨯∀∈规定:()f A Tr A ,(1)证明f 是线性空间22P ⨯线性函数.(2)1112212210000000,,,00011001E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭是22P ⨯的一组基.求22P ⨯上的线性函数g ,使得11122122()2,()3,()4,() 1.g E g E g E g E ====-7.(20)设V 是数域P 上的线性变换,A 的最小多项式是2()23,m x x x KerA =--表示A 的核,Im A 表示A的值域,证明:(1)V 中存在一组基,使A 在这基下的矩阵是对角矩阵;(2)(3)Im()Ker A E A E -=+,其中E 是V 的恒等变换; (3)(3)()V Ker A E Ker A E =-⊕+2006年 高等代数1.(14)计算n 阶行列式:213141111222324221222331323334244142434421234n n n n n n n n n n na a a a a a x a a a a a a a a a a a x a a a a a a a x a a a D a a a a a a a a x a a a a a a a a a x a +++=++,其中120n x x x ≠…. 2.(20)设11112122122212(,,),(,,),(,,),n n r r r rn a a a a a a a a a ααα===…………且12,,αααr …线性无关,12(,,,)n b b b β=….证明:12,,,αααβr …线性相关的充分必要条件是:线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩………的解都是方程11220n n b x b x b x +++=…的解.3.(24)R 是实数域,V 是线性方程组1234513451234512345242470224034440426340x x x x x x x x x x x x x x x x x x x +-+-=⎧⎪+--=⎪⎨-++-=⎪⎪-++-=⎩的所有解构成的集合.(1)证明:V 是5R (列向量组成的空间)的子空间. (2)求V 的基个维数.(3)求V 的正交补V +的基与维数(5R 的内积(,)'αβαβ=).4.(32)设P 是数域,{()[]|()0()}.V f x P x f x f x n =∈=∂<或121210()n n n n f x a x a x a x a V ----∀=++++∈…,规定11:().n n A f x a x --(1)证明A 是V 的线性变换. (2)求A 在基12,,,,1n n x x x --…下的矩阵.(3)求A 在核10A -()的基. (4)求A 的所有特征值和特征向量.5.(20)设P 是数域,,,.n n A B P C AB BA BC CB ⨯∈=-=,且 证明:(1)对大于1的自然数k,有1k k k A B B A kB C --=.(2)设()f λ是B 的特征多项式,'()f λ是()f λ的微商,则'()0f B C =.6.(20)R 实数域,n n A R ⨯∈,且A 是对称矩阵. (1)证明A 的伴随矩阵*A 也是实对称矩阵.(2)试问A 与*A 合同的充分必要条件是什么?并证明你的结论.7.(20)设V 是数域P 上的n 维线性空间,n r r εεεεε,,,121 +,,,是V 的基,),,(),(12211n r r V L V εεεεε +==,,,.(1)证明:V 是12,V V 的直和(即12V V V =⊕); (2)设A 是1V 的线性变换,B 是2V 的线性变换,求V 的线性变换C ,使得1V 与2V 的不变子空间,并且C 在1V 与2V 上的限制分别是 12|,|C V A C V B ==2007年 高等代数1.(20)设)(x f 是非零复多项式,用)(x f '记)(x f 的微分(导数)多项式;设)(x d 是)(x f 与)(x f '的最大公因式,设整数1>m .证明:复数c 为)(x f 的m 重根的必要充分条件是c 为)(x d 的1-m 重根.请说明这里为什么要假设1>m ?2.(30)设A 是n m ⨯矩阵,设⎪⎪⎪⎭⎫ ⎝⎛n a a 1是线性方程组0=AX 的非零解.证明:(1)如果A 的任何列向量非零,则n a a ,,1 中至少两个非零.(2)如果的A 任何两个列向量线性无关,则n a a ,,1 中至少三个非零.(3)推广(1),(2),你得到什么结论?请证明你的结论.3.(30)对n m ⨯矩阵A ,记A '是A 的转置矩阵.(1)设A 是实矩阵,证明:实线性方程组0=AX 与实线性方程组0)(='X A A 同解.(2)证明:实矩阵A 的秩与A A '矩阵的秩相等.(3)在复数域,上述结论成立吗?为什么?(4)对复数域,你认为应如何修改断言(2)得到一个正确的断言?为什么?4.(20)设A 是实方阵,证明:如果下面三条中的任意两条成立,则另外一条也成立:(1) A 是正交矩阵; (2)A 是对称矩阵; (3) E A =2,其中E 表示单位矩阵.5.(20)已知⎪⎪⎪⎭⎫ ⎝⎛=a b a b a A 0000的特征根为3,2,1,其中b a ,是实数.求b a ,,并求正交矩阵T 使得AT T '是对角矩阵,其对角线元素依次为3,2,1.6.(30)用C 表示复数域.设A 是n m ⨯复矩阵,设A 的特征多项式)()()(λλλg f A =∆,其中)(λf 与)(λg 互素.在n 维向量空间n C 中,设F 是齐次线性方程组0)(=⋅X A f 的解子空间,G 是齐次线性方程组0)(=⋅X A g 的解子空间,证明: (1) ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⋅=n n n n n n C c c c c A f G C c c c c A g F 1111)(,)(; (2)G F C n ⊕=.2008年 高等代数1.(20)以下陈述是否正确?正确的请予以证明,不正确的请举反例(例子的正确性要求论证).(1)有理系数多项式)(x f ,如果在有理数域上不可约,则在任何数域上不可约.(2)两个有理系数多项式)(x f 与)(x g ,如果在有理数域上互素,则在任何数域上互素.{定义1 数域F 上的多项式)(x f 称为在上不可约.如果)(x f 次数大于0而且只要F 上的多项式)(x g 是)(x f 的因式,那么,)(x g 要么与)(x f 相伴,要么与1相伴.定义2 数域F 上的多项式)(x f 与)(x g 称为在F 上互素,如果它们在F 上的最大公因式与1相伴. }2.(20) (1)设B A ,都是n 阶方阵,且O AB =.证明:BA 的秩]2/[n ≤.其中]2/[n 表示不超过2/n 的最大整数(2)对于任意正整数n ,都存在n 阶方阵B A ,满足O AB =而BA 的秩]2/[n =.3.(30)令R 表示实数域,⎪⎪⎪⎭⎫ ⎝⎛=001000100A .(1)求实矩阵A 的实特征值和实特向量.(2)求3R 中所有的-A 不变子空间(实向量空间3R 的子空间U 称为不变的,如果U Au ∈,U u ∈∀,其中u 写为列向量).4.(30)(1)请叙述什么是实二次型?什么是化实二次型为平方和定理?什么是实二次型的惯性定理?(2)证明实二次型的惯性定理.5.(20)设n 维复向量空间V 的线性变换P 满足P P =2,证明:(1)KerP P V ⊕=Im ,其中P Im 表示P 的像子空间, KerP 表示P 核子空间.(2)像子空间维数trP P =Im dim ,其中trP 表示线性变换P 的迹,即P 的所有特征根(计重数)之和.6. (30)设n 2阶方阵⎪⎪⎭⎫ ⎝⎛-=E E E E A ,其中E 是n 阶单位矩阵, (1)求A 的特征多项式. (2)求A 的极小多项式. (3) 求A 的约尔当标准形.2009年 高等代数1.(20)设n a a ,,1 是n 个复数,x 是复变元.求x 取哪些复数值时下述等式(等式左边是1+n 阶行列式)成立:011112122221221=n n n n n n n a a a x a a a x a a a x2.(20) 设)(x f 是n 次实系数多项式,设)(x f '是)(x f 的导数多项式,证明:(1)如果r 是)(x f 的m 重根,0>m ,则r 是)(x f '的1-m 重根(若r 是)(x f '的零重根,则表示r 不是)(x f '的根).(2)如果)(x f 的根都是实数,则)(x f '的根也都是实数.3.(20)设A 是秩为r 的n m ⨯阶矩阵,B 是非零的1⨯m 阶矩阵,考虑线性方程组B AX =,其中X 是变元n x x ,,1 的列向量.证明:(1)线性方程组B AX =的任意有限个解向量n X X ,,1 的向量组的秩1+-≤r n .(2)若线性方程组B AX =有解,则它有1+-r n 个解向量是线性无关的.4.(30)设C B A ,,都是n 阶方阵,⎪⎪⎭⎫ ⎝⎛O C B A 是分块构成的n 2阶方阵,其中右下块O 表示n 阶零方阵.(1)证明:)()(C rank B rank O C B A rank +≥⎪⎪⎭⎫ ⎝⎛,这里)(B rank 表示B 矩阵的秩. (2)举例说明:(1)中的等号和不等号都可能成立.5.(30)设V 是有限维向量空间,设W U ,是V 两个字空间.(1)什么是U 与W 的和子空间W U +,请叙述关于W U +的维数公式.(2)证明关于和子空间的维数公式.6. (30)设A 是阶实矩阵,si r t +=λ是A 的特征根,其中s r ,是实数,i 是虚数单位.(1)证明:)(21A A '+的特征根都是实数,令n μμ≤≤ 1是)(21A A '+的全部特征根. (2)证明: n r μμ≤≤1.(3)你有类似估计s 的办法吗?2010年 高等代数1.(20)设F 是任意数域,][)(x F x p ∈.证明:)(x p 是不可约多项式当且仅当是)(x p 素多项式.2.(20) (1)设A 是n 阶方阵,E 是单位矩阵,0≠k .证明kA A =2当且仅当n kE A rank A rank =-+)()(.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20)设R 表示实数域,)(3R M V =表示所有33⨯实矩阵构成的向量空间.对给定的)(3R M A =定义在V 上的线性替换V V T A →:为BA AB B T A -=)(,对任意的)(3R M B =.设⎪⎪⎪⎭⎫ ⎝⎛=200010000A ,求A T 的特征值和相应的特征子空间;并求此时A T 的极小多项式.4.(30)设有三元实二次型xz z y x z y x f 43),,(222+++=,并设z y x ,,满足1222=++z y x .试求f 的最大值和最小值,并求当z y x ,,取什么值时,f 分别达到最大值和最小值.5.(30)设R 是实数域,])1,0([1C V =是闭区间]1,0[上的连续可微函数的集合. V 在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数x e x h x x g x x f ===)(,2)(,cos )(在V 中线性无关.(2)任意给定0>n ,在V 中找出1+n 个线性无关的元素,并证明你的结论.(3)对某个m ,是否有V 和m R 同构,如果是,给出证明;如果不是,说明理由.6. (30)(1)设A 和B 均为n 阶复方阵,证明:A 与B 相似当且仅当作为-λ矩阵有A E -λ等价于B E -λ.(2)设B A ,都是3阶幂零矩阵,证明: A 相似于B 当且仅当A 与B 有相同的极小多项式.(3)试说明上述结论(2)对4阶幂零矩阵是否成立,为什么?。
高等代数考研真题 第一章 多项式
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
2003-数二真题、标准答案及解析
2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(ln n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(ln )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n n n n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将x x y ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y xϕ. 【详解】将x x y ln =代入微分方程)(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <x x ,从而有 4tan 401ππ>=⎰dx x x I ,4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→ =113lim 1113lim 22022--=----→→x ax xax x x=.6213lim220a x ax x -=--→ 4sin1lim )(lim )00(200xx ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x ax ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==tt t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰ 又t d e tdt e t t cos sin ⎰⎰-= =)cos cos (tdt e t e t t ⎰-- =tdt e t e t e t t t sin sin cos ⎰-+-, 故 .)cos (sin 21sin C t t e tdt e t t +-=⎰ 因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan=.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy'=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有)(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21x x e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .sin 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X yy Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l =【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u y ϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数, 由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a ba a a dt t f x dt t f dt t f ab a g b g a F b F ))(()()()()()()()(222,即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dx x f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E=)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb cb aA ---++++=---= =])()())[((3222a c c b b a c b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac cb b a ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a c bcb a A ---++++-== =])()())[((3222ac c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-= =-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
高等代数考研真题 第一章 多项式
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
浙江大学1999年——2008年高等代数试题
二〇〇七年攻读硕士学位研究生入学考试试题考试科目: 高等代数 编号: 741一、(17分)设整系数的线性方程组为,证明该方程组对任意整数都有整数解的充分必要条件是该方程组的系数行列式等于. ),..2,1(,1n i b x a i j nj ij ==∑=n b b b ,..,,211±二、(17分)计算阶行列式, 其中.(1n n >)2−1211232341112...........................n n n n nn n ns s s s s s s s s s s s s s s −+−+⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠kn k k k x x x s +++=...21三、(17分)设矩阵,,A B C 满足有意义.求证: ABC ()()()AB BC B ABC +≤+秩秩秩秩.四、(17分)设s ξξξ,...,,21是某个齐次线性方程组的基础解系,而k ηηη,...,,21是该齐次线性方程组的个线性无关的解,并且k k s <s k −s ξξξ,...,,21.求证中必可取出个解,使得它们个k ηηη,...,,21一起构成原方程组的一个基础解系.五、(17分)设阶方阵(1n n >)A 满足其中,0652=+−E A A E 是阶单位矩阵.证明:n A 相似于对角矩阵;如果A 行列式等于是正整数).求与m n m m n m ,0(32<<−A 相似的对角矩阵. )(2R M V =六、(17分)假设22×是由实数域上所有矩阵构成的实数域上向量空间.1112,11A B λ−⎛⎞⎛==⎜⎟⎜−−⎝⎠⎝1⎞⎟⎠λ,其中是参数. 是V 上的线性变换. (1)证明 AXB X =)(ϕ1−≠λ(2)当ϕ时,证明是可逆线性变换. 1−=λ(3)当ϕ时,求线性变换的核和值域.(4)在值域中取一组基,并把它扩充成V 的基,求线性变换ϕ在这组基下的矩阵.222211λλλλλλλλλ⎛⎞−⎜⎟−⎜⎜⎟+−⎝⎠λ七、(16分)求-矩阵⎟的初等因子和不变因子. 8111181111811118A −⎛⎞⎜⎟−⎜⎟=⎜⎟−⎜⎟−⎝⎠八、(16分)已知矩阵 123412341234(,,,)(,,,)(,,,)T f x x x x x x x x A x x x x =(1)求二次型; (2)用正交线性替换化二次型为标准型;),,,(4321x x x x f (3)证明定义了βαβαA T =),(α4R 4R 上的内积,其中βα,是的列向量,是T α的转置,并求在该内积下4R 的一组标准正交基;(4)求实对称矩阵B 使得A B k =,其中为正整数(只要写出k B 的表达式,不必计算其中的矩阵乘积). 九、(16分)设, 其中是互不相同的整数.证明n a a a ,...,,211)()()()(22221+−⋅⋅⋅−−=n a x a x a x x f ()f x 是有理数域上的不可约多项式.。
《浙江大学高等代数2007-2019年考研真题及答案解析》
目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。
2003-数二真题标准答案及解析
2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xaxx x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n fn 【详解】 因为 2ln 2xy =',2)2(ln 2xy ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n)0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案. (4) 设曲线的极坐标方程为)0(>=a ea θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y x ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <xx,从而有 4t a n 401ππ>=⎰dx x x I , 4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→=113lim 1113lim 22022--=----→→x ax xax x x=.6213lim 220a x ax x -=--→ 4sin1lim )(lim )00(200xx ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x ax ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a . 当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dxdy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e t t ⎰--=tdt e t e t e t t t sin sin cos ⎰-+-,故 .)c o s (s i n 21s i n C t t e t d t e t t +-=⎰ 因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan=.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dxdy 比较简单,dy dx =y dxdy '=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有)(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21xx e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=, 代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .s i n 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X yy Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l =【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u yϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得y Cey 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa ≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a ba a a dt t f x dt t f dt t f ab a g b g a F b F ))(()()()()()()()(222,即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dx x f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb c ba A ---++++=---= =])()())[((3222a c cb b ac b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac c b ba ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a cb cb a A ---++++-===])()())[((3222a c c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac c b b a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
2003年数一真题、标准答案及解析(超强版)
2003年全国硕士研究生入学(rù xué)统一考试数学一真题一、填空题(本题(běntí)共6小题,每小题4分,满分24分. 把答案(dáàn)填在题中横线上)(1) = .(2)曲面(qūmiàn)与平面(píngmiàn)平行的切平面的方程是 .(3)设,则= .(4)从的基到基的过渡矩阵为 .(5)设二维随机变量(X,Y)的概率密度为则.(6)已知一批零件的长度X (单位:cm)服从正态分布,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则的置信度为0.95的置信区间是 .(注:标准正态分布函数值二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点.(C)两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ]yO x(2)设均为非负数列(shùliè),且,,,则必有(A) 对任意(rènyì)n成立. (B) 对任意(rènyì)n成立.(C) 极限(jíxiàn)不存在(cúnzài). (D) 极限不存在. [ ](3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则(A) 点(0,0)不是f(x,y)的极值点.(B) 点(0,0)是f(x,y)的极大值点.(C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ ](4)设向量组I:可由向量组II:线性表示,则(A) 当时,向量组II必线性相关. (B) 当时,向量组II必线性相关.(C) 当sr>时,向量组I必线性相关.r<时,向量组I必线性相关. (D) 当s[ ](5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(A)=秩(B),则Ax=0与Bx=0同解.以上命题中正确的是(A) ①②. (B) ①③.(C) ②④. (D) ③④. [ ](6)设随机变量,则(A) . (B) .(C) . (D) . [ ]三、(本题(běntí)满分10分)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面(píngmiàn)图形D.(1)求D的面积(miàn jī)A;(2)求D绕直线x=e旋转一周(yī zhōu)所得旋转体的体积V.四、(本题(běntí)满分12分)将函数展开成x的幂级数,并求级数的和.五、(本题满分10分)已知平面区域,L为D的正向边界. 试证:(1) ;(2)六、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米.)七、(本题(běntí)满分12分)设函数(hánshù)y=y(x)在)-∞内具有(jùyǒu)二阶导数,且是y=y(x)的,(+∞反函数.(1) 试将x=x(y)所满足(mǎnzú)的微分方程变换(biànhuàn)为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件的解.八、(本题满分12分)设函数f(x)连续且恒大于零,,,其中,(1) 讨论F(t)在区间内的单调性.(2) 证明当t>0时,九、(本题满分10分)设矩阵,,,求B+2E的特征值与特征向量,其中为A的伴随矩阵,E为3阶单位矩阵.十、(本题满分8分)已知平面上三条不同直线的方程分别为,,.试证这三条直线交于一点的充分必要条件为十一、(本题(běntí)满分10分)已知甲、乙两箱(liǎnɡ xiānɡ)中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数的数学(shùxué)期望;(2) 从乙箱中任取一件产品(chǎnpǐn)是次品的概率.十二(shíèr) 、(本题满分8分)设总体X的概率密度为其中是未知参数. 从总体X中抽取简单随机样本,记(1)求总体X的分布函数F(x);(2)求统计量的分布函数;(3)如果用 ˆ作为的估计量,讨论它是否具有无偏性.2003年考研数学(sh ùxu é)一真题评注一、填空题(本题共6小题(xi ǎo t í),每小题4分,满分24分. 把答案(d á àn)填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =.【分析(f ēnx ī)】型未定式,化为指数函数(zh ǐ sh ù h án sh ù)或利用公式=进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=,而 ,故原式=【详解2】 因为,所以原式=.121ee=-(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是.【分析】 待求平面的法矢量为,因此只需确定切点坐标即可求出平面方程,而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令,则,,.设切点坐标为,则切平面的法矢量为 ,其与已知平面042=-+z y x 平行,因此有,可解得 ,相应地有故所求的切平面方程为,即 542=-+z y x .(3) 设)(cos 02ππ≤≤-=∑∞=x nx a x n n ,则2a = 1 .【分析(f ēnx ī)】 将展开(zh ǎn k āi)为余弦级数)(cos 02ππ≤≤-=∑∞=x nx a x n n ,其系数(x ìsh ù)计算公式为.【详解(xi án ɡ ji ě)】 根据余弦级数(j í sh ù)的定义,有===1.【评注】 本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为.【分析】 n 维向量空间中,从基到基的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P=[[.【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 P=[[.=(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P.【分析(f ēnx ī)】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定(y īd ìng)条件的概率,一般(y īb ān)可转化为二重积分}),({0z Y X g P ≤=进行(j ìnx íng)计算.【详解(xi án ɡ ji ě)】 由题设,有 =≤+}1{Y X P=y1 DO 1 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式的公共部分D ,再在其上积分即可.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ【分析(fēnxī)】已知方差(fānɡ chà),对正态总体(zǒngtǐ)的数学期望μ进行估计(gūjì),可根据,由确定(quèdìng)临界值,进而确定相应的置信区间.【详解】由题设,,可见于是查标准正态分布表知本题n=16, , 因此,根据,有,即,故μ的置信度为0.95的置信区间是51.,( .394049).二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在)-∞内连续,其导函数的图形如图所示,则f(x)有,(+∞(D)一个极小值点和两个极大值点.(E)两个极小值点和一个极大值点.(F)两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]yO x【分析(f ēnx ī)】 答案与极值点个数有关,而可能的极值点应是导数(d ǎo sh ù)为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解(xi án ɡ ji ě)】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个(li ǎn ɡ ɡè)极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注(p íngzh ù)】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导的图象,本题是其逆问题.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有 (A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属型,必为无穷大量,即不存在.【详解】 用举反例法,取,,,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. (3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim 2220,0=+-→→y x xyy x f y x ,则(A) 点(0,0)不是(b ù shi)f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法(w úf ǎ)判断点(0,0)是否为f(x,y)的极值点. [ A ] 【分析(f ēnx ī)】 由题设,容易(r óngy ì)推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解(xi án ɡ ji ě)】 由 1)(),(lim 2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且充分小时),于是可见当y=x 且充分小时,;而当y= -x 且x 充分小时,. 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想.(4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解(xi án ɡ ji ě)】 用排除法:如,则,但线性无关(w úgu ān),排除(A);,则可由线性表示(bi ǎosh ì),但1β线性无关(w úgu ān),排除(B);,可由21,ββ线性表示(bi ǎosh ì),但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ]【分析】 本题也可找反例用排除法进行分析,但① ②两个命题的反例比较复杂一些,关键是抓住③ 与 ④,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如,,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).【例】 齐次线性方程组Ax=0与Bx=0同解的充要条件 (A) r(A)=r(B). (B) A,B 为相似矩阵.(C) A, B 的行向量组等价(d ěngji à). (D) A,B 的列向量组等价. [ C ] 有此例题为基础,相信考生能迅速(x ùn s ù)找到答案.(6)设随机变量(su í j ī bi àn li àn ɡ)21),1)((~XY n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ C ] 【分析(f ēnx ī)】 先由分布(f ēnb ù)的定义知,其中,再将其代入,然后利用F 分布的定义即可.【详解】 由题设知,nV U X =,其中)(~),1,0(~2n V N U χ,于是21X Y ==,这里,根据F 分布的定义知故应选(C).【评注】 本题综合考查了t 分布、分布和F 分布的概念,要求熟练掌握此三类常用统计量分布的定义.三 、(本题满分10分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D. (3) 求D 的面积A;(4) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【分析(f ēnx ī)】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算(j ì su àn),为了帮助理解,可画一草图.【详解(xi án ɡ ji ě)】 (1) 设切点(qi ēdi ǎn)的横坐标为,则曲线(q ūxi àn)y=lnx 在点处的切线方程是由该切线过原点知 ,从而所以该切线的方程为平面图形D 的面积(2) 切线与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为,因此所求旋转体的体积为y 1DO 1 e x【评注】 本题不是求绕坐标轴旋转的体积,因此不能直接套用现有公式. 也可考虑用微元法分析.四 、(本题满分12分)将函数(h ánsh ù)x xx f 2121arctan )(+-=展开(zh ǎn k āi)成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.【分析(f ēnx ī)】 幂级数展开有直接法与间接法,一般考查(k ǎoch á)间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.本题可先求导,再利用函数的幂级数展开(zh ǎn k āi)即可,然后取x 为某特殊值,得所求级数的和.【详解】 因为又f(0)=, 所以=因为级数∑∞=+-012)1(n nn 收敛,函数f(x)在处连续,所以令21=x ,得 ,再由,得五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--;(2) .22sin sin π≥--⎰dx ye dy xe x Ly【分析(f ēnx ī)】 本题边界曲线为折线段,可将曲线积分直接化为定积分证明,或曲线为封闭正向曲线,自然可想到用格林公式(g ōngsh ì);(2)的证明应注意用(1)的结果.【详解(xi án ɡ ji ě)】 方法(f āngf ǎ)一: (1) 左边(zu ǒ bian)==,右边==⎰-+ππ0sin sin )(dx e e x x ,所以 dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--.(2) 由于,故由(1)得方法二:(1) 根据格林公式,得, .因为D 具有轮换对称性,所以=,故 dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--.(2) 由(1)知⎰⎰⎰--+=-Dx y x Lydxdy e e dx ye dy xe)(sin sin sin sin==(利用轮换对称性)=【评注(píngzhù)】本题方法一与方法二中的定积分与二重积分是很难直接计算出来的,因此期望通过计算出结果去证明恒等式与不等式是困难的. 另外,一个题由两部分构成时,求证第二部分时应首先想到利用第一(dìyī)部分的结果,事实上,第一部分往往是起桥梁作用的.六、(本题(běntí)满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力(zǔlì)而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤(qìchuí)击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米.)【分析】本题属变力做功问题,可用定积分进行计算,而击打次数不限,相当于求数列的极限.【详解】 (1) 设第n次击打后,桩被打进地下,第n次击打时,汽锤所作的功为. 由题设,当桩被打进地下的深度为x时,土层对桩的阻力的大小为,所以,由可得即由可得,从而(c óng ér),即汽锤击打(j ī d ǎ)3次后,可将桩打进地下. (2) 由归纳法,设,则=由于(y óuy ú),故得,从而(c óng ér)于是(y úsh ì) ,即若击打次数不限,汽锤至多能将桩打进地下 m.【评注】 本题巧妙地将变力作功与数列极限两个知识点综合起来了,有一定难度.但用定积分求变力做功并不是什么新问题,何况本题的变力十分简单.七 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足(m ǎnz ú)的微分方程0))(sin (322=++dy dxx y dy x d 变换(bi ànhu àn)为y=y(x)满足的微分方程;(2) 求变换后的微分方程(w ēi f ēn f ān ɡ ch én ɡ)满足初始条件23)0(,0)0(='=y y 的解. 【分析(f ēnx ī)】 将转化(zhu ǎnhu à)为比较简单,dydx =,关键是应注意:==.然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 ,于是有)(22dy dxdy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得( * )(2) 方程( * )所对应的齐次方程的通解为设方程( * )的特解为,代入方程( * ),求得,故,从而的通解是由23)0(,0)0(='=y y ,得. 故所求初值问题的解为【评注】 本题的核心是第一步方程变换.八 、(本题(b ěnt í)满分12分)设函数(h ánsh ù)f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y xf t F σ,⎰⎰⎰-+=t t D dxx f d y x f t G 12)(22)()()(σ,其中(q ízh ōng)}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论(t ǎol ùn)F(t)在区间),0(+∞内的单调(d āndi ào)性. (2) 证明当t>0时,).(2)(t G t F π>【分析】 (1) 先分别在球面坐标下计算分子的三重积分和在极坐标下计算分母的重积分,再根据导函数的符号确定单调性;(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可.【详解】 (1) 因为,,所以在),0(+∞上,故F(t) 在),0(+∞内单调增加.(2) 因,要证明t>0时,只需证明t>0时,,即令 ,则,故g(t)在),0(+∞内单调(d āndi ào)增加.因为g(t)在t=0处连续(li ánx ù),所以当t>0时,有g(t)>g(0). 又g(0)=0, 故当t>0时,g(t)>0, 因此(y īnc ǐ),当t>0时,).(2)(t G t F π>【评注(p íngzh ù)】 本题将定积分、二重积分和三重积分等多个知识点结合起来(q ǐ l ái)了,但难点是证明(2)中的不等式,事实上,这里也可用柯西积分不等式证明:,在上式中取f(x)为,g(x)为即可.九 、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求B+2E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.【分析】 可先求出,进而确定P A P B *1-=及B+2E ,再按通常方法确定其特征值和特征向量;或先求出A 的特征值与特征向量,再相应地确定A*的特征值与特征向量,最终根据B+2E 与A*+2E 相似求出其特征值与特征向量.【详解】 方法一: 经计算可得, ,P A P B *1-==.从而(c óng ér),,故B+2E 的特征值为当时,解,得线性无关(w úgu ān)的特征向量为所以(su ǒy ǐ)属于特征值921==λλ的所有(su ǒy ǒu)特征向量为,其中(q ízh ōng)是不全为零的任意常数.当时,解,得线性无关的特征向量为,所以属于特征值33=λ的所有特征向量为,其中为任意常数.方法二:设A 的特征值为,对应特征向量为,即 . 由于,所以又因,故有于是(y úsh ì)有 ,因此(y īnc ǐ),为B+2E 的特征值,对应(du ìy ìng)的特征向量为由于(y óuy ú) ,故A 的特征值为当时,对应的线性无关(w úgu ān)特征向量可取为,当时,对应的一个特征向量为由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,得,,.因此,B+2E 的三个特征值分别为9,9,3. 对应于特征值9的全部特征向量为,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为,其中是不为零的任意常数.【评注(p íngzh ù)】 设,若λ是A 的特征值,对应(du ìy ìng)特征向量为η,则B 与A 有相同(xi ān ɡ t ón ɡ)的特征值,但对应特征向量不同,B 对应特征值λ的特征向量为.1η-P本题计算量大,但方法思路都是常规和熟悉(sh úx ī)的,主要是考查考生的计算能力.不过利用相似矩阵有相同的特征值以及A 与A*的特征值之间的关系讨论,可适当降低计算量.十 、(本题(b ěnt í)满分8分) 已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性 设三条直线交于一点,则线性方程组(*)有唯一解,故系数矩阵与增广矩阵的秩均为2,于是由于=, 但根据(g ēnj ù)题设 ,故.0=++c b a充分性:由,则从必要性的证明(zh èngm íng)可知,,故秩由于(y óuy ú)=,故秩(A)=2. 于是(y úsh ì), 秩(A)=秩=2.因此(y īnc ǐ)方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点,则为Ax=0的非零解,其中于是 .而=,但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组(* *)因为(y īn w èi)])([2)(22222b b a a b ac cb b a ++-=-==-,故方程组(* *)有唯一(w éi y ī)解,所以方程组(*)有唯一(w éi y ī)解,即三直线321,,l l l 交于一点(y ī di ǎn).【评注(p íngzh ù)】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数的数学期望; (2) 从乙箱中任取一件产品是次品的概率.【分析】 乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.【详解】 (1) X 的可能取值为0,1,2,3,X 的概率分布为, k=0,1,2,3.即 X 0 1 2 3 P209 201 因此(2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于,,,构成完备事件组,因此根据全概率公式,有==【评注(p íngzh ù)】本题对数学(sh ùxu é)期望的计算也可用分解法: 设则的概率分布为i X 0 1P 21 21因为(y īn w èi),所以(su ǒy ǐ)十二(sh í èr) 、(本题满分8分) 设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (4) 求总体X 的分布函数F(x); (5) 求统计量θˆ的分布函数)(ˆx F θ;(6) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.【分析】 求分布函数F(x)是基本题型;求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验是否成立.【详解(xiánɡ jiě)】(1)(2)====(3) θˆ概率密度为因为(yīn wèi)=,所以(suǒyǐ)θˆ作为(zuòwéi)θ的估计量不具有(jùyǒu)无偏性.【评注】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.内容总结。
浙江大学2003年数学分析考研试题解答
2
(1 − cos 2 x ) dx = π 4sin 4 x dx ∫0 ( 2 − cos 2 x )3 ∫0 1 + 2sin 2 x 3 ( )
π
2
= 2∫
π
2 0
4sin 4 x
( 3sin
2
x + cos x )
2
3
dx
= 8∫ 2
0
π
dx sin 2 x ( 3 + cot 2 x )
( x 2 − 1)m
( m)
dx
1 m − ∫ ( x 2 − 1) −1 −1
(m)
( x 2 − 1)m
( m +1)
( m −1) 1
( m +1)
( x 2 − 1)m
( m −1)
dx
1 m 2 = −∫ x − 1 ( ) −1
(2)
、解:做坐标变换
y2 x
u = xy , v =
,
y x ∂ ( u, v ) ∂ ( x, y ) 1 = y 2 2 y = 3v , = , ∂ ( x, y ) − 2 ∂ ( u , v ) 3v x x
∫∫ y
D
3 xdxdy 2 + xy 3
3
=∫ =∫
1
∫
3
1
3 1 ⋅ dudv v + uv 3v
n m n n
x →+∞
可知 F ( x ) 在 [ a, +∞ ) 上一致连续, 又 f ( x ) 在 [ a, +∞ ) 上一致连续, 所以ϕ ( x ) = f ( x ) − F ( x ) 在 [ a, +∞ ) 上一致连续. 3. 证明:因为当 x > a 时, f ′′ ( x ) ≤ 0 , 所以 f ′ ( x ) 在 [ a, +∞ ) 上单调递减, 当 x > a 时, f ′ ( x ) ≤ f ′ ( a ) < 0 , 从而 f ( x ) 在 [ a, +∞ ) 上严格单调递减, 又 f ( x ) = f ( a ) + f ′ ( a )( x − a ) + 1 f ′′ (ξ )( x − a )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江大学2003年研究生高等代数试题
1.(20分)令12,,,s ααα 是n R 中s 个线性无关的向量。
证明:存在含n 个未
知量的齐次线性方程组,使得12{,,,}s ααα 是它的一个基础解系。
2.(20分)设有分块矩阵A B C D ⎛⎫ ⎪⎝⎭
,其中,A D 都可逆,试证: (1)1det()det A B A BD C D C D
-=-; (2)1111111()()A BD C A A B CA B D CA --------=--。
3.(20分)设V 是数域P 上n 维线性空间,1234,,,V αααα∈,1234(,,,)W L αααα=,又有12,W ββ∈且12,ββ线性无关。
求证:可用12,ββ替换1234,,,αααα中的两个向量12,i i αα,使得剩下的两个向量34,i i αα与12,ββ仍然生成子空间W ,也即1234(,,,)i i W L ββαα=。
4.(20分)设A 为n 阶复矩阵,若存在正整数n 使得0n A =,则称A 为幂零矩阵。
求证:
(1)A 为幂零矩阵的充要条件是A 的特征值全为零;
(2)设A 不可逆,也不是幂零矩阵,那么存在n 阶可逆矩阵P ,使得
100B P AP C -⎛⎫= ⎪⎝⎭
,其中是B 幂零矩阵,C 是可逆矩阵。
5.(20分)已知实对称矩阵422242224A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,求正交矩阵P 使得T P AP 成为对角矩阵。
6.(20分)设V 是n 维欧氏空间,内积记为(,)αβ,又设T 是V 的一个正交变换,记12{|},{|}V V T V T V αααααα=∈==-∈。
证明:(1)12,V V 都是V 的子空间;(2)12V V V =⊕。
7.(10分)设()f x 是一个整系数多项式。
证明:若存在一个偶数a 及一个奇数b ,使得()f a 与()f b 都是奇数,则()f x 没有整数根。
8.(10分)1V ,2V 是n 维欧氏空间V 的子空间,且1V 的维数小于2V 的维数,证明:2V 中必有一个非零向量正交于1V 中的一切向量。
9.(10分)设()ij n n A a ⨯=是可逆的对称实矩阵。
证明:二次型的矩阵
11
111110
(,,)n n
n n n nn x x x a a f x x x a a -=- 是A 的伴随矩阵*A 。